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1. Introdu
tion

Weak-s
ale supersymmetry(SUSY) [1℄ has been a promising 
andidate for physi
s be-

yond the Standard Model due to the natural solution to the hierar
hy problem and

the gauge 
oupling uni�
ation and et
. It is well known that supergravity mediation

of SUSY breaking at the hidden se
tor generates all required soft SUSY breaking

terms of order the weak s
ale [1℄. However, it does not explain how soft masses

approximately 
onserve 
avor as required by bounds on 
avor-
hanging neutral 
ur-

rents.

Re
ently, there has been a lot of attention to models with extra dimensions

whi
h give a new ground for understanding the SUSY breaking in a geometri
 way.

Identifying extra dimensions by dis
rete a
tions leads to orbifolds [2℄, whi
h lead to


hiral fermions and the redu
tion of higher dimensional supersymmetry. Moreover,

all or some of SM parti
les 
an be regarded to live on the appearing orbifold �xed

points or branes.

Parti
ularly, one 
an impose on bulk �elds twisted boundary 
onditions in extra

dimensions, �a la S
herk-S
hwarz(SS) [3℄. Then, one 
an break further the remaining

SUSY after orbifolding. In 5d N = 1 SUSY gauge theory 
ompa
ti�ed on S

1

=Z

2

,

it was shown that in the presen
e of the SS breaking of SUSY, there arises a �nite
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one-loop mass 
orre
tion of the zero mode of a bulk s
alar or a brane s
alar due

to the sum of Kaluza-Klein(KK) modes of bulk �elds [4℄. It turns out that the SS

breaking is equivalent to the 
ase with a nonzero auxiliary �eld (F term) of the

radion multiplet in the o�-shell 5d supergravity [5, 6, 7℄. A nonzero twist parameter

or F term 
an be determined dynami
ally after the radion stabilization [8, 9℄.

On the other hand, one 
an 
onsider the lo
alized breaking of SUSY at the

orbifold �xed points [10, 11, 12, 13, 7, 14, 15, 16, 17, 18, 19, 20℄. For instan
e, when

the remaining SUSY is broken at the hidden brane, only bulk �elds su
h as gaugino

or gravitino get nonzero masses at tree level and the broken SUSY is transmitted

to the visible brane by bulk �elds. Then, one 
an �nd that the mass spe
trum of

bulk �elds and their 
oupling at the visible brane are equivalent to those in the SS

breaking without brane mass terms [7, 14℄. Therefore, there also appears the one-

loop �niteness for a s
alar mass of the visible brane [13, 19, 20℄, whi
h is due to the

geometri
 separation of SUSY breaking from the visible brane. If the broken SUSY is

mediated dominantly by gaugino, the s
alar mass be
omes 
avor-blind whi
h sheds

light on the supersymmetri
 
avor problem [12℄.

In this paper, we will 
onsider the SUSY breaking in 6d N = 1 supersymmetri


gauge theory 
ompa
ti�ed on the orbifold T

2

=Z

2

[21℄. Even if we 
onsider only U(1)

gauge group in the bulk, it is straightforward to extend to the non-abelian gauge

group. The orbifold �xed points on T

2

=Z

2


orrespond to 
odimension-two branes.

First we 
onsider a generalization of the SS breaking of SUSY to the 6d 
ase. Then,

we show that the SS breaking is equivalent to the lo
alized breaking with mass terms

along the lines rather than points. This lo
alized SUSY breaking 
an be realized by

positioning the hidden se
tor at the �xed boundaries under additional Z

2

a
tions.

For the lo
alized breaking with mass terms at the 
odimension-two brane, how-

ever, the 
lassi
al solution of a bulk �eld is singular for an in�nitely thin brane [22℄.

So, one must regularize the zero thi
kness of brane. Then, the regulator dependen
e

in the 
lassi
al solution is absorbed into the renormalized brane mass, whi
h has a


lassi
al logarithmi
 RG running [22℄. In that sense, the lo
alized breaking at the


odimension-two brane is sensitive to the ultraviolet physi
s of regularization even

in a mild way with the log divergen
e. A
tually, it has been shown [23℄ that in the

presen
e of mass terms lo
alized at the �xed points, the one-loop mass for a brane

s
alar due to bulk gauge �elds has a log divergen
e due to the in�nitely thin brane.

On the other hand, the lo
alized mass terms at 
odimension-one branes are

insensitive to the regularization of the brane thi
kness, as seen from the equivalen
e

{ 2 {



to the SS breaking. By using the o�-shell a
tion for 6d SUSY gauge theory with the

bulk-brane 
oupling [21℄, we make a 
omputation of one-loop mass 
orre
tion to a

brane s
alar due to the SS breaking or the lo
alized breaking along the distant lines.

