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Abstract

We consider the Higgs boson production at high energy hadron colliders in the framework
of the kT -factorization approach. The attention is focused on the dominant gluon-gluon fu-
sion subprocess. We calculate the total cross section and transverse momentum distributions
of the inclusive Higgs production using unintegrated gluon distributions in a proton obtained
from the full CCFM evolution equation. We show that kT -factorization gives a possibility to
investigate the associated Higgs boson and jets production. We calculate the transverse mo-
mentum distributions and study the Higgs-jet and jet-jet azimuthal correlations in the Higgs
+ one or two jet production processes. We demonstrate the importance of the higher-order
corrections within the kT -factorization approach. These corrections should be developed and
taken into account in the future applications.

1 Introduction

It is well known that the electroweak symmetry breaking in the Standard Model of
elementary particle interactions is achieved via the Higgs mechanism. In the minimal model
there are a single complex Higgs doublet, where the Higgs boson H is the physical neutral
Higgs scalar which is the only remaining part of this doublet after spontaneous symmetry
breaking. In non-minimal models there are additional charged and neutral scalar Higgs
particles. The search for the Higgs boson takes important part at the Fermilab Tevatron
experiments and will be one of the main fields of study at the CERN LHC collider [1]. The
experimental detection of the H will be great triumph of the Standard Model of electroweak
interactions and will mark new stage in high energy physics.
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At LHC conditions, the gluon-gluon fusion gg → H is the dominant inclusive Higgs
production mechanism [2, 3]. In this process, the Higgs production occurs via triangle
heavy (top) quark loop. The gluon fusion and weak boson fusion (qq → qqH subprocess
via t-channel exchange of a W or Z bosons) are also expected to be the dominant sources
of semi-inclusive Higgs production (in association with one or two hadronic jets) [4]. The
detailed theoretical studies of such processes are necessary, in particular, to determine an
optimal set of cuts on the final state particles.

It is obvious that the gluon-gluon fusion contribution to the Higgs production at LHC
is strongly dependend on the gluon density xG(x, µ2) in a proton. Usually gluon density
are described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parizi (DGLAP) evolution equa-
tion [5] where large logarithmic terms proportional to lnµ2 are taken into account. The cross
sections can be rewritten in terms of hard matrix elements convoluted with gluon density
functions. In this way the dominant contributions come from diagrams where the parton
emissions in the initial state are strongly ordered in virtuality. This is called collinear fac-
torization, as the strong ordering means that the virtuality of the parton entering the hard
scattering matrix elements can be neglected compared to the large scale µ2. However, at the
LHC energies, typical values of the incident gluon momentum fractions x ∼ mH/

√
s ∼ 0.008

(for Higgs boson mass mH = 120 GeV) are small, and another large logarithmic terms pro-
portional to ln 1/x become important. These contributions can be taken into account using
Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [6]. Just as for DGLAP, in this
way it is possible to factorize an observable into a convolution of process-dependent hard
matrix elements with universal gluon distributions. But as the virtualities (and transverse
momenta) of the propagating gluons are no longer ordered, the matrix elements have to be
taken off-shell and the convolution made also over transverse momentum kT with the unin-
tegrated (kT -dependent) gluon distribution F(x,k2

T ). The unintegrated gluon distribution
F(x,k2

T ) determines the probability to find a gluon carrying the longitudinal momentum
fraction x and the transverse momentum kT . This generalized factorization is called kT -
factorization [7–10]. It is expected that BFKL evolution gives the theoretically correct
description at assymptotically large energies (i.e. very small x). At the same time another
approach, valid for both small and large x, have been developed by Ciafaloni, Catani, Fiorani
and Marchesini, and is known as the CCFM model [11]. It introduces angular ordering of
emissions to correctly treat gluon coherence effects. In the limit of asymptotic energies it is
almost equivalent to BFKL [12–14], but also similar to the DGLAP evolution for large x and
high µ2. The resulting unintegrated gluon distribution depends on two scales, the additional
scale q̄2 is a variable related to the maximum angle allowed in the emission and plays the
role of the evolution scale µ2 in the collinear parton densities. The following classification
scheme [15] is used: F(x,k2

T ) denote pure BFKL-type unintegrated gluon distributions and
A(x,k2

T , µ
2) stands for any other type having two scale involved. In this paper we will apply

the CCFM gluon evolution to study of the inclusive and semi-inclusive Higgs production at
LHC conditions.

