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Abstra
t

We present an on-shell formulation of 5d gauged supergravity 
oupled

to 
hiral matter multiplets lo
alized at the orbifold �xed points. The brane

a
tion is 
onstru
ted via the Noether method. In su
h set-up we 
ompute

one-loop 
orre
tions to the K�ahler potential of the e�e
tive 4d supergravity

and 
ompare the result with previous 
omputations based on the o�-shell

formalism. The results agree at lowest order in brane sour
es, however at

higher order there are di�eren
es. We explain this dis
repan
y by an ambi-

guity in resolving singularities asso
iated with the presen
e of in�nitely thin

branes.

http://arxiv.org/abs/hep-th/0502072


1 Introdu
tion

Supersymmetry breaking and its mediation to the observable se
tor is one

of the most important problems in physi
s beyond the Standard Model. An

a

eptable theory of supersymmetry breaking is strongly 
onstrained by the

observed features of the low-energy physi
s. Spontaneous breaking must

o

ur in a hidden se
tor and must be transmitted to the observable se
tor

via non-renormalizable operators. Gravity mediation is an attra
tive and

e
onomi
al possibility, but it is well known that generi
 models fa
e the


avor problem.

It has been noted in ref. [1℄ that a spatial separation of the hidden and

observable se
tors brings new elements into the me
hanism of gravity medi-

ation. The simplest set-up that provides for su
h sequestering is that of �ve-

dimensional (5d) supergravity 
ompa
ti�ed on an orbifold in whi
h the 
hiral

matter of the observable and hidden se
tors is lo
alized on the two di�erent

boundaries of the �fth dimension. In the minimal set-up with no matter

�elds in the bulk the tree-level K�ahler potential of the e�e
tive 4d theory has

a spe
ial stru
ture that results in absen
e of tree-level transmission of su-

persymmetry breaking. Supersymmetry breaking is then transmitted to the

observable se
tor at one-loop level by (
avor-blind) gravitational intera
tions.

One me
hanism that 
an operate here is anomaly mediation [1, 2℄. Besides,

there is always a 
ontribution from integrating out the Kaluza-Klein (KK)

tower of the supergravity multiplet. Its e�e
t on the low-energy phenomenol-

ogy 
an be summarized as a 
orre
tion to the tree-level K�ahler potential of

the 4d e�e
tive supergravity. This one-loop 
orre
tion was 
omputed in refs.

[3, 4, 5, 6℄. Unlike in four-dimensions, the 
onta
t terms between the hidden

and the observable se
tors generated by gravity loops are �nite and 
al
ula-

ble. Therefore 5d supergravity models open a possibility of 
onstru
ting a

realisti
 and predi
tive theory of soft terms. See also [7℄ for other studies of

5d brane-world supergravity.

Given the important role of gravitational loop 
orre
tions it is advanta-

geous to study them in a somewhat di�erent setting. The brane-world a
tion


onsidered in refs. [3, 4, 5, 6℄ was based on an o�-shell formulation of 5d su-

pergravity. In this paper we point out that the physi
s of 5d brane-worlds


an be studied in a simpler set-up of on-shell supergravity. Using the Noether

pro
edure, we 
onstru
t a lo
ally supersymmetri
 a
tion for an N = 1 
hiral

multiplet 
on�ned to a 4d brane and 
oupled to 5d gauged supergravity in

the bulk. In su
h set-up we 
ompute the one-loop 
orre
tions to the K�ahler

potential and 
ompare it with the previous results.

In prin
iple, the Noether method is less powerful than the o�-shell for-

malism of ref. [8℄ or the super
onformal tensor 
al
ulus of ref. [9℄. Still,
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we will argue that it has several advantages. Firstly, it is obviously less

involved. The number of �elds is redu
ed and no advan
ed superspa
e te
h-

niques are needed for 
onstru
ting the a
tion. We will also see that one-loop


omputations are 
onsiderably simpli�ed in this set-up. Se
ondly, it fa
ili-

tates the treatment of singularities asso
iated with the presen
e of in�nitely

thin (delta-like) branes. In the o�-shell formulation integrating out auxiliary

�elds generates singular terms in the brane a
tion. These singular terms 
an

be avoided in our Noether formulation. Furthermore, working in our set-up

we will noti
e 
ertain ambiguity in de�ning the brane-world a
tion that is


onne
ted to arbitrariness in resolving the singular behaviour of bulk �elds

near the branes. In 
ertain 
ir
umstan
es, namely when brane sour
es are

large 
ompared to the 
ompa
ti�
ation s
ale, this ambiguity may also a�e
t

low-energy observables. Finally, the pro
edure 
an be readily generalized to

higher-dimensional spa
etimes where an o�-shell formulation of supergravity

does not exist (for example, similar method was used for 
oupling 10d brane

to 11d supergravity in the Horava-Witten model [10℄).

The paper is organized as follows. In Se
tion 2 we 
onstru
t an on-shell

a
tion for an N = 1 
hiral multiplet 
oupled to 5d supergravity. In Se
-

tion 3 we derive the tree-level K�ahler potential des
ribing the dynami
s of

the low energy degrees of freedom in this set-up. In Se
tion 4 we 
ompute

the one-loop 
orre
tion to the K�ahler potential and in Se
tion 5 we 
om-

ment on the di�eren
es with the previous works. In this paper we restri
t

to studying te
hni
al issues asso
iated with the Noether 
onstru
tion and

one-loop 
omputation. Phenomenologi
al issues, like moduli stabilization or

determination of soft breaking terms, are left for future publi
ations.

