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Abstrat

We ompute lattie renormalisation onstants of one-link quark operators (i.e.

operators with one ovariant derivative) for overlap fermions and L�usher-Weisz

gauge ation in one-loop perturbation theory. Among others, suh operators enter

the alulation of moments of polarised and unpolarised hadron struture funtions.

Results are given for � = 8:45, � = 8:0 and mass parameter � = 1:4, whih are om-

monly used in numerial simulations. We apply mean �eld (tadpole) improvement

to our results.
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1 Introdution

In a reent publiation [1℄ we have omputed lattie renormalisation onstants of loal

bilinear quark operators for overlap fermions and improved gauge ations in one-loop

perturbation theory. Among the ations we onsidered were the Symanzik, L�usher-

Weisz, Iwasaki and DBW2 gauge ations. The results were given for a variety of �

parameters. Furthermore, we showed how to apply mean �eld (tadpole) improvement

to overlap fermions. In this letter we shall extend our work to one-link bilinear quark

operators. Operators of this kind enter, for example, the alulation of moments of

polarised and unpolarised hadron struture funtions. The present alulations are muh

more involved than the previous ones, so that we shall restrit ourselves to the L�usher-

Weisz ation, and to parameters atually being used in numerial alulations.

The integral part of the overlap fermion ation [2, 3, 4℄

S

F

=

�

 

h�

1 �

am

2

�

D

N

+m

i

 ; (1)

m being the mass of the quark, is the Neuberger-Dira operator

D

N

=

�

a

�

1 +

X

p

X

y

X

�

; X = D

W

�

�

a

; (2)

where D

W

is the Wilson-Dira operator, and � is a real parameter orresponding to a

negative mass term. At tree level 0 < � < 2r, where r is the Wilson parameter. We take

r = 1 and onsider massless quarks.

Numerial simulations of overlap fermions are signi�antly more ostly than simula-

tions of Wilson fermions. The ost of overlap fermions is largely determined by the ondi-

tion number of X

y

X. This number is greatly redued for improved gauge �eld ations [5℄.

For example, for the tadpole improved L�usher-Weisz ation we found a redution fator

of & 3 ompared to the Wilson gauge �eld ation [6℄. The reason is that the L�usher-Weisz

ation suppresses unphysial zero modes, sometimes alled disloations [7℄. A redution

of the number of small modes of X

y

X appears also to result in an improvement of the

loality of the overlap operator [5℄.

We onsider the tadpole improved L�usher-Weisz ation [8, 9, 10℄

S
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6

g

2
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where U

plaquette

is the standard plaquette, U

retangle

denotes the loop of link matries

around the 1�2 retangle, and U

paralellogram

denotes the loop along the edges of the three-

dimensional ube. It is required that 

0

+ 8

1

+ 8

3

= 1 in the limit g ! 0, in order to

ensure the orret ontinuum limit. We de�ne

� =

6

g

2



0

: (4)

The remaining parameters are [10℄:



1



0

= �

(1 + 0:4805�)

20u

2

0

;



3



0

= �

0:03325�

u

2

0

;

1



0

= 1 + 8

�



1



0

+



3



0

�

; (5)

where

u

0

=

�

1

3

Tr hU

plaquette

i

�

1

4

; � = �

log(u

4

0

)

3:06839

: (6)

The �nal results annot be expressed in analyti form (as a funtion of � and �)

anymore. We therefore have to make a hoie. Here we onsider two ouplings, � = 8:45

and 8:0, at whih we run Monte Carlo simulations at present [6, 11℄. The orresponding

values of 

1

and 

3

are [12℄:

� 

1



3

r

0

=a

8.45 -0.154846 -0.0134070 5.29(7)

8.0 -0.169805 -0.0163414 3.69(4)

(7)

In (7) we also quote the orresponding fore parameters r

0

=a, as given in [12℄. Assuming

that r

0

= 0:5 fm, they translate into a lattie spaing of a = 0:095 fm at � = 8:45 and

a = 0:136 fm at � = 8:0. The mass parameter was hosen to be � = 1:4. This appeared

to be a fair ompromise between optimising the ondition number of X

y

X as well as the

loality properties of D

N

[13℄.

