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1. Introdution

Weak-sale supersymmetry(SUSY) [1℄ has been a promising andidate for physis be-

yond the Standard Model due to the natural solution to the hierarhy problem and

the gauge oupling uni�ation and et. It is well known that supergravity mediation

of SUSY breaking at the hidden setor generates all required soft SUSY breaking

terms of order the weak sale [1℄. However, it does not explain how soft masses

approximately onserve avor as required by bounds on avor-hanging neutral ur-

rents.

Reently, there has been a lot of attention to models with extra dimensions

whih give a new ground for understanding the SUSY breaking in a geometri way.

Identifying extra dimensions by disrete ations leads to orbifolds [2℄, whih lead to

hiral fermions and the redution of higher dimensional supersymmetry. Moreover,

all or some of SM partiles an be regarded to live on the appearing orbifold �xed

points or branes.

Partiularly, one an impose on bulk �elds twisted boundary onditions in extra

dimensions, �a la Sherk-Shwarz(SS) [3℄. Then, one an break further the remaining

SUSY after orbifolding. In 5d N = 1 SUSY gauge theory ompati�ed on S

1

=Z

2

,

it was shown that in the presene of the SS breaking of SUSY, there arises a �nite
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one-loop mass orretion of the zero mode of a bulk salar or a brane salar due

to the sum of Kaluza-Klein(KK) modes of bulk �elds [4℄. It turns out that the SS

breaking is equivalent to the ase with a nonzero auxiliary �eld (F term) of the

radion multiplet in the o�-shell 5d supergravity [5, 6, 7℄. A nonzero twist parameter

or F term an be determined dynamially after the radion stabilization [8, 9℄.

On the other hand, one an onsider the loalized breaking of SUSY at the

orbifold �xed points [10, 11, 12, 13, 7, 14, 15, 16, 17, 18, 19, 20℄. For instane, when

the remaining SUSY is broken at the hidden brane, only bulk �elds suh as gaugino

or gravitino get nonzero masses at tree level and the broken SUSY is transmitted

to the visible brane by bulk �elds. Then, one an �nd that the mass spetrum of

bulk �elds and their oupling at the visible brane are equivalent to those in the SS

breaking without brane mass terms [7, 14℄. Therefore, there also appears the one-

loop �niteness for a salar mass of the visible brane [13, 19, 20℄, whih is due to the

geometri separation of SUSY breaking from the visible brane. If the broken SUSY is

mediated dominantly by gaugino, the salar mass beomes avor-blind whih sheds

light on the supersymmetri avor problem [12℄.

In this paper, we will onsider the SUSY breaking in 6d N = 1 supersymmetri

gauge theory ompati�ed on the orbifold T

2

=Z

2

[21℄. Even if we onsider only U(1)

gauge group in the bulk, it is straightforward to extend to the non-abelian gauge

group. The orbifold �xed points on T

2

=Z

2

orrespond to odimension-two branes.

First we onsider a generalization of the SS breaking of SUSY to the 6d ase. Then,

we show that the SS breaking is equivalent to the loalized breaking with mass terms

along the lines rather than points. This loalized SUSY breaking an be realized by

positioning the hidden setor at the �xed boundaries under additional Z

2

ations.

For the loalized breaking with mass terms at the odimension-two brane, how-

ever, the lassial solution of a bulk �eld is singular for an in�nitely thin brane [22℄.

So, one must regularize the zero thikness of brane. Then, the regulator dependene

in the lassial solution is absorbed into the renormalized brane mass, whih has a

lassial logarithmi RG running [22℄. In that sense, the loalized breaking at the

odimension-two brane is sensitive to the ultraviolet physis of regularization even

in a mild way with the log divergene. Atually, it has been shown [23℄ that in the

presene of mass terms loalized at the �xed points, the one-loop mass for a brane

salar due to bulk gauge �elds has a log divergene due to the in�nitely thin brane.

On the other hand, the loalized mass terms at odimension-one branes are

insensitive to the regularization of the brane thikness, as seen from the equivalene
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to the SS breaking. By using the o�-shell ation for 6d SUSY gauge theory with the

bulk-brane oupling [21℄, we make a omputation of one-loop mass orretion to a

brane salar due to the SS breaking or the loalized breaking along the distant lines.

Thus, we �nd that the resulting one-loop orretion is �nite. In the limit of taking

one extra dimension without a SS twist to be muh smaller than the other one with

a SS twist, we reprodue the 5d result with a SS twist. On the other hand, a small

extra dimension with a nontrivial SS twist is not deoupled but rather its e�et is

dominant in the one-loop mass orretion.

