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Abstrat

We present a determination of the QCD parameter � in the quenhed

approximation (n

f

= 0) and for two avours (n

f

= 2) of light dynamial

quarks. The alulations are performed on the lattie using O(a) improved

Wilson fermions and inlude taking the ontinuum limit. We �nd �

MS

n

f

=0

=

259(1)(20)MeV and �

MS

n

f

=2

= 261(17)(26)MeV, using r

0

= 0:467 fm to

set the sale. Extrapolating our results to �ve avours, we obtain for

the running oupling onstant at the mass of the Z boson �

MS

s

(m

Z

) =

0:112(1)(2).
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1 Introdution

The parameter � is one of the fundamental quantities of QCD. It sets the sale for

the running oupling onstant �

s

(�), and it is the only parameter of the theory in

the hiral limit. Usually � is de�ned by writing �

s

(�) as an expansion in inverse

powers of ln(�

2

=�

2

). For suh a relationship to remain valid for all values of �,

� must hange as avour thresholds are rossed: � ! �

n

f

, where n

f

indiates

the e�etive number of light (with respet to the sale �) quarks.

A lattie alulation of � requires an aurate determination of a referene

sale, the introdution of an appropriate non-perturbatively de�ned oupling,

whih an be omputed aurately on the lattie over a suÆiently wide range of

energies, as well as a reliable extrapolation to the hiral and ontinuum limits.

Finally, and equally importantly, one needs to know the relation of the oupling to

�

MS

s

, the quantity of �nal interest, aurately to a few perent. This programme

has been ahieved for the pure gauge theory [1, 2℄. In full QCD alulations

with Wilson fermions the amount of lattie data was barely enough to enable

a reliable hiral and ontinuum extrapolation [2, 3℄. Reent alulations with

staggered fermions over a wider range of lattie spaings and quark masses [4℄.

However, staggered fermions are not without their own problems.

We determine � in the MS sheme from the fore parameter r

0

[5℄ and the

`boosted' oupling g

2

. The latter is obtained from the average plaquette. The

advantage of this method is that both quantities are known to high preision. As

in our previous work [2, 3℄, we shall use here non-perturbatively O(a) improved

Wilson (lover) fermions. De�nitions of the ation are standard (see, for example,

Appendix D of [6℄). The lattie alulations will be done for n

f

= 2 avours of

dynamial quarks. In addition, we will update our quenhed results.

Sine our �rst attempt [2, 3℄ the amount of lattie data with dynamial quarks

has greatly inreased [7℄. That is to say, at our previous ouplings � = 5:20,

5:25 and 5:29 we have inreased the statistis and done additional simulations

at smaller quark masses. Furthermore, we have generated dynamial gauge �eld

on�gurations at � = 5:40 for three di�erent quark masses. At eah � value we

now have data at three to four quark masses at our disposal, and the smallest

lattie spaing that we have reahed in our simulations is a � 0:07 fm. This allows

us to improve on, and disentangle, the hiral and ontinuum extrapolations. In

the quenhed ase the fore parameter r

0

=a is now known up to � = 6:92 [8℄.

The paper is organised as follows. In setion 2 we present a general disussion

about the � funtion, inluding Pad�e approximations, and the running oupling

onstant. Also given are results in the MS sheme. In setion 3 we set up the

lattie formalism and disuss what oeÆients are known. Various possibilities

for onverting to the MS sheme are given, whih will indiate the magnitude

of systemati errors. In setion 4 results are given for r

0

�

MS

for both quenhed

(n

f

= 0) and unquenhed n

f

= 2 fermions. These results are then extrapolated
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to n

f

= 3 avours of dynamial quarks in setion 5. This is done by mathing

the stati fore at the sale r

0

. In setion 6 we onvert our results to physial

units and, after mathing �

s

to n

f

= 5 avours, ompare them with other lattie

determinations and to the experimental values. Finally, in setion 7 we give our

onlusions.

2 The QCD Coupling and the � Funtion

The `running' of the QCD oupling onstant as the sale hanges is ontrolled by

the � funtion,

�g

S

(M)

� logM

= �

S

g

S

(M) (1)

with

�

S

(g

S

) = �b

0

g

3

S

� b

1

g

5

S

� b

S

2

g

7

S

� b

S

3

g

9

S

� : : : ; (2)

renormalisation having introdued a saleM together with a sheme S. The �rst

two oeÆients are sheme independent and are given for the SU(3) olour gauge

group as

b

0

=

1

(4�)

2

�

11 �

2

3

n

f

�

; b

1

=

1

(4�)

4

�

102 �

38

3

n

f

�

: (3)

Integrating eq. (1) gives

�

S

M

= F

S

(g

S

(M)) ; (4)

with

F

S

(g

S

) = exp

�

�

1

2b

0

g

2

S

�

�

b

0

g

2

S

�

�

b

1

2b

2

0

exp

�

�

Z

g

S

0

d�

�

1

�

S

(�)

+

1

b

0

�

3

�

b

1

b

2

0

�

��

;

(5)

where �

S

, the integration onstant, is the fundamental sheme dependent QCD

parameter. The integral in eq. (5) may be performed numerially or to low orders

analytially. For example, to 3 loops we have

�

S

M

= exp

�

�

1

2b

0

g

2

S

�

�

b

0

g

2

S

�

�

b

1

2b

2

0

�

1 +

A

S

2b

0

g

2

S

�

�p

S

A

�

1 +

B

S

2b

0

g

2

S

�

�p

S

B

; (6)

where

A

S

= b

1

+

q

b

2

1

� 4b

0

b

S

2

;

