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1. Introduction

Weak-scale supersymmetry(SUSY) [1] has been a promising candidate for physics be-
yond the Standard Model due to the natural solution to the hierarchy problem and
the gauge coupling unification and etc. It is well known that supergravity mediation
of SUSY breaking at the hidden sector generates all required soft SUSY breaking
terms of order the weak scale [I]. However, it does not explain how soft masses
approximately conserve flavor as required by bounds on flavor-changing neutral cur-
rents.

Recently, there has been a lot of attention to models with extra dimensions
which give a new ground for understanding the SUSY breaking in a geometric way.
Identifying extra dimensions by discrete actions leads to orbifolds [2], which lead to
chiral fermions and the reduction of higher dimensional supersymmetry. Moreover,
all or some of SM particles can be regarded to live on the appearing orbifold fixed
points or branes.

Particularly, one can impose on bulk fields twisted boundary conditions in extra
dimensions, a la Scherk-Schwarz(SS) [3]. Then, one can break further the remaining
SUSY after orbifolding. In 5d A" = 1 SUSY gauge theory compactified on S'/Z,,
it was shown that in the presence of the 5SS breaking of SUSY, there arises a finite



one-loop mass correction of the zero mode of a bulk scalar or a brane scalar due
to the sum of Kaluza-Klein(KK) modes of bulk fields [4]. It turns out that the SS
breaking is equivalent to the case with a nonzero auxiliary field (F' term) of the
radion multiplet in the off-shell 5d supergravity [5, B, 7]. A nonzero twist parameter
or I term can be determined dynamically after the radion stabilization [§, 9].

On the other hand, one can consider the localized breaking of SUSY at the
orbifold fixed points [10, 47T, 12,13, 7, (4, 15, 16, 17, 18, 19, 20]. For instance, when
the remaining SUSY is broken at the hidden brane, only bulk fields such as gaugino
or gravitino get nonzero masses at tree level and the broken SUSY is transmitted
to the visible brane by bulk fields. Then, one can find that the mass spectrum of
bulk fields and their coupling at the visible brane are equivalent to those in the SS
breaking without brane mass terms [, 14]. Therefore, there also appears the one-
loop finiteness for a scalar mass of the visible brane [13, 19, 20], which is due to the
geometric separation of SUSY breaking from the visible brane. If the broken SUSY is
mediated dominantly by gaugino, the scalar mass becomes flavor-blind which sheds
light on the supersymmetric flavor problem [12].

In this paper, we will consider the SUSY breaking in 6d A" = 1 supersymmetric
gauge theory compactified on the orbifold 7%/Z, [21]. Even if we consider only U(1)
gauge group in the bulk, it is straightforward to extend to the non-abelian gauge
group. The orbifold fixed points on 1%/7Z, correspond to codimension-two branes.
First we consider a generalization of the SS breaking of SUSY to the 6d case. Then,
we show that the S5 breaking is equivalent to the localized breaking with mass terms
along the lines rather than points. This localized SUSY breaking can be realized by
positioning the hidden sector at the fixed boundaries under additional 7, actions.

For the localized breaking with mass terms at the codimension-two brane, how-
ever, the classical solution of a bulk field is singular for an infinitely thin brane [22].
So, one must regularize the zero thickness of brane. Then, the regulator dependence
in the classical solution is absorbed into the renormalized brane mass, which has a
classical logarithmic RG running [22]. In that sense, the localized breaking at the
codimension-two brane is sensitive to the ultraviolet physics of regularization even
in a mild way with the log divergence. Actually, it has been shown [23] that in the
presence of mass terms localized at the fixed points, the one-loop mass for a brane
scalar due to bulk gauge fields has a log divergence due to the infinitely thin brane.

On the other hand, the localized mass terms at codimension-one branes are

insensitive to the regularization of the brane thickness, as seen from the equivalence



to the S5 breaking. By using the off-shell action for 6d SUSY gauge theory with the
bulk-brane coupling [21], we make a computation of one-loop mass correction to a
brane scalar due to the SS breaking or the localized breaking along the distant lines.
Thus, we find that the resulting one-loop correction is finite. In the limit of taking
one extra dimension without a SS twist to be much smaller than the other one with
a 5SS twist, we reproduce the 5d result with a SS twist. On the other hand, a small
extra dimension with a nontrivial SS twist is not decoupled but rather its effect is
dominant in the one-loop mass correction.