The paper is organized as follows. First we desribe the SS twisted boundary

onditions on the bulk gaugino and �nd the mass spetrum and mode expansion

of gaugino. Next in the loalized SUSY breaking with general Z

2

-even mass terms

along the lines, we obtain the similar result as in the SS twist. Then, we ompute

the one-loop mass orretion to a brane salar due to the KK modes of bulk gauge

�elds. Finally the onlusion is drawn.

2. Sherk-Shwarz breaking of SUSY on T

2

=Z

2

Let us onsider a 6d N = 1 supersymmetri U(1) gauge theory ompati�ed on the

T

2

=Z

2

orbifold

1

. Two extra dimensions on a torus are identi�ed as x

5

� x

5

+ 2�R

5

and x

6

� x

6

+ 2�R

6

where R

5

and R

6

are radii of extra dimensions. By orbifolding

on the torus by Z

2

, we identify (x

5

; x

6

) with (�x

5

;�x

6

). Then, there appear four

orbifold �xed points,

(0; 0); (�R

5

; 0); (0; �R

6

); (�R

5

; �R

6

): (2.1)

The fundamental region is the half of the torus.

The kineti term for the U(1) gaugino

2

is given by

L = i

�




i

�

M

�

M




i

: (2.2)

The gaugino 


i

is a right-handed simpleti Majorana-Weyl fermion satisfying the

hirality ondition

�

7




i

= 


i

: (2.3)

1

It is straightforward to inlude hypermultiplets oupled to the U (1) [21℄ and extend to bulk

non-abelian gauge groups. In these ases, one needs to remember that the bulk matter ontent is

severely restrited due to genuine 6d anomalies [21℄.

2

For notations and onventions, refer to [21℄.
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On writing the gaugino in a four dimensional Weyl representation 


i

R

� �

i

, eq. (2.2)

beomes

L = i

�

�

i



M

�

M

�

i

: (2.4)

From the symmetry of the ation on an orbifold T

2

=Z

2

, let us onsider the

orbifold boundary onditions and the Sherk-Shwarz(SS) twists on T

2

=Z

2

as follows,

Z

2

: �(x;�x

5

;�x

6

) = �

3

(i

5

)�(x; x

5

; x

6

) � P�(x; x

5

; x

6

); (2.5)

T

1

: �(x; x

5

+ 2�R

5

; x

6

) = U

1

�(x; x

5

; x

6

); (2.6)

T

2

: �(x; x

5

; x

6

+ 2�R

6

) = U

2

�(x; x

5

; x

6

) (2.7)

where U

i

(i = 1; 2) are 2�2 twist matries orresponding to SU(2)

R

rotations. The SS

twists on the orbifold are subjet to the onsisteny onditions U

i

PU

i

= P (i = 1; 2)

and U

1

U

2

= U

2

U

1

. We note that there is another possible hoie of the parity matrix

P = �1

2

(i

5

), instead of P = �

3

(i

5

). In this ase, the onsisteny onditions lead

to U

i

= �1

2

or ��

3

. However, in this paper, let us fous on the ase with P = �

3

(i

5

)

for whih a ontinuous twist is possible.

The �rst ondition U

i

PU

i

= P (i = 1; 2) gives rise to the following form for either

U

1

or U

2

: a ontinuous twist onneted to the identity,

U

i

= e

�i[2�!

i

(�

1

sin�

i

+�

2

os�

i

)℄

(2.8)

with !

i

; �

i

being real parameters, or a disrete twist not onneted to the identity,

U

i

= �1

2

: (2.9)

By using the residual global invariane, a ontinuous twist(U

i

with i = 1 or 2) an be

always set to the one with �

i

= 0. Therefore, also onsidering the seond ondition

U

1

U

2

= U

2

U

1

, we �nd that there are four possible twisted boundary onditions:

U

1

= e

�2�i!

5

�

2

; U

2

= e

2�i!

6

�

2

; (2.10)

U

1

= �1

2

; U

2

= e

2�i!

6

�

2

; (2.11)

U

1

= e

�2�i!

5

�

2

; U

2

= �1

2

; (2.12)

U

1

= U

2

= �1

2

(2.13)

where !

5

; !

6

are real onstant parameters. We note that the disrete hoie of twist

matries orresponds to using R-parity of N = 1 4d supersymmetry as the global

symmetry.
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First, for the ase with ontinuous twists in both extra dimensions given by

eq. (2.10), let us make a rede�nition of the gaugino as

�(x; x

5

; x

6

) = e

�i(!