B

S

= b

1

�

q

b

2

1

� 4b

0

b

S

2

;

(7)
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Figure 1: �

MS

s

(�) versus �=�

MS

for n

f

= 0 (left piture) and n

f

= 2 (right

piture), using suessively more and more oeÆients of the � funtion.

and

p

S

A

= �

b

1

4b

2

0

�

b

2

1

� 2b

0

b

S

2

4b

2

0

p

b

2

1

� 4b

0

b

S

2

;

p

S

B

= �

b

1

4b

2

0

+

b

2

1

� 2b

0

b

S

2

4b

2

0

p

b

2

1

� 4b

0

b

S

2

:

(8)

Results are usually given in the MS sheme, with the sale M being replaed

by �, and thus

�

MS

�

= F

MS

(g

MS

(�)) : (9)

In this sheme the next two � funtion oeÆients are known [9, 10, 11℄:

b

MS

2

=

1

(4�)

6

�

2857

2

�

5033

18

n

f

+

325

54

n

2

f

�

;

b

MS

3

=

1

(4�)

8

�

149753

6

+ 3564 �

3

�

�

1078361

162

+

6508

27

�

3

�

n

f

+

�

50065

162

+

6472

81

�

3

�

n

2

f

+

1093

729

n

3

f

�

:

(10)

The running oupling �

MS

s

(�) � g

2

MS

(�)=4� is plotted in Fig. 1 for n

f

= 0, 2 by

solving eq. (5) numerially, using only the �rst oeÆient (1-loop), the �rst and

4



seond oeÆients (2-loop) et. of the � funtion. The �gure shows an apparently

rapidly onvergent series (f the 3- to 4-loop result), ertainly in the range we

will be interested in, �=�

MS

� 20. The main di�erene between the n

f

= 0 and

n

f

= 2 results is that �

MS

s

j

n

f

=2

rises more steeply as a funtion of �=�

MS

, as

b

0

j

n

f

=2

< b

0

j

n

f

=0

.

A knowledge of the � funtion to 4 loops is the exeption rather than the rule.

In many shemes it is known only to 3 loops. To improve the onvergene of the

� funtion, we may attempt to use a Pad�e approximation by writing eq. (2) as

�

S

[1=1℄

(g

S

) = �

b

0

g

3

S

+

�

b

1

�

b

0

b

S

2

b

1

�

g

5

S

1�

b

S

2

b

1

g

2

S

; (11)

whih on expanding is arranged to give the �rst three oeÆients of eq. (2) and

estimates the next oeÆient b

S

3

as

b

S

3

�

(b

S

2

)

2

b

1

: (12)

It is again possible to give an analyti result for F

S

using �

S

[1=1℄

. We �nd

�

S

M

= exp

�

�

1

2b

0

g

2

S

�

2

4

b

0

g

2

S

1 +

�

b

1

b

0

�

b

S

2

b

1

�

g

2

S

3

5

�

b

1

2b

2

0

: (13)

At least for the MS sheme this appears to work reasonably well. Equation (12)

gives b

MS

3

� 3:22� 10

�5

and 1:67� 10

�5

for quenhed and unquenhed fermions,

respetively, to be ompared with the true values from eq. (10) of 4:70�10

�5

and

2:73� 10

�5

. In [3℄ we have shown a �gure of the various Pad�e approximations to

the � funtion. In Fig. 2 we show the value of F

MS

(g

MS

) at g

2

MS

= 2 versus the

� funtion oeÆient number for both quenhed and unquenhed fermions. Also

shown are the results using the [1=1℄ Pad�e approximations. It is seen that these

numbers lie extremely lose to the 4-loop � funtion results. As Pad�e approxi-

mations give some estimation of the e�et of higher order � funtion oeÆients,

we shall thus prefer these later in our determination of the � parameter.

3 Lattie Methods

On the lattie we also have a oupling onstant g

0

(a) and orresponding � fun-

tion with oeÆients b

LAT

i

and parameter �

LAT

, where

a�

LAT

= F

LAT

(g

0

(a)) : (14)
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0 1 2 3
n

0

0.02

0.04

0.06

0.08
F

M
S

Figure 2: F

MS

(g

MS

) for g

2

MS

= 2 versus � funtion oeÆient number n. The

n

f

= 0 values are �lled irles, while the n

f

= 2 values are �lled squares. The

[1=1℄ Pad�e approximations are given as open symbols.

To evaluate F

LAT

, we need to know the b

LAT

i

s. They an be found by expanding

g

MS

as a power series in g

0

as

1

g

2

MS

(�)

=

1

g

2

0

(a)

+ 2b

0

ln a�� t

LAT

1

+ (2b

1

ln a�� t

LAT

2

)g

2

0

(a)

+ [�2b

0

b

1

ln

2

a�+ 2(b

MS

2

+ b

1

t

LAT

1

) ln a�� t

LAT

3

℄ g

4

0

(a) + : : : :

(15)

To have onsisteny between eqs. (9) and (14) we need

t

LAT

1

= 2b

0

ln

�

MS

�

LAT

; (16)

and

b

LAT

2

= b

MS

2

+ b

1

t

LAT

1

� b

0

t

LAT

2

;

b

LAT

3

= b

MS

3

+ 2b

MS

2

t

LAT

1

+ b

1

(t

LAT

1

)

2

� 2b

0

t

LAT

3

;

