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Abstrat

We present an on-shell formulation of 5d gauged supergravity oupled

to hiral matter multiplets loalized at the orbifold �xed points. The brane

ation is onstruted via the Noether method. In suh set-up we ompute

one-loop orretions to the K�ahler potential of the e�etive 4d supergravity

and ompare the result with previous omputations based on the o�-shell

formalism. The results agree at lowest order in brane soures, however at

higher order there are di�erenes. We explain this disrepany by an ambi-

guity in resolving singularities assoiated with the presene of in�nitely thin

branes.
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1 Introdution

Supersymmetry breaking and its mediation to the observable setor is one

of the most important problems in physis beyond the Standard Model. An

aeptable theory of supersymmetry breaking is strongly onstrained by the

observed features of the low-energy physis. Spontaneous breaking must

our in a hidden setor and must be transmitted to the observable setor

via non-renormalizable operators. Gravity mediation is an attrative and

eonomial possibility, but it is well known that generi models fae the

avor problem.

It has been noted in ref. [1℄ that a spatial separation of the hidden and

observable setors brings new elements into the mehanism of gravity medi-

ation. The simplest set-up that provides for suh sequestering is that of �ve-

dimensional (5d) supergravity ompati�ed on an orbifold in whih the hiral

matter of the observable and hidden setors is loalized on the two di�erent

boundaries of the �fth dimension. In the minimal set-up with no matter

�elds in the bulk the tree-level K�ahler potential of the e�etive 4d theory has

a speial struture that results in absene of tree-level transmission of su-

persymmetry breaking. Supersymmetry breaking is then transmitted to the

observable setor at one-loop level by (avor-blind) gravitational interations.

One mehanism that an operate here is anomaly mediation [1, 2℄. Besides,

there is always a ontribution from integrating out the Kaluza-Klein (KK)

tower of the supergravity multiplet. Its e�et on the low-energy phenomenol-

ogy an be summarized as a orretion to the tree-level K�ahler potential of

the 4d e�etive supergravity. This one-loop orretion was omputed in refs.

[3, 4, 5, 6℄. Unlike in four-dimensions, the ontat terms between the hidden

and the observable setors generated by gravity loops are �nite and alula-

ble. Therefore 5d supergravity models open a possibility of onstruting a

realisti and preditive theory of soft terms. See also [7℄ for other studies of

5d brane-world supergravity.

Given the important role of gravitational loop orretions it is advanta-

geous to study them in a somewhat di�erent setting. The brane-world ation

onsidered in refs. [3, 4, 5, 6℄ was based on an o�-shell formulation of 5d su-

pergravity. In this paper we point out that the physis of 5d brane-worlds

an be studied in a simpler set-up of on-shell supergravity. Using the Noether

proedure, we onstrut a loally supersymmetri ation for an N = 1 hiral

multiplet on�ned to a 4d brane and oupled to 5d gauged supergravity in

the bulk. In suh set-up we ompute the one-loop orretions to the K�ahler

potential and ompare it with the previous results.

In priniple, the Noether method is less powerful than the o�-shell for-

malism of ref. [8℄ or the superonformal tensor alulus of ref. [9℄. Still,
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we will argue that it has several advantages. Firstly, it is obviously less

involved. The number of �elds is redued and no advaned superspae teh-

niques are needed for onstruting the ation. We will also see that one-loop

omputations are onsiderably simpli�ed in this set-up. Seondly, it faili-

tates the treatment of singularities assoiated with the presene of in�nitely

thin (delta-like) branes. In the o�-shell formulation integrating out auxiliary

�elds generates singular terms in the brane ation. These singular terms an

be avoided in our Noether formulation. Furthermore, working in our set-up

we will notie ertain ambiguity in de�ning the brane-world ation that is

onneted to arbitrariness in resolving the singular behaviour of bulk �elds

near the branes. In ertain irumstanes, namely when brane soures are

large ompared to the ompati�ation sale, this ambiguity may also a�et

low-energy observables. Finally, the proedure an be readily generalized to

higher-dimensional spaetimes where an o�-shell formulation of supergravity

does not exist (for example, similar method was used for oupling 10d brane

to 11d supergravity in the Horava-Witten model [10℄).

The paper is organized as follows. In Setion 2 we onstrut an on-shell

ation for an N = 1 hiral multiplet oupled to 5d supergravity. In Se-

tion 3 we derive the tree-level K�ahler potential desribing the dynamis of

the low energy degrees of freedom in this set-up. In Setion 4 we ompute

the one-loop orretion to the K�ahler potential and in Setion 5 we om-

ment on the di�erenes with the previous works. In this paper we restrit

to studying tehnial issues assoiated with the Noether onstrution and

one-loop omputation. Phenomenologial issues, like moduli stabilization or

determination of soft breaking terms, are left for future publiations.