5

x

5

=R

5

�!

6

x

6

=R

6

)�

2

~

�(x; x

5

; x

6

): (2.14)

Then, regarding

~

� to be untwisted �elds, we take the rede�ned gaugino to be a

solution to the twisted boundary onditions (2.6) and (2.7) with eq. (2.10). Moreover,

one an show that

~

� satis�es the same orbifold boundary ondition as � in eq. (2.5).

Let us write the untwisted �elds

~

� in terms of 4d Majorana spinors

~

 

i

(i = 1; 2)

as

~

�

1

= +

1

2

(1 + i

5

)

~

 

1

+

1

2

(1� i

5

)

~

 

2

; (2.15)

~

�

2

= �

1

2

(1 � i

5

)

~

 

1

+

1

2

(1 + i

5

)

~

 

2

; (2.16)

and similarly for the twisted �elds � in terms of 4d Majorana spinors  

i

(i = 1; 2).

We note that the untwisted Majorana spinors are related to the twisted ones by

�

 

1

 

2

�

=

0

B

B

�

os

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

� sin

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

sin

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

os

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

1

C

C

A

�

~

 

1

~

 

2

�

: (2.17)

Then, from eq. (2.5), one an show that

~

 

i

satisfy the following Z

2

boundary ondi-

tions,

~

 

1

(x;�x

5

;�x

6

) = +

~

 

1

(x; x

5

; x

6

); (2.18)

~

 

2

(x;�x

5

;�x

6

) = �

~

 

2

(x; x

5

; x

6

); (2.19)

and similarly for  

i

. With this rede�nition of �elds, let us write the gaugino kineti

term (2.4) in terms of untwisted �elds

~

 as

L = i

~

 

1



�

�

�

~

 

1

+ i

~

 

2



�

�

�

~

 

2

�

~

 

1

(�

5

+ 

5

�

6

)

~

 

2

+

~

 

2

(�

5

+ 

5

�

6

)

~

 

1

�

!

5

R

5

(

~

 

1
~

 

1

+

~

 

2
~

 

2

) +

!

6

R

6

(

~

 

1



5

~

 

1

+

~

 

2



5

~

 

2

): (2.20)

Equivalently, by writing

~

 

i

= (�

i

; ��

i

)

T

(i = 1; 2) with 4d Weyl spinors �

i

, the ation

beomes

L =

X

i=1;2

(i�

i

�

�

�

�

��

i

+ i��

i

��

�

�

�

�

i

)

+[��

1

(�

5

� i�

6

)�

2

+ �

2

(�

5

� i�

6

)�

1

+ ::℄ + L

m

(2.21)
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where L

m

orresponds to the bulk mass terms given by

L

m

= �

��

!

5

R

5

+ i

!

6

R

6

�

(�

1

�

1

+ �

2

�

2

) + ::

�

: (2.22)

Therefore, we �nd that the SS twist on the torus indues nonzero Z

2

-even mass

terms in the basis of the untwisted gaugino that we have introdued for rede�ning

the gaugino. We note that the Z

2

-even and odd untwisted �elds take equal bulk

masses as in the 5d ase.

From the ation (2.21), we an derive the equations of motion for gaugino as

follows,

i�

�

�

�

��

2

+ (�

5

� i�

6

)�

1

�

�

!

5

R

5

+ i

!

6

R

6

�

�

2

= 0; (2.23)

i��

�

�

�

�

1

� (�

5

+ i�

6

)��

2

�

�

!

5

R

5

� i

!

6

R

6

�

��

1

= 0: (2.24)

Therefore, solving the above equations, we �nd the solution for the untwisted gaugino

as

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�

os

�

n

5

R

5

x

5

�

n

6

R

6

x

6

�

sin

�

n

5

R

5

x

5

�

n

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x) (2.25)

where n

5

; n

6

are integer, i�

�

�

�

��

(n

5

;n

6

)

(x) =M

n

5

;n

6

�

(n

5

;n

6

)

(x) and the mass spetrum

is given by

M

n

5

;n

6

=

n

5

+ !

5

R

5

+ i

�

n

6

+ !

6

R

6

�

: (2.26)

Consequently, due to the relation (2.17), the solution for the twisted gaugino  

i

=

(�

i

;

�

�

i

)

T

(i = 1; 2) beomes

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�

os

�

n

5

+!