The paper is organised as follows. In Setion 2 we give a brief outline of our alulations

and present results for the renormalisation onstants in one-loop perturbation theory. In

Setion 3 we tadpole improve our results, and in Setion 4 we give our onlusions.

2 Outline of the alulation and one-loop results

The Feynman rules spei� for overlap fermions [14, 15℄ are olleted in [1℄, while the

gluon-operator and the gluon-gluon-operator verties (needed for the oksomb and op-

erator tadpole diagrams) are independent of the fermion ation and an be found in [16℄.
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We onsider general ovariant gauges, spei�ed by the gauge parameter �. The Landau

gauge orresponds to � = 1, while the Feynman gauge orresponds to � = 0. In lattie

momentum spae the gluon propagator D

��

(k) is given by the set of linear equations

X
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� � 1

^

k

�

^

k

�

�
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; (8)

where
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: (10)

The oeÆients fC

i

g are related to the oeÆients f

i

g of the improved ation by

C

0

= 

0

+ 8

1

+ 8

3

; C

1

= 

3

; C

2

= 

1

� 

3

: (11)

The alulations are done analytially as far as this is possible using Mathematia. Part

of the numerial results have been heked by an independent routine.

The bare lattie operators O(a) are, in general, divergent as a! 0. We de�ne �nite

renormalised operators by

O

S

(�) = Z

S

O

(a; �)O(a) ; (12)

where S denotes the renormalisation sheme. We have assumed that the operators do

not mix under renormalisation, whih is the ase for the operators onsidered in this

letter. The renormalisation onstants Z

O

are often determined in theMOM sheme �rst

from the gauge �xed quark propagator S

N

and the amputated Green funtion �

O

of the

operator O:

Z

MOM

 

(a; �) S

N

�

�

p

2

=�

2

= S

tree

; (13)

Z

MOM

O

(a; �)

Z

MOM

 

(a; �)

�

O

�

�

p

2

=�

2

= �

tree

O

+ other Dira strutures : (14)

(Note that Z

 

= 1=Z

2

.) The renormalisation onstants an be onverted to the MS

sheme,

Z

MS

 

(a; �) = Z

MS;MOM

 

Z

MOM

 

(a; �) ;

Z

MS

O

(a; �) = Z

MS;MOM

O

Z

MOM

O

(a; �) ;

(15)
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where Z

MS;MOM

 

, Z

MS;MOM

O

are alulable in ontinuum perturbation theory, and there-

fore are independent of the partiular hoie of lattie gauge and fermion ations.

In [1℄ the wave funtion renormalisation onstants where found to be

Z

MOM

 

(a; �) = 1�

g

2

C

F

16�

2

[2(1 � �) log(a�) + 4:79201 � + b

�

℄ (16)

in the MOM sheme, and

Z

MS

 

(a; �) = 1�

g

2

C

F

16�

2

[2(1 � �) log(a�) + 3:79201 � + b

�

+ 1℄ (17)

in the MS sheme, with C

F

= 4=3 and

� b

�

8.45 -17.429

8.0 -17.054

(18)

We onsider the following one-link operators

O

��

=

i

2

�

 (x)

�

$

D

�

 (x) ; (19)

O

5

��

=

i

2

�

 (x)

�



5

$

D

�

 (x) ; (20)

where

$

D

�

=

!

D

�

�

 

D

�

is the (symmetri) lattie ovariant derivative. While in our previous

work [1℄, whih involved loal bilinear quark operators, we only had to deal with the vertex

diagram shown on the left-hand side of Fig. 1, we now obtain ontributions from additional

diagrams: the operator tadpole and the oksomb diagrams shown on the right-hand side

of Fig. 1.

Figure 1: The one-loop lattie Feynman diagrams ontributing to the amputated Green

funtion. From left to right: vertex, operator tadpole and oksomb diagrams.
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Ation b

1

b

2

b

3

b

4

� = 8:45 - 5.6115 -3.8336 2.7793 0.3446

� = 8:0 - 5.2883 -3.7636 2.7310 0.3331

Plaquette -10.6882 -4.7977 3.4612 0.5267

Table 1: The oeÆients fb

i

g for the tadpole improved L�usher-Weisz ation at � = 8:45

and 8:0, as well as for plaquette ation.