(17)

where b

LAT

i

are the lattie � funtion oeÆients, as in eq. (2). So the transfor-

mation between the two shemes is given by the t

LAT

i

(whih de�ne the transfor-

mation), and the renormalisation group ditates how the sale running ours

(in this ase the ln a� terms). A knowledge of (the 1-loop) t

LAT

1

determines the

relationship between the � parameters in the two shemes, while also knowing

(the 2-loop) t

LAT

2

means that the 3-loop � funtion oeÆient b

LAT

2

an be found.
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At present, what we know is [12, 13, 14, 15, 16, 17, 2℄

t

LAT

1

= 0:4682013 � n

f

[0:0066960 � 0:0050467 

sw

+ 0:0298435 

2

sw

+ am

q

(�0:0272837 + 0:0223503 

sw

� 0:0070667 

2

sw

) +O((am

q

))

2

℄ ;

t

LAT

2

= 0:0556675 � n

f

[0:002600 + 0:000155 

sw

� 0:012834 

2

sw

� 0:000474 

3

sw

� 0:000104 

4

sw

+O(am

q

)℄ :

(18)

Here t

LAT

1

has been alulated inluding the am

q

terms (m

q

being the bare quark

mass), while t

LAT

2

is known only for am

q

= 0, and t

LAT

3

is unknown, whih means

that from eq. (17) b

LAT

2

is known but not b

LAT

3

. For general 

sw

the onnetion

between g

2

MS

and g

2

0

is only de�ned up to terms of O(a), but on the improvement

trajetory 

sw

= 1+O(g

2

0

) it is possible to arrange it to be O(a

2

) if the am

q

terms

are inluded in the t

LAT

i

s.

Thus, the onversion from the lattie oupling to the MS oupling (eqs. (15)

and (18)) an also be written with mass independent t

LAT

i

s, if we rede�ne g

2

0

by

replaing it by ~g

2

0

, where

~g

2

0

= g

2

0

(1 + b

g

am

q

) ; b

g

= b

(0)

g

n

f

g

2

0

+O(g

4

0

) : (19)

So, putting 

sw

= 1+O(g

2

0

) into eqs. (15) and (18) means that t

LAT

1

is replaed by

t

LAT

1

� n

f

am

q

b

(0)

g

, whih gives b

(0)

g

= 0:01200. This value agrees with the number

reported in [18℄.

Thus, in this mass independent sheme (ie a shemewhere the renormalisation

onditions are imposed for zero quark mass) there appears to be little di�erene

in extrapolating to the hiral limit using onstant � = 6=g

2

0

, rather than onstant

~

� = 6= ~g

0

2

. So, rather than using eq. (18) at �nite am

q

, we shall �rst extrap-

olate our plaquette and r

0

=a data to the hiral limit and then determine �

MS

.

Before attempting this, we shall disuss some improvements to help improve the

onvergene of the power series (15).

As it is well known that lattie perturbative expansions are poorly onvergent,

we have used a `boosted' oupling onstant

g

2

2

�

g

2

0

(a)

u

4

0

(20)

to help the series (15), or equivalently (2) for �

LAT

(g

0

), onverge faster. Here

P � u

4

0

= hTrU

2

i=3 is the average plaquette. In perturbation theory we write

1

g

2

2

=

1

g

2

0

� p

1

� p

2

g

2

0

+O(g

4

0

) (21)

with [19, 20℄

p

1

=

1

3

;

p

2

= 0:0339110 � n

f

(0:001846 � 0:0000539 

sw

+ 0:001590 

2

sw

)

(22)
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for massless lover fermions.

To improve the onvergene of the series further, we re-express it in terms of

the tadpole improved oeÆient



2

sw

= 

sw

u

3

0

: (23)

Changing t

LAT

i

to t

2

i

�rst replaes t

LAT

i

by t

LAT

i

� p

i

, and seondly using 

2

sw

simply

replaes every 

sw

by 

2

sw

in t

LAT

1

, but the hange in t

2

2

is more ompliated as the

oeÆients of 

2

sw

hange in t

2

2

.

This gives for t

2

i

� t

2

i

(

2

sw

) in the hiral limit

t

2

1

= 0:1348680 � n

f

[0:0066960 � 0:0050467 

2

sw

+ 0:0298435 (

2

sw

)

2

℄

t

2

2

= 0:0217565 � n

f

[0:000753 + 0:001053 

2

sw

� 0:000498 (

2

sw

)

2

� 0:00047 4(

2

sw

)

3

� 0:000104 (

2

sw

)

4

℄ :

(24)

As we have here a 2-loop result, we an see how well tadpole improvement im-

proves the series onvergene. The oeÆient of n

f

in t

2

2

is onsiderably smaller

than the orresponding oeÆient in t

LAT

2

. For example, using the values at

� = 5:40 given in the next setion, we �nd that the magnitude of the oeÆ-

ient is redued by two orders of magnitude (from � �0:0438 to � 0:0003).

What this tadpole improvement represents is taking a path from g

2

= 0 to

g

2

= g

2

2

, keeping 

2

sw

�xed. Later we shall onsider other trajetories from 0

to g

2

2

. If we had all orders of the theory, the result would depend only on the

end point. But with a �nite series the trajetory will matter. This will help us

estimate systemati errors from unknown higher order terms.