2 Five-dimensional brane-world a
tion

In this se
tion we 
onstru
t a lo
ally supersymmetri
 a
tion for an N = 1


hiral multiplet 
on�ned to a 4d brane and 
oupled to 5d supergravity in

the bulk. We use the Noether method. That is, starting with a globally

supersymmetri
 a
tion for the brane multiplet we systemati
ally add new

terms to the a
tion and supersymmetry transformations until the bulk+brane

set-up be
omes lo
ally supersymmetri
. We �rst work out all ne
essary zero-

and two-fermion terms su
h that all two-fermion supersymmetri
 variations

of the brane a
tion 
an
el. The next step is to determine four-fermion terms

from 
an
ellation of four-fermion variations. In fa
t, the latter step will not

be presented here, but see [11℄. It should be stressed however, that at the

two-fermion level the brane a
tion we 
onstru
t is lo
ally supersymmetri
 to

arbitrary power in 1=M

5

expansion, where M

5

is the 5d Plan
k s
ale.
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The 5d bulk 
ontains N = 2 supergravity multiplet

1

(e

a

�

;  

�

;A

�

). For the


at (ungauged) 5d supergravity the a
tion up to four-fermion terms reads

[12℄
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The �fth dimension is the orbifold S

1

=Z

2

parametrized by x

5

2 [��R; �R℄

with Z

2

a
ting as x

5

! �x

5

. Under Z

2

the �eld 
omponents e

m
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, e

5

5

, A

5

,

 

+
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�
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�
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5

are odd,  (�x

5

) = � (x

5

). At the orbifold �xed

point x

5

= 0 we 
ouple the N = 1 
hiral multiplet [Q

0

;  

Q

℄ (P

L

 

Q

=  

Q

). Of


ourse the a
tion for the matter [Q

�

;  

Q

�

℄ at the orbifold �xed point x

5

= �R


an be 
onstru
ted analogously. The starting point for the Noether method

is the a
tion

L

1

= e

4

Æ(x

5

)

n

�

�

Q

y

0

�

�

Q

0

+ i 

Q




�

D

�

 

Q

o

(3)

invariant under global supersymmetry transformations

ÆQ

0

=

1

p

2

� 

Q

Æ 

Q

= �

1

p

2

i


�

�

�

Q

0

� : (4)

Under the transformations (4) but with � depending on the 4d 
oordinates x

�

the lagrangian of eq. (3) transforms as ÆL = �

�

� j

�

, where j

�

is the Noether


urrent of global supersymmetry (the super
urrent). In order to 
an
el this

variation we need to 
ouple one linear 
ombination  

�

of the two bulk grav-

itinos  

+

�

(0), C 

�

�

T

(0) to the the super
urrent and identify the parameter �

with the 
orresponding 
ombination of the two bulk supersymmetry trans-

formation parameters, �

+

(0) and C�

�

T

(0). In absen
e of brane sour
es for

the gravitinos  

�

�

(0) = 0 and thus we 
hoose  

�

=  

+

�

(0). However, if su
h

1

Our notation and 
onventions are summarized in Appendix A
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sour
es are present some other 
ombination of the gravitinos 
ouples to the

brane matter. This is for example the 
ase when gravitino brane mass terms

are present, see the dis
ussion in Appendix B.

Thus we add to the brane a
tion the so-
alled Noether term,

L

2

= �

1

p

2

e

4

Æ(x

5

) 

Q




�




�

�

�

Q

0

 

�

+ h:
: : (5)

At the level of two-fermion terms there are still variations to be 
an
eled.

One originates from varying the gravitino in eq. (5), Æ 

�

� F

�5

, the other

from variation of the vielbein in the kineti
 terms of eq. (3). It turns out that

the ne
essary modi�
ations of the brane a
tion 
an be 
on
isely summarized

as the rede�nition of the graviphoton �eld strength. Namely, in the 5d bulk

a
tion (1) and supersymmetry transformations (2) we repla
e F

�5

with

^

F

�5

de�ned as

^

F

�5

= F

�5

+

1

M

3

5

Æ(x

5

)j

0

�

;

j

0

�

=

i

p

6

�

Q

y

0

�

�

Q

0

� �

�

Q

y

0

Q

0

+

i

2

 

Q




�

 

Q

�

; (6)

and modify the transformation law of the graviphoton by

ÆA

5

=

i

p

12

Æ(x

5

) 

Q

�Q

0

+ h:
: : (7)

In other words we modify the Bian
hi identity for the graviphoton �eld

strength su
h that �

[�

^

F

�℄ 5

=

2i

p

6M

3

5

Æ(x

5

)�

[�

Q

y

0

�

�℄

Q

0

. The repla
ementF !

^

F

generates singular Æ

2

terms in the brane a
tion. However su
h singular

terms are absent in the low energy e�e
tive theory after integrating out the

graviphoton A

�

. The reason for this is pre
isely the fa
t that the singular Æ

2

terms mat
h the full square stru
ture inside the graviphoton �eld strength.

In the 5d setup these singular terms provide for ne
essary 
ounterterms to


an
el divergen
es in 
ertain one-loop diagrams [13℄. No other singular terms

arise in this 
onstru
tion.

2

The on-shell a
tion we derived by the Noether method di�ers from the

brane a
tion obtained in the o�-shell formalismafter eliminating the auxiliary

�elds [5℄. In parti
ular the kineti
 terms of the gravity multiplet do not 
ouple

to the brane here. In Se
tion 5 we will dis
uss this issue more 
arefully and

argue that the two formalisms are related by a rede�nition of the 5d degrees

2

The Noether 
onstru
tion of brane a
tion in 
at 5d supergravity was also pursued

in ref. [14℄ but their results di�er from ours, notably by the absen
e of the full square

stru
ture.
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of freedom. Note that the 
hoi
e of variables we use here is very 
onvenient,

as no singular Æ

n

terms are present in the on-shell a
tion (ex
ept for the Æ

2

�tting the full square).