In the collinear factorization, the calculation of such processes is quite complicated even
at lowest order because of the heavy quark loops contribution. For example, in Higgs + one
jet production, triangle and box loops occur, and in Higgs + two jet production the pentagon
loops occur [16]. However, the calculations of the Higgs production rates can be simplified
in the limit of large top quark mass mt → ∞ [17]. In this approximation the coupling of
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the gluons to the Higgs via top-quark loop can be replaced by an effective coupling. Thus
it reduces the number of loops in a given diagram by one. The large mt approximation is
valid to an accuracy of ∼ 5% in the intermediate Higgs mass range mH < 2mt, as long
as transverse momenta of the Higgs or final jets are smaller than of the top quark mass
(pT < mt) [16]. Within this approach, the total cross section for gg → H + X is known
to next-to-next-to-leading order (NNLO) accuracy [18]. Higher-order QCD corrections to
inclusive Higgs production were found to be large: their effect increases the leading order
cross section by about 80− 100% [19] (see also [20]).

A particularly interesting quantity is the transverse momentum distribution of the pro-
duced Higgs boson. The precise theoretical prediction of the dσ/dpT at the LHC is important
for quantitative evaluation of the required measurement accuracies and detector performance.
It is well-known that the fixed-order perturbative QCD is applicable when the Higgs trans-
verse momentum is comparable to the mH . Hovewer, the main part of the events is expected
in the small-pT region (pT ≪ mH), where the coefficients of the perturbative series in αs

are enhanced by powers of large logarithmic terms proportional to lnm2
H/p

2
T . Therefore

reliable predictions at small pT can only be obtained if these terms will be resummed to
all orders. Such procedure is called soft-gluon resummation [21-23] and has been performed
in collinear calculations at leading logarithmic (LL), next-to-leading logarithmic (NLL) [24]
and next-to-next-to-leading logarithmic (NNLL) [25] levels. Recently it was shown [26] that
in the framework of kT -factorization approach the soft gluon resummation formulas are the
result of the approximate treatment of the solutions of the CCFM evolution equation (in the
b-representation).

There are several additional motivations for our study of the Higgs production in the kT -
factorization approach. First of all, in the standard collinear approach, when the transverse
momentum of the initial gluons is neglected, the transerse momentum of the final Higgs boson
in gg → H subprocess is zero. Therefore it is necessary to include an initial-state QCD radi-
ation to generate the pT distributions. It is well known at present that the kT -factorization
naturally includes a large part of the high-order perturbative QCD corrections [27]. This
fact is illustrated more detailed in Figure 1, which is a schematical representation of a typ-
ical Higgs + jet production process. Figure 1 (a) shows the fixed-order perturbative QCD
picture where the upper part of the diagram (above the dash-dotted line) corresponds to the
gg → gH subrocess, and the lower part describes the gluon evolution in a proton. As the
incoming gluons are assumed to have zero transverse momentum, the transverse momentum
distributions of the produced Higgs and jet are totally determined by the properties of the
O(α3

s) matrix element. In the kT -factorization approach (Figure 1 (b)), the underlying par-
tonic subprocess is gg → H , which is formally of order O(α2

s). Some extra powers of αs

are hidden in the gluon evolution represented by the part of the diagram shown below the
dash-dotted line. In contrast with the collinear approximation, the kT -factorization takes
into account the gluon transverse motion. Since the upper gluon in the parton ladder is
not included in the hard interaction, its transverse momentum is now determined by the
properties of the evolution equation only. It means that in the kT -factorization approach the
study of transverse momenta distributions in the Higgs production via gluon-gluon fusion
will be direct probe of the unintegrated gluon distributions in a proton. In this case the
transverse momentum of the produced Higgs should be equal to the sum of the transverse
momenta of the initial gluons. Therefore future experimental studies at LHC can be used
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as further test of the non-collinear parton evolution.
In the previous studies [26, 28, 29] the kT -factorization formalism was applied to cal-