Thus, in onlusion we have

a�

2

= F

2

(g

2

(a)) ; (25)

�

MS

�

= F

MS

(g

MS

(�)) ; (26)

together with the onversion formula

1

g

2

MS

(�)

=

1

g

2

2

(a)

+ 2b

0

ln a�� t

2

1

+ (2b

1

ln a�� t

2

2

)g

2

2

(a) + : : : (27)

with

t

2

1

= 2b

0

ln

�

MS

�

2

(28)

and

b

2

2

= b

MS

2

+ b

1

t

2

1

� b

0

t

2

2

: (29)

We shall now disuss various strategies to determine �

MS

.
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3.1 Method I

This method was used in our previous papers [2, 3, 21℄, with the di�erene that

now we �rst extrapolate to the hiral limit. For eah � value we �rst ompute

t

2

i

from eq. (24). Then from eq. (27) we onvert g

2

to g

MS

at some appropriate

sale �

�

, and using the fore sale r

0

, we alulate r

0

�

MS

from eq. (26):

r

0

�

MS

= r

0

�

�

F

MS

(g

MS

(�

�

)) : (30)

Finally, we extrapolate to the ontinuum limit, a! 0. Note that t

2

i

will depend

on the oupling beause 

2

sw

does.

We must determine the sale �

�

. A good hoie to help eq. (27) onverge

rapidly is to take the O(1) oeÆient to vanish, whih is ahieved by hoosing

[13℄

�

�

=

1

a

exp

�

t

2

1

2b

0

�

: (31)

Thus, we used

1

g

2

MS

(�

�

)

=

1

g

2

2

(a)

+

�

b

1

b

0

t

2

1

� t

2

2

�

g

2

2

(a) +O(g

4

2

) (32)

to �nd g

2

MS

(�

�

), whih was then substituted into eq. (30).

3.2 Method II

Alternatively, we an �rst determine b

2

2

from eq. (29) and then determine r

0

�

2

via eq. (25). After omputing this, we onvert to r

0

�

MS

using

r

0

�

MS

= r

0

�

2

exp

�

t

2

1

2b

0

�

; (33)

and then take the ontinuum limit. Again, note that b

2

2

will depend on the

oupling, beause 

2

sw

does.

This method is equivalent to hoosing a sale �

=

, as in method I, suh that

g

MS

(�

=

) = g

2

(a). In this ase all the oeÆient terms of eq. (27) vanish. The

sale that ahieves this is

�

=

=

1

a

exp

�

t

2

1

2b

0

�

F

2

(g

2

(a))

F

MS

(g

2

(a))

: (34)

Indeed, substituting �

=

into eq. (26) then gives eq. (33) again. The sale �

=

is

lose to �

�

, as an be seen by expanding eq. (34) to 3 loops. From eq. (6) we

9



have

�

=

=

1

a

exp

�

t

2

1

2b

0

�

�

1 +

A

2

2b

0

g

2

2

�

�p

2

A

�

1 +

A

MS

2b

0

g

2

2

�

�p

MS

A

�

1 +

B

2

2b

0

g

2

2

�

�p

2

B

�

1 +

B

MS

2b

0

g

2

2

�

�p

MS

B

= �

�

�

1�

b

1

t

2

1

� b

0

t

2

2

2b

2

0

g

2

2

+ : : :

�

> �

�

;

(35)

for the ouplings used here.

3.3 Method III

Another possibility, and theoretially the most sound, is to vary 

2

sw

along the

improvement path as g

2

2

inreases. This will give genuinely onstant � funtion

oeÆients (ie independent of the oupling). As the 1-loop expansion for 

2

sw

is

known along this path,



2

sw

= 1 + 

2

0

g

2

2

+ : : : ; (36)

with 

2

0

= 

0

�

3

4

p

1

and 

0

= 0:2659(1) [22℄, then expanding eq. (24) gives

b

2

2

= b

MS

2

+ b

1

t

2

1

�

�



2

sw

=1

� b

0

t

2

2

�

�



2

sw

=1

� b

0



2

0

�t

2

1

�

2

sw

�

�

�

�



2

sw

=1

= �0:0008241 : (37)

This result may also be derived from eq. (27) by �rst setting a = �

�1

(for

simpliity) and then taking ��=�� of this equation. This leads to

�

2

g

3

MS

�

MS

(g

MS

) =

�

�

2

g

3

2

�

�t

2

1

�

2

sw

�

2

sw

�g

2

� 2t

2

2

g

2

+O(g

3

2

)

�

�

2

(g

2

) ; (38)

whih upon expanding out also gives eq. (37).

So, having determined b

2

2

in eq. (29), the method is as for method II: �rst

determine r

0

�

2

using eq. (25) and then onvert to r

0

�

MS

using eq. (33).

3.4 Methods IIP and IIIP

To further improve our alulations, and to redue the systemati error, we on-

sider here the e�et of Pad�e improving the � funtion, as given in eqs. (11) and

(13). We restrit ourselves to methods II and III, and we all the Pad�e improved

results IIP and IIIP, respetively.

10



� r

0

=a P r

0

�

MS

I r

0

�

MS

II r

0

�

MS

IIP

5.70 2.922(09) 0.549195(25) 0.4888(15) 0.4950(15) 0.4888(15)

5.80 3.673(05) 0.567651(21) 0.5142(07) 0.5200(07) 0.5140(07)

5.95 4.898(12) 0.588006(20) 0.5461(13) 0.5514(14) 0.5457(13)

6.00 5.368(33) 0.593679(08) 0.5579(34) 0.5631(35) 0.5575(34)

6.07 6.033(17) 0.601099(18) 0.5696(16) 0.5746(16) 0.5692(16)

6.20 7.380(26) 0.613633(02) 0.5861(21) 0.5907(21) 0.5855(21)

6.40 9.740(50) 0.630633(04) 0.5976(31) 0.6018(31) 0.5970(31)

6.57 12.18(10) 0.643524(15) 0.6029(48) 0.6067(48) 0.6022(48)

6.69 14.20(12) 0.651936(15) 0.6055(50) 0.6091(51) 0.6049(50)

6.81 16.54(12) 0.659877(13) 0.6080(46) 0.6113(46) 0.6073(46)

6.92 19.13(15) 0.666721(12) 0.6145(47) 0.6177(47) 0.6139(47)

1 1 1 0.6152(21) 0.6189(21) 0.6145(20)

Table 1: The quenhed r

0

�

MS

values for methods I, II and IIP (ie using the Pad�e

improved � funtion �

2

[1=1℄

) together with the fore parameter r

0

=a [8℄ (the number

at � = 6:0 is from the interpolation formula given there) and the plaquette P .