5

R

5

x

5

�

n

6

+!

6

R

6

x

6

�

sin

�

n

5

+!

5

R

5

x

5

�

n

6

+!

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x):

(2.27)

Similarly, for the ase with a ontinuous twist in one diretion and a disrete

twist in the other diretion given by eq. (2.11), we an make a rede�nition of the

gaugino with

~

� as

�(x; x

5

; x

6

) = e

i(!

6

x

6

=R

6

)�

2

~

�(x; x

5

; x

6

): (2.28)
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Then,

~

� satis�es the following orbifold and twisted boundary onditions:

Z

2

:

~

�(x;�x

5

;�x

6

) = �

3

(i

5

)

~

�(x; x

5

; x

6

) (2.29)

T

1

:

~

�(x; x

5

+ 2�R

5

; x

6

) = �

~

�(x; x

5

; x

6

); (2.30)

T

2

:

~

�(x; x

5

; x

6

+ 2�R

6

) =

~

�(x; x

5

; x

6

): (2.31)

Consequently, plugging the rede�ned gaugino into the ation, deriving the equation

for

~

� and imposing the above boundary onditions to

~

�, we �nd the orresponding

solution for

~

� in 4d Weyl representation as

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�

os

�

n

5

+

1

2

R

5

x

5

�

n

6

R

6

x

6

�

sin

�

n

5

+

1

2

R

5

x

5

�

n

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x) (2.32)

where n

5

; n

6

are integer, i�

�

�

�

��

(n

5

;n

6

)

(x) =M

n

5

;n

6

�

(n

5

;n

6

)

(x) and the mass spetrum

is given by

M

n

5

;n

6

=

n

5

+

1

2

R

5

+ i

�

n

6

+ !

6

R

6

�

: (2.33)

Therefore, the solution for the twisted gaugino � is given by eq. (2.27) with !

5

=

1

2

.

Also for the ase with twist matries (2.12), we only have to interhange (n

5

; R

5

)$

(n

6

; R

6

) with !

6

! !

5

in eq. (2.32), and then obtain the solution for the twisted

gaugino � given by eq. (2.27) with !

6

=

1

2

.

Lastly, for the ase with disrete twists in both extra dimensions, the solution

for the twisted gaugino � is given by eq. (2.27) with !

5

= !

6

=

1

2

.

3. SUSY breaking due to loalized gaugino masses

In this setion, instead of the SS boundary twists of gaugino, let us onsider a loal

breaking of supersymmetry whih is parametrized by gaugino mass terms, and show

the equivalene between the SS breaking and the loalized breaking.

Let us take the most general Z

2

-even mass terms

3

for gaugino, whih are loal-

3

If one introdues gaugino mass terms proportional to Æ(x

5

) and Æ(x

6

), there appears a non-

supersymmetri gauge oupling at the origin due to the suppression of gaugino wave funtion [20℄.

Sine we assume the visible setor �elds to be loalized at the origin, let us onsider the gaugino

mass terms only at distant lines.
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ized along the two lines interseting at a �xed point (�R

5

; �R

6

) on the orbifold,

L

m

= �[2m(�

1

�

1

+ ��

2

�

2

) + :℄Æ(x

5

� �R

5

)

�[2im

0

(�

1

�

1

+ �

0

�

2

�

2

) + ::℄Æ(x

6

� �R

6

) (3.1)

where (m;�) and (m

0

; �

0

) are gaugino mass parameters and they are assumed to be

real. Then, the lines with loalized mass terms should be regarded as the �xed bound-

aries under two additional independent Z

2

ations [24℄: Z

0

2

: (x

5

; x

6

)! (�x

5

; x

6

) and

Z

00

2

: (x

5

; x

6

)! (x

5

;�x

6

). In this ase, it is oneivable that the loalized mass terms

are due to the SUSY breaking in the hidden setor loated on the lines, rather than

points.