Thus, we �nd that the resulting one-loop 
orre
tion is �nite. In the limit of taking

one extra dimension without a SS twist to be mu
h smaller than the other one with

a SS twist, we reprodu
e the 5d result with a SS twist. On the other hand, a small

extra dimension with a nontrivial SS twist is not de
oupled but rather its e�e
t is

dominant in the one-loop mass 
orre
tion.

The paper is organized as follows. First we des
ribe the SS twisted boundary


onditions on the bulk gaugino and �nd the mass spe
trum and mode expansion

of gaugino. Next in the lo
alized SUSY breaking with general Z

2

-even mass terms

along the lines, we obtain the similar result as in the SS twist. Then, we 
ompute

the one-loop mass 
orre
tion to a brane s
alar due to the KK modes of bulk gauge

�elds. Finally the 
on
lusion is drawn.

2. S
herk-S
hwarz breaking of SUSY on T

2

=Z

2

Let us 
onsider a 6d N = 1 supersymmetri
 U(1) gauge theory 
ompa
ti�ed on the

T

2

=Z

2

orbifold

1

. Two extra dimensions on a torus are identi�ed as x

5

� x

5

+ 2�R

5

and x

6

� x

6

+ 2�R

6

where R

5

and R

6

are radii of extra dimensions. By orbifolding

on the torus by Z

2

, we identify (x

5

; x

6

) with (�x

5

;�x

6

). Then, there appear four

orbifold �xed points,

(0; 0); (�R

5

; 0); (0; �R

6

); (�R

5

; �R

6

): (2.1)

The fundamental region is the half of the torus.

The kineti
 term for the U(1) gaugino

2

is given by

L = i

�




i

�

M

�

M




i

: (2.2)

The gaugino 


i

is a right-handed simple
ti
 Majorana-Weyl fermion satisfying the


hirality 
ondition

�

7




i

= 


i

: (2.3)

1

It is straightforward to in
lude hypermultiplets 
oupled to the U (1) [21℄ and extend to bulk

non-abelian gauge groups. In these 
ases, one needs to remember that the bulk matter 
ontent is

severely restri
ted due to genuine 6d anomalies [21℄.

2

For notations and 
onventions, refer to [21℄.
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On writing the gaugino in a four dimensional Weyl representation 


i

R

� �

i

, eq. (2.2)

be
omes

L = i

�

�

i




M

�

M

�

i

: (2.4)

From the symmetry of the a
tion on an orbifold T

2

=Z

2

, let us 
onsider the

orbifold boundary 
onditions and the S
herk-S
hwarz(SS) twists on T

2

=Z

2

as follows,

Z

2

: �(x;�x

5

;�x

6

) = �

3

(i


5

)�(x; x

5

; x

6

) � P�(x; x

5

; x

6

); (2.5)

T

1

: �(x; x

5

+ 2�R

5

; x

6

) = U

1

�(x; x

5

; x

6

); (2.6)

T

2

: �(x; x

5

; x

6

+ 2�R

6

) = U

2

�(x; x

5

; x

6

) (2.7)

where U

i

(i = 1; 2) are 2�2 twist matri
es 
orresponding to SU(2)

R

rotations. The SS

twists on the orbifold are subje
t to the 
onsisten
y 
onditions U

i

PU

i

= P (i = 1; 2)

and U

1

U

2

= U

2

U

1

. We note that there is another possible 
hoi
e of the parity matrix

P = �1

2

(i


5

), instead of P = �

3

(i


5

). In this 
ase, the 
onsisten
y 
onditions lead

to U

i

= �1

2

or ��

3

. However, in this paper, let us fo
us on the 
ase with P = �

3

(i


5

)

for whi
h a 
ontinuous twist is possible.

The �rst 
ondition U

i

PU

i

= P (i = 1; 2) gives rise to the following form for either

U

1

or U

2

: a 
ontinuous twist 
onne
ted to the identity,

U

i

= e

�i[2�!

i

(�

1

sin�

i

+�

2


os�

i

)℄

(2.8)

with !

i

; �

i

being real parameters, or a dis
rete twist not 
onne
ted to the identity,

U

i

= �1

2

: (2.9)

By using the residual global invarian
e, a 
ontinuous twist(U

i

with i = 1 or 2) 
an be

always set to the one with �

i

= 0. Therefore, also 
onsidering the se
ond 
ondition

U

1

U

2

= U

2

U

1

, we �nd that there are four possible twisted boundary 
onditions:

U

1

= e

�2�i!

5

�

2

; U

2

= e

2�i!

6

�

2

; (2.10)

U

1

= �1

2

; U

2

= e

2�i!

6

�

2

; (2.11)

U

1

= e

�2�i!

5

�

2

; U

2

= �1

2

; (2.12)

U

1

= U

2

= �1

2

(2.13)

where !

5

; !

6

are real 
onstant parameters. We note that the dis
rete 
hoi
e of twist

matri
es 
orresponds to using R-parity of N = 1 4d supersymmetry as the global

symmetry.
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First, for the 
ase with 
ontinuous twists in both extra dimensions given by

eq. (2.10), let us make a rede�nition of the gaugino as

�(x; x

5

; x

6

) = e

�i(!