2 Five-dimensional brane-world ation

In this setion we onstrut a loally supersymmetri ation for an N = 1

hiral multiplet on�ned to a 4d brane and oupled to 5d supergravity in

the bulk. We use the Noether method. That is, starting with a globally

supersymmetri ation for the brane multiplet we systematially add new

terms to the ation and supersymmetry transformations until the bulk+brane

set-up beomes loally supersymmetri. We �rst work out all neessary zero-

and two-fermion terms suh that all two-fermion supersymmetri variations

of the brane ation anel. The next step is to determine four-fermion terms

from anellation of four-fermion variations. In fat, the latter step will not

be presented here, but see [11℄. It should be stressed however, that at the

two-fermion level the brane ation we onstrut is loally supersymmetri to

arbitrary power in 1=M

5

expansion, where M

5

is the 5d Plank sale.
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The 5d bulk ontains N = 2 supergravity multiplet

1
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). For the

at (ungauged) 5d supergravity the ation up to four-fermion terms reads
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The �fth dimension is the orbifold S
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with Z

2

ating as x

5

! �x

5

. Under Z

2

the �eld omponents e

m

�

, e

5

5

, A

5

,

 

+

�

� P

R

 

�

and  

+

5

� P

L

 

5

are even,  (�x

5

) =  (x

5

), while e

5

�

, e

m

5

, A

�

,

 

�

�

� P

L

 

�

and  

�

5

� P

R

 

5

are odd,  (�x

5

) = � (x

5

). At the orbifold �xed

point x

5

= 0 we ouple the N = 1 hiral multiplet [Q

0

;  

Q

℄ (P

L

 

Q

=  

Q

). Of

ourse the ation for the matter [Q

�

;  

Q

�

℄ at the orbifold �xed point x

5

= �R

an be onstruted analogously. The starting point for the Noether method

is the ation

L

1

= e

4

Æ(x

5

)

n

�

�

Q

y

0

�

�

Q

0

+ i 

Q



�

D

�

 

Q

o

(3)

invariant under global supersymmetry transformations

ÆQ

0

=

1

p

2

� 

Q

Æ 

Q

= �

1

p

2

i

�

�

�

Q

0

� : (4)

Under the transformations (4) but with � depending on the 4d oordinates x

�

the lagrangian of eq. (3) transforms as ÆL = �

�

� j

�

, where j

�

is the Noether

urrent of global supersymmetry (the superurrent). In order to anel this

variation we need to ouple one linear ombination  

�

of the two bulk grav-

itinos  

+

�

(0), C 

�

�

T

(0) to the the superurrent and identify the parameter �

with the orresponding ombination of the two bulk supersymmetry trans-

formation parameters, �

+

(0) and C�

�

T

(0). In absene of brane soures for

the gravitinos  

�

�

(0) = 0 and thus we hoose  

�

=  

+

�

(0). However, if suh

1

Our notation and onventions are summarized in Appendix A
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soures are present some other ombination of the gravitinos ouples to the

brane matter. This is for example the ase when gravitino brane mass terms

are present, see the disussion in Appendix B.

Thus we add to the brane ation the so-alled Noether term,

L

2

= �

1

p

2

e

4

Æ(x

5
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Q

0

 

�

+ h:: : (5)

At the level of two-fermion terms there are still variations to be aneled.

One originates from varying the gravitino in eq. (5), Æ 

�

� F

�5

, the other

from variation of the vielbein in the kineti terms of eq. (3). It turns out that

the neessary modi�ations of the brane ation an be onisely summarized

as the rede�nition of the graviphoton �eld strength. Namely, in the 5d bulk

ation (1) and supersymmetry transformations (2) we replae F

�5

with

^

F

�5

de�ned as

^
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+

1
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3
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y

0

Q
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Q

�

; (6)

and modify the transformation law of the graviphoton by

ÆA

5

=

i

p

12

Æ(x

5

) 

Q

�Q

0

+ h:: : (7)

In other words we modify the Bianhi identity for the graviphoton �eld

strength suh that �

[�

^

F

�℄ 5

=

2i

p

6M

3

5

Æ(x

5

)�

[�

Q

y

0

�

�℄

Q

0

. The replaementF !

^

F

generates singular Æ

2

terms in the brane ation. However suh singular

terms are absent in the low energy e�etive theory after integrating out the

graviphoton A

�

. The reason for this is preisely the fat that the singular Æ

2

terms math the full square struture inside the graviphoton �eld strength.

In the 5d setup these singular terms provide for neessary ounterterms to

anel divergenes in ertain one-loop diagrams [13℄. No other singular terms

arise in this onstrution.

2

The on-shell ation we derived by the Noether method di�ers from the

brane ation obtained in the o�-shell formalismafter eliminating the auxiliary

�elds [5℄. In partiular the kineti terms of the gravity multiplet do not ouple

to the brane here. In Setion 5 we will disuss this issue more arefully and

argue that the two formalisms are related by a rede�nition of the 5d degrees

2

The Noether onstrution of brane ation in at 5d supergravity was also pursued

in ref. [14℄ but their results di�er from ours, notably by the absene of the full square

struture.
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of freedom. Note that the hoie of variables we use here is very onvenient,

as no singular Æ

n

terms are present in the on-shell ation (exept for the Æ

2

�tting the full square).

