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Abstra
t

We systemati
ally analyze quantum 
orre
tions in see-saw s
enarios, in
luding e�e
ts

from above as well as below the see-saw s
ales. We derive approximate renormaliza-

tion group equations for neutrino masses, lepton mixings and CP phases, yielding an

analyti
 understanding and a simple estimate of the size of the e�e
ts. Even for hier-

ar
hi
al masses, they often ex
eed the pre
ision of future experiments. Furthermore,

we provide a software pa
kage allowing for a 
onvenient numeri
al renormalization

group analysis, with heavy singlets being integrated out su

essively at their mass

thresholds. We also dis
uss appli
ations to model building and related topi
s.
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1 Introdu
tion

The observed smallness of neutrino masses �nds an attra
tive explanation in the see-saw

me
hanism [1, 2, 3, 4, 5℄. The light neutrino masses are, at tree-level, given by the famous

see-saw relation

m

�

= �(m

Dira


�

)

T

M

�1

m

Dira


�

: (1)

This relation emerges from integrating out heavy, singlet neutrinos with mass matrix

M . The Dira
 neutrino mass m

Dira


�

is proportional to the neutrino Yukawa 
oupling

Y

�

. Clearly, the see-saw operates at high energy s
ales while its impli
ations are measured

by experiments at low s
ales. Therefore, the neutrino masses given by Eq. (1) are subje
t

to quantum 
orre
tions, i.e. they are modi�ed by renormalization group (RG) running.

The running of neutrino masses and lepton mixing angles has been investigated inten-

sively in the literature. For non-hierar
hi
al neutrino mass spe
tra, RG e�e
ts 
an be very

large and they 
an have interesting impli
ations for model building. For example, lepton

mixing angles 
an be magni�ed [6, 7, 8, 9, 10℄, bimaximal mixing at high energy 
an be


ompatible with low-energy experiments [11, 12, 13℄ or the small mass splittings 
an be

generated from exa
tly degenerate light neutrinos [14, 15, 16, 17, 18, 19℄. On the other

hand, fa
ing the high pre
ision of future neutrino experiments, rather small RG 
orre
tions

are important as well. For instan
e, deviations from �

13

= 0 or maximal mixing �

23

= �=4

are indu
ed by RG e�e
ts [20, 21, 22℄ also for a hierar
hi
al spe
trum. However, in most

studies only the running of the dimension 5 operator has been 
onsidered, whi
h is only

appropriate for the energy range below the mass s
ale of the heavy singlets.

The importan
e of in
luding the e�e
ts from energy ranges above and between these

mass thresholds when analyzing RG e�e
ts in GUT models has been pointed out in [23,

24, 25, 26, 27, 11, 8, 12, 13, 21℄. They are typi
ally at least as important as the e�e
ts

from below the thresholds sin
e the relevant 
ouplings, i.e. the entries of Y

�

, 
an be of

order one, regardless of tan�.

1

Previous studies have investigated the RG e�e
ts above

the see-saw s
ales mainly numeri
ally.

In this paper we derive formulae whi
h allow to understand the running of the neutrino

parameters above the see-saw s
ales analyti
ally. We further provide a software pa
kage

for analyzing the RG evolution (with 
orre
t treatment of non-degenerate see-saw s
ales)

numeri
ally. We apply our results to investigate 
onsequen
es of the running above the

see-saw s
ales for model building and leptogenesis and 
ompare the size of RG 
orre
tions

to the pre
ision of future experiments.

The paper is organized as follows: In Se
. 2, we review how the predi
tions for neutrino

masses 
an be evolved from the GUT s
ale to the ele
troweak s
ale. Se
. 3 is dedi
ated

to the analyti
 understanding of RG e�e
ts in see-saw s
enarios with spe
ial emphasis on

the range between M

GUT

and the highest see-saw s
ale. In Se
. 4, we analyze the run-

ning between the see-saw s
ales in more detail. Se
. 5 
ontains a brief des
ription of the

a

ompanying Mathemati
a pa
kages for numeri
al RG analyses (a detailed do
umenta-

tion is available at http://www.ph.tum.de/~rge/). In Se
. 6, we dis
uss appli
ations to

model building and related topi
s. Alternatives to the simplest see-saw s
enario are brie
y

dis
ussed in Se
. 7. Finally, Se
. 8 
ontains our 
on
lusions.

1

Large entries of Y

�


ould be important in models of gauge-Yukawa uni�
ation (see, e.g., [28℄), and

may even be important for pre
ision gauge uni�
ation in the MSSM [29℄.

1

http://www.ph.tum.de/~rge/


2 Running Neutrino Masses in See-Saw S
enarios

In this se
tion, we dis
uss how to obtain the RG evolution of neutrino masses, starting

from initial 
onditions at a very high energy s
ale.

2

An important te
hni
al issue is that

the heavy singlet neutrinos involved in the see-saw me
hanism have to be integrated out

one by one. Thus, one has to 
onsider a series of e�e
tive theories [26, 27℄. We will fo
us on

the SM and the MSSM amended by three singlet neutrinos N

i

R

or three singlet super�elds

�

i

, respe
tively. The dis
ussion 
an be applied to other s
enarios, su
h as multi-Higgs

models, and a di�erent number of singlets in a straightforward way.

We 
onsider the Lagrangian of the SM extended by

L

�

= �N

R

Y

�

`

L

e

�

y

�

1

2

N

R

MN

C

R

+ h.
. ; (2)

where `

L

:= (`

1

L

; `

2

L

; `

3

L

)

T

denotes the left-handed lepton doublets, � is the Higgs doublet

and

e

� = i�

2

�

�

its 
harge 
onjugate. The supers
ript C denotes 
harge 
onjugation of

fermion �elds, and N

C

R

:= (N

R

)

C

. In the supersymmetri
 
ase, � is repla
ed by the Higgs

doublet H

u


oupling to the up-type quarks.