At this point all the two-fermion variations are 
an
eled. More involved


al
ulations are needed to work out four-fermion terms in the brane a
tion

as well as three-fermion modi�
ations of the supersymmetry transformation

laws. They are not ne
essary for the following analysis and will not be

presented here.

3

Indeed, we shall see that the form of the low energy 4d

supergravity (in
luding one-loop 
orre
tions) 
an be read out from the terms

we have already derived. Note also that on
e tree-level e�e
tive supergravity

is known all the three- and four-fermion terms 
an be easily inferred by

mat
hing with the 
anoni
al 4d supergravity lagrangian.

This 
onstru
tion of the brane world a
tion 
an be 
arried over to the 
ase

of warped supergravity, that is, 5d supergravity with a U(1) subgroup of the

SU(2) R-symmetry group gauged by the graviphoton [15℄. The 5d a
tion


an be obtained from the 
at one in eq. (1) by repla
ing all the derivatives

a
ting on the gravitino by

D

�

 

�

! D

�

 

�

+

i

2

k�(x

5

)�

�

 

�

+

i

p

6

2

k�(x

5

)A

�

 

�

: (8)

Analogous repla
ement should be done for D

�

� in the gravitino transforma-

tion laws. Besides, the 5d bulk a
tion (1) should be supplemented by

L = 6M

3

5

k

2

e

5

: (9)

Hen
e the gauging implies the presen
e of a negative 
osmologi
al 
onstant

in the bulk and so the gravitational ba
kground solution is AdS

5

. On the

orbifold, the presen
e of the step fun
tion �(x

5

) indu
es additional variations

proportional to the delta fun
tion,

ÆL =M

3

5

e

4

Æ(x

5

)k

h

3i 

�




�




5

��

p

6i 

�




��




5

�A

�

i

(Æ(x

5

)�Æ(x

5

��R)) : (10)

Can
eling the �rst term requires the presen
e of the brane tension [16℄,

L = �6M

3

5

e

5

k(Æ(x

5

)� Æ(x

5

� �R)) : (11)

and so the gravitational ba
kground in this set-up is pre
isely that of the

Randall-Sundrum model [17℄. In absen
e of brane matter the se
ond term

vanishes. When brane 
hiral multiplets are present the 
urrent j

0

�

in eq. (6)

3

The 
omplete a
tion is given in ref. [11℄. See also this referen
e for 
oupling of N = 1

gauge multiplets on the brane.
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a
ts as a sour
e for the graviphoton so that it has a jump at the brane,

A

�

� �(x

5

)

1

2M

3

5

j

0

�

. Moreover, the Noether term (5) is a sour
e for the

negative parity gravitino. By equations of motion it behaves as 


��

 

�

�

�

1

2

p

2

�(x

5

)


�




�

 

Q

�

�

Q

0

near the brane. In the 
at 
ase k ! 0 these subtleties

in boundary 
onditions do not a�e
t the Noether 
onstru
tion at the level

of two-fermion terms. But for k 6= 0 these boundaries 
onditions imply that

the se
ond term in eq. (10) is non-vanishing.

4

It turns out that the ne
essary

modi�
ation that 
an
els this term 
onsists in multiplying the brane a
tion

by a jQ

0

j

2

dependent fa
tor,

!

0

(jQ

0

j

2

) =

1

1�

kjQ

0

j

2

3M

3

5

(12)

The brane-world a
tion up to four-fermion terms reads

L = L
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Q
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+ h:
: :

#

(13)

One should also insert the fa
tor !

0

into the transformation of the gravipho-

ton in eq. (7). The a
tion for the matter on the brane at x

5

= �R is analogous

with Æ(x

5

)! Æ(x

5

� �R), k !�k, Q

0

! Q

�

,  

Q

!  

Q

�

.

One 
an further extend the model to in
lude a non-trivial superpotential

W

0

(Q

0

) for the brane multiplet. The treatment of the boundary 
onditions

is then mu
h more involved and in this paper we only dis
uss some limiting


ases. Howver this dis
ussion is not ne
essary for our 
omputation of one-

loop 
orre
tions and so we shift it to Appendix B.

3 Four-dimensional e�e
tive supergravity

Wemove to dis
ussing the form of the 4d e�e
tive supergravity that des
ribes

the light degrees of freedom (those with masses below the 
ompa
ti�
ation

s
ale) of the 5d theory 
ompa
ti�ed on the ba
kground

ds

2

= a

2

(x

5

)g

��

dx

�

dx

�

� �

2

dx

2

5

a(x

5

) = e

�k�x

5

: (14)

4

A similar treatment of the boundary 
onditions in supersymmetri
 variations was also

employed in refs. [18, 19℄.

7



The limit k ! 0 
orresponds to 
at 
ompa
ti�
ation. The bosoni
 degrees

of freedom are the 4d metri
 g

��

, the radion � �

p

g

55

, the �fth 
omponent

of the graviphoton A

5

and the s
alars on the two branes Q

0

and Q

�

. The

K�ahler potential of the 4d supergravity 
an be found by mat
hing with the

kineti
 terms for those �elds.

The kineti
 terms for the metri
 
omponent are obtained by inserting the

ba
kground (14) into the 5d Einstein-Hilbert a
tion,

L =

p

�gM

2

p

"

1

2

1� a

2

�

2k�R

R(g) +

3

2

k�R a

2

�

(�

�

�)

2

#

; (15)

where a

�

= e

�k�R�

and M

2

p

= 2�RM

3

5

. To go the Einstein basis we need to

perform the Weyl res
aling g

��

!