At this point all the two-fermion variations are aneled. More involved

alulations are needed to work out four-fermion terms in the brane ation

as well as three-fermion modi�ations of the supersymmetry transformation

laws. They are not neessary for the following analysis and will not be

presented here.

3

Indeed, we shall see that the form of the low energy 4d

supergravity (inluding one-loop orretions) an be read out from the terms

we have already derived. Note also that one tree-level e�etive supergravity

is known all the three- and four-fermion terms an be easily inferred by

mathing with the anonial 4d supergravity lagrangian.

This onstrution of the brane world ation an be arried over to the ase

of warped supergravity, that is, 5d supergravity with a U(1) subgroup of the

SU(2) R-symmetry group gauged by the graviphoton [15℄. The 5d ation

an be obtained from the at one in eq. (1) by replaing all the derivatives

ating on the gravitino by

D

�

 

�

! D

�

 

�

+

i

2

k�(x

5

)�

�

 

�

+

i

p

6

2

k�(x

5

)A

�

 

�

: (8)

Analogous replaement should be done for D

�

� in the gravitino transforma-

tion laws. Besides, the 5d bulk ation (1) should be supplemented by

L = 6M

3

5

k

2

e

5

: (9)

Hene the gauging implies the presene of a negative osmologial onstant

in the bulk and so the gravitational bakground solution is AdS

5

. On the

orbifold, the presene of the step funtion �(x

5

) indues additional variations

proportional to the delta funtion,

ÆL =M

3

5

e

4

Æ(x

5

)k

h

3i 

�



�



5

��

p

6i 

�



��



5

�A

�

i

(Æ(x

5

)�Æ(x

5

��R)) : (10)

Caneling the �rst term requires the presene of the brane tension [16℄,

L = �6M

3

5

e

5

k(Æ(x

5

)� Æ(x

5

� �R)) : (11)

and so the gravitational bakground in this set-up is preisely that of the

Randall-Sundrum model [17℄. In absene of brane matter the seond term

vanishes. When brane hiral multiplets are present the urrent j

0

�

in eq. (6)

3

The omplete ation is given in ref. [11℄. See also this referene for oupling of N = 1

gauge multiplets on the brane.
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ats as a soure for the graviphoton so that it has a jump at the brane,

A

�

� �(x

5

)

1

2M

3

5

j
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. Moreover, the Noether term (5) is a soure for the

negative parity gravitino. By equations of motion it behaves as 

��
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)
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�

�
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0

near the brane. In the at ase k ! 0 these subtleties

in boundary onditions do not a�et the Noether onstrution at the level

of two-fermion terms. But for k 6= 0 these boundaries onditions imply that

the seond term in eq. (10) is non-vanishing.

4

It turns out that the neessary

modi�ation that anels this term onsists in multiplying the brane ation

by a jQ

0

j

2

dependent fator,

!

0

(jQ

0

j

2

) =
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kjQ

0

j

2

3M

3

5

(12)

The brane-world ation up to four-fermion terms reads
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#

(13)

One should also insert the fator !

0

into the transformation of the gravipho-

ton in eq. (7). The ation for the matter on the brane at x

5

= �R is analogous

with Æ(x

5

)! Æ(x

5

� �R), k !�k, Q

0

! Q

�

,  

Q

!  

Q

�

.

One an further extend the model to inlude a non-trivial superpotential

W

0

(Q

0

) for the brane multiplet. The treatment of the boundary onditions

is then muh more involved and in this paper we only disuss some limiting

ases. Howver this disussion is not neessary for our omputation of one-

loop orretions and so we shift it to Appendix B.

3 Four-dimensional e�etive supergravity

Wemove to disussing the form of the 4d e�etive supergravity that desribes

the light degrees of freedom (those with masses below the ompati�ation

sale) of the 5d theory ompati�ed on the bakground

ds

2

= a

2

(x

5

)g

��

dx

�

dx

�

� �

2

dx

2

5

a(x

5

) = e

�k�x

5

: (14)

4

A similar treatment of the boundary onditions in supersymmetri variations was also

employed in refs. [18, 19℄.
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The limit k ! 0 orresponds to at ompati�ation. The bosoni degrees

of freedom are the 4d metri g

��

, the radion � �

p

g

55

, the �fth omponent

of the graviphoton A

5

and the salars on the two branes Q

0

and Q

�

. The

K�ahler potential of the 4d supergravity an be found by mathing with the

kineti terms for those �elds.