The paper is organized as follows. First we describe the SS twisted boundary
conditions on the bulk gaugino and find the mass spectrum and mode expansion
of gaugino. Next in the localized SUSY breaking with general Z;-even mass terms
along the lines, we obtain the similar result as in the SS twist. Then, we compute
the one-loop mass correction to a brane scalar due to the KKK modes of bulk gauge

fields. Finally the conclusion is drawn.

2. Scherk-Schwarz breaking of SUSY on T?%/7,

Let us consider a 6d A" = 1 supersymmetric U(1) gauge theory compactified on the
T?%/ 7y orbifold '. Two extra dimensions on a torus are identified as x5 = x5 + 27 R;
and xg = v¢ + 27 R where Rs and Rg are radii of extra dimensions. By orbifolding
on the torus by Z,, we identify (x5, x6) with (—x5, —26). Then, there appear four
orbifold fixed points,

(0,0), (7Rs,0), (0,7Rs), (mRs,7Rs). (2.1)

The fundamental region is the half of the torus.
The kinetic term for the U(1) gaugino ? is given by

L =i0TM,Q. (2.2)

The gaugino ' is a right-handed simplectic Majorana-Weyl fermion satisfying the
chirality condition

Qi =q. (2.3)

1t is straightforward to include hypermultiplets coupled to the U(1) [:_2-]_:] and extend to bulk

non-abelian gauge groups. In these cases, one needs to remember that the bulk matter content is

severely restricted due to genuine 6d anomalies [z_lj
2For notations and conventions, refer to [:_21:]



On writing the gaugino in a four dimensional Weyl representation i, = X', eq. (2:9)
becomes

From the symmetry of the action on an orbifold T?/Z,, let us consider the
orbifold boundary conditions and the Scherk-Schwarz(SS) twists on 7%/Z, as follows,

Zy 1 Mz, —zs5, —x6) = 13(17°) M2, 25, 26) = PA(2, 25, 76), (2.5)
Ty o AMa,xs 4 27 Rs, x6) = U (@, x5, 26), (2.6)
Ty i AMa,xs,x6 + 2mRg) = U A2, x5, v6) (2.7)

where U;(i = 1,2) are 2 x 2 twist matrices corresponding to SU(2)g rotations. The SS
twists on the orbifold are subject to the consistency conditions U; PU; = P(i = 1, 2)
and U1U, = UU;. We note that there is another possible choice of the parity matrix
P = £15(:17%), instead of P = 73(i7*). In this case, the consistency conditions lead
to U; = +15 or +73. However, in this paper, let us focus on the case with P = 73(iv")
for which a continuous twist is possible.

The first condition U; PU; = P(i = 1,2) gives rise to the following form for either

Uy or U,: a continuous twist connected to the identity,

U, = e—i[QWUJi(Tl sin ¢;+72 cos ¢; )] (28)
with w;, ¢; being real parameters, or a discrete twist not connected to the identity,

By using the residual global invariance, a continuous twist(U; with ¢ = 1 or 2) can be
always set to the one with ¢; = 0. Therefore, also considering the second condition

U,Uy = UsUy, we find that there are four possible twisted boundary conditions:

Uy = e 2™ ], = miwemz (2.10)
Uy = —1y, Uy = e*meem, (2.11)
Uy = e 2™ [, = —1,, (2.12)
Uy = U, = —1, (2.13)

where ws, wg are real constant parameters. We note that the discrete choice of twist
matrices corresponds to using R-parity of NV = 1 4d supersymmetry as the global
symmetry.



First, for the case with continuous twists in both extra dimensions given by

eq. (R:10), let us make a redefinition of the gaugino as

A, x5, x6) = e_i(w”f’/RE’_“‘i%/R‘i)T?5\(:1;, T5, Xe). (2.14)

Then, regarding A to be untwisted fields, we take the redefined gaugino to be a
solution to the twisted boundary conditions (2.6) and (2.7) with eq. (2.10). Moreover,
one can show that \ satisfies the same orbifold boundary condition as A in eq. (2.5).

Let us write the untwisted fields  in terms of 4d Majorana spinors ;/) (1=1,2)

W= (L) (1 i), (2.15)
e ) (216)

and similarly for the twisted fields A in terms of 4d Majorana spinors ¥'(i = 1,2).