The ontinuum extrapolated values together with the statistial errors are given

in the bottom row. Numbers in italis are not used in the �ts.

0.00 0.01 0.02 0.03 0.04 0.05
(a/r0)

2

0.45

0.50

0.55

0.60

0.65

0.70

r 0Λ
M

S

Figure 3: The quenhed r

0

�

MS

points versus (a=r

0

)

2

, together with a linear ex-

trapolation to the ontinuum limit for method IIP. The �lled irles are used for

the extrapolation. The star represents the extrapolated value.
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4 Results

4.1 Quenhed Results

In the quenhed ase (n

f

= 0) we do not have any of the additional hiral limit

extrapolation ompliations alluded to in the previous setion, or a 

sw

term.

This means that there is no di�erene between method II and method III, so

the proedure is straightforward. In Table 1 we give the parameters used. For

r

0

we use, for onsisteny, exlusively the values given in [8℄, whih inludes

previous results from [23℄. The one exeption is � = 6:0, where we have used the

interpolation formula [8℄ for r

0

=a. Our plaquette values are determined at their

given � values.

In Table 1 we also give the results for r

0

�

MS

from methods I, II and IIP. We

�rst see that the results for r

0

�

MS

are almost indistinguishable between methods

I, II and IIP. Method IIP lies just below method I (and indeed is almost idential

with it).

We now onsider the ontinuum limit of our results. In Fig. 3 we plot the

results for r

0

�

MS

against (a=r

0

)

2

for method IIP. The di�erenes between the

results of the various methods are small. As one expets that Pad�e improvement

gives a better answer, we shall onentrate on IIP. The smallest a value is not

inluded in the �t, as it appears to deviate a little, but inluding it would not

have hanged the extrapolated value muh. We also have not inluded � = 6:0 in

the �t, as r

0

=a is only known from an interpolation formula. But as an be seen

from the �gure, inluding it has no e�et on the result. Also, the two oarsest

a values have not been inluded in the �t, as they show signi�ant non-linear

e�ets in a

2

. These two points are not shown in the plot, as they lie far to the

right. Figure 3 learly shows a linear extrapolation over a wide range of lattie

spaings, a

�1

� 2 { 6:5GeV, giving a value for method IIP of

r

0

�

MS

0

� r

0

�

MS

�

�

n

f

=0

= 0:614(2)(5) : (39)

Here the �rst error is statistial, and the seond systemati error is estimated by

the spread in the results between methods I, II and IIP. That the systemati error

is small is an indiation of the onvergene of results from the di�erent methods.

The result (39) agrees with our earlier value [2℄.

4.2 Unquenhed n

f

= 2 Results

We now turn to unquenhed n

f

= 2 fermions. In Table 2 we show the �, � and



sw

parameters used in the simulations, together with the measured r

0

=a and

plaquette P values. As disussed in setion 3, we shall �rst determine r

0

�

MS

in

the hiral limit and then perform the ontinuum extrapolation. We must thus

�rst �nd the zero quark mass results from Table 2. We shall make a hiral

12



� � V 

sw

r

0

=a P Group

5.20 0.1342 16

3

� 32 2.0171 4.077(70) 0.528994(58) QCDSF

5.20 0.1350 16

3

� 32 2.0171 4.754(45) 0.533670(40) UKQCD

5.20 0.1355 16

3

� 32 2.0171 5.041(53) 0.536250(30) UKQCD

5.20 0.13565 16

3

� 32 2.0171 5.250(75) 0.537070(100) UKQCD

5.20 0.1358 16

3

� 32 2.0171 5.320(95) 0.537670(30) UKQCD

5.25 0.1346 16

3

� 32 1.9603 4.737(50) 0.538770(41) QCDSF

5.25 0.1352 16

3

� 32 1.9603 5.138(55) 0.541150(30) UKQCD

5.25 0.13575 24

3

� 48 1.9603 5.532(40) 0.543135(15) QCDSF

5.29 0.1340 16

3

� 32 1.9192 4.813(82) 0.542400(50) UKQCD

5.29 0.1350 16

3

� 32 1.9192 5.227(75) 0.545520(29) QCDSF

5.29 0.1355 24

3

� 48 1.9192 5.566(64) 0.547094(23) QCDSF

5.29 0.1359 24

3

� 48 1.9192 5.880(100) 0.548286(57) QCDSF

5.40 0.1350 24

3

� 48 1.8228 6.092(67) 0.559000(19) QCDSF

5.40 0.1356 24

3

� 48 1.8228 6.381(53) 0.560246(10) QCDSF

5.40 0.1361 24

3

� 48 1.8228 6.714(64) 0.561281(08) QCDSF

Table 2: The unquenhed �, � and 

sw

values and the volume V, together with

the measured fore parameter r

0

=a and plaquette P . The ollaboration that gen-

erated the on�gurations is given in the last olumn. The results for � = 5:29,

� = 0:1359 are preliminary. We have reanalysed our r

0

=a values, taking auto-

orrelations properly into aount, whih gave larger error bars than previously

reported [24℄.