The kineti terms for the metri omponent are obtained by inserting the

bakground (14) into the 5d Einstein-Hilbert ation,
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; (15)
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= e
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5

. To go the Einstein basis we need to
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The kineti terms in eq. (13) yield
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More are is needed to derive kineti terms of A

5

. To do this onsistently

we need to integrate out the negative parity omponents of the graviphoton

A

�

. The relevant part of the 5d ation is

L
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(18)

The solution to the graviphoton equations of motion is A

�

= �

�

A

5

x

5

+

1

2k

�(x

5

)C

�

a

�2
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5

)+�(x

5

)D

�

. The boundary onditionsA

�

(0) = j

0

�

=2, A

�
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�

�

=2 determine the integration onstants and we �nd C
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�

�

A
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+(j
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�
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�

�
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f
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.

Inserting this solution bak into the 5d ation and integrating over x

5

yields

L
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: (19)

Note that the Æ

2

terms has aneled. The K�ahler potential that reprodues

the kineti terms (16), (17) and (19) is given by K = �3 log 
 where


 =

1� e

�k�R(T+T )
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ReT = ��

1

2k�R

log

 

1�

2k�R

3M

2

p

jQ

0

j

2

!

+

1

2k�R

log

 

1 +

2k�R

3M

2

p

jQ

�

j

2

!

;

ImT = i

s

2

3

A

5

:

(20)

One an hek that also the remaining interation terms in the brane-world

ation (13) �t the general struture of 4d supergravity [20℄ with the K�ahler

potential of eq. (20). Generalization to an arbitrary number of brane mat-

ter multiplets with general kineti terms is straightforward. It amounts to

replaing jQ

i

j

2

with arbitrary real funtions 
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)

!

:

(21)

In the at limit k ! 0 we reover the well-known no-sale struture,


 =

T + T

2

�

1

3M

2

p




0

(Q

n

0

)�

1

3M

2

p




�

(Q

m

�

) ;

T = �+

1

3M

2

p




0

(Q

n

0

) +

1

3M

2

p




�

(Q

m

�

) + i

s

2

3

A

5

: (22)

Furthermore, in the presene of brane superpotentialW

0

(Q

i

0

) andW

�

(Q

i

�

)

the superpotential of the e�etive 4d supergravity reads

W = W

0

(Q

i

0

) + e

�3k�RT

W

�

(Q

i

�

) : (23)

The K�ahler potential derived here is the same funtion of T and Q as the

one in ref. [6℄ (note that we use the de�nition of 
 that di�ers by a fator

�1=(3M

2

p

) from that of ref [6℄). However the de�nition of the modulus T in

terms of the 5d degrees of freedom is di�erent (in our formulation it is also

a funtion the brane matter �elds). Of ourse, at tree-level the physis (like

moduli stabilization, transmission of supersymmetry breaking) is the same

in both formalisms. In partiular the K�ahler potential in eq. (21) implies no

tree-level mediation of supersymmetry breaking through the bulk (although

for k 6= 0 it is not of the no-sale form).
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4 One-loop orretions to the K�ahler poten-

tial

We now use our on-shell formulation of the 5d theory to ompute one-loop

orretions to the tree-level K�ahler potential. From the point of view of the

4d e�etive theory no symmetry protets the partiular struture of 
 in

eq. (21). We expet that 


1 loop

= 
 +�
 and that �
 inludes ouplings

other than those in eq. (21), for example higher powers of e

�k�R(T+T)

or

ontat terms between Q

0

and Q

�

. These new terms will lead to mediation

of supersymmetry breaking.

We �rst ompute the one-loop e�etive ation in the full 5d theory and

then math to 4d e�etive supergravity with a K�ahler potential 
 + �
.

The omputation involves regularization of divergent expressions so we �rst

disuss the most general struture of the ounterterms in the K�ahler poten-

tial. Sine 
 = e

�K=3

is the oeÆient of the Einstein-Hilbert term in the

supergravity onformal frame,

L

C

=

p

�g

C

M

2

p

�

1

2


R � 3


m
n

�

�

z

y

m

�

�

z

n

�

3

4


(


m

�

�

z

y

m

� 


n

�

�

z

n

)

2

+ : : :

�

;

(24)

the possible ounterterms are onstrained by the most general form of the

Einstein-Hilbert terms onsistent with 5d general oordinate invariane and

loality,

L = C

B

p

�g

5

R

5

+C

0

(Q

0

)Æ(x

5

)

p

�g

4

R

4

+C

�

(Q

�

)Æ(x

5

��R)

p

�g

4

R

4

: (25)

After ompati�ation on the warped bakground eq. (14) and Weyl resaling

to the onformal frame g

��

! f

C

g

C

��

this beomes

L =

"

C

B

1� a

2

�

2k�R

+ C

0

(Q

0

) + C

�

(Q

�

)a

2

�

#

f

C

p

�g

C

R : (26)

In our ase f

C

= 1�

2k�R

3M

2

p




0

(Q

0

). Using eq. (21) we express � in a

�

= e

�k�R�

by T and Q and we obtain

L =

"

�

1

2k�R

C

B

+ C

0

(Q

0

)

�

 

1 �

2k�R

3M

2

p




0

(Q

0

)

!