We note that the untwisted Majorana spinors are related to the twisted ones by

" Cos (% + “]%9;6) —sin <°JR905 w]%?) (;/N;l>
— . 17
(%) ’ (217)

2
77Z) 3 WsTH WeTg WsTH We g
sin (—R5 + “Re ) CcoSs (—R5 + e )

Then, from eq. (2.7%), one can show that ;/N)Z satisfy the following Z5 boundary condi-

[=p

tions,
@%1(1'7 —5, —Zg) = ‘H%l(l'a T, T6), (2.18)
@/)2(1'7 — s, —51?6) = —@/)2(51?7 s, 51?6)7 (2-19)

and similarly for /*. With this redefinition of fields, let us write the gaugino kinetic
term (2.4) in terms of untwisted fields 1 as

£ = i D0+ 029,007 = (D5 + 770600 + (05 + 506!
— O RN + I 97, (2:20)

Equivalently, by writing ¢ = (X', )T (2 = 1,2) with 4d Weyl spinors x*, the action
becomes

L= Z (Z.Xiaﬂauxi + Z'S(ZEMaMXi)

1=1,2

—|—[—X1(a5 — 186))(2 + X2(a5 — Z@G)Xl + C.C.] + ,Cm (221)



where L, corresponds to the bulk mass terms given by

Ws . e 1.1 2.2
=2 2.99
L KR5+@RG>(XX + X°x%) + c.c (2.22)

Therefore, we find that the SS twist on the torus induces nonzero Zj-even mass
terms in the basis of the untwisted gaugino that we have introduced for redefining
the gaugino. We note that the Zs-even and odd untwisted fields take equal bulk
masses as in the Hd case.

From the action (2.2[)), we can derive the equations of motion for gaugino as

follows,
100, + (95 — i0s) ' — (%55 + %Z) =0, (2.23)
i7"9,x" — (05 + i106)\* — (%z . @%‘D =0 (2.24)

as

X2

1 1 COS <%—ix5 — %—ng;)
(X > (2,25, 76) = ——e > (nsme) (1) (2.25)

where ns, ng are integer, ia“@uﬁ(”f””‘i)(m) = Mn57n677(”5’”6)(:1;) and the mass spectrum

N + Ws A Ne + Wwe
M., ng = : 2.26
=t +z( + ) (2.26)

Consequently, due to the relation (2:I7), the solution for the twisted gaugino Pt =
(¢',¢HT (i = 1,2) becomes

is given by

nstws ne t+we

1 1 COs (R—5$5 — R—6$6>
(5) ) = e & (0] ),

2 B D n
C 2m R5R6 ng,ne €L sin <—n5]—%|—5w5 Ty — —n6]—%|—6w6 1’6)
(2.27)

Similarly, for the case with a continuous twist in one direction and a discrete
twist in the other direction given by eq. (2.IL), we can make a redefinition of the
gaugino with \ as

A, x5, 206) = ei<w6x6/R6)T25\(:1;,:1;5,:1;6). (2.28)



Then, \ satisfies the following orbifold and twisted boundary conditions:

Jy 5\(:1;, — &5, —Tg) = T3 (@75)5\(:1; Ts,T6) (2.29)
T : 5\(:1;,:1;5 + 27 Rs, x6) = (:1; Ts, T6), (2.30)
T, : 5\(:1:,:1;5,:1;6 + 27 Rs) = (:1; T5, Tg). (2.31)

Consequently, plugging the redefined gaugino into the action, deriving the equation
for X and i 1mposmg the above boundary conditions to A, we find the corresponding

solution for A in 4d Weyl representation as

Xl 1 cos (—ng%% — %—ng;)
_ (5,76 2.32
(%)@= 3 | (st | (@) 22

ns,ne €L Sin —R5

X

where ns, ng are integer, 109,71 ”5’”6)(:1;) = Mn57n677(”5’”6)(:1;) and the mass spectrum

1
M%%:%+2+(Eiﬁ> (2.33)

is given by

Rs R

Therefore, the solution for the twisted gaugino A is given by eq. (2.2%) with ws = %
Also for the case with twist matrices (2.12), we only have to interchange (ns, Rs) <
(ne, Re) with wg — ws in eq. (2:32), and then obtain the solution for the twisted
gaugino A given by eq. (2727) with ws = 1.

Lastly, for the case with discrete twists in both extra dimensions, the solution

for the twisted gaugino A is given by eq. (2:27) with ws = wg = 3.