The amputated Green funtion of the operator O

��

[eq. (19)℄ turns out to be

�

��

(a; p) = 

�

p

�

+

g

2

C

F

16�

2

���

1

3
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log(a
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)� 4:29201 � + b

1
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log(a
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�

�
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log(a

2
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2

)�

1

2

� + b

3

�

Æ

��

6p (21)

+ b

4

Æ

��



�

p

�

+

�

�

4

3

+ �

�

p

�

p

�

p

2

6p

�

;

where p is the external quark momentum, and the oeÆients fb

i

g are given in Table 1

for the tadpole improved L�usher-Weisz ation and, for omparison, for the plaquette

ation (with 

1

= 

3

= 0) as well. The latter numbers are independent of �. The Green

funtion �

5

��

(a; p) of the operator O

5

��

[eq. (20)℄ is obtained by multiplying the right-hand

side of (21) by 

5

from the right. The oeÆients fb

5

i

g turn out to be idential to fb

i

g,

as is expeted for overlap fermions. Thus, O

��

and O

5

��

have the same renormalisation

onstants. In the following we may therefore restrit ourselves to the operator O

��

.

It has been heked numerially that the gauge dependent part of (21) is universal (i.e.

independent of the lattie gauge and fermion ation), in aordane with the arguments

presented in [1℄.

Under the hyperubi group H(4) the 16 operators of type (19) fall into the following

four irreduible representations [17℄:

�

(6)

3

: O

v

2a

�

1

2

(O

14

+O

41

) ; (22)

�

(3)

1

: O

v

2b

� O

44

�

1

3

(O

11

+O

22

+O

33

) ; (23)

�

(1)

1

: O

v

2

� O

11

+O

22

+O

33

+O

44

; (24)

�

(6)

1

: O

v

2d

� O

14

�O

41

: (25)

(We have given one example operator in eah representation. A omplete basis for eah

representation an be found in [17℄.) The operators (22) and (23) are widely used in
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numerial simulations [18, 19, 6, 11℄. They orrespond to the �rst moment of the parton

distribution. The operators (24) and (25) represent higher twist ontributions in the

operator produt expansion, and so are not used as muh as operators in the �rst two

representations. For ompleteness we give results for all four representations, so that the

renormalisation fators for all operators of the form (19) will be known. We denote the

orresponding amputated Green funtions by �

v

2a

, �

v

2b

, �

v

2

and �

v

2d

. From (21) we read

o�

�

v
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=

1

2

�



1

p

4

+ 

4

p

1

�

�

1 +

g

2

C

F

16�

2

�

(� +

5

3

) log(a

2

p

2

)� 3:79201 � + b

v

2a

��

+

g

2

C

F

16�

2

�

�

4

3

+ �

�

p

1

p

4

p

2

6p ; (26)

�

v
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�
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p

4

�

1

3

3

X
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i

p

i

�

�
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g

2

C

F

16�
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�

(� +

5

3

) log(a

2
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F

16�
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�
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4
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+ �
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4

�

1

3

3

X

i=1

p

2

i

!

6p

p
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; (27)

�

v

2

= 6p

�

1 +

g

2

C

F

16�

2

�

(� � 1) log(a

2

p

2

)� 4:79201 � + b

v

2

�

�

; (28)

�

v

2d

=

�



1
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4

� 

4

p

1

�

�

1 +

g

2

C

F

16�

2

�

(� � 1) log(a

2

p

2

)� 4:79201 � + b

v
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�

�

(29)

with

b

v

2a

= b

1

+ b

2

; b

v

2b

= b

1

+ b

2

+ b

4

; b

v

2

= b

1

+ b

2

+4 b

3

+ b

4

�

4

3

; b

v

2d

= b

1

� b

2

: (30)

It is worth pointing out that with Wilson or lover fermions the Green funtions �

v

2

and �

v

2d

both show perturbative mixing of O(g

2

=a) with loal operators. With overlap

fermions these O(1=a) terms are ompletely absent, showing one again that overlap

fermions behave muh more like ontinuum fermions when mixing is a possibility.