+e

�k�R(T+T)

�

�

1

2k�R

C

B

+ C

�

(Q

�

)

�

�

1 +

2k�R

3M

2

p




�

(Q

�

)

��

p

�g

C

R : (27)

We see that the oeÆient of the Einstein-Hilbert term is of the same form

as the K�ahler potential (21). We are thus guaranteed that all divergenes we

10



enounter in the one-loop omputation an be absorbed by renormalization of

the parameters in the tree-level K�ahler potential (21). In partiular, these

divergenes are not relevant for the questions of supersymmetry breaking

mediation through the bulk. On the other hand, any ouplings in �
 that are

di�erent than those in the tree-level K�ahler potential orrespond neessarily

to non-loal operators in 5d theory and therefore they should be �nite and

UV insensitive.

Referene [6℄ derives a very useful expression for �
,

�
 �

Z

d

4

k

(2�)

4

X

n

1

k

2

log(k

2

+m

2

n

) : (28)

Before we ompute �
 in our set-up we �rst present a simple derivation of

eq. (28). In order to ompute �
 it is suÆient to ompute orretions to the

Einstein-Hilbert term in the onformal frame and ompare the result with

eq. (24). Quite generally, a �eld of spin j and massm ontributes to one-loop

renormalization of the Einstein-Hilbert term (in dimensional regularization):

�L

j

= n

j

�(1 � d=2)m

d�2

(4�)

d=2

p

�gR ; (29)

where n

0

= 0 for a onformally oupled salar, n

1=2

= 1=6 for a Dira fermion,

n

1

= �1=3 for a gauge boson, and n

3=2

+ n

2

= 0 for a summed ontribution

of a Dira gravitino and a graviton. Speializing to the ase of 5d sugra, a 5d

hypermultiplet ontains one Dira fermion, a 5d vetor multiplet - one Dira

fermion and one gauge boson, while the gravity multiplet ontains one gauge

boson, one Dira gravitino and one graviton at eah KK level. Summing all

these ontributions we �nd:

�
 =

1

3

(�2�N

V

+N

H

)

�(1 � d=2)

M

2

p

(4�)

d=2

X

n

m

d�2

n

: (30)

where N

V

and N

H

is the number of vetor multiplets and hypermultiplets,

respetively, and m

n

are the masses of the KK modes in the onformal frame

as a funtion of bakground values of T and Q. For N

V

= N

H

= 0 this

formula is equivalent to that in ref. [6℄ with the momentum integral evaluated

using dimensional regularization.

We now apply the general formula (30) to the model onsidered in this

paper. In the frame set by g

��

in eq. (14) the KK spetrum is given by

positive roots of the equation:

J

1

�

m

n

k

�

Y

1

�

m

n

ka

�

�

� Y

1

�

m

n

k

�

J

1

�

m

n

ka

�

�

= 0 : (31)
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Note that in our set-up the KK spetrum m

n

is a funtion of the �eld � only

and is not modi�ed by the presene of brane matter �elds Q. Going to the

onformal frame m

n

! m

n

f

1=2

C

, so �
 piks up an additional multipliative

fator f

d=2�1

C

.

Using the standard tools [21℄ we onvert the sum over KK modes into

a ontour integral. The divergent part is of the form f

C

(C

1

+ a

2

�

C

2

) and

an be absorbed into renormalization of the tree-level K�ahler potential. The

remaining �nite part is given by

�
 =

4

3M

2

p

(4�)

2

 

1�

2k�R

3M

2

p




0

(Q

0

)

!

k

2

a

2

�

Z

1

0

dyy log

 

1 �

I

1

(ya

�

)K

1

(y)

K

1

(ya

�

)I

1

(y)

!

a

2

�

= e

�k�R(T+T)

1 +

2k�R

3M

2

p




�

(Q

�

)

1 �

2k�R

3M

2

p




0

(Q

0

)

: (32)

The K�ahler potential 
+�
 ontains all information about the ontat terms

between the hidden and observable setors. In the limit of large warping,

a

�

! 0 we an approximate �
 by:

�
 � �

4k

2

3M

2

p

(4�)

2

e

�2k�R(T+T)

�

1 +

2k�R

3M

2

p




�

(Q

�

)

�

2

1 �

2k�R

3M

2

p




0

(Q

0

)

+O(a

6

�

log a

�

) ; (33)

where  =

R

1

0

dyy

3

K

1

(y)

2I

1

(y)

� 1:165. On the other hand in the at limit k ! 0

we �nd

�
 = �

16�(3)

3(4�)

2

1

(2�RM

p

)

2

1

�

T + T �

2

3M

2

p




0

(Q

0

)�

2

3M

2

p




�

(Q

�

)

�

2

: (34)

5 On ambiguity in one-loop K�ahler potential

We now ompare the result of our omputation to the previous works on the

subjet [3, 5, 4℄. For simpliity, we restrit to the at limit k ! 0. Expanding

the �
 in eq. (34) in powers of 


i

we obtain

�
 = �

16�(3)