3. SUSY breaking due to localized gaugino masses

In this section, instead of the SS boundary twists of gaugino, let us consider a local
breaking of supersymmetry which is parametrized by gaugino mass terms, and show
the equivalence between the S5 breaking and the localized breaking.

Let us take the most general Z;-even mass terms ? for gaugino, which are local-

3If one introduces gaugino mass terms proportional to §(x5) and d(xg), there appears a non-
supersymmetric gauge coupling at the origin due to the suppression of gaugino wave function [Z-Q“J
Since we assume the visible sector fields to be localized at the origin, let us consider the gaugino
mass terms only at distant lines.



ized along the two lines intersecting at a fixed point (7 Rs, 7 Rg) on the orbifold,

Ly = =[2mx'x" + px*x?) + e.c]d(as — 7hs)
—[2im/(x"x" + p'*XP) + e.c]d(ws — TRe) (3.1)

where (m, p) and (m’, p’) are gaugino mass parameters and they are assumed to be
real. Then, the lines with localized mass terms should be regarded as the fixed bound-
aries under two additional independent 75 actions [¥4]: Z): (w5, 26) — (—a5, x6) and
7Y (xs,16) — (x5, —x6). In this case, it is conceivable that the localized mass terms
are due to the SUSY breaking in the hidden sector located on the lines, rather than
points.

In this case, the gaugino equations of motion are

10”0, + (05 — 106) X" — 2(mpd(xs — T Rs) + 1m'p'8(xe — mRe))X* = 0, (3.2)
15”0, x" — (05 +106)X* — 2(md(z5 — 7 Rs) —1m'S(x6 — mRs))Y' = 0. (3.3)

Now let us take the solution of gaugino to the above equations as

NI SR G P 3.4

X 2}5,1’6)

where Ny is the normalization constant and 0”9, ma(x) = Mnp(x). Then, the
gaugino equations are

Mu? + (95 — i0s)u' — 2(mpd(ws — mRs) + im/p'd(x6 — 7 Re) Ju”
1

0, (3.5
Mu' — (95 +i06)u* — 2(md(x5 — mRs) — 1m/(x6 — mRe))u' = 0.

Let us take u', u? to be real functions. Then, taking M = Ms + 1 Mg with real Ms;
and Mg and using eqs. (3.5) and (3:6), we obtain the equation for ¢ = u?/u' as

851‘ == M5(1 + t2) — 2m(1 + pt2)5($5 — 7TR5), (37)
861‘ == —M6(1 + tz) + Qm’(l + p’t2)5(x6 — 7TR6).

It is convenient to consider the Z3-odd solution of ¢ separately around different fixed
points and match them in the overlap regions [2U]. That is, let us consider the
solution of ¢ which satisfies the equations of motion inside a torus centered at each
fixed point. Thus, we find the solution for ¢:



o —mhs < x5 < TRs and —7TR6<$6<7TR6,

t= tan(M5:1;5 — M6x6)- (39)

o 0 < x5 < 21Rs and —THRe < 16 < 7TR6,
t =tan[Ms(x5 — mRs) — Meae — arctana(p, me(xs — mRs))] (3.10)
where €(x5 — mR5) is a step function with 27 Rs periodicity given by

+1, 0< a5 < 7TR5,
€(xs) =40, x5=0, (3.11)
-1, —mhs < 25 < 0,

and

a(p,me(xs — mRs)) = %tan(\/ﬁme(% — 7Rs)). (3.12)

o — TRy < a5 <7mRsand 0 < xg < 27 Rs,
t = tan[Mszs — Mg(xs — mRg) + arctana(p’, m'é(xg — 7 Re))], (3.13)
where €(xg — mRg) is a step function with 27 Rg periodicity.
e 0 < x5 <2mR5 and 0 < x¢ < 27 Rg,

t = tan[Ms (x5 — mRs) — Ms(a6 — mRs) — arctana(p, me(xs — mRs))
+ arctana(p’, m'é(xe — 7 Rg))]. (3.14)

Identify the first two solutions in the overlap region of 0 < x5 < mRs and —7Rg <
xg < mHRg, we find

1 1
M; = — <n5 + —arctana(p, m)), ns = integer. (3-15)
R5 T

Likewise, identifying the first and third solutions in the overlap region of —7mR5 <
x5 < mRs and 0 < x¢ < mRg, we also find
1 1

Mg = — <n6 + —arctana(p’, m')), ne = integer. (3.16)
R6 m



Then, comparing the other solutions in the overlap regions does not lead to a new con-
dition. Therefore, the mass spectrum is equivalent to the one with SS breaking when
ws and we in eq. (£.26) are identified with arctana(p,m)/m and arctana(p’,m’)/,
respectively.