5

x

5

=R

5

�!

6

x

6

=R

6

)�

2

~

�(x; x

5

; x

6

): (2.14)

Then, regarding

~

� to be untwisted �elds, we take the rede�ned gaugino to be a

solution to the twisted boundary 
onditions (2.6) and (2.7) with eq. (2.10). Moreover,

one 
an show that

~

� satis�es the same orbifold boundary 
ondition as � in eq. (2.5).

Let us write the untwisted �elds

~

� in terms of 4d Majorana spinors

~

 

i

(i = 1; 2)

as

~

�

1

= +

1

2

(1 + i


5

)

~

 

1

+

1

2

(1� i


5

)

~

 

2

; (2.15)

~

�

2

= �

1

2

(1 � i


5

)

~

 

1

+

1

2

(1 + i


5

)

~

 

2

; (2.16)

and similarly for the twisted �elds � in terms of 4d Majorana spinors  

i

(i = 1; 2).

We note that the untwisted Majorana spinors are related to the twisted ones by

�

 

1

 

2

�

=

0

B

B

�


os

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

� sin

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

sin

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�


os

�

!

5

x

5

R

5

+

!

6

x

6

R

6

�

1

C

C

A

�

~

 

1

~

 

2

�

: (2.17)

Then, from eq. (2.5), one 
an show that

~

 

i

satisfy the following Z

2

boundary 
ondi-

tions,

~

 

1

(x;�x

5

;�x

6

) = +

~

 

1

(x; x

5

; x

6

); (2.18)

~

 

2

(x;�x

5

;�x

6

) = �

~

 

2

(x; x

5

; x

6

); (2.19)

and similarly for  

i

. With this rede�nition of �elds, let us write the gaugino kineti


term (2.4) in terms of untwisted �elds

~

 as

L = i

~

 

1




�

�

�

~

 

1

+ i

~

 

2




�

�

�

~

 

2

�

~

 

1

(�

5

+ 


5

�

6

)

~

 

2

+

~

 

2

(�

5

+ 


5

�

6

)

~

 

1

�

!

5

R

5

(

~

 

1
~

 

1

+

~

 

2
~

 

2

) +

!

6

R

6

(

~

 

1




5

~

 

1

+

~

 

2




5

~

 

2

): (2.20)

Equivalently, by writing

~

 

i

= (�

i

; ��

i

)

T

(i = 1; 2) with 4d Weyl spinors �

i

, the a
tion

be
omes

L =

X

i=1;2

(i�

i

�

�

�

�

��

i

+ i��

i

��

�

�

�

�

i

)

+[��

1

(�

5

� i�

6

)�

2

+ �

2

(�

5

� i�

6

)�

1

+ 
:
:℄ + L

m

(2.21)
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where L

m


orresponds to the bulk mass terms given by

L

m

= �

��

!

5

R

5

+ i

!

6

R

6

�

(�

1

�

1

+ �

2

�

2

) + 
:
:

�

: (2.22)

Therefore, we �nd that the SS twist on the torus indu
es nonzero Z

2

-even mass

terms in the basis of the untwisted gaugino that we have introdu
ed for rede�ning

the gaugino. We note that the Z

2

-even and odd untwisted �elds take equal bulk

masses as in the 5d 
ase.

From the a
tion (2.21), we 
an derive the equations of motion for gaugino as

follows,

i�

�

�

�

��

2

+ (�

5

� i�

6

)�

1

�

�

!

5

R

5

+ i

!

6

R

6

�

�

2

= 0; (2.23)

i��

�

�

�

�

1

� (�

5

+ i�

6

)��

2

�

�

!

5

R

5

� i

!

6

R

6

�

��

1

= 0: (2.24)

Therefore, solving the above equations, we �nd the solution for the untwisted gaugino

as

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�


os

�

n

5

R

5

x

5

�

n

6

R

6

x

6

�

sin

�

n

5

R

5

x

5

�

n

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x) (2.25)

where n

5

; n

6

are integer, i�

�

�

�

��

(n

5

;n

6

)

(x) =M

n

5

;n

6

�

(n

5

;n

6

)

(x) and the mass spe
trum

is given by

M

n

5

;n

6

=

n

5

+ !

5

R

5

+ i

�

n

6

+ !

6

R

6

�

: (2.26)

Consequently, due to the relation (2.17), the solution for the twisted gaugino  

i

=

(�

i

;

�

�

i

)

T

(i = 1; 2) be
omes

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�


os

�

n

5

+!

5

R

5

x

5

�

n

6

+!

6

R

6

x

6

�

sin

�

n

5

+!

5

R

5

x

5

�

n

6

+!