3(4�)

2

1

(2�RM

p

)

2

�

1

(T+T)

2

+

4

3M

2

p

(T+T)

3

(


0

(Q

0

) + 


�

(Q

�

))

+

4

3M

4

p

(T + T )

4

(


0

(Q

0

) + 


�

(Q

�

))

2

+ : : :

#

: (35)

The �rst term desribes the Casimir energy [21℄, the seond orresponds to

radion mediation [3℄ and the last one to brane-to-brane mediation of super-

symmetry breaking [5℄. At this order, all the terms in eq. (35) are the same
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as those derived in the literature. However the full formula eq. (34) is learly

di�erent than that in ref. [5℄ and the disrepany enters at the ubi order in




i

. As long as the brane soures are perturbative, the physial onsequenes

of both formulations (summarized in eq. (35)) are the same. However when

the brane soures are large (for 


i

> 2�R�M

3

5

) onlusions derived in both

formalisms may be ompletely di�erent. In partiular, from eq. (34) it is ev-

ident that a onstant terms in the boundary K�ahler potential, 


i

= L + : : :,

is equivalent to shifting T by a onstant and therefore has no physial sig-

ni�ane. This is ertainly di�erent than in ref. [5℄ where a large value of L

was needed for obtaining positive soft mass terms.

The origin of this inompatibility an be traed to the di�erent formu-

lation of the 5d brane-world theory. The tehnial issue that a�ets the

one-loop omputation is the fat that in the o�-shell formulation 


0

and 


�

multiply brane kineti terms of the gravity multiplet. These ouplings remain

after integrating out the auxiliary �elds. On the other hand, in our purely

on-shell Noether formulation suh terms are absent. In order to understand

this di�erene better, below we disuss supersymmetrization of a model with

a brane Einstein-Hilbert term by means of the Noether proedure. For sim-

pliity we restrit to the ase where no brane matter is present. Thus we

start with the brane lagrangian of the form

L = e

4

M

3

5

LÆ(x

5

)

�

1

2

R

4

� i 

+

�



���

D

�

 

+

�

�

: (36)

In ordinary 4d supergravity this lagrangian would be supersymmetri up to

four-fermion terms. But here Æ 

�

� F

�5

� and so the variation of eq. (36) is

non-zero already at the two-fermion level. To anel it one has to add new

zero- and two-fermion terms to eq. (36) as well as modify the supersymmetry

transformation of the gravitino by terms proportional to LÆ. However one

one arrives at a lagrangian in whih all variations of order LÆ anel one �nds

that there are L

2

Æ

2

variations that do not anel. Therefore the Noether

proedure must be ontinued and new singular terms of order L

2

Æ

2

have to

be added to eq. (36) to make the lagrangian supersymmetri at this order

5

.

The story does not end at order Æ

2

. In order to maintain supersymmetry

singular terms with higher and higher powers of Æ are needed. However one

an notie that there is a ertain pattern emerging. It turns out that all

the terms obtained by the Noether proedure an be obtained from the bulk

ation

L = e

5

M

3

5

�

1

2

R

5

� i 

�

�

��

D

�

 



�

1

4

F

��

F

��

+ : : :

�

(37)

5

In the following we ignore the mathematial subtleties involved in multipliation of

distribution and manipulate Æ's as if they were ordinary -numbers
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by a formal, singular rede�nition of the � � e

5

_

5

omponent of the 5d vielbein,

�! �+ LÆ(x

5

) : (38)

In addition, one should assume that only positive parity �elds multiplied by

Æ(x

5

) survive in the brane ation.

For example by Noether proedure we get a series of graviphoton brane

kineti terms

L =

1

2�

M

3

5

e

4

"

L

�

Æ(x

5

)�

L

2

�

2

Æ(x

5

)

2

+

L

3

�

3

Æ(x

5

)

2

+ : : :

#

F

2

�5

=

1

2

 

1

�+ LÆ(x

5

)

�

1

�

!

M

3

5

e

4

F

2

�5

: (39)

One an argue that the extremely singular term like the one in eq. (39) is

indeed needed for supersymmetry. Indeed, the graviton and gravitino KK

spetrum with brane kineti terms of eq. (36) is given by solutions of

tan(��Rm

n

) = �

1

2

m

n

L : (40)

For the graviphoton the equation of motion reads �

5

�

�

5

A

�

�+LÆ(x

5

)

�

+�m

2

n

A

�

= 0

To anel all Æ's we should arrange that �

5

A

�

behaves as � �+ LÆ(x

5

) near

the boundary. Mathing this boundary ondition with the bulk solution of

the equations of motion we get preisely the quantization ondition eq. (40).