Moreover, the solutions of u! and u? are also given in the separate regions:
o — TRy < a5 <7mR; and —7Rg < 1¢ < mHRs,
u' = cos(Msxs — Mexs), (3.17)
u® = sin(Mszs — Mss). (3.18)
o 0 < x5 <2rRs and —7Rs < 1¢ < 7HRs,
ul = (=1)" A(p, me(xs — 7 Rs)) x
x cos|[Ms(xs — mRs) — Mgxg — arctana(p, me(axs — mRs))], (3.19)
u’ = (=1)" A(p,me(as — mhs)) %
x sin[Ms(xs — mRs) — Mg — arctana(p, me(axs — mRs))]  (3.20)

where

1+ o*(p,me(xs — 7 Rs)) 1/2
)> . (3.21)

A _ =
(p, m6($5 7TR5)) (1 n pa2(p7 m6($5 - 7TR5)

o — TRy < a5 <7mRsand 0 < xg < 27 Rs,
u' = (1) A(p', m'&(ze — TRs)) X
X cos[Msxs — Me(we — 7 Rs) + arctana(p’, m'é(xe — mRe))], (3.22)
u? = (1) A(p', m'&(zs — TRs)) X
X sin[Msxs — Mg(xe — 7 Rg) + arctana(p’, m'é(xs — mRg))].  (3.23)

e 0 < x5 <2mR5 and 0 < x¢ < 27 Rg,
ut = (=1)"t" A(p, me(xs — mRs))A(p',m'é(z6 — TRg)) ¥
cos[Ms(xs — mR5) — Mg(x6 — 7 Rg)
— arctana(p, me(xs — 7 Rs)) + arctana(p’, m'é(z¢ — 7Rs))], (3.24)
u? = (=1t A(p, me(xs — mRs))A(p',m'é(z6 — TRg)) ¥
sin[Ms(xs — mRs) — Mg(x6 — 7 Rg)
— arctana(p, me(xs — 7 Rs)) + arctana(p’, m'é(z¢ — 7Rs))].  (3.25)

X

X
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In order to make a normalization of KK modes, let us insert the solutions in the
action and integrate it over extra dimensions. Then, we obtain the normalization

constant in the separate regions:

o —mhs < x5 < TRs and —7TR6<$6<7TR6,

7TR5 7TR6 —1/2 1
Ny = d dws[(u')? + (u*)? = 3.26
. ( / e / i +<u>]) e 820

o 0 < x5 < 21Rs and —7TR6<$6<7TR6,

27 Ry 7wRg —1/2 1
N = d d 12 232 :714_1 .
y ( [ () 4 (0 ]) e )

o —THRs < x5 < mHR;5 aﬂd0<l’6<27f’R6,

7Ry 27 Rg —1/2 1
N — d d 1\2 2\2 ) — 714—1 /7 ! ]
. ( / e [ el + ) e )

(3.28)
e 0 < x5 <2mR5 and 0 < x¢ < 27 Rg,
27TR5 27TR6 _1/2
Ny = </ d:z;5/ dze[(u')? + (u2)2]>
0 0
1
= AT (o) AT (). (3.29)

27’[’\/ R5R6
4. One-loop mass correction to a brane scalar

In the general case with nonzero gaugino masses, let us put a chiral multiplet at
the (0,0) fixed point. Then, the scalar partner of the chiral multiplet does not
feel the supersymmetry breaking directly but there exists a loop contribution to its
mass due to the distant supersymmetry breaking. Only Z;-even gaugino couples to
the brane scalar. From the solution (3.17) with normalization (3.2G) in the region
—mR; < 0 < mRs and —wRg < 1¢ < mHRg, we find that all KK modes of Z3-even

gaugino have the same brane coupling as the one of bulk gauge boson,

e
= 4.1
94 2m/ Fs g ( )

— 11 =



where gg 1s the six-dimensional gauge coupling. One has the KK mass spectrums for

gauge bosons and gaugino running in loops, respectively,

2 2
2 [ s Ng
Moy ne = (E) + (Es) ) (4.2)

2 2
+ ws Ne + We
Moo= (B . 4.3
ns,ne ( R5 > —I— ( RG ) ( )

On the other hand, from the even-mode ¢! from eq. (2:27) at the (0,0) fixed
point and the mass spectrum in eq. (2.26), one can find that the SS breaking leads

to the same brane coupling and mass spectrum of gaugino as in the localized breaking
of supersymmetry. So, the brane scalar fields do not feel the difference between the
SS twist and the localized gaugino masses along the distant lines.