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x):

(2.27)

Similarly, for the 
ase with a 
ontinuous twist in one dire
tion and a dis
rete

twist in the other dire
tion given by eq. (2.11), we 
an make a rede�nition of the

gaugino with

~

� as

�(x; x

5

; x

6

) = e

i(!

6

x

6

=R

6

)�

2

~

�(x; x

5

; x

6

): (2.28)

{ 6 {



Then,

~

� satis�es the following orbifold and twisted boundary 
onditions:

Z

2

:

~

�(x;�x

5

;�x

6

) = �

3

(i


5

)

~

�(x; x

5

; x

6

) (2.29)

T

1

:

~

�(x; x

5

+ 2�R

5

; x

6

) = �

~

�(x; x

5

; x

6

); (2.30)

T

2

:

~

�(x; x

5

; x

6

+ 2�R

6

) =

~

�(x; x

5

; x

6

): (2.31)

Consequently, plugging the rede�ned gaugino into the a
tion, deriving the equation

for

~

� and imposing the above boundary 
onditions to

~

�, we �nd the 
orresponding

solution for

~

� in 4d Weyl representation as

�

�

1

�

2

�

(x; x

5

; x

6

) =

1

2�

p

R

5

R

6

X

n

5

;n

6

2Z

0

B

B

�


os

�

n

5

+

1

2

R

5

x

5

�

n

6

R

6

x

6

�

sin

�

n

5

+

1

2

R

5

x

5

�

n

6

R

6

x

6

�

1

C

C

A

�

(n

5

;n

6

)

(x) (2.32)

where n

5

; n

6

are integer, i�

�

�

�

��

(n

5

;n

6

)

(x) =M

n

5

;n

6

�

(n

5

;n

6

)

(x) and the mass spe
trum

is given by

M

n

5

;n

6

=

n

5

+

1

2

R

5

+ i

�

n

6

+ !

6

R

6

�

: (2.33)

Therefore, the solution for the twisted gaugino � is given by eq. (2.27) with !

5

=

1

2

.

Also for the 
ase with twist matri
es (2.12), we only have to inter
hange (n

5

; R

5

)$

(n

6

; R

6

) with !

6

! !

5

in eq. (2.32), and then obtain the solution for the twisted

gaugino � given by eq. (2.27) with !

6

=

1

2

.

Lastly, for the 
ase with dis
rete twists in both extra dimensions, the solution

for the twisted gaugino � is given by eq. (2.27) with !

5

= !

6

=

1

2

.

3. SUSY breaking due to lo
alized gaugino masses

In this se
tion, instead of the SS boundary twists of gaugino, let us 
onsider a lo
al

breaking of supersymmetry whi
h is parametrized by gaugino mass terms, and show

the equivalen
e between the SS breaking and the lo
alized breaking.

Let us take the most general Z

2

-even mass terms

3

for gaugino, whi
h are lo
al-

3

If one introdu
es gaugino mass terms proportional to Æ(x

5

) and Æ(x

6

), there appears a non-

supersymmetri
 gauge 
oupling at the origin due to the suppression of gaugino wave fun
tion [20℄.

Sin
e we assume the visible se
tor �elds to be lo
alized at the origin, let us 
onsider the gaugino

mass terms only at distant lines.
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ized along the two lines interse
ting at a �xed point (�R

5

; �R

6

) on the orbifold,

L

m

= �[2m(�

1

�

1

+ ��

2

�

2

) + 
:
℄Æ(x

5

� �R

5

)

�[2im

0

(�

1

�

1

+ �

0

�

2

�

2

) + 
:
:℄Æ(x

6

� �R

6

) (3.1)

where (m;�) and (m

0

; �

0

) are gaugino mass parameters and they are assumed to be

real. Then, the lines with lo
alized mass terms should be regarded as the �xed bound-

aries under two additional independent Z

2

a
tions [24℄: Z

0

2

: (x

5

; x

6

)! (�x

5

; x

6

) and

Z

00

2

: (x

5

; x

6

)! (x

5

;�x

6

). In this 
ase, it is 
on
eivable that the lo
alized mass terms

are due to the SUSY breaking in the hidden se
tor lo
ated on the lines, rather than

points.

In this 
ase, the gaugino equations of motion are

i�

�

�

�

��

2

+ (�

5

� i�

6

)�

1

� 2(m�Æ(x

5

� �R

5

) + im

0

�

0

Æ(x

6

� �R

6

))�

2

= 0; (3.2)

i��

�

�

�

�

1

� (�

5

+ i�

6

)��

2

� 2(mÆ(x

5

� �R

5

)� im

0

Æ(x

6

� �R

6

))��

1

= 0: (3.3)

Now let us take the solution of gaugino to the above equations as

�

�

1

�

2

�

(x; x

5

; x

6

) =

X

M

N

M

�

u

1

(x

5

; x

6

)

u

2

(x

5

; x

6

)