In this ase, the gaugino equations of motion are

i�

�

�

�

��

2

+ (�

5

� i�

6

)�

1

� 2(m�Æ(x

5

� �R

5

) + im

0

�

0

Æ(x

6

� �R

6

))�

2

= 0; (3.2)

i��

�

�

�

�

1

� (�

5

+ i�

6

)��

2

� 2(mÆ(x

5

� �R

5

)� im

0

Æ(x

6

� �R

6

))��

1

= 0: (3.3)

Now let us take the solution of gaugino to the above equations as

�

�

1

�

2

�

(x; x

5

; x

6

) =

X

M

N

M

�

u

1

(x

5

; x

6

)

u

2

(x

5

; x

6

)

�

�

M

(x) (3.4)

where N

M

is the normalization onstant and i�

�

�

�

��

M

(x) = M�

M

(x). Then, the

gaugino equations are

M �u

2

+ (�

5

� i�

6

)u

1

� 2(m�Æ(x

5

� �R

5

) + im

0

�

0

Æ(x

6

� �R

6

))u

2

= 0; (3.5)

�

Mu

1

� (�

5

+ i�

6

)�u

2

� 2(mÆ(x

5

� �R

5

)� im

0

Æ(x

6

� �R

6

))�u

1

= 0: (3.6)

Let us take u

1

; u

2

to be real funtions. Then, taking M = M

5

+ iM

6

with real M

5

and M

6

and using eqs. (3.5) and (3.6), we obtain the equation for t � u

2

=u

1

as

�

5

t = M

5

(1 + t

2

)� 2m(1 + �t

2

)Æ(x

5

� �R

5

); (3.7)

�

6

t = �M

6

(1 + t

2

) + 2m

0

(1 + �

0

t

2

)Æ(x

6

� �R

6

): (3.8)

It is onvenient to onsider the Z

2

-odd solution of t separately around di�erent �xed

points and math them in the overlap regions [20℄. That is, let us onsider the

solution of t whih satis�es the equations of motion inside a torus entered at eah

�xed point. Thus, we �nd the solution for t:

{ 8 {



� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

t = tan(M

5

x

5

�M

6

x

6

): (3.9)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

t = tan[M

5

(x

5

� �R

5

)�M

6

x

6

� artan�(�;m�(x

5

� �R

5

))℄ (3.10)

where �(x

5

� �R

5

) is a step funtion with 2�R

5

periodiity given by

�(x

5

) =

8

<

:

+1; 0 < x

5

< �R

5

;

0; x

5

= 0;

�1; ��R

5

< x

5

< 0;

(3.11)

and

�(�;m�(x

5

� �R

5

)) �

1

p

�

tan(

p

�m�(x

5

� �R

5

)): (3.12)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

t = tan[M

5

x

5

�M

6

(x

6

� �R

6

) + artan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.13)

where ~�(x

6

� �R

6

) is a step funtion with 2�R

6

periodiity.

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

t = tan[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

) � artan�(�;m�(x

5

� �R

5

))

+ artan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.14)

Identify the �rst two solutions in the overlap region of 0 < x

5

< �R

5

and ��R

6

<

x

6

< �R

6

, we �nd

M

5

=

1

R

5

�

n

5

+

1

�

artan�(�;m)

�

; n

5

= integer: (3.15)

Likewise, identifying the �rst and third solutions in the overlap region of ��R

5

<

x

5

< �R

5

and 0 < x

6

< �R

6

, we also �nd

M

6

=

1

R

6

�

n

6

+

1

�

artan�(�

0

;m

0

)

�

; n

6

= integer: (3.16)
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Then, omparing the other solutions in the overlap regions does not lead to a new on-

dition. Therefore, the mass spetrum is equivalent to the one with SS breaking when

!

5

and !

6

in eq. (2.26) are identi�ed with artan�(�;m)=� and artan�(�

0

;m

0

)=�,

respetively.

Moreover, the solutions of u

1

and u

2

are also given in the separate regions:

� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

u

1

= os(M

5

x

5

�M

6

x

6

); (3.17)

u

2

= sin(M

5

x

5

�M

6

x

6

): (3.18)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

u

1

= (�1)

n

5

A(�;m�(x

5

� �R

5

))�

� os[M

5

(x

5

� �R

5

)�M

6

x

6

� artan�(�;m�(x

5

� �R

5

))℄; (3.19)

u

2

= (�1)

n

5

A(�;m�(x

5

� �R

5

))�

� sin[M

5

(x

5

� �R

5

)�M

6

x

6

� artan�(�;m�(x

5

� �R

5

))℄ (3.20)

where

A(�;m�(x

5

� �R

5

)) �

�

1 + �

2

(�;m�(x

5

� �R

5

))

1 + ��

2

(�;m�(x

5

� �R

5

))

�

1=2

: (3.21)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

u

1

= (�1)

n

6

A(�

0

;m

0

~�(x

6

� �R

6

))�

� os[M

5

x

5

�M

6

(x

6

� �R

6

) + artan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.22)

u

2

= (�1)

n

6

A(�

0

;m

0

~�(x

6

� �R

6

))�

� sin[M

5

x

5

�M

6

(x

6

� �R

6

) + artan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.23)