Now let us consider the KKK mode contribution to the one-loop mass correction
for a brane scalar ¢ with charge () under the U(1). For this, we note that the coupling
of the bulk auxiliary field to the brane scalar is given by the following action [21],

[ e 507+ 50150000 (-0 + P (14)

where D? is the third component of auxiliary field in the bulk vector multiplet and
Fse is the extra component of field strength. After eliminating the auxiliary field by
its equation of motion, we find the resulting coupling as

/d4l’ [ - 96Q¢TF56($7 x5 = 0,26 = 0)p — %92@2@%)25(0)5(0)} (4.5)

with

5(0)5(0):%2;{W Yo

ng,ngEL

1 P - MO)n n,
. — e 4.6
47’[’23536 nz ( )

2 M
5,neEZ p (0)715,716

Therefore, considering the similar Feynman diagrams as in 5d [10;, 18], in the dimen-
sional regularization with d = 4 — ¢, bosonic and fermionic loop contributions to the

scalar self energy are, at nonzero external momentum ¢?, respectively,

.99y 22 4 ddp p(Q+p)
R W o e e

15,6 €L

- 12 —



and

i) = g™ Y[R

ng,ne €L

By using the Schwinger representation

1 1 -
= dtrte 4.
A T n)/o < (4.9)
and performing the momentum integrations via the identities
ndd-1 =yt _ I'(d/2 +n)
we find the one-loop corrections as
202(yn R (1
() = SLUTIS [l (0 = £1200,0,6) + w1 = )R 10,0,l[4.1)
A3 Rz 0 2
and
2M2 € 1
91Q* (pm Rs) ¢
m%(q2) = _W o dx (2 - §)j2[w57w67c]
+ra(l — )¢ RET: [ws, we, c]} (4.12)
with

—7T CcTa T w, agln Wi 2 N
T lws, we, ¢] = Z / e 5/2 tletas (ns+ws ) +as(ne+ 6)]7 i=1,2; asg,c>0;

ng,ngEL

as =T, ag = x<R5> c=—z(l —2)¢*RE. (4.13)
Re

For small positive! ¢, we obtain the following approximate formulas [25] for

¢ is positive after a Wick rotation ¢% = —q%.

~13 -



*7][(“)57(“)670]7

V1 (we — tuws|iu

(we — tuws)n(i

mC -2
1] ~ — | =1
j1[w5,w6,c < ] i [ - ] n
a5

—In[(c + aswz + agwd)/ag), u=,/—, (4.14)

475

T2l < 1] T [22] T ik 207, (1= Ay,)?
2195, &6, € 2 asas | ¢ 3 g 15 e

+ {\/@Z [+ ws|Lia(e™*7%) + C-C-]

nez
ae . —2miz
+ [% zg; Lis(e )+ c.c} (4.15)

where A, = ws — [ws] with 0 <A, <1 and [ws] € Z, and 2 = we — 4, /22[n + ws].
Here, ¥, is the Jacobi theta function and 7 is the Dedekind eta function. And Liq, Lis

are the polylogarithm functions as

Li,(z Z k— (4.16)
k=1

Therefore, the resulting one-loop correction for the brane scalar is given by

) —ruet
w)’

mi(q®) = my(q®) + mi(q®)
2,2 1
9:Q
= 2;332 /0 dzx |:j2[0,0,6] — jg[w5,w67c]]
9:Q°
42 R?2

_|_

(¢°R?) /01 dea(l —x) [jl[(),(),c] = jl[w5,w6,c]}. (4.17)

Consequently, we observe that both divergences of 7; and J; are cancelled and there
appear only finite corrections. Thus, we can take ¢ = 0 safely at the zero external
momentum without involving the UV and IR mixing found in [Z3]. So, the mass
correction with ¢* = 0 is given by
m2(0) = 9:Q” [— A2 (1= Au)? 4 S(14(0,0) — L(ws i) + cec.)
¢ 4T3 R2 | 3 e r ’ ’