�

�

M

(x) (3.4)

where N

M

is the normalization 
onstant and i�

�

�

�

��

M

(x) = M�

M

(x). Then, the

gaugino equations are

M �u

2

+ (�

5

� i�

6

)u

1

� 2(m�Æ(x

5

� �R

5

) + im

0

�

0

Æ(x

6

� �R

6

))u

2

= 0; (3.5)

�

Mu

1

� (�

5

+ i�

6

)�u

2

� 2(mÆ(x

5

� �R

5

)� im

0

Æ(x

6

� �R

6

))�u

1

= 0: (3.6)

Let us take u

1

; u

2

to be real fun
tions. Then, taking M = M

5

+ iM

6

with real M

5

and M

6

and using eqs. (3.5) and (3.6), we obtain the equation for t � u

2

=u

1

as

�

5

t = M

5

(1 + t

2

)� 2m(1 + �t

2

)Æ(x

5

� �R

5

); (3.7)

�

6

t = �M

6

(1 + t

2

) + 2m

0

(1 + �

0

t

2

)Æ(x

6

� �R

6

): (3.8)

It is 
onvenient to 
onsider the Z

2

-odd solution of t separately around di�erent �xed

points and mat
h them in the overlap regions [20℄. That is, let us 
onsider the

solution of t whi
h satis�es the equations of motion inside a torus 
entered at ea
h

�xed point. Thus, we �nd the solution for t:
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� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

t = tan(M

5

x

5

�M

6

x

6

): (3.9)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

t = tan[M

5

(x

5

� �R

5

)�M

6

x

6

� ar
tan�(�;m�(x

5

� �R

5

))℄ (3.10)

where �(x

5

� �R

5

) is a step fun
tion with 2�R

5

periodi
ity given by

�(x

5

) =

8

<

:

+1; 0 < x

5

< �R

5

;

0; x

5

= 0;

�1; ��R

5

< x

5

< 0;

(3.11)

and

�(�;m�(x

5

� �R

5

)) �

1

p

�

tan(

p

�m�(x

5

� �R

5

)): (3.12)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

t = tan[M

5

x

5

�M

6

(x

6

� �R

6

) + ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.13)

where ~�(x

6

� �R

6

) is a step fun
tion with 2�R

6

periodi
ity.

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

t = tan[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

) � ar
tan�(�;m�(x

5

� �R

5

))

+ ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.14)

Identify the �rst two solutions in the overlap region of 0 < x

5

< �R

5

and ��R

6

<

x

6

< �R

6

, we �nd

M

5

=

1

R

5

�

n

5

+

1

�

ar
tan�(�;m)

�

; n

5

= integer: (3.15)

Likewise, identifying the �rst and third solutions in the overlap region of ��R

5

<

x

5

< �R

5

and 0 < x

6

< �R

6

, we also �nd

M

6

=

1

R

6

�

n

6

+

1

�

ar
tan�(�

0

;m

0

)

�

; n

6

= integer: (3.16)
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Then, 
omparing the other solutions in the overlap regions does not lead to a new 
on-

dition. Therefore, the mass spe
trum is equivalent to the one with SS breaking when

!

5

and !

6

in eq. (2.26) are identi�ed with ar
tan�(�;m)=� and ar
tan�(�

0

;m

0

)=�,

respe
tively.

Moreover, the solutions of u

1

and u

2

are also given in the separate regions:

� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

u

1

= 
os(M

5

x

5

�M

6

x

6

); (3.17)

u

2

= sin(M

5

x

5

�M

6

x

6

): (3.18)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

u

1

= (�1)

n

5

A(�;m�(x

5

� �R

5

))�

� 
os[M

5

(x

5

� �R

5

)�M

6

x

6

� ar
tan�(�;m�(x

5

� �R

5

))℄; (3.19)

u

2

= (�1)

n

5

A(�;m�(x

5

� �R

5

))�

� sin[M

5

(x

5

� �R

5

)�M

6

x

6

� ar
tan�(�;m�(x

5

� �R

5

))℄ (3.20)

where

A(�;m�(x

5

� �R

5

)) �

�

1 + �

2

(�;m�(x

5

� �R

5

))

1 + ��

2

(�;m�(x

5

� �R

5

))

�

1=2

: (3.21)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

u

1

= (�1)

n

6

A(�

0

;m

0

~�(x

6

� �R

6

))�

� 
os[M

5

x

5

�M

6

(x

6

� �R

6

) + ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.22)

u

2

= (�1)

n

6

A(�

0

;m

0

~�(x

6

� �R

6

))�

� sin[M

5

x

5

�M

6

(x

6

� �R

6

) + ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.23)

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

u

1

= (�1)

n

5

+n

6

A(�;m�(x

5

� �R

5

))A(�

0

;m

0

~�(x

6

� �R

6

))�

� 
os[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

)