culate transverse momentum distribution of the inclusive Higgs production. The simplified
solution of the CCFM equation in single loop approximation [30] (when small-x effects can
be neglected) were used in [26]. In such approximation the CCFM evolution is reduced to
the DGLAP one with the difference that the single loop evolution takes the gluon trans-
verse momentum kT into account. Another simplified solution of the CCFM equation was
proposed in Ref. [31], where the transverse momenta of the incoming gluons are generated
in the last evolution step (Kimber-Martin-Ryskin prescription). The calculations [26, 29]
were done using the on-mass shell (independent from the gluon kT ) matrix element of the
gg → H subprocess and rather the similar results have been obtained. In Ref. [28] in the
framework of MC generator CASCADE [32] the off-mass-shell matrix element obtained by
F. Hautmann [33] has been used with full CCFM evolution.

In present paper we investigate Higgs production at hadron colliders using the full CCFM-
evolved unintegrated gluon densities [28]. We obtain the obvious expression for the g∗g∗ →
H off-mass-shell matrix element in the large mt limit apart from Ref. [33]. After that,
we calculate the total cross section and transverse momentum distribution of the inclusive
Higgs production at Tevatron and LHC. To illustrate the fact that in the kT -factorization
approach the main features of collinear higher-order pQCD corrections are taken into account
effectively, we give theoretical predictions for the Higgs + one jet and Higgs + two jet
production processes using some physically motivated approximation.

In Section 2 we recall the basic formulas of the kT -factorization formalism with a brief
review of calculation steps. In Section 3 we present the numerical results of our calculations
and discussion. Finally, in Section 4, we give summary of our results.

2 Basic formulas

We start from the effective Lagrangian for the Higgs boson coupling to gluons [16]:

Leff =
αs

12π

(

GF

√
2
)1/2

Ga
µνG

aµνH, (1)

where GF is the Fermi coupling constant, Ga
µν is the gluon field strength tensor and H is the

Higgs field. The triangle vertex T µν(k1, k2) for two off-shell gluons having four-momenta k1
and k2 and color indexes a and b respectively, can be obtained easily from the Lagrangian
(1):

T µν(k1, k2) = iδab
αs

3π

(

GF

√
2
)1/2

[kµ2k
ν
1 − (k1 · k2)gµν ] . (2)

To calculate the squared off-mass-shell matrix element for the g∗g∗ → H subprocess it is
necessary to take into account the non-zero virtualities of the initial gluons k21 = −k2

1T 6= 0,
k22 = −k2

2T 6= 0. We have obtained1

|M̄|2(g∗g∗ → H) =
α2
s(µ

2)

576π2
GF

√
2
[

m2
H + k2

1T + k2
2T + 2|k1T ||k2T | cosφ

]2
cos2 φ, (3)

1We would like to remark that the expression (3) differs from the one obtained in Ref. [33].
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where φ is the azimuthal angle between transverse momenta k1T and k2T , the transverse
momentum of the produced Higgs boson is pT = k1T +k2T and the virtual gluon polarization
tensor has been taken in the form [7, 8]

∑

ǫµǫ∗ ν =
kµTk

ν
T

k2
T

. (4)

The cross section of the inclusive Higgs production pp̄ → H + X in the kT -factorization
approach can be written as

dσ(pp̄→ H +X) =
∫

dx1
x1

A(x1,k
2
1T , µ

2)dk2
1T

dφ1

2π
×

×
∫

dx2
x2

A(x2,k
2
2T , µ

2)dk2
2T

dφ2

2π
dσ̂(g∗g∗ → H),

(5)

where σ̂(g∗g∗ → H) is the Higgs production cross section with off-mass-shell gluons, x1
and x2 are the longitudinal momentum fractions, and A(x,k2

T , µ
2) is the unintegrated gluon

distributions in a proton. Let s = (p1 + p2)
2 and p1, p2 are the four-vectors of the incoming

protons. Then the differential cross section reads

dσ(pp̄→ H +X)

dyH
=

∫

α2
s(µ

2)

288π

GF

√
2

x1x2m
2
Hs

[

m2
H + p2

T

]2
cos2 φ2×

×A(x1,k
2
1T , µ

2)A(x2,k
2
2T , µ

2)dk2
1Tdk

2
2T

dφ2

2π
,

(6)

where yH is the Higgs rapidity in the proton-proton c.m. frame. The longitudinal momentum
fractions x1 and x2 are given by

x1 =

√

m2
H + p2

T

s
exp(yH), x2 =

√

m2
H + p2

T

s
exp(−yH). (7)