! R
27rr2([2(0’ 0) — Ii(ws,wg) +c.c.)|, 7 5#6

_|_

(4.18)
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with

L(ws,ws) = Y |0+ ws [Lip(e2rImteslr=2mive), (4.19)
neZ
and
CU5, w6 Z Ll —27r|n—|—w5|7’ 27r2w6) (420)
neZ

In order to see the mass correction explicitly, let us simplify the sums as follows,

1 o0 —27rzkAw6
_ ! A, cosh(2rk(1 — A,
(o) = 53 et Acosh2rk(1 = A1)
+(1 - Aw5)cosh(27rkAw5r)} ) (4.21)
and
"~ 7 2mikAwe cosh(mk(1 — 2A,,)r)

I = A 4.22
25, ws) ; k3 sinh(mkr) (4.22)

Here A, = ws — [we] with 0 < A, < 1 and [ws] € Z. Therefore, inserting the above
expressions into eq. (4.18), we find that the resulting mass correction is finite as

2 _ 9:Q° ST A2 2
md(0) = A2z (- )

L1 - 1
; Z m (1 — cos(2mk Ay, ){Aw,cosh(2mk(1 — Ay, )r)

+(1 — A, )cosh(ZkawJ)})

1 ~ cos(2n cosh(mk(1 —2A,,)r)
(mkr) (1 (2mkBu) cosh(mkr) )]('4'23)

+ﬁ E3tanh
k=1

First let us consider the case with A, = 0. Then, eq. (4.23) becomes

2(0) = ﬁ {l Z ;(1 — cos(2mkAy,))

e AmS RS [ <= k2sinh®(rkr)

1
— — (1 — 2mkA, . 4.24
+7TT2 — k3tanh(7rkr)( cos(2 6))} ( )
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In this case, let us take the limit of 7r > 1, i.e. one extra dimension with radius Rs
to be much smaller than the other. Thus, the resulting mass correction reproduces
exactly the 5d case with a SS twist [20],

2 9:Q* — 1
m2(0) ~ gy ; 75 (1 = cos(2mkAL, ). (4.25)
On the other hand, when one takes A, = %, which is the case with a discrete

twist in the fifth direction, eq. (4.23) becomes

22 2 1 o 1
2 0 — g4Q 7T_ -
mol0) = g |21 s ; k2sinh?(wkr)

1 & 1 mkr
— N (1 —cos(2mkA, ) ———)|. (42
+7TT2 ; E3tanh(mkr) ( cos(2m 6)s1nh(7rkr)>] (420)

Again in the limit of wr > 1, the resulting mass correction is

2 ~ 9:Q° % R_ﬁ
w0~ s ()0 (4:21)

Therefore, in this case, one extra dimension with small radius Rs is not decoupled,

but rather the effect due to the nontrivial SS twist in that direction is a dominant
contribution to the mass correction. For other nonzero values of A, such a non-
decoupling of small extra dimension remains true because the first term in eq. (4.23)

is dominant for mr > 1.

5. Conclusion

We considered supersymmetry breaking on the orbifold 7?/Z, via the SS twisted
boundary conditions or the localized mass terms. It turns out that the SS breaking
is equivalent to the localized breaking at the lines which should be regarded to be
fixed boundaries under additional Z; actions. In this case, we have shown that in
the presence of the S5 twist or localized mass terms for the bulk gauge sector, there
arises a finite one-loop mass correction to the visible brane scalar. In particular,
for the case with one extra dimension much smaller than the other, we observe that
the effect from the small extra dimension to the one-loop mass correction is not

decoupled due to a nontrivial SS twist in that direction.

~ 16 -



In order to know whether the contribution due to the bulk gaugino dominates
over other contributions such as anomaly mediation [§], one needs to determine the
SS twist parameter dynamically. At the level of 4d effective supergravity, one could
think of the SS breaking to be equivalent to a nonzero I’ term of the corresponding
radion multiplet for two extra dimensions as in 5d case [§], and introduce a radius
stabilization mechanism to determine the F' term dynamically. Moreover, in order
to estimate supergravity loop corrections as in 5d case [26], it seems indispensible
to understand the 6d off-shell supergravity, which is not available yet. Let us leave

these issues in a future publication.
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