� ar
tan�(�;m�(x

5

� �R

5

)) + ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄; (3.24)

u

2

= (�1)

n

5

+n

6

A(�;m�(x

5

� �R

5

))A(�

0

;m

0

~�(x

6

� �R

6

))�

� sin[M

5

(x

5

� �R

5

)�M

6

(x

6

� �R

6

)

� ar
tan�(�;m�(x

5

� �R

5

)) + ar
tan�(�

0

;m

0

~�(x

6

� �R

6

))℄: (3.25)
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In order to make a normalization of KK modes, let us insert the solutions in the

a
tion and integrate it over extra dimensions. Then, we obtain the normalization


onstant in the separate regions:

� ��R

5

< x

5

< �R

5

and ��R

6

< x

6

< �R

6

,

N

M

=

�

Z

�R

5

��R

5

dx

5

Z

�R

6

��R

6

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

: (3.26)

� 0 < x

5

< 2�R

5

and ��R

6

< x

6

< �R

6

,

N

M

=

�

Z

2�R

5

0

dx

5

Z

�R

6

��R

6

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�;m):

(3.27)

� ��R

5

< x

5

< �R

5

and 0 < x

6

< 2�R

6

,

N

M

=

�

Z

�R

5

��R

5

dx

5

Z

2�R

6

0

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�

0

;m

0

):

(3.28)

� 0 < x

5

< 2�R

5

and 0 < x

6

< 2�R

6

,

N

M

=

�

Z

2�R

5

0

dx

5

Z

2�R

6

0

dx

6

[(u

1

)

2

+ (u

2

)

2

℄

�

�1=2

=

1

2�

p

R

5

R

6

A

�1

(�;m)A

�1

(�

0

;m

0

): (3.29)

4. One-loop mass 
orre
tion to a brane s
alar

In the general 
ase with nonzero gaugino masses, let us put a 
hiral multiplet at

the (0; 0) �xed point. Then, the s
alar partner of the 
hiral multiplet does not

feel the supersymmetry breaking dire
tly but there exists a loop 
ontribution to its

mass due to the distant supersymmetry breaking. Only Z

2

-even gaugino 
ouples to

the brane s
alar. From the solution (3.17) with normalization (3.26) in the region

��R

5

< 0 < �R

5

and ��R

6

< x

6

< �R

6

, we �nd that all KK modes of Z

2

-even

gaugino have the same brane 
oupling as the one of bulk gauge boson,

g

4

=

g

6

2�

p

R

5

R

6

(4.1)
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where g

6

is the six-dimensional gauge 
oupling. One has the KK mass spe
trums for

gauge bosons and gaugino running in loops, respe
tively,

M

2

(0)n

5

;n

6

=

�

n

5

R

5

�

2

+

�

n

6

R

6

�

2

; (4.2)

M

2

n

5

;n

6

=

�

n

5

+ !

5

R

5

�

2

+

�

n

6

+ !

6

R

6

�

2

: (4.3)

On the other hand, from the even-mode �

1

from eq. (2.27) at the (0; 0) �xed

point and the mass spe
trum in eq. (2.26), one 
an �nd that the SS breaking leads

to the same brane 
oupling and mass spe
trum of gaugino as in the lo
alized breaking

of supersymmetry. So, the brane s
alar �elds do not feel the di�eren
e between the

SS twist and the lo
alized gaugino masses along the distant lines.

Now let us 
onsider the KK mode 
ontribution to the one-loop mass 
orre
tion

for a brane s
alar � with 
harge Q under the U(1). For this, we note that the 
oupling

of the bulk auxiliary �eld to the brane s
alar is given by the following a
tion [21℄,

Z

d

6

x

�

1

2

(D

3

)

2

+ Æ(x

5

)Æ(x

6

)g

6

Q�

y

(�D

3

+ F

56

)�

�

(4.4)

where D

3

is the third 
omponent of auxiliary �eld in the bulk ve
tor multiplet and

F

56

is the extra 
omponent of �eld strength. After eliminating the auxiliary �eld by

its equation of motion, we �nd the resulting 
oupling as

Z

d

4

x

�

� g

6

Q�

y

F

56

(x; x

5

= 0; x

6

= 0)��

1

2

g

2

6

Q

2

(�

y

�)

2

Æ(0)Æ(0)

�

(4.5)

with

Æ(0)Æ(0) =

1

4�

2

R

5

R

6

X

n

5

;n

6

2Z

1

=

1

4�

2

R

5

R

6

X

n

5

;n

6

2Z

p

2

�M

2

(0)n

5

;n

6

p

2

�M

2

(0)n

5

;n

6

: (4.6)

Therefore, 
onsidering the similar Feynman diagrams as in 5d [10, 18℄, in the dimen-

sional regularization with d = 4� �, bosoni
 and fermioni
 loop 
ontributions to the

s
alar self energy are, at nonzero external momentum q

2

, respe
tively,

�im

2

B

(q

2

) = 4g

2

4

Q

2

�

4�d

X

n

5

;n

6

2Z

Z

d

d

p

(2�)

d

p(q + p)