� �



r

0

=a P

5.20 0.136008(15) 5.455(96) 0.538608(49)

5.25 0.136250(07) 5.885(79) 0.544780(89)

5.29 0.136410(09) 6.254(99) 0.549877(109)

5.40 0.136690(22) 7.390(26) 0.562499(46)

Table 3: The ritial values for � (ie �



) and the hiral limit values for r

0

=a and

P for the four � values used here.
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0 0.02 0.04 0.06 0.08
amq

0.52

0.53

0.54

0.55

0.56

0.57

P

Figure 4: The plaquette P (�lled symbols) plotted against the bare quark mass

am

q

for � = 5:20 (lower urve) until � = 5:40 (upper urve). The �ts use eq. (41),

giving the extrapolated values in the hiral limit (open symbols).

0 0.02 0.04 0.06 0.08
amq

4

5

6

7

8

r 0/
a

Figure 5: The fore parameter r

0

=a plotted against am

q

. The same notation as

in Fig. 4 is used.
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� r

0

�

MS

I r

0

�

MS

II r

0

�

MS

IIP r

0

�

MS

III r

0

�

MS

IIIP

5.20 0.5183(91) 0.5304(94) 0.4913(87) 0.6459(114) 0.6173(109)

5.25 0.5210(71) 0.5415(73) 0.5040(68) 0.6450(87) 0.6174(83)

5.29 0.5372(85) 0.5482(87) 0.5120(81) 0.6433(102) 0.6165(98)

5.40 0.5577(198) 0.5676(201) 0.5343(189) 0.6431(228) 0.6182(219)

1 0.6012(346) 0.6085(352) 0.5819(329) 0.6376(412) 0.6170(395)

Table 4: The values for r

0

�

MS

for methods I, II, IIP, III, IIIP desribed in setion 3

for the four � values used here.

extrapolation in am

q

, de�ned here by

am

q

=

1

2

�

1

�

�

1

�



�

: (40)

We estimate �



from partially quenhed pion data. The results have been given

in [7℄ and are tabulated in the seond olumn of Table 3.

In Fig. 4 we show the results for the plaquette. For eah � value the data

appear to be rather linear in the quark mass am

q

, in partiularly for the higher �

values. This suggests that a quadrati �t ansatz is suÆient to obtain the value

of P in the hiral limit. We thus use

P = d

0

+ d

1

am

q

+ d

2

(am

q

)

2

: (41)

Exept for � = 5:20, it does not muh matter whether a linear or quadrati �t is

used. In Fig. 5 we show the results for r

0

=a. The data is less linear in am

q

, and

also less smooth, so we used the renormalisation group inspired global �t ansatz

ln

r

0

a

= A

1

(�) +A

2

(�)am

q

+A

3

(�)(am

q

)

2

; (42)

where A

1

(�) is a linear polynomial in �, and A

2

(�), A

3

(�) are quadrati polyno-

mials in �. This ansatz was also used in [7℄. The results of the �ts in the hiral

limit are given in Table 3.

In Table 4 we give our results for r

0

�

MS

for methods I, II, IIP, III and IIIP.

Again, as the results for method I are very similar to method II, we shall not

disuss method I further here. In Fig. 6 we plot r

0

�

MS

against (a=r

0

)

2

for methods

IIP and IIIP, together with a linear extrapolation to the ontinuum limit. Though

we annot reah suh small a values as for the quenhed ase, the r

0

�

MS

data do

seem to lie on straight lines. We �nd a linear behaviour at least over the region

a

�1

� 2 { 3GeV. This seems to be well inside the linear region of Fig. 3.

For methods IIP (and II) the results lie roughly parallel to the quenhed

results, while for methods IIIP (and III) they are atter and higher. However,

in the ontinuum limit they agree within error bars. Ideally, the result should

15



0.00 0.01 0.02 0.03 0.04 0.05
(a/r0)

2

0.45

0.50

0.55

0.60

0.65

0.70
r 0Λ

M
S

method IIP

method IIIP

Figure 6: The unquenhed r

0

�

MS

points (�lled irles) versus (a=r

0

)

2

, together

with a linear extrapolation to the ontinuum limit for methods IIP and IIIP.

Stars represent the extrapolated values.

not depend on the hoie of trajetory. The way this should work, as mentioned

before, is that although the oeÆients t

2

i

will be di�erent depending on the path

one might hoose, the sum

1

g

2

2

(a)

� t

2

1

� t

2

2

g

2

2

(a) + : : : (43)

should not. However, at the order to whih we have the series this is not yet so.

The di�erene between methods II and III is that we have replaed 

2

sw

by its

1-loop expansion. Returning to Fig. 6, the fat that the results from methods II,

IIP are almost parallel to the quenhed results suggests that in methods II, IIP

the O(a

2

) e�ets ome from the same soure as in the quenhed ase, whih must

be the gluon ation. For methods III, IIIP the slope is muh smaller so there

must have been a fortuitous anellation between a

2

e�ets from the gluon and

fermion terms.

One expets that Pad�e improvement gives a better answer, so the P results

are more trustworthy. Previous experiene suggests that the proedure in IIP of

using tadpole improved 

sw

works fairly well. For example, �



in [25℄ and the

renormalisation onstant Z for v

2b

in [6℄ agree within a few perent with the

non-perturbative values. However, method IIIP is a more onsistent approah.