1

f

E

(�)

g

(E)

��

with f

E

(�) =

1�a

2

�

2k�R

. Then the

kineti
 terms be
ome

L =

p

�g

(E)

M

2

p

"

1

2

R(g) +

3

4f

E

(�)

2

a

2

�

(�

�

�)

2

#

: (16)

The kineti
 terms in eq. (13) yield

L =

p

�g

(E)

1

f

E

(�)

h

!

2

0

�

�

Q

y

0

�

�

Q

0

+ a

2

�

!

2

�

�

�

Q

y

�

�

�

Q

�

i

: (17)

More 
are is needed to derive kineti
 terms of A

5

. To do this 
onsistently

we need to integrate out the negative parity 
omponents of the graviphoton

A

�

. The relevant part of the 5d a
tion is

L

5d

=

1

2�

a

2

(x

5

)

p

�gM

3

5

 

�

5

A

�

� �

�

A

5

+

1

M

3

5

Æ(x

5

)j

0

�

+

1

M

3

5

Æ(x

5

� �R)j

�

�

!

2

:

(18)

The solution to the graviphoton equations of motion is A

�

= �

�

A

5

x

5

+

1

2k

�(x

5

)C

�

a

�2

(x

5

)+�(x

5

)D

�

. The boundary 
onditionsA

�

(0) = j

0

�

=2, A

�

(�R) =

�j

�

�

=2 determine the integration 
onstants and we �nd C

�

= �a

2

�

�

�

A

5

+(j

0

�

+j

�

�

)=M

2

p

f

E

(�)

.

Inserting this solution ba
k into the 5d a
tion and integrating over x

5

yields

L

4

=

1

2

M

2

p

p

�g

(E)

a

2

�

f

E

(�)

2

 

�

�

A

5

+

1

M

2

p

(j

0

�

+ j

�

�

)

!

2

: (19)

Note that the Æ

2

terms has 
an
eled. The K�ahler potential that reprodu
es

the kineti
 terms (16), (17) and (19) is given by K = �3 log 
 where


 =

1� e

�k�R(T+T )

2k�R

�

1

3M

2

p

jQ

0

j

2

�

1

3M

2

p

e

�k�R(T+T)

jQ

�

j

2

;
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ReT = ��

1

2k�R

log

 

1�

2k�R

3M

2

p

jQ

0

j

2

!

+

1

2k�R

log

 

1 +

2k�R

3M

2

p

jQ

�

j

2

!

;

ImT = i

s

2

3

A

5

:

(20)

One 
an 
he
k that also the remaining intera
tion terms in the brane-world

a
tion (13) �t the general stru
ture of 4d supergravity [20℄ with the K�ahler

potential of eq. (20). Generalization to an arbitrary number of brane mat-

ter multiplets with general kineti
 terms is straightforward. It amounts to

repla
ing jQ

i

j

2

with arbitrary real fun
tions 


i

(Q

n

i

)


 =

1� e

�k�R(T+T )

2k�R

�

1

3M

2

p




0

(Q

n

0

)�

1

3M

2

p

e

�k�R(T+T )




�

(Q

m

�

) ;

ReT = ��

1

2k�R

log

 

1�

2k�R

3M

2

p




0

(Q

n

0

)

!

+

1

2k�R

log

 

1 +

2k�R

3M

2

p




�

(Q

m

�

)

!

:

(21)

In the 
at limit k ! 0 we re
over the well-known no-s
ale stru
ture,


 =

T + T

2

�

1

3M

2

p




0

(Q

n

0

)�

1

3M

2

p




�

(Q

m

�

) ;

T = �+

1

3M

2

p




0

(Q

n

0

) +

1

3M

2

p




�

(Q

m

�

) + i

s

2

3

A

5

: (22)

Furthermore, in the presen
e of brane superpotentialW

0

(Q

i

0

) andW

�

(Q

i

�

)

the superpotential of the e�e
tive 4d supergravity reads

W = W

0

(Q

i

0

) + e

�3k�RT

W

�

(Q

i

�

) : (23)

The K�ahler potential derived here is the same fun
tion of T and Q as the

one in ref. [6℄ (note that we use the de�nition of 
 that di�ers by a fa
tor

�1=(3M

2

p

) from that of ref [6℄). However the de�nition of the modulus T in

terms of the 5d degrees of freedom is di�erent (in our formulation it is also

a fun
tion the brane matter �elds). Of 
ourse, at tree-level the physi
s (like

moduli stabilization, transmission of supersymmetry breaking) is the same

in both formalisms. In parti
ular the K�ahler potential in eq. (21) implies no

tree-level mediation of supersymmetry breaking through the bulk (although

for k 6= 0 it is not of the no-s
ale form).
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4 One-loop 
orre
tions to the K�ahler poten-

tial

We now use our on-shell formulation of the 5d theory to 
ompute one-loop


orre
tions to the tree-level K�ahler potential. From the point of view of the

4d e�e
tive theory no symmetry prote
ts the parti
ular stru
ture of 
 in

eq. (21). We expe
t that 


1 loop

= 
 +�
 and that �
 in
ludes 
ouplings

other than those in eq. (21), for example higher powers of e

�k�R(T+T)

or


onta
t terms between Q

0

and Q

�

. These new terms will lead to mediation

of supersymmetry breaking.

We �rst 
ompute the one-loop e�e
tive a
tion in the full 5d theory and

then mat
h to 4d e�e
tive supergravity with a K�ahler potential 
 + �
.