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

u

1

= (�1)

n

5

+n

6

A(�;m�(x

5

� �R

5

))A(�

0

;m

0

~�(x

6

� �R

6

))�

� os[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

)

� artan�(�;m�(x

5

� �R

5

)) + artan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.24)

u

2

= (�1)

n

5

+n

6

A(�;m�(x

5

� �R

5

))A(�

0

;m

0

~�(x

6

� �R

6

))�

� sin[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

)

� artan�(�;m�(x

5

� �R

5

)) + artan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.25)
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In order to make a normalization of KK modes, let us insert the solutions in the

ation and integrate it over extra dimensions. Then, we obtain the normalization

onstant in the separate regions:

� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

N

M

=

�

Z

�R

5

��R

5

dx

5

Z

�R

6

��R

6

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

: (3.26)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

N

M

=

�

Z

2�R

5

0

dx

5

Z

�R

6

��R

6

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�;m):

(3.27)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

N

M

=

�

Z

�R

5

��R

5

dx

5

Z

2�R

6

0

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�

0

;m

0

):

(3.28)

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

N

M

=

�

Z

2�R

5

0

dx

5

Z

2�R

6

0

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�;m)A

�1

(�

0

;m

0

): (3.29)

4. One-loop mass orretion to a brane salar

In the general ase with nonzero gaugino masses, let us put a hiral multiplet at

the (0; 0) �xed point. Then, the salar partner of the hiral multiplet does not

feel the supersymmetry breaking diretly but there exists a loop ontribution to its

mass due to the distant supersymmetry breaking. Only Z

2

-even gaugino ouples to

the brane salar. From the solution (3.17) with normalization (3.26) in the region

��R

5

< 0 < �R

5

and ��R

6

< x

6

< �R

6

, we �nd that all KK modes of Z

2

-even

gaugino have the same brane oupling as the one of bulk gauge boson,

g

4

=

g

6

2�

p

R

5

R

6

(4.1)

{ 11 {



where g

6

is the six-dimensional gauge oupling. One has the KK mass spetrums for

gauge bosons and gaugino running in loops, respetively,

M

2

(0)n

5

;n

6

=

�

n

5

R

5

�

2

+

�

n

6

R

6

�

2

; (4.2)

M

2

n

5

;n

6

=

�

n

5

+ !

5

R

5

�

2

+

�

n

6

+ !

6

R

6

�

2

: (4.3)

On the other hand, from the even-mode �

1

from eq. (2.27) at the (0; 0) �xed

point and the mass spetrum in eq. (2.26), one an �nd that the SS breaking leads

to the same brane oupling and mass spetrum of gaugino as in the loalized breaking

of supersymmetry. So, the brane salar �elds do not feel the di�erene between the

SS twist and the loalized gaugino masses along the distant lines.

Now let us onsider the KK mode ontribution to the one-loop mass orretion

for a brane salar � with harge Q under the U(1). For this, we note that the oupling

of the bulk auxiliary �eld to the brane salar is given by the following ation [21℄,

Z

d

6

x

�

1

2

(D

3

)

2

+ Æ(x

5

)Æ(x

6

)g

6

Q�

y

(�D

3

+ F

56

)�

�

(4.4)

where D

3

is the third omponent of auxiliary �eld in the bulk vetor multiplet and

F

56

is the extra omponent of �eld strength. After eliminating the auxiliary �eld by

its equation of motion, we �nd the resulting oupling as

Z

d

4

x

�

� g

6

Q�

y

F

56

(x; x

5

= 0; x

6

= 0)��

1

2

g

2

6

Q

2

(�

y

�)

2

Æ(0)Æ(0)

�

(4.5)

with

Æ(0)Æ(0) =

1

4�

2

R

5

R

6

X

n

5

;n

6

2Z

1

=

1

4�

2

R

5

R

6

X

n

5

;n

6

2Z

p

2

�M

2

(0)n

5

;n

6

p

2

�M

2

(0)n

5

;n

6

: (4.6)

Therefore, onsidering the similar Feynman diagrams as in 5d [10, 18℄, in the dimen-

sional regularization with d = 4� �, bosoni and fermioni loop ontributions to the

salar self energy are, at nonzero external momentum q

2

, respetively,

�im

2

B

(q

2

) = 4g

2

4

Q

2

�

4�d

X

n

5

;n

6

2Z

Z

d

d

p

(2�)

d

p(q + p)