If we average the expression (6) over transverse momenta k1T and k2T and take the limit
k2
1T → 0, k2

2T → 0, we obtain well-established expression [2] for Higgs production cross
section in leading-order perturbative QCD:

dσ(pp̄→ H +X) =
α2
s(µ

2)

576π
GF

√
2
m2

H

x1x2s
x1G(x1, µ2)x2G(x2, µ2)dyH , (8)

where xG(x, µ2) is the usual (collinear) gluon density which is related with the unintegrated
gluon distribution A(x,k2

T , µ
2) by

xG(x, µ2) ∼
∫

A(x,k2
T , µ

2)dk2
T . (9)

Here the sign ∼ indicates, that there is no strict equality between the left and the right parts
of the equation (9)2.

The multidimensional integration in the expression (6) has been performed by means of
the Monte Carlo technique, using the routine VEGAS [35]. The full C++ code is available
from the authors on request3.

2See Refs. [15, 34] for more details.
3lipatov@theory.sinp.msu.ru
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3 Numerical results and discussion

3.1 Inclusive Higgs production

We now are in a position to present our numerical results. First we describe our theoret-
ical input and the kinematical conditions. Besides the Higgs mass mH , the cross section (6)
depend on the uninterated gluon distribution A(x,k2

T , µ
2) and the energy scale µ. The new

fits of the unintegrated gluon density (J2003 set 1 — 3) have been recently presented [28].
The full CCFM equation in a proton was solved numerically using a Monte Carlo method.
The input parameters were fitted to describe the proton structure function F2(x,Q

2). Since
these gluon densities reproduce well the forward jet production at HERA, charm and bot-
tom production data at Tevatron [28] and charm and J/ψ production at LEP2 energies [35],
we use it (namely J2003 set 1) in our calculations. As is often done for Higgs production,
we choose the renormalization and factorization scales to be µ = ξmH , and vary the scale
parameter ξ between 1/2 and 2 about the default value ξ = 1. Also we use LO formula
for the strong coupling constant αs(µ

2) with nf = 4 active quark flavours and ΛQCD = 200
MeV, such that αs(M

2
Z) = 0.1232.

In Figure 2 and 3 we display our prediction for the transverse momentum and rapidity
distributions of the inclusive Higgs production at the LHC (

√
s = 14 TeV). The calculations

were done for four choices of the Higgs boson mass under interest in the Standard Model
with default scale µ2 = m2

H . The solid, dashed, dash-dotted and dotted lines correspond
mH = 125 GeV, mH = 100 GeV, mH = 150 GeV (where WW decay channel is dominant)
and mH = 200 GeV (above WW and ZZ decay tresholds), respectively. One can see that
mass effects are present only at low pT < mH , whereas all curves practically coincide at
large transverse momenta. We note that our predictions which correspond to the Higgs
mass mH = 125 GeV slightly underestimate results obtained in the combined fixed-order
+ resummed approach [37]. In this approach fixed-order predictions (at LO or NLO level)
and resummed ones (at NLL or NNLL level, respectively) have to be consistenly matched
at moderate pT . The NNLL + NLO results [25] are smaller than NLL + LO ones [24] by
about 20% at low transverse momenta. We see that our predictions lie below NNLL + NLO
calculations by about 15% in this kinematical region. Usage the doubly unintegrated gluon
distributions results in more flat behaviour of the pT -distribution [29] in comparison with
both our and NNLL + NLO predictions.

We note also that the peak in the transverse momentum distribution occurs at a smaller
value of pT compared to the NNLL + NLO calculations. The location of this peak as a
function of Higgs boson mass is shown in Figure 4. We find that at mH = 125 GeV the peak
occurs at pT ∼ 10 GeV, whereas NNLL + NLO line peaks at pT ∼ 15 GeV [37]. The similar
effect has been obtained [29] when doubly unintegrated gluon distributions were used.