Furthermore, the results from method IIIP appear to be insensitive to the par-

tiular form of the ontinuum extrapolation. We therefore take these numbers as

16



our best estimate.

From the linear extrapolation of method IIIP to the ontinuum limit we thus

quote

r

0

�

MS

2

� r

0

�

MS

�

�

n

f

=2

= 0:617(40)(21) ; (44)

where the �rst error is statistial and the seond systemati. The latter error is

estimated by the spread in the results between method III and IIIP. Compared

to our previous result [2℄, the value (44) has inreased by � 10%, but still lies

within the error bars.

5 Extrapolation to n

f

= 3 Flavours

At high energy sales we an see that �

MS

makes some fairly large jumps as we

pass through the heavy quark mass thresholds and hange the e�etive number

of avours. From [26℄ we an see that the reason for these large jumps is the

fat that m

q

=�

MS

is large. We want to argue here that the situation with light

quarks, m

q

. �

MS

, is rather di�erent, and that in this ase we do not expet to

see any dramati dependene of �

MS

on n

f

.

We will determine the n

f

= 3 avour � parameter from mathing the stati

fore at the sale r

0

.

5.1 One-loop Mathing

To make lear what is involved in mathing, we will go through the 1-loop al-

ulation in some detail.

At the 1-loop level the stati potential between fundamental harges is given

by

V (r) = �

4

3

g

2

MS

(�)

4�r

(

1 +

g

2

MS

(�)

16�

2

"

22

�

ln�r + 

E

+

31

66

�

�

4

3

n

f

�

ln�r + 

E

+

5

6

�

#

+ � � �

)

(45)

for massless sea quarks (see, for example, [27℄). We an work out the fore f(r)

at distane r by di�erentiating this to give

4�r

2

f(r) =

4

3

g

2

MS

(�)

(

1 +

g

2

MS

(�)

16�

2

"

22

�

ln�r + 

E

�

35

66

�

�

4

3

n

f

�

ln�r + 

E

�

1

6

�

#

+ � � �

)

:

(46)
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If we now hange the avour number from 2 to 0, or from 2 to 3, while keeping

the fore at distane r onstant, we get

33 ln

�

MS

0

�

MS

2

= �4

�

ln�

MS

2

r + 

E

�

1

6

�

;

(33 � 6) ln

�

MS

3

�

MS

2

= 2

�

ln�

MS

2

r + 

E

�

1

6

�

:

(47)

We an eliminate r from these equations, leaving us with the simple equation

�

MS

3

�

MS

2

=

�

�

MS

2

�

MS

0

�

11

18

; (48)

whih an be used to estimate �

MS

3

from the n

f

= 0 and n

f

= 2 results.

5.2 Higher Loops

To repeat this mathing alulation with more loops, we follow [8℄ and de�ne a

fore-sale oupling g

qq

by

4�r

2

f(r) �

4

3

g

2

qq

(r) : (49)

From eq. (46) we an read o�

t

qq

1

= �

1

(4�)

2

�

22

�



E

�

35

66

�

�

4

3

n

f

�



E

�

1

6

��

: (50)

We an �nd t

qq

2

by alulating the fore from the 2-loop expression of V (r) re-

ported in [28, 29℄:

t

qq

2

=

1

(4�)

4

"

1107

2

� 204 

E

�

229

3

�

2

+

9

4

�

4

� 66 �

3

+

n

f

3

�

�

553

3

+ 76

E

+

44

3

�

2

+ 52 �

3

�

+

4

27

n

2

f

(12 � �

2

)

#

;

(51)

whih gives us enough information to alulate the 3-loop � funtion for g

q
q

(r) (f

eq. (17)). There would be ompliations in going to the next order, beause it is

known that terms of the type �

4

s

ln�

s

will enter the series for the potential [30℄.

We are now ready to see how �

MS

depends on avour number, if we make the

value of f(r) independent of n

f

(the number of massless quark avours) at some

partiular r value. Impliitly, we assume r � r

0

. If f(r) is independent of n

f

,
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Figure 7: The ratio �

MS

3

=�

MS

2

against the ratio �

MS

2

=�

MS

0

from 1-loop (dotted

line), 2-loop (dashed line) and 3-loop (solid line) mathing.

then g

q
q

(r) is independent of n

f

too. We an ompare the q�q sheme �s by using

r�

qq

0

= F

qq

(g

q
q

(r); n

f

= 0) ;

r�

qq

2

= F

qq

(g

qq

(r); n

f

= 2) ;

r�

qq

3

= F

qq

(g

qq

(r); n

f

= 3) :

(52)

We an take ratios of these equations to anel r and �nd equations for � ratios.

These q�q sheme � ratios an then be onverted into MS by using t

q�q

1

from

eq. (50). This gives us a way of making a parametri plot of � ratios by varying

g

qq

and alulating all three �s from g

qq

. In Fig. 7 we show the plot.

The results learly have to be treated with some aution, beause r

0

� is a

fairly large number. So it is not lear how muh we an learn from perturbative

results at the sale r

0

. It is therefore quite surprising that the di�erent orders

of perturbation theory agree so well in Fig. 7. Furthermore, we have assumed in

this setion that r

0

m

s

� 1, so that the strange quark an reasonably be treated

as massless. Both these diÆulties ould be dereased by using a smaller distane

(and thus a smaller value for r

2

f(r)) to set our sale.