(p

2

�M

2

(0)n

5

;n

6

)(q + p)

2

(4.7)
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and

�im

2

F

(q

2

) = �4g

2

4

Q

2

�

4�d

X

n

5

;n

6

2Z

Z

d

d

p

(2�)

d

p(q + p)

(p

2

�M

2

n

5

;n

6

)(q + p)

2

(4.8)

By using the Shwinger representation

1

A

n

=

1

�(n)

Z

1

0

dt t

n�1

e

�At

; (4.9)

and performing the momentum integrations via the identities

Z

1

0

dy y

2n+d�1

e

�y

2

t

=

�(d=2 + n)

2t

d=2+n

; (4.10)

we �nd the one-loop orretions as

m

2

B

(q

2

) =

g

2

4

Q

2

(��R

5

)

�

4�

3

R

2

5

Z

1

0

dx

�

(2 �

�

2

)J

2

[0; 0; ℄ + �x(1� x)q

2

R

2

5

J

1

[0; 0; ℄

�

(4.11)

and

m

2

F

(q

2

) = �

g

2

4

Q

2

(��R

5

)

�

4�

3

R

2

5

Z

1

0

dx

�

(2 �

�

2

)J

2

[!

5

; !

6

; ℄

+�x(1� x)q

2

R

2

5

J

1

[!

5

; !

6

; ℄

�

(4.12)

with

J

j

[!

5

; !

6

; ℄ �

X

n

5

;n

6

2Z

Z

1

0

dt

t

j��=2

e

��t[+a

5

(n

5

+!

5

)

2

+a

6

(n

6

+!

6

)

2

℄

; j = 1; 2; a

5;6

;  > 0;

a

5

� x; a

6

� x

�

R

5

R

6

�

2

;  � �x(1� x)q

2

R

2

5

: (4.13)

For small positive

4

, we obtain the following approximate formulas [25℄ for

4

 is positive after a Wik rotation q

2

= �q

2

E

.
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J

j

[!

5

; !

6

; ℄,

J

1

[!

5

; !

6

; � 1℄ '

�

p

a

5

a

6

�

�2

�

�

� ln

�

�

�

�

#

1

(!

6

� iu!

5

jiu)

(!

6

� iu!

5

)�(iu)

e

��u!

2

5

�

�

�

�

2

� ln[(+ a

5

!

2

5

+ a

6

!

2

6

)=a

6

℄; u �

r

a

5

a

6

; (4.14)

J

2

[!

5

; !

6

; � 1℄ ' �

�

2



2

2

p

a

5

a

6

�

�2

�

�

+

�

2

a

5

3

�

a

5

a

6

�

1=2

�

1

15

� 2�

2

!

5

(1��

!

5

)

2

�

+

�

p

a

5

a

6

X

n2Z

jn+ !

5

jLi

2

(e

�2�iz

) + ::

�

+

�

a

6

2�

X

n2Z

Li

3

(e

�2�iz

) + ::

�

(4.15)

where �

!

5

� !

5

� [!

5

℄ with 0 � �

!

5

< 1 and [!

5

℄ 2 Z, and z � !

6

� i

q

a

5

a

6

jn + !

5

j.

Here, #

1

is the Jaobi theta funtion and � is the Dedekind eta funtion. And Li

2

;Li

3

are the polylogarithm funtions as

Li

n

(x) =

1

X

k=1

x

k

k

n

; n = 2; 3: (4.16)

Therefore, the resulting one-loop orretion for the brane salar is given by

m

2

�

(q

2

) = m

2

B

(q

2

) +m

2

F

(q

2

)

=

g

2

4

Q

2

2�

3

R

2

5

Z

1

0

dx

�

J

2

[0; 0; ℄�J

2

[!

5

; !

6

; ℄

�

+

g

2

4

Q

2

4�

2

R

2

5

(q

2

R

2

5

)

Z

1

0

dxx(1 � x)

�

J

1

[0; 0; ℄� J

1

[!

5

; !

6

; ℄

�

: (4.17)

Consequently, we observe that both divergenes of J

1

and J

2

are anelled and there

appear only �nite orretions. Thus, we an take  = 0 safely at the zero external

momentum without involving the UV and IR mixing found in [25℄. So, the mass

orretion with q

2

= 0 is given by

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

2�

2

3

r�

2

!

5

(1 ��

!

5

)

2

+

1

r

(I

1

(0; 0) � I

1

(!

5

; !