The total cross sections of the inclusive Higgs production at Tevatron (
√
s = 1.96 TeV)

and LHC conditions as function Higgs mass are plotted in Figure 5 and 6 in the mass range
mH = 100 − 200 GeV. The solid lines are obtained by fixing both the factorization and
renormalization scales at the default value µ = mH . In order to estimate the theoretical
uncertainties in our predictions, we vary the unphysical parameter ξ as indicated above.
These uncertainties are presented by upper and lower dashed lines. We find that our default
predictions agree very well with recent NNLO results [18]. For example, when Higgs boson
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mass is mH = 120 GeV, our calculations give σ = 0.84 pb at Tevatron and σ = 35.9 pb
at LHC. However, the scale dependences are rather large. At LHC energy, it changes from
about 20% when mH = 100 GeV, to about 50% when mH = 200 GeV. At Tevatron, it range
from 40% to 50%, respectively. This fact indicates the necessarity of high-order corrections
inclusion in the kT -factorization formalism. But one should note that in the kT -factorization
the role of such correction is very different in comparison with the corrections in the collinear
approach, since part of the standard high-order corrections are already included at LO level
in kT -factorization

4. At the same time the theoretical uncertainties of the collinear QCD
calculations, after inclusion of both NNLO corrections and soft-gluon resummation at the
NNLL level, are about 10% in the low mass range mH < 200 GeV [18].

3.2 Higgs production in association with jets

Now we demonstrate how kT -factorization approach can be used to calculate the semi-
inclusive Higgs production rates. The produced Higgs boson is accompanied by a number
of gluons radiated in the course of the gluon evolution. As it has been noted in Ref. [38],
on the average the gluon transverse momentum decreases from the hard interaction block
towards the proton. As an approximation, we assume that the gluon k′ closest to the Higgs
compensates the whole transverse momentum of the virtual gluon participating in the gluon
fusion, i.e. k′

T ≃ −kT (see Figure 1). All the other emitted gluons are collected together
in the proton remnant, which is assumed to carry only a negligible transverse momentum
compared to k′

T . This gluon gives rise to a final hadron jet with pjetT = k′

T .
From the two hadron jets represented by the gluons from the upper and lower evolution

ladder we choose the one carrying the largest transverse momentum, and then compute Higgs
with an associated jet cross sections at the LHC energy. We have applied the usual cut on
the final jet transverse momentum |pjetT | > 20 GeV. Our predictions for the transverse
momentum distribution of the Higgs + one jet production are shown in Figure 7. As in the
inclusive Higgs production case, we test four differentmH values in the transverse momentum
ditributions. All curves here are the same as in Figure 2. One can see the shift of the peak
position in the pT distributions in comparison with inclusive production, which is direct
consequence of the |pjetT | > 20 GeV cut. We note that the rapidity interval between the jet
and the Higgs boson is naturally large. It is because there is angular ordering in the CCFM
evolution, which is equivalent to an ordering in rapidity of the emitted gluons.

The investigation of the different azimuthal correlations between final particles in semi-
inclusive Higgs production provides many interesting insights. In particular, studying of
these quantities are important to clean separation of weak-boson fusion and gluon-gluon
fusion contributions. To demonstrate the possibilities of the kT -factorization approach, we
present here the two azimuthal angle distributions. First, we calculate azimutal angle dis-
tribution between the Higgs boson and final jet transverse momenta in the Higgs + one
jet production process. Second, we calculate azimuthal angle distributions between the two
final jet transverse momenta in the Higgs + two jet production process. In this case the
Higgs boson is centrally located in rapidity between the two jets and it is very far from either
jet, and the kinematical cut |pjet T | > 20 GeV was applied for both final jets. We set no

4See also [15, 34] for more detailed discussion.
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cuts on the jet-jet invariant mass. Our results are shown in Figure 8 and 9, respectively.
Figure 8 demonstrated roughly the back-to-back Higgs + one jet production. In Figure 9
we obtained a dip at 90 degrees in jet-jet azimuthal correlation, which is characteristic for
loop-induced Higgs coupling to gluons [39]. The fixed-order perturbative QCD calculations
of the gg → ggH subprocess give the similar result [16]. However, as it was already men-
tioned above, such calculations are very cumbersome even at leading order. The evaluation
of the radiative corrections at O(αs) to Higgs + two jet production would imply the calcula-
tion of up to hexagon quark loops and two-loop pentagon quark loops, which are at present
unfeasible [20]. We note that contribution from the weak-boson fusion to the Higgs + two
jet production has flat behavior of the jet-jet angular distribution [16, 20].