The 
omputation involves regularization of divergent expressions so we �rst

dis
uss the most general stru
ture of the 
ounterterms in the K�ahler poten-

tial. Sin
e 
 = e

�K=3

is the 
oeÆ
ient of the Einstein-Hilbert term in the

supergravity 
onformal frame,

L

C

=

p

�g

C

M

2

p

�

1

2


R � 3


m
n

�

�

z

y

m

�

�

z

n

�

3

4


(


m

�

�

z

y

m

� 


n

�

�

z

n

)

2

+ : : :

�

;

(24)

the possible 
ounterterms are 
onstrained by the most general form of the

Einstein-Hilbert terms 
onsistent with 5d general 
oordinate invarian
e and

lo
ality,

L = C

B

p

�g

5

R

5

+C

0

(Q

0

)Æ(x

5

)

p

�g

4

R

4

+C

�

(Q

�

)Æ(x

5

��R)

p

�g

4

R

4

: (25)

After 
ompa
ti�
ation on the warped ba
kground eq. (14) and Weyl res
aling

to the 
onformal frame g

��

! f

C

g

C

��

this be
omes

L =

"

C

B

1� a

2

�

2k�R

+ C

0

(Q

0

) + C

�

(Q

�

)a

2

�

#

f

C

p

�g

C

R : (26)

In our 
ase f

C

= 1�

2k�R

3M

2

p




0

(Q

0

). Using eq. (21) we express � in a

�

= e

�k�R�

by T and Q and we obtain

L =

"

�

1

2k�R

C

B

+ C

0

(Q

0

)

�

 

1 �

2k�R

3M

2

p




0

(Q

0

)

!

+e

�k�R(T+T)

�

�

1

2k�R

C

B

+ C

�

(Q

�

)

�

�

1 +

2k�R

3M

2

p




�

(Q

�

)

��

p

�g

C

R : (27)

We see that the 
oeÆ
ient of the Einstein-Hilbert term is of the same form

as the K�ahler potential (21). We are thus guaranteed that all divergen
es we

10



en
ounter in the one-loop 
omputation 
an be absorbed by renormalization of

the parameters in the tree-level K�ahler potential (21). In parti
ular, these

divergen
es are not relevant for the questions of supersymmetry breaking

mediation through the bulk. On the other hand, any 
ouplings in �
 that are

di�erent than those in the tree-level K�ahler potential 
orrespond ne
essarily

to non-lo
al operators in 5d theory and therefore they should be �nite and

UV insensitive.

Referen
e [6℄ derives a very useful expression for �
,

�
 �

Z

d

4

k

(2�)

4

X

n

1

k

2

log(k

2

+m

2

n

) : (28)

Before we 
ompute �
 in our set-up we �rst present a simple derivation of

eq. (28). In order to 
ompute �
 it is suÆ
ient to 
ompute 
orre
tions to the

Einstein-Hilbert term in the 
onformal frame and 
ompare the result with

eq. (24). Quite generally, a �eld of spin j and massm 
ontributes to one-loop

renormalization of the Einstein-Hilbert term (in dimensional regularization):

�L

j

= n

j

�(1 � d=2)m

d�2

(4�)

d=2

p

�gR ; (29)

where n

0

= 0 for a 
onformally 
oupled s
alar, n

1=2

= 1=6 for a Dira
 fermion,

n

1

= �1=3 for a gauge boson, and n

3=2

+ n

2

= 0 for a summed 
ontribution

of a Dira
 gravitino and a graviton. Spe
ializing to the 
ase of 5d sugra, a 5d

hypermultiplet 
ontains one Dira
 fermion, a 5d ve
tor multiplet - one Dira


fermion and one gauge boson, while the gravity multiplet 
ontains one gauge

boson, one Dira
 gravitino and one graviton at ea
h KK level. Summing all

these 
ontributions we �nd:

�
 =

1

3

(�2�N

V

+N

H

)

�(1 � d=2)

M

2

p

(4�)

d=2

X

n

m

d�2

n

: (30)

where N

V

and N

H

is the number of ve
tor multiplets and hypermultiplets,

respe
tively, and m

n

are the masses of the KK modes in the 
onformal frame

as a fun
tion of ba
kground values of T and Q. For N

V

= N

H

= 0 this

formula is equivalent to that in ref. [6℄ with the momentum integral evaluated

using dimensional regularization.

We now apply the general formula (30) to the model 
onsidered in this

paper. In the frame set by g

��

in eq. (14) the KK spe
trum is given by

positive roots of the equation:

J

1

�

m

n

k

�

Y

1

�

m

n

ka

�

�

� Y

1

�

m

n

k

�

J

1

�

m

n

ka

�

�

= 0 : (31)
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Note that in our set-up the KK spe
trum m

n

is a fun
tion of the �eld � only

and is not modi�ed by the presen
e of brane matter �elds Q. Going to the


onformal frame m

n

! m

n

f

1=2

C

, so �
 pi
ks up an additional multipli
ative

fa
tor f

d=2�1

C

.