Getting this spetrum for the graviphoton would be impossible without brane

F

2

term or with any deent non-singular F

2

Æ term. We onlude that for

supersymmetrizing a 5d model with a boundary Einstein-Hilbert term it is

indeed neessary to inlude an in�nite series of singular Æ

n

terms in the ation.

We an now infer the relation between the brane-world ation obtained

by integrating out auxiliary �elds in the o�-shell formulation and the one

obtained by our Noether proedure. The two are onneted by a singular

hange of variables

�! ��

1

3M

3

5




0

(Q

0

)Æ(x

5

)�

1

3M

3

5




�

(Q

�

)Æ(x

5

� �R) : (41)

If the two formalisms are in fat equivalent up to a hange of variables why

the omputation of loop orretions yields di�erent results? The di�erene

an be traed to ambiguity of de�ning the behavior of bulk �elds near the

Æ soures. In the above example, after the rede�nition (38) we kept only

positive Z

2

parity �elds in the brane ation. But one we swith on a soure of

order LÆ, by equations of motions the negative Z

2

parity �elds behave like �

14



L�(x

5

) near the boundary. We are then allowed to keep also boundary terms

involving Z

2

odd �elds, L � ( 

�

)

2

Æ(x

5

), provided we de�ne the distribution

Æ(x

5

)�

2

(x

5

) to be non-vanishing. Suh terms a�et the KK spetrum at the

ubi order in L and, by eq. (30), also the one-loop K�ahler potential at higher

order in L.

Conluding, the hange of variable eq. (41) de�nes in fat a lass of brane-

world ations, depending on what regularization sheme we adopt to resolve

the brane singularity. Physial preditions within this lass of theories may

di�er at the third order in brane soures. As long as the brane soures are

perturbative, the relevant physial quantities (e.g. soft mass terms) derived

in both formulations are the same. However, if the brane soures are large

(in the above example, if L is bigger that the ompati�ation length 2�R�)

the low-energy observables may depend on how the brane singularity is reg-

ularized.

6 Conlusions

In this paper we used the Noether method to onstrut 5d on-shell gauged

supergravity oupled to hiral matter multiplets on the branes. This turned

out to lead to a slightly di�erent set-up than that derived from the more

ommonly used o�-shell formulation. Certain singularities that appear after

integrating out the auxiliary �elds are absent in the purely on-shell Noether

formulation. This is due to a di�erent hoie of the fundamental degrees of

freedom in the 5d theory.

Furthermore, we showed that our on-shell set-up allows for a simple om-

putation of one-loop orretions. Comparison of our results with previous

works showed an ambiguity in omputation of the one-loop K�ahler potential.

This ambiguity is assoiated with arbitrariness in resolving the singulari-

ties assoiated with in�nitely thin, delta-type branes. As long as the brane

soures are small (the referene sale being M

3

5

2�R�) this ambiguity has

negligible e�ets on the low-energy physis. However in ertain 5d models

large brane soures are essential. One well-known example is the Dvali-

Gabadadze-Porratti [22℄ model in whih gravity is loalized on a 4d brane

in a semi-in�nite at extra dimension. We onlude that there is a whole

lass of supersymmetri ompletions of the DGP model that yield di�erent

low-energy preditions. Another example are set-ups with a gravitino brane

mass term, L � WÆ(x

5

) 

T

�



��

 

�

+ h::. The limit W ! 1 is sometimes

onsidered as being equivalent to the set-up with supersymmetry broken by

boundary onditions. In suh limit there is also a ontinuous family of regu-

larizations that results in di�erent physis at low energies.
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We expet that the Noether method an be easily arried over to other

brane-world models, for example to 6d supergravity with matter on a brane

of o-dimension two. This o�ers an opportunity to onstrut more general

brane-world ations and study its low-energy phenomenology without a ne-

essity of going through the o�-shell alulus.
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Appendix A Notation and onventions

We use the mostly minus metri signature (+;�;�;�). The index on-

ventions are the following: 5d Einstein indies �; �;  : : : = 0 : : : 3; 5, 5d

Lorentz indies a; b;  : : : = 0 : : : 3; 5, 4d Einstein indies �; �; � : : : = 0 : : : 3,

4d Lorentz indies m;n; : : : = 0 : : : 3.

The 5d vielbein is denoted by e

a

�

and satis�es e

a

�

e

b

�

�

ab

= g

��

. e

5

is the

determinant of the 5d vielbein, while by e

4

we denote the determinant of

the 4d vielbein indued at the boundary. Similarly, R

5

denotes the 5d Rii

salar, while R

4

denotes the Rii salar onstruted from the 4d vielbein

indued at the boundary. The inverse vielbein e

�

a

satis�es e

�

a

e

a

�

= Æ

�

�

.

5d gamma matries are denoted as �

a

while 4d gamma matries are de-

noted as 

m

. They satisfy f�

a

;�

b

g = 2�

ab

and f

m

; 

n

g = 2�

mn

. The on-

netion between the two sets is given by �

m

= 

m

, �

5

= i

5

. Furthermore

�

�

= e

�

a

�

a

, 

�

= e

�

m



m

. The onvention for 

5

is 

5

= diag(�1;�1; 1; 1)

and the hirality projetion operators are P

L

= (1� 

5

)=2, P

R

= (1 + 

5

)=2.