(p

2

�M

2

(0)n

5

;n

6

)(q + p)

2

(4.7)
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and

�im

2

F

(q

2

) = �4g

2

4

Q

2

�

4�d

X

n

5

;n

6

2Z

Z

d

d

p

(2�)

d

p(q + p)

(p

2

�M

2

n

5

;n

6

)(q + p)

2

(4.8)

By using the S
hwinger representation

1

A

n

=

1

�(n)

Z

1

0

dt t

n�1

e

�At

; (4.9)

and performing the momentum integrations via the identities

Z

1

0

dy y

2n+d�1

e

�y

2

t

=

�(d=2 + n)

2t

d=2+n

; (4.10)

we �nd the one-loop 
orre
tions as

m

2

B

(q

2

) =

g

2

4

Q

2

(��R

5

)

�

4�

3

R

2

5

Z

1

0

dx

�

(2 �

�

2

)J

2

[0; 0; 
℄ + �x(1� x)q

2

R

2

5

J

1

[0; 0; 
℄

�

(4.11)

and

m

2

F

(q

2

) = �

g

2

4

Q

2

(��R

5

)

�

4�

3

R

2

5

Z

1

0

dx

�

(2 �

�

2

)J

2

[!

5

; !

6

; 
℄

+�x(1� x)q

2

R

2

5

J

1

[!

5

; !

6

; 
℄

�

(4.12)

with

J

j

[!

5

; !

6

; 
℄ �

X

n

5

;n

6

2Z

Z

1

0

dt

t

j��=2

e

��t[
+a

5

(n

5

+!

5

)

2

+a

6

(n

6

+!

6

)

2

℄

; j = 1; 2; a

5;6

; 
 > 0;

a

5

� x; a

6

� x

�

R

5

R

6

�

2

; 
 � �x(1� x)q

2

R

2

5

: (4.13)

For small positive

4


, we obtain the following approximate formulas [25℄ for

4


 is positive after a Wi
k rotation q

2

= �q

2

E

.
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J

j

[!

5

; !

6

; 
℄,

J

1

[!

5

; !

6

; 
� 1℄ '

�


p

a

5

a

6

�

�2

�

�

� ln

�

�

�

�

#

1

(!

6

� iu!

5

jiu)

(!

6

� iu!

5

)�(iu)

e

��u!

2

5

�

�

�

�

2

� ln[(
+ a

5

!

2

5

+ a

6

!

2

6

)=a

6

℄; u �

r

a

5

a

6

; (4.14)

J

2

[!

5

; !

6

; 
� 1℄ ' �

�

2




2

2

p

a

5

a

6

�

�2

�

�

+

�

2

a

5

3

�

a

5

a

6

�

1=2

�

1

15

� 2�

2

!

5

(1��

!

5

)

2

�

+

�

p

a

5

a

6

X

n2Z

jn+ !

5

jLi

2

(e

�2�iz

) + 
:
:

�

+

�

a

6

2�

X

n2Z

Li

3

(e

�2�iz

) + 
:
:

�

(4.15)

where �

!

5

� !

5

� [!

5

℄ with 0 � �

!

5

< 1 and [!

5

℄ 2 Z, and z � !

6

� i

q

a

5

a

6

jn + !

5

j.

Here, #

1

is the Ja
obi theta fun
tion and � is the Dedekind eta fun
tion. And Li

2

;Li

3

are the polylogarithm fun
tions as

Li

n

(x) =

1

X

k=1

x

k

k

n

; n = 2; 3: (4.16)

Therefore, the resulting one-loop 
orre
tion for the brane s
alar is given by

m

2

�

(q

2

) = m

2

B

(q

2

) +m

2

F

(q

2

)

=

g

2

4

Q

2

2�

3

R

2

5

Z

1

0

dx

�

J

2

[0; 0; 
℄�J

2

[!

5

; !

6

; 
℄

�

+

g

2

4

Q

2

4�

2

R

2

5

(q

2

R

2

5

)

Z

1

0

dxx(1 � x)

�

J

1

[0; 0; 
℄� J

1

[!

5

; !

6

; 
℄

�

: (4.17)

Consequently, we observe that both divergen
es of J

1

and J

2

are 
an
elled and there

appear only �nite 
orre
tions. Thus, we 
an take 
 = 0 safely at the zero external

momentum without involving the UV and IR mixing found in [25℄. So, the mass


orre
tion with q

2

= 0 is given by

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

2�

2

3

r�

2

!

5

(1 ��

!

5

)

2

+

1

r

(I

1

(0; 0) � I

1

(!

5

; !

6

) + 
:
:)

+

1

2�r

2

(I

2

(0; 0)� I

2

(!

5

; !

6

) + 
:
:)

�

; r �

R

6

R

5

(4.18)
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with

I

1

(!