Using the standard tools [21℄ we 
onvert the sum over KK modes into

a 
ontour integral. The divergent part is of the form f

C

(C

1

+ a

2

�

C

2

) and


an be absorbed into renormalization of the tree-level K�ahler potential. The

remaining �nite part is given by

�
 =

4

3M

2

p

(4�)

2

 

1�

2k�R

3M

2

p




0

(Q

0

)

!

k

2

a

2

�

Z

1

0

dyy log

 

1 �

I

1

(ya

�

)K

1

(y)

K

1

(ya

�

)I

1

(y)

!

a

2

�

= e

�k�R(T+T)

1 +

2k�R

3M

2

p




�

(Q

�

)

1 �

2k�R

3M

2

p




0

(Q

0

)

: (32)

The K�ahler potential 
+�
 
ontains all information about the 
onta
t terms

between the hidden and observable se
tors. In the limit of large warping,

a

�

! 0 we 
an approximate �
 by:

�
 � �

4
k

2

3M

2

p

(4�)

2

e

�2k�R(T+T)

�

1 +

2k�R

3M

2

p




�

(Q

�

)

�

2

1 �

2k�R

3M

2

p




0

(Q

0

)

+O(a

6

�

log a

�

) ; (33)

where 
 =

R

1

0

dyy

3

K

1

(y)

2I

1

(y)

� 1:165. On the other hand in the 
at limit k ! 0

we �nd

�
 = �

16�(3)

3(4�)

2

1

(2�RM

p

)

2

1

�

T + T �

2

3M

2

p




0

(Q

0

)�

2

3M

2

p




�

(Q

�

)

�

2

: (34)

5 On ambiguity in one-loop K�ahler potential

We now 
ompare the result of our 
omputation to the previous works on the

subje
t [3, 5, 4℄. For simpli
ity, we restri
t to the 
at limit k ! 0. Expanding

the �
 in eq. (34) in powers of 


i

we obtain

�
 = �

16�(3)

3(4�)

2

1

(2�RM

p

)

2

�

1

(T+T)

2

+

4

3M

2

p

(T+T)

3

(


0

(Q

0

) + 


�

(Q

�

))

+

4

3M

4

p

(T + T )

4

(


0

(Q

0

) + 


�

(Q

�

))

2

+ : : :

#

: (35)

The �rst term des
ribes the Casimir energy [21℄, the se
ond 
orresponds to

radion mediation [3℄ and the last one to brane-to-brane mediation of super-

symmetry breaking [5℄. At this order, all the terms in eq. (35) are the same
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as those derived in the literature. However the full formula eq. (34) is 
learly

di�erent than that in ref. [5℄ and the dis
repan
y enters at the 
ubi
 order in




i

. As long as the brane sour
es are perturbative, the physi
al 
onsequen
es

of both formulations (summarized in eq. (35)) are the same. However when

the brane sour
es are large (for 


i

> 2�R�M

3

5

) 
on
lusions derived in both

formalisms may be 
ompletely di�erent. In parti
ular, from eq. (34) it is ev-

ident that a 
onstant terms in the boundary K�ahler potential, 


i

= L + : : :,

is equivalent to shifting T by a 
onstant and therefore has no physi
al sig-

ni�
an
e. This is 
ertainly di�erent than in ref. [5℄ where a large value of L

was needed for obtaining positive soft mass terms.

The origin of this in
ompatibility 
an be tra
ed to the di�erent formu-

lation of the 5d brane-world theory. The te
hni
al issue that a�e
ts the

one-loop 
omputation is the fa
t that in the o�-shell formulation 


0

and 


�

multiply brane kineti
 terms of the gravity multiplet. These 
ouplings remain

after integrating out the auxiliary �elds. On the other hand, in our purely

on-shell Noether formulation su
h terms are absent. In order to understand

this di�eren
e better, below we dis
uss supersymmetrization of a model with

a brane Einstein-Hilbert term by means of the Noether pro
edure. For sim-

pli
ity we restri
t to the 
ase where no brane matter is present. Thus we

start with the brane lagrangian of the form

L = e

4

M

3

5

LÆ(x

5

)

�

1

2

R

4

� i 

+

�




���

D

�

 

+

�

�

: (36)

In ordinary 4d supergravity this lagrangian would be supersymmetri
 up to

four-fermion terms. But here Æ 

�

� F

�5

� and so the variation of eq. (36) is

non-zero already at the two-fermion level. To 
an
el it one has to add new

zero- and two-fermion terms to eq. (36) as well as modify the supersymmetry

transformation of the gravitino by terms proportional to LÆ. However on
e

one arrives at a lagrangian in whi
h all variations of order LÆ 
an
el one �nds

that there are L

2

Æ

2

variations that do not 
an
el. Therefore the Noether

pro
edure must be 
ontinued and new singular terms of order L

2

Æ

2

have to

be added to eq. (36) to make the lagrangian supersymmetri
 at this order

5

.

The story does not end at order Æ

2

. In order to maintain supersymmetry

singular terms with higher and higher powers of Æ are needed. However one


an noti
e that there is a 
ertain pattern emerging. It turns out that all

the terms obtained by the Noether pro
edure 
an be obtained from the bulk

a
tion

L = e

5

M

3

5

�

1

2

R

5

� i 

�

�

��


D

�

 




�

1

4

F

��

F

��

+ : : :

�

(37)

5

In the following we ignore the mathemati
al subtleties involved in multipli
ation of

distribution and manipulate Æ's as if they were ordinary 
-numbers
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by a formal, singular rede�nition of the � � e

5

_

5


omponent of the 5d vielbein,

�! �+ LÆ(x

5

) : (38)

In addition, one should assume that only positive parity �elds multiplied by

Æ(x

5

) survive in the brane a
tion.

For example by Noether pro
edure we get a series of graviphoton brane

kineti
 terms

L =

1

2�

M

3

5

e

4

"

L

�

Æ(x

5

)�

L

2

�

2

Æ(x

5

)

2

+

L

3

�

3

Æ(x

5

)

2

+ : : :

#

F

2

�5

=

1

2

 

1

�+ LÆ(x

5

)

�

1

�

!