All the fermions in 5d and 4d are in four-omponent Dira notation (we

don't use sympleti Majorana spinors). The 4d harge onjugation matrix

C = i

0



2



5

satis�es C

�1

= C

T

= C

y

= �C, C

m

C

�1

= (

m

)

T

.
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Appendix B Brane ation with a superpoten-

tial

One an extend the set-up studied in Setion 2 to inlude a non-trivial su-

perpotential W

0

(Q

0

) for the brane multiplet. We start with the ase of at

supergravity in the bulk. In addition to those of eq. (3), the terms present

in the globally supersymmetri limit are the following

L

3

= e

4

Æ(x

5

)

2

4

�

�

�

�

�

�

�W

0

�Q

0

�

�

�

�

�

2

+

1

2

�

2

W

0

�Q

2

0

 

T

Q

C 

Q

�

1

2

�

2

W

0

�Q

y2

0

 

Q

C 

Q

T

3

5

: (B.1)

The supersymmetry transformation of the hiral fermion is supplemented

by Æ 

Q

=

1

p

2

�W

0

�Q

y

0

C�

T

. In the presene of the superpotential the matter

superurrent is modi�ed. The gravitino ouples additionally as

L

4

= �

i

p

2

e

4

Æ(x

5

)

�W

0

�Q

0

 

T

Q

C

�

 

�

+ h:: : (B.2)

Besides, up to four-fermion terms loal supersymmetry requires one more

term

L

5

= e

4

Æ(x

5

)

�

�

1

2

W

0

 

�



��

C 

�

T

+ h::

�

: (B.3)

Furthermore one modi�es the trasformation law of  

5

by

Æ 

5

= �Æ(x

5

)W

0

C�

T

: (B.4)

The ation on the other brane is analogous with Æ(x

5

) ! Æ(x

5

� �R),

W

0

(Q

0

)!W

�

(Q

�

). Again, no singular terms arise in this onstrution. One

important omment is in order here. The gravitino brane mass term ats as a

soure for negative Z

2

parity gravitino so that M

3

5

 

�

�

� �(x

5

)W

0

C 

+

�

T

near

the boundary. Thus, in general,  

�

�

an also ouple to the brane matter.

Therefore we have to reonsider the question whih ombination of the two

bulk gravitinos should ouple to the matter superurrent in eq. (5) and eq.

(B.2). It turns out that the answer depends on how the delta singularity is

regularized. But whatever regularization we hoose there is always one om-

bination of the two bulk gravitinos �(x

5

) 

+

�

sin � + C 

�

�

T

os � that vanishes

at the brane in the limit when the regulator is removed. Then the orthogonal

ombination  

�

=  

+

�

os � � �(x

5

)C 

�

�

T

os � ouples to the brane matter.

The angle of rotation is given by � = W

0

=(2M

3

5

) +O(W

3

0

), where the higher

order terms in W

0

are regularization dependent. Coupling this ombination

 

�

to the matter superurrent yields also orret (onsistent with the general
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supergravity ation [20℄) ouplings in the 4d e�etive ation, up to O(W

3

0

)

terms. But another onlusion from this disussion is that the low-energy

4d supergravity is regularization independent only up to terms ubi in the

brane superpotential W

0

.

A areful treatment of the boundary onditions for gravitinos is even more

important when warped supergravity (k 6= 0) is present in the bulk. Ref. [18℄

disussed this problem for the ase when brane matter is absent and W

0

is a

onstant. It was found that the brane ation has to be modi�ed already at

the purely bosoni level. The brane tension term is given by:

L = �6M

3

5

ke

4

Æ(x

5

)

1 �

W

2

0

4M

6

5

1 +

W

2

0

4M

6

5

� �6M

3

5

ke

4

Æ(x

5

)(1�

W

2

0

2M

6

5

) +O(W

4

0

) : (B.5)

There is a similar term on the other brane with k !�k, W

0

! W

�

. There-

fore, in the presene of gravitino brane mass terms the Randall-Sundrum

tuning between the bulk osmologial onstant and the brane tension is lost.

The bakground solution is then of the Randall-Karh type [23℄ with AdS

4

symmetry of the 4d spaetime. Note that is onsistent with what we ob-

tain in the low energy 4d supergravity desription. With the K�ahler poten-

tial eq. (21) and the superpotential eq. (23) we obtain the salar potential

V =

6k�R

f

E

(�)

2

M

2

p

(jW

0

j

2

� e

�4k�R�

jW

�

j

2

) whih is what follows from the warped

ompati�ation with the brane tension of eq. (B.5).

The ase when warped supergravity, brane matter and brane superpoten-

tials are present simultaneously is tehnially more involved and will be left

for future studies.
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