6

) + ::)

+

1

2�r

2

(I

2

(0; 0)� I

2

(!

5

; !

6

) + ::)

�

; r �

R

6

R

5

(4.18)
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with

I

1

(!

5

; !

6

) �

X

n2Z

jn+ !

5

jLi

2

(e

�2�jn+!

5

jr�2�i!

6

); (4.19)

and

I

2

(!

5

; !

6

) �

X

n2Z

Li

3

(e

�2�jn+!

5

jr�2�i!

6

): (4.20)

In order to see the mass orretion expliitly, let us simplify the sums as follows,

I

1

(!

5

; !

6

) =

1

2

1

X

k=1

e

�2�ik�

!

6

k

2

sinh

2

(�kr)

�

�

!

5

osh(2�k(1��

!

5

)r)

+(1 ��

!

5

)osh(2�k�

!

5

r)

�

; (4.21)

and

I

2

(!

5

; !

6

) =

1

X

k=1

e

�2�ik�

!

6

k

3

osh(�k(1� 2�

!

5

)r)

sinh(�kr)

: (4.22)

Here �

!

6

� !

6

� [!

6

℄ with 0 � �

!

6

< 1 and [!

6

℄ 2 Z. Therefore, inserting the above

expressions into eq. (4.18), we �nd that the resulting mass orretion is �nite as

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

2�

2

3

r�

2

!

5

(1��

!

5

)

2

+

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

�

1� os(2�k�

!

6

)f�

!

5

osh(2�k(1 ��

!

5

)r)

+(1��

!

5

)osh(2�k�

!

5

r)g

�

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

�

1� os(2�k�

!

6

)

osh(�k(1� 2�

!

5

)r)

osh(�kr)

��

:(4.23)

First let us onsider the ase with �

!

5

= 0. Then, eq. (4.23) beomes

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

(1� os(2�k�

!

6

))

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

(1 � os(2�k�

!

6

))

�

: (4.24)

{ 15 {



In this ase, let us take the limit of �r � 1, i.e. one extra dimension with radius R

5

to be muh smaller than the other. Thus, the resulting mass orretion reprodues

exatly the 5d ase with a SS twist [20℄,

m

2

�

(0) '

g

2

4

Q

2

4�

4

R

2

6

1

X

k=1

1

k

3

(1 � os(2�k�

!

6

)): (4.25)

On the other hand, when one takes �

!

5

=

1

2

, whih is the ase with a disrete

twist in the �fth diretion, eq. (4.23) beomes

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

�

2

24

r +

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

�

1 � os(2�k�

!

6

)

�kr

sinh(�kr)

��

: (4.26)

Again in the limit of �r� 1, the resulting mass orretion is

m

2

�

(0) '

g

2

4

Q

2

96�R

2

5

�

R

6

R

5

��

1 +O

�

R

2

5

R

2

6

��

: (4.27)

Therefore, in this ase, one extra dimension with small radius R

5

is not deoupled,

but rather the e�et due to the nontrivial SS twist in that diretion is a dominant

ontribution to the mass orretion. For other nonzero values of �

!

5

, suh a non-

deoupling of small extra dimension remains true beause the �rst term in eq. (4.23)

is dominant for �r � 1.

5. Conlusion

We onsidered supersymmetry breaking on the orbifold T

2

=Z

2

via the SS twisted

boundary onditions or the loalized mass terms. It turns out that the SS breaking

is equivalent to the loalized breaking at the lines whih should be regarded to be

�xed boundaries under additional Z

2

ations. In this ase, we have shown that in

the presene of the SS twist or loalized mass terms for the bulk gauge setor, there

arises a �nite one-loop mass orretion to the visible brane salar. In partiular,

for the ase with one extra dimension muh smaller than the other, we observe that

the e�et from the small extra dimension to the one-loop mass orretion is not

deoupled due to a nontrivial SS twist in that diretion.
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In order to know whether the ontribution due to the bulk gaugino dominates

over other ontributions suh as anomaly mediation [8℄, one needs to determine the

SS twist parameter dynamially. At the level of 4d e�etive supergravity, one ould

think of the SS breaking to be equivalent to a nonzero F term of the orresponding

radion multiplet for two extra dimensions as in 5d ase [8℄, and introdue a radius

stabilization mehanism to determine the F term dynamially. Moreover, in order

to estimate supergravity loop orretions as in 5d ase [26℄, it seems indispensible

to understand the 6d o�-shell supergravity, whih is not available yet. Let us leave

these issues in a future publiation.
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