M

3

5

e

4

F

2

�5

: (39)

One 
an argue that the extremely singular term like the one in eq. (39) is

indeed needed for supersymmetry. Indeed, the graviton and gravitino KK

spe
trum with brane kineti
 terms of eq. (36) is given by solutions of

tan(��Rm

n

) = �

1

2

m

n

L : (40)

For the graviphoton the equation of motion reads �

5

�

�

5

A

�

�+LÆ(x

5

)

�

+�m

2

n

A

�

= 0

To 
an
el all Æ's we should arrange that �

5

A

�

behaves as � �+ LÆ(x

5

) near

the boundary. Mat
hing this boundary 
ondition with the bulk solution of

the equations of motion we get pre
isely the quantization 
ondition eq. (40).

Getting this spe
trum for the graviphoton would be impossible without brane

F

2

term or with any de
ent non-singular F

2

Æ term. We 
on
lude that for

supersymmetrizing a 5d model with a boundary Einstein-Hilbert term it is

indeed ne
essary to in
lude an in�nite series of singular Æ

n

terms in the a
tion.

We 
an now infer the relation between the brane-world a
tion obtained

by integrating out auxiliary �elds in the o�-shell formulation and the one

obtained by our Noether pro
edure. The two are 
onne
ted by a singular


hange of variables

�! ��

1

3M

3

5




0

(Q

0

)Æ(x

5

)�

1

3M

3

5




�

(Q

�

)Æ(x

5

� �R) : (41)

If the two formalisms are in fa
t equivalent up to a 
hange of variables why

the 
omputation of loop 
orre
tions yields di�erent results? The di�eren
e


an be tra
ed to ambiguity of de�ning the behavior of bulk �elds near the

Æ sour
es. In the above example, after the rede�nition (38) we kept only

positive Z

2

parity �elds in the brane a
tion. But on
e we swit
h on a sour
e of

order LÆ, by equations of motions the negative Z

2

parity �elds behave like �

14



L�(x

5

) near the boundary. We are then allowed to keep also boundary terms

involving Z

2

odd �elds, L � ( 

�

)

2

Æ(x

5

), provided we de�ne the distribution

Æ(x

5

)�

2

(x

5

) to be non-vanishing. Su
h terms a�e
t the KK spe
trum at the


ubi
 order in L and, by eq. (30), also the one-loop K�ahler potential at higher

order in L.

Con
luding, the 
hange of variable eq. (41) de�nes in fa
t a 
lass of brane-

world a
tions, depending on what regularization s
heme we adopt to resolve

the brane singularity. Physi
al predi
tions within this 
lass of theories may

di�er at the third order in brane sour
es. As long as the brane sour
es are

perturbative, the relevant physi
al quantities (e.g. soft mass terms) derived

in both formulations are the same. However, if the brane sour
es are large

(in the above example, if L is bigger that the 
ompa
ti�
ation length 2�R�)

the low-energy observables may depend on how the brane singularity is reg-

ularized.

6 Con
lusions

In this paper we used the Noether method to 
onstru
t 5d on-shell gauged

supergravity 
oupled to 
hiral matter multiplets on the branes. This turned

out to lead to a slightly di�erent set-up than that derived from the more


ommonly used o�-shell formulation. Certain singularities that appear after

integrating out the auxiliary �elds are absent in the purely on-shell Noether

formulation. This is due to a di�erent 
hoi
e of the fundamental degrees of

freedom in the 5d theory.

Furthermore, we showed that our on-shell set-up allows for a simple 
om-

putation of one-loop 
orre
tions. Comparison of our results with previous

works showed an ambiguity in 
omputation of the one-loop K�ahler potential.

This ambiguity is asso
iated with arbitrariness in resolving the singulari-

ties asso
iated with in�nitely thin, delta-type branes. As long as the brane

sour
es are small (the referen
e s
ale being M

3

5

2�R�) this ambiguity has

negligible e�e
ts on the low-energy physi
s. However in 
ertain 5d models

large brane sour
es are essential. One well-known example is the Dvali-

Gabadadze-Porratti [22℄ model in whi
h gravity is lo
alized on a 4d brane

in a semi-in�nite 
at extra dimension. We 
on
lude that there is a whole


lass of supersymmetri
 
ompletions of the DGP model that yield di�erent

low-energy predi
tions. Another example are set-ups with a gravitino brane

mass term, L � WÆ(x

5

) 

T

�




��

 

�

+ h:
:. The limit W ! 1 is sometimes


onsidered as being equivalent to the set-up with supersymmetry broken by

boundary 
onditions. In su
h limit there is also a 
ontinuous family of regu-

larizations that results in di�erent physi
s at low energies.
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We expe
t that the Noether method 
an be easily 
arried over to other

brane-world models, for example to 6d supergravity with matter on a brane

of 
o-dimension two. This o�ers an opportunity to 
onstru
t more general

brane-world a
tions and study its low-energy phenomenology without a ne-


essity of going through the o�-shell 
al
ulus.
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Appendix A Notation and 
onventions

We use the mostly minus metri
 signature (+;�;�;�). The index 
on-

ventions are the following: 5d Einstein indi
es �; �; 
 : : : = 0 : : : 3; 5, 5d

Lorentz indi
es a; b; 
 : : : = 0 : : : 3; 5, 4d Einstein indi
es �; �; � : : : = 0 : : : 3,

4d Lorentz indi
es m;n; : : : = 0 : : : 3.

The 5d vielbein is denoted by e

a

�

and satis�es e

a

�

e

b

�

�

ab

= g

��

. e

5

is the

determinant of the 5d vielbein, while by e

4

we denote the determinant of

the 4d vielbein indu
ed at the boundary. Similarly, R

5

denotes the 5d Ri

i

s
alar, while R

4

denotes the Ri

i s
alar 
onstru
ted from the 4d vielbein

indu
ed at the boundary. The inverse vielbein e

�

a

satis�es e

�

a

e

a

�

= Æ

�

�

.