Using (14) and (16), we obtain the renormalisation onstants in the MOM sheme:

Z

MOM

v

2a

;v

2b

(a; �) = 1�

g

2

C

F

16�

2

�

16

3

log(a�) + � + b

v

2a

;v

2b

+ b

�

�

; (31)

Z

MOM

v

2

;v

2d

(a; �) = 1�

g

2

C

F

16�

2

[ b

v

2

;v

2d

+ b

�

℄ : (32)

As already mentioned, the onversion fators Z

MS;MOM

v

2a

;v

2b

;v

2

;v

2d

are universal [16℄. They are
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given by

Z

MS;MOM

v

2a

;v

2b

= 1 �

g

2

C

F

16�

2

�

40

9

� �

�

; (33)

Z

MS;MOM

v

2

= 1 �

g

2

C

F

16�

2

�

�

4

3

�

; (34)

Z

MS;MOM

v

2d

= 1 : (35)

In the MS sheme we then �nd

Z

MS

v

2a

;v

2b

(a; �) = 1 �

g

2

C

F

16�

2

�

16

3

log(a�) +

40

9

+ b

v

2a

;v

2b

+ b

�

�

; (36)

Z

MS

v

2

(a; �) = 1 �

g

2

C

F

16�

2

�

�

4

3

+ b

v

2

+ b

�

�

; (37)

Z

MS

v

2d

(a; �) = 1 �

g

2

C

F

16�

2

[b

v

2d

+ b

�

℄ : (38)

3 Tadpole improved results

A detailed disussion of mean �eld { or tadpole { improvement for overlap fermions and

extended gauge ations has been given in [1℄. Here we will briey reall the basi idea,

before presenting our results.

Tadpole improved renormalisation onstants are de�ned by

Z

TI

O

= Z

MF

O

�

Z

O

Z

MF

O

�

pert

; (39)

where Z

MF

O

is the mean �eld approximation of Z

O

, while the right-hand fator is omputed

in perturbation theory. For overlap fermions (with r = 1), and operators with n

D

ovariant

derivatives, we have

Z

MF

O

=

� u

1�n

D

0

�� 4(1 � u

0

)

: (40)

In our ase n

D

= 1. It is required that � > 4(1� u

0

), whih is ful�lled here (see Table 2).

To ompute the right-hand fator in (39), we have to remove the tadpole ontribu-

tions from the perturbative expressions of Z

O

�rst. This is ahieved if we re-express the

perturbative series in terms of tadpole improved oeÆients:



TI

0

g

2

TI

= u

4

0



0

g

2

;



TI

i

g

2

TI

= u

6

0



i

g

2

; i = 1; 3 : (41)
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� k

TI

u

u

4

0

8.45 0.543338�

2

0.65176

8.0 0.515069�

2

0.62107

Table 2: The oeÆient k

TI

u

and the average plaquette u

4

0

at � = 8:45 and 8:0.

This does not �x all parameters, but leaves us with some freedom of hoie. The simplest

hoie is to de�ne

g

2

TI

=

g

2

u

4

0

; 

TI

0

= 

0

; 

TI

i

= u

2

0



i

; i = 1; 3 : (42)

With this hoie

C

TI

0

= 

0

+ 8

TI

1

+ 8

TI

3

; C

TI

1

= u

2

0

C

1

; C

TI

2

= u

2

0

C

2

: (43)

(Note that C

TI

0

6= 1. However, C

TI

0

! 1 in the ontinuum limit.) This means that we

have to replae every g

2

by g

2

TI

and every 

1

and 

3

by 

TI

1

and 

TI

3

, respetively, while

keeping 

0

unhanged. The e�et of introduing tadpole improved oeÆients (42) is that

the resaled gluon propagator remains of the same form as we hange u

0

, thus ensuring

fast onvergene.

To ompute Z

MF

O

perturbatively, we need to know the perturbative expansion of u

0

to one-loop order [20, 10℄. We write

u

0

= 1�

g

2

TI

C

F

16�

2

k

TI

u

: (44)

In [1℄ we have omputed k

TI

u

for the L�usher-Weisz ation with oeÆients C

TI

0

, C

TI

1

and C

TI

2

. The numbers are given in Table 2 for our two values of �, together with the

`measured' values of u

4

0

. Expanding (40) then gives

Z

MF

O pert

= 1 +

g

2

TI

C

F

16�

2

4

�

k

TI

u

: (45)