To illuminate the sensitivity of the Higgs production rates to the details of the uninte-
grated gluon distribution, we repeated our calculations for jet-jet angular correlations using
J2003 set 2 gluon density [28] (dashed line in Figure 9). This density takes into account the
singular and non-singular terms in the CCFM splitting function, where the Sudakov and
non-Sudakov form factors were modified accordinly. We note that J2003 set 1 takes into ac-
count only singular terms. Both these sets describe the proton structure function F2(x,Q

2)
at HERA reasonable well. However, one can see the very large discrepancy (about order of
magnitude) between predictions of J2003 set 1 and set 2 unintegrated gluon densities. The
similar difference was claimed [28] for charm and bottom production at Tevatron also. This
fact clearly indicates again that high-order corrections to the leading order kT -factorization
are important and should be developed for future applications.

4 Conclusions

We have considered the Higgs boson production via gluon-gluon fusion at high energy
hadron colliders in the framework of the kT -factorization approach. Our interests were fo-
cused on the Higgs boson total cross section and transverse momenta distributions at Teva-
tron and LHC colliders. In our numerical calculations we use the J2003 set 1 unintegrated
gluon distribution, which was obtained recently from the full CCFM evolution equation.

We find that kT -factorization gives the very close to NNLO pQCD results for the inclusive
Higgs production total cross sections. It is because the main part of the high-order collinear
pQCD corrections is already included in the kT -factorization. Also we have demonstrated
that kT -factorization gives a possibility to investigate the associated Higgs boson and jets
production in much more simple manner, than it can be done in the collinear factorization.
Using some approximation, we have calculated transverse momentum distributions and in-
vestigated the Higgs-jet and jet-jet azimuthal correlations in the Higgs + one or two jet
production processes. However, the scale dependence of our calculations is rather large (of
the order of 20 − 50%), which indicates the importance of the high-order correction within
the kT -factorization approach. These corrections should be developed and taken into account
in the future applications.

We point out that in this paper we do not try to give a better prediction for Higgs
production than the fixed-order pQCD calculations. The main advantage of our approach
is that it is possible to obtain in straighforward manner the analytic description which
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reproduces the main features of the collinear high-order pQCD calculations5. But in any
case, the future experimental study of such processes at LHC will give important information
about non-collinear gluon evolution dynamics, which will be useful even for leading-order
kT -factorization formalism.
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Figure 1: The typical Feynman diagram contributing to the Higgs boson production in the
collinear (a) and kT -factorization (b) approaches.
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Figure 2: Differential cross section dσ/dpT for inclusive Higgs boson production at
√
s = 14

TeV. The solid, dashed, dash-dotted and dotted lines correspond mH = 125 GeV, mH = 100
GeV, mH = 150 GeV and mH = 200 GeV, respectively.
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Figure 3: Differential cross section dσ/dyH for inclusive Higgs boson production at
√
s = 14

TeV. All curves are the same as in Figure 2.
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Figure 4: Location of the peak of the transverse momentum distributions for inclusive Higgs
boson production as a function of Higgs mass at

√
s = 14 TeV.
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Figure 5: Total cross section of inclusive Higgs boson production as a function of Higgs mass
at

√
s = 1.96 TeV. The solid line corresponds to the default scale µ = mH , whereas upper

and lower dashed lines correspond to the µ = mH/2 and µ = 2mH scales, respectively.
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Figure 6: Total cross section of inclusive Higgs boson production as a function of Higgs mass
at

√
s = 14 TeV. All curves are the same as in Figure 5.
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Figure 7: Differential cross section dσ/dpT for Higgs boson + one jet production at
√
s = 14

TeV. The kinematical cut |pjetT | > 20 GeV was applied. All curves are the same as in Figure
2.

18



Figure 8: The Higg-jet azimutal angle distribution in the Higgs boson + one jet production
at

√
s = 14 TeV. The kinematical cut |pjetT | > 20 GeV was applied.
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Figure 9: The jet-jet azimutal angle distribution in the Higgs boson + two jet production
at

√
s = 14 TeV. The kinematical cut |pjetT | > 20 GeV was applied for both jets. Solid and

dashed lines correspond to the J2003 set 1 and J2003 set 2 unintegrated gluon distributions,
respectively.
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