5d gamma matri
es are denoted as �

a

while 4d gamma matri
es are de-

noted as 


m

. They satisfy f�

a

;�

b

g = 2�

ab

and f


m

; 


n

g = 2�

mn

. The 
on-

ne
tion between the two sets is given by �

m

= 


m

, �

5

= i


5

. Furthermore

�

�

= e

�

a

�

a

, 


�

= e

�

m




m

. The 
onvention for 


5

is 


5

= diag(�1;�1; 1; 1)

and the 
hirality proje
tion operators are P

L

= (1� 


5

)=2, P

R

= (1 + 


5

)=2.

All the fermions in 5d and 4d are in four-
omponent Dira
 notation (we

don't use symple
ti
 Majorana spinors). The 4d 
harge 
onjugation matrix

C = i


0




2




5

satis�es C

�1

= C

T

= C

y

= �C, C


m

C

�1

= (


m

)

T

.
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Appendix B Brane a
tion with a superpoten-

tial

One 
an extend the set-up studied in Se
tion 2 to in
lude a non-trivial su-

perpotential W

0

(Q

0

) for the brane multiplet. We start with the 
ase of 
at

supergravity in the bulk. In addition to those of eq. (3), the terms present

in the globally supersymmetri
 limit are the following

L

3

= e

4

Æ(x

5

)

2

4

�

�

�

�

�

�

�W

0

�Q

0

�

�

�

�

�

2

+

1

2

�

2

W

0

�Q

2

0

 

T

Q

C 

Q

�

1

2

�

2

W

0

�Q

y2

0

 

Q

C 

Q

T

3

5

: (B.1)

The supersymmetry transformation of the 
hiral fermion is supplemented

by Æ 

Q

=

1

p

2

�W

0

�Q

y

0

C�

T

. In the presen
e of the superpotential the matter

super
urrent is modi�ed. The gravitino 
ouples additionally as

L

4

= �

i

p

2

e

4

Æ(x

5

)

�W

0

�Q

0

 

T

Q

C


�

 

�

+ h:
: : (B.2)

Besides, up to four-fermion terms lo
al supersymmetry requires one more

term

L

5

= e

4

Æ(x

5

)

�

�

1

2

W

0

 

�




��

C 

�

T

+ h:
:

�

: (B.3)

Furthermore one modi�es the trasformation law of  

5

by

Æ 

5

= �Æ(x

5

)W

0

C�

T

: (B.4)

The a
tion on the other brane is analogous with Æ(x

5

) ! Æ(x

5

� �R),

W

0

(Q

0

)!W

�

(Q

�

). Again, no singular terms arise in this 
onstru
tion. One

important 
omment is in order here. The gravitino brane mass term a
ts as a

sour
e for negative Z

2

parity gravitino so that M

3

5

 

�

�

� �(x

5

)W

0

C 

+

�

T

near

the boundary. Thus, in general,  

�

�


an also 
ouple to the brane matter.

Therefore we have to re
onsider the question whi
h 
ombination of the two

bulk gravitinos should 
ouple to the matter super
urrent in eq. (5) and eq.

(B.2). It turns out that the answer depends on how the delta singularity is

regularized. But whatever regularization we 
hoose there is always one 
om-

bination of the two bulk gravitinos �(x

5

) 

+

�

sin � + C 

�

�

T


os � that vanishes

at the brane in the limit when the regulator is removed. Then the orthogonal


ombination  

�

=  

+

�


os � � �(x

5

)C 

�

�

T


os � 
ouples to the brane matter.

The angle of rotation is given by � = W

0

=(2M

3

5

) +O(W

3

0

), where the higher

order terms in W

0

are regularization dependent. Coupling this 
ombination

 

�

to the matter super
urrent yields also 
orre
t (
onsistent with the general
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supergravity a
tion [20℄) 
ouplings in the 4d e�e
tive a
tion, up to O(W

3

0

)

terms. But another 
on
lusion from this dis
ussion is that the low-energy

4d supergravity is regularization independent only up to terms 
ubi
 in the

brane superpotential W

0

.

A 
areful treatment of the boundary 
onditions for gravitinos is even more

important when warped supergravity (k 6= 0) is present in the bulk. Ref. [18℄

dis
ussed this problem for the 
ase when brane matter is absent and W

0

is a


onstant. It was found that the brane a
tion has to be modi�ed already at

the purely bosoni
 level. The brane tension term is given by:

L = �6M

3

5

ke

4

Æ(x

5

)

1 �

W

2

0

4M

6

5

1 +

W

2

0

4M

6

5

� �6M

3

5

ke

4

Æ(x

5

)(1�

W

2

0

2M

6

5

) +O(W

4

0

) : (B.5)

There is a similar term on the other brane with k !�k, W

0

! W

�

. There-

fore, in the presen
e of gravitino brane mass terms the Randall-Sundrum

tuning between the bulk 
osmologi
al 
onstant and the brane tension is lost.

The ba
kground solution is then of the Randall-Kar
h type [23℄ with AdS

4

symmetry of the 4d spa
etime. Note that is 
onsistent with what we ob-

tain in the low energy 4d supergravity des
ription. With the K�ahler poten-

tial eq. (21) and the superpotential eq. (23) we obtain the s
alar potential

V =

6k�R

f

E

(�)

2

M

2

p

(jW

0

j

2

� e

�4k�R�

jW

�

j

2

) whi
h is what follows from the warped


ompa
ti�
ation with the brane tension of eq. (B.5).

The 
ase when warped supergravity, brane matter and brane superpoten-

tials are present simultaneously is te
hni
ally more involved and will be left

for future studies.
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