Let us now rewrite the one-loop renormalisation onstants of Setion 2 as

Z

v

2a

;v

2b

= 1 �

C

F

g

2

16�

2

�

16

3C

0

log(a�) +B

v

2a

;v

2b

(�;C)

�

; (46)

Z

v

2

;v

2d

= 1 �

C

F

g

2

16�

2

B

v

2

;v

2d

(�;C) : (47)
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Dividing (46) and (47) by (45) and inserting (40), we obtain mean �eld/tadpole improved

renormalisation onstants:

Z

TI

v

2a

;v

2b

=

�

� � 4(1 � u

0

)

�

1 �

g

2

TI

C

F

16�

2

�

16

3C

TI

0

log(a�) +B

TI

v

2a

;v

2b

��

; (48)

Z

TI

v

2

;v

2d

=

�

� � 4(1 � u

0

)

�

1 �

g

2

TI

C

F

16�

2

B

TI

v

2

;v

2d

�

; (49)

where we have introdued the abbreviated notation

B

TI

= B(�;C

TI

) +

4

�

k

TI

u

: (50)

The oeÆients B(�;C

TI

) are the analogue of B(�;C), with C

0

, C

1

and C

2

being replaed

by C

TI

0

, C

TI

1

and C

TI

2

, respetively. In (48) and (49) only the gluon propagator has been

tadpole improved.

To tadpole improved the fermion propagator as well, we must replae � by [1℄

�

TI

=

� � 4(1 � u

0

)

u

0

(51)

in the right-hand perturbative fator of (39). This de�nes `fully tadpole improved' renor-

malisation onstants

Z

FTI

v

2a

;v

2b

=

�

� � 4(1 � u

0

)

�

1 �

g

2

TI

C

F

16�

2

�

16

3C

TI

0

log(a�) +B

FTI

v

2a

;v

2b

��

; (52)

Z

FTI

v

2

;v

2d

=

�

� � 4(1 � u

0

)

�

1 �

g

2

TI

C

F

16�

2

B

FTI

v

2

;v

2d

�

(53)

with

B

FTI

= B(�

TI

; C

TI

) +

4

�

TI

k

TI

u

: (54)

In Table 3 we present our �nal results and ompare tadpole improved and unimproved

renormalisation onstants. We see that the improved oeÆientsB are rather small in the

ase of the operators v

2a

and v

2b

, muh smaller than for Wilson and lover fermions [21℄,

whih raises hope that the perturbative series onverges rapidly. This furthermore means

that the dominant ontribution to the renormalisation onstants is given by the mean

�eld fator (40).

4 Summary

We have omputed the renormalisation onstants of one-link quark operators for overlap

fermions and tadpole improved L�usher-Weisz ation for two values of the oupling, � =

10



Operator � B Z

MS

B

TI

Z

TI;MS

B

FTI

Z

FTI;MS

v

2a

8:45 �22:430 1:315 0:502 1:393 �0:077 1:411

v

2b

8:45 �22:085 1:311 0:793 1:384 0:230 1:401

v

2

8:45 �18:079 1:254 2:985 1:318 1:829 1:353

v

2d

8:45 �19:207 1:270 2:303 1:338 1:369 1:367

v

2a

8.0 �22:036 1:310 0:603 1:390 �0:108 1:412

v

2b

8.0 �21:703 1:305 0:892 1:381 0:199 1:402

v

2

8.0 �17:890 1:252 3:038 1:316 1:643 1:358

v

2d

8.0 �18:954 1:266 2:371 1:336 1:239 1:371

Table 3: The onstants B and Z

MS

at a = 1=� for various levels of improvement.

8:45 and 8:0, being used in urrent simulations. The alulations have been performed in

general ovariant gauge, using the symboli language Mathematia. This gave us omplete

ontrol over the Lorentz and spin struture, the anellation of infrared divergenes, as

well as the anellation of 1=a singularities. However, the prie is high. In intermediate

steps we had to deal with O(10

5

) terms due to the omplexity of the gauge �eld ation.

To improve the onvergene of the perturbative series and to get rid of lattie artefats,

we have applied tadpole improvement to our results. This was done in two stages. In the

�rst stage we improved the gluon propagator, while in the seond stage we improved both

gluon and quark propagators.

Results at other � values, � parameters (also inluding other gauge �eld ations with

up to six links) an be provided on request.
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