5.3 Result for n

f

= 3

From our quenhed and unquenhed n

f

= 2 results, (39) and (44), we obtain

�

MS

2

=�

MS

0

= 1:005. If we insert this number into the 3-loop mathing urve

shown in Fig. 7, we �nd �

MS

3

=�

MS

2

= 0:999. From this ratio and eq. (44) we then
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obtain for n

f

= 3 quark avours

r

0

�

MS

3

� r

0

�

MS

�

�

n

f

=3

= 0:616(29)(19) : (53)

We have not attempted to estimate the systemati error indued by the mathing

proedure.

6 Comparison with Phenomenology

In this setion we shall make a omparison with other lattie and phenomeno-

logial results. For this we �rst need to set the fore sale in terms of a physial

unit.

To �x the sale r

0

in physial units, we extrapolate reent dimensionless nu-

leon masses m

N

r

0

found by the CP-PACS, JLQCD and QCDSF-UKQCD ol-

laborations jointly to the physial pion mass following [24℄. This gives the value

r

0

= 0:467 fm with an estimated error of 7%. We will use this number throughout

this paper. A similar result for r

0

was quoted in [31℄.

For the quenhed ase we then obtain

�

MS

0

= 259(1)(20)MeV ; (54)

and for the unquenhed ase we �nd

�

MS

2

= 261(17)(26)MeV ; (55)

�

MS

3

= 260(12)(26)MeV : (56)

The systemati errors quoted here inlude the unertainty in setting the sale.

Note that previously [2℄ we had assumed r

0

= 0:5 fm.

In Fig. 8 we show our results for �

MS

together with reent experimental values

from [32℄ and [33℄. It appears that the lattie results extrapolate smoothly to the

experimental values at n

f

= 4 [32℄ and n

f

= 5 [33℄. However, our n

f

= 3 re-

sult lies two standard deviations below the orresponding phenomenologial value

(open triangle). (The reader should be aware that the sometimes alled experi-

mental numbers imply a good deal of modelling and, thus, should be regarded as

phenomenologial numbers.)

In order to ompare �

s

from various experiments and theory, it must be

evolved to a ommon sale. For onveniene this is taken to be the mass of the

Z boson, m

Z

. Having omputed �

MS

for n

f

= 3 avours, we may use the 4-loop

expansion of �

s

and the 3-loop mathing ondition at the quark thresholds [26, 34℄

to determine �

MS

n

f

=5

(m

Z

). We take the harm and bottom thresholds to be at 1:5

and 4:5GeV, respetively. Furthermore, we hoose the harm and bottom quark

masses to be m

MS



(m



) = 1:5GeV and m

MS

b

(m

b

) = 4:5GeV, respetively. Varying
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Figure 8: Values of �

MS

versus number of quark avours n

f

. The �lled irles are

our n

f

= 0, 2 results, and the open irle is our extrapolated value. The inner

error bars give the statistial errors, while the outer error bars give the total errors.

The square is from a 3-loop analysis of the non-singlet struture funtions [32℄.

The triangles are taken from [33℄. The open triangles are evaluated using the

4-loop expansion of �

s

and 3-loop mathing at the quark thresholds. The entries

at n

f

= 3 and 4 have been displaed horizontally.

the harm and bottom quark masses within reasonable limits has a neglible e�et

on the �nal result. We then obtain

�

MS

n

f

=5

(m

Z

) = 0:112(1)(2) : (57)

This is to be ompared with the world average value [33℄ �

MS

s

(m

Z

) = 0:1182(27).

In Fig. 9 we ompare our result for �

MS

s

(m

Z

) with other lattie results and

experiment. We �nd agreement with previous lattie alulations using Wilson

fermions. It ours that the Wilson results lie systematially below the mean

experimental value. On the other hand, alulations using staggered fermions

(albeit from the same group) show a better agreement with experiment. Our

result for r

0

�

MS

2

agrees also with that of the ALPHA ollaboration [40℄, whih

does not quote a number for �

MS

s

(m

Z

). Our result for �

MS

s

(m

Z

) lies two standard

deviations below the phenomenologial value.
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Figure 9: Comparison of �

MS

s

(m

Z

) from this work (solid irle) with other lat-

tie results [35, 36, 37, 2, 38, 4, 39, 21℄ (from top to bottom). The irles are

from Wilson fermions and the squares from staggered fermions. The dashed line

indiates the mean experimental value [33℄.

7 Conlusions

Due to substantial improvements of the performane of our hybrid Monte Carlo

algorithm [41℄, we were able to extend our dynamial simulations to smaller

quark masses and to larger values of �. Our smallest lattie spaing now is

a � 0:07 fm. This enabled us to perform a hiral and ontinuum extrapolation

of the lattie data. Beause the alulation involves a perturbative onversion

from the lattie oupling onstant to the (mass independent) MS onstant, it

was important to �rst extrapolate the lattie data to the hiral limit. We have

disussed basially two approahes of onverting the lattie oupling onstant to

the MS one. They di�ered mainly in how the non-perturbative improvement

(lover) term was inorporated in the perturbative expansion. It was reassuring

to see that both methods led to the same result in the ontinuum limit. This

indiates one more that a reliable extrapolation to the ontinuum limit is very

important.

We ould also improve on our quenhed result, beause data at smaller lattie

22



spaings beame available.

There are several soures of systemati error in our alulation. The main

error omes from setting the sale, followed by the ontinuum extrapolation. As

better dynamial data beome available, the unertainty in setting the sale will

be gradually redued. Simulations at smaller lattie spaings will beome possible

with the next generation of omputers, whih should failitate the extrapolation

to the ontinuum limit.
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