5

; !

6

) �

X

n2Z

jn+ !

5

jLi

2

(e

�2�jn+!

5

jr�2�i!

6

); (4.19)

and

I

2

(!

5

; !

6

) �

X

n2Z

Li

3

(e

�2�jn+!

5

jr�2�i!

6

): (4.20)

In order to see the mass 
orre
tion expli
itly, let us simplify the sums as follows,

I

1

(!

5

; !

6

) =

1

2

1

X

k=1

e

�2�ik�

!

6

k

2

sinh

2

(�kr)

�

�

!

5


osh(2�k(1��

!

5

)r)

+(1 ��

!

5

)
osh(2�k�

!

5

r)

�

; (4.21)

and

I

2

(!

5

; !

6

) =

1

X

k=1

e

�2�ik�

!

6

k

3


osh(�k(1� 2�

!

5

)r)

sinh(�kr)

: (4.22)

Here �

!

6

� !

6

� [!

6

℄ with 0 � �

!

6

< 1 and [!

6

℄ 2 Z. Therefore, inserting the above

expressions into eq. (4.18), we �nd that the resulting mass 
orre
tion is �nite as

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

2�

2

3

r�

2

!

5

(1��

!

5

)

2

+

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

�

1� 
os(2�k�

!

6

)f�

!

5


osh(2�k(1 ��

!

5

)r)

+(1��

!

5

)
osh(2�k�

!

5

r)g

�

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

�

1� 
os(2�k�

!

6

)


osh(�k(1� 2�

!

5

)r)


osh(�kr)

��

:(4.23)

First let us 
onsider the 
ase with �

!

5

= 0. Then, eq. (4.23) be
omes

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

(1� 
os(2�k�

!

6

))

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

(1 � 
os(2�k�

!

6

))

�

: (4.24)
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In this 
ase, let us take the limit of �r � 1, i.e. one extra dimension with radius R

5

to be mu
h smaller than the other. Thus, the resulting mass 
orre
tion reprodu
es

exa
tly the 5d 
ase with a SS twist [20℄,

m

2

�

(0) '

g

2

4

Q

2

4�

4

R

2

6

1

X

k=1

1

k

3

(1 � 
os(2�k�

!

6

)): (4.25)

On the other hand, when one takes �

!

5

=

1

2

, whi
h is the 
ase with a dis
rete

twist in the �fth dire
tion, eq. (4.23) be
omes

m

2

�

(0) =

g

2

4

Q

2

4�

3

R

2

5

�

�

2

24

r +

1

r

1

X

k=1

1

k

2

sinh

2

(�kr)

+

1

�r

2

1

X

k=1

1

k

3

tanh(�kr)

�

1 � 
os(2�k�

!

6

)

�kr

sinh(�kr)

��

: (4.26)

Again in the limit of �r� 1, the resulting mass 
orre
tion is

m

2

�

(0) '

g

2

4

Q

2

96�R

2

5

�

R

6

R

5

��

1 +O

�

R

2

5

R

2

6

��

: (4.27)

Therefore, in this 
ase, one extra dimension with small radius R

5

is not de
oupled,

but rather the e�e
t due to the nontrivial SS twist in that dire
tion is a dominant


ontribution to the mass 
orre
tion. For other nonzero values of �

!

5

, su
h a non-

de
oupling of small extra dimension remains true be
ause the �rst term in eq. (4.23)

is dominant for �r � 1.

5. Con
lusion

We 
onsidered supersymmetry breaking on the orbifold T

2

=Z

2

via the SS twisted

boundary 
onditions or the lo
alized mass terms. It turns out that the SS breaking

is equivalent to the lo
alized breaking at the lines whi
h should be regarded to be

�xed boundaries under additional Z

2

a
tions. In this 
ase, we have shown that in

the presen
e of the SS twist or lo
alized mass terms for the bulk gauge se
tor, there

arises a �nite one-loop mass 
orre
tion to the visible brane s
alar. In parti
ular,

for the 
ase with one extra dimension mu
h smaller than the other, we observe that

the e�e
t from the small extra dimension to the one-loop mass 
orre
tion is not

de
oupled due to a nontrivial SS twist in that dire
tion.
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In order to know whether the 
ontribution due to the bulk gaugino dominates

over other 
ontributions su
h as anomaly mediation [8℄, one needs to determine the

SS twist parameter dynami
ally. At the level of 4d e�e
tive supergravity, one 
ould

think of the SS breaking to be equivalent to a nonzero F term of the 
orresponding

radion multiplet for two extra dimensions as in 5d 
ase [8℄, and introdu
e a radius

stabilization me
hanism to determine the F term dynami
ally. Moreover, in order

to estimate supergravity loop 
orre
tions as in 5d 
ase [26℄, it seems indispensible

to understand the 6d o�-shell supergravity, whi
h is not available yet. Let us leave

these issues in a future publi
ation.
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