In order to de�ne mass and mixing parameters as fun
tions of the renormalization s
ale

� above the highest see-saw s
ale, we 
onsider the e�e
tive light neutrino mass matrix

m

�

(�) = �

v

2

2

Y

T

�

(�)M

�1

(�)Y

�

(�) ; (3)

where Y

�

and M are �-dependent. The relevant Higgs vev is v = 246GeV in the SM and

v = 246GeV � sin� in the MSSM.

3

m

�

is the mass matrix of the three light neutrinos as

obtained from blo
k-diagonalizing the 
omplete 6� 6 neutrino mass matrix, following the

standard see-saw 
al
ulation. The s
ale-dependent mixing parameters are obtained from

m

�

(�) and the running 
harged lepton Yukawa matrix Y

e

(�). In Se
. 3 we are going to

analyze the energy dependen
e of the parameters in the lepton se
tor su
h as neutrino

masses, lepton mixing angles and CP phases above the highest see-saw s
ale analyti
ally.

Therefore, we will make use of the RGE for the 
omposite quantity m

�

, 
al
ulated from

those for Y

�

and M [31, 32, 24, 25℄. It is given by

16�

2

dm

�

dt

= (C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

)

T

m

�

+m

�

(C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

) + ��m

�

(4)

with t := ln(�=�

0

),

C

e

= �

3

2

; C

�

=

1

2

in the SM, (5a)

C

e

= C

�

= 1 in the MSSM, (5b)

2

In the following we will refer to this high energy s
ale as M

GUT

, although it 
an be any other s
ale

where additional new physi
s, apart from the heavy singlet neutrinos, has to be taken into a

ount.

3

As indi
ated in Eq. (3), we do not take into a

ount the running of the Higgs vev. In prin
iple, v

runs as well, so that m

�

a
tually does not yield the physi
al neutrino masses. However, the evolution of v

depends on the renormalization s
heme and on the de�nition of the Higgs mass, see e.g. [30℄, so that there

is no straightforward de�nition of a neutrino mass with a running vev. In any 
ase, the mixing angles

and phases are independent of the value of v. This de�nition has shown appropriate for the appli
ations

dis
ussed in this paper, su
h as leptogenesis.

2



and (with Y

e

, Y

d

and Y

u

being the Yukawa matri
es of 
harged leptons, down- and up-type

quarks, respe
tively)

4

��

SM

= �

9

10

g

2

1

�

9

2

g

2

2

+ 2Tr

�

Y

y

�

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

; (6a)

��

MSSM

= �

6

5

g

2

1

� 6g

2

2

+ 2Tr

�

Y

y

�

Y

�

+ 3Y

y

u

Y

u

�

: (6b)

The RGE (4) governs only the evolution of the light neutrino mass matrix above the

highest see-saw s
ale, whi
h is given by the mass eigenvalueM

3

of the heaviest singlet N

3

R

.

For � < M

3

, we obtain the 
orre
t RG evolution by integrating out N

3

R

. This leads to the

appearan
e of an e�e
tive neutrino mass operator

L

�

=

1

4

(3)

�

fg

(`

C

L

f

� �) (`

g

L

� �) + h.
. ; (7)

where f; g 2 f1; 2; 3g are family indi
es and where the dot indi
ates the SU(2)

L

-invariant


ontra
tions. The 
oeÆ
ient of this operator is obtained by the (tree-level) mat
hing


ondition

5

(3)

�

gf

= 2(Y

T

�

)

g3

M

�1

3

(Y

�

)

3f

; (8)

whi
h is imposed at � =M

3

. This expression is spe
i�ed in the mass basis for the singlets,

i.e. in the basis where M is diagonal. Let us mention that �nding the mat
hing s
ale

properly requires some 
are as the mass matrix M (and 
onsequently the eigenvalue M

3

)

itself is subje
t to the RG evolution. As a 
onsequen
e, for s
ales below M

3

the e�e
tive

neutrino mass matrix 
an be des
ribed as a sum of two 
ontributions,

m

�

= �

v

2

4

�

(3)

�+ 2

(3)

Y

T

�

(3)

M

�1

(3)

Y

�

�

: (9)

The 2 � 3 Yukawa matrix

(3)

Y

�

is obtained by simply removing the last row of Y

�

in the

basis where M is diagonal. The 2 � 2 mass matrix

(3)

M is found from M by removing the

last row and 
olumn. By 
onstru
tion, m

�

is a 
ontinuous fun
tion of the renormalization

s
ale. The RG evolution of the se
ond term on the right-hand side of Eq. (9) is governed

by Eq. (4) with Y

�

repla
ed by

(3)

Y

�

. The running of the �rst term, on the other hand, is

determined by the RGE [27℄

16�

2

d

(3)

�

dt

=

�

C

e

Y

y

e

Y

e

+ C

�

(3)

Y

y

�

(3)

Y

�

�

T

(3)

�+

(3)

�

�

C

e

Y

y

e

Y

e

+ C

�

(3)

Y

y

�

(3)

Y

�

�

+

(3)

��

(3)

� (10)

with C

e

and C

�

as in Eqs. (5) [34, 35, 36, 37℄, and

(3)

��

SM

= �3g

2

2

+ 2Tr

�
(3)

Y

y

�

(3)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

+ � ; (11a)

(3)

��

MSSM

= �

6

5

g

2

1

� 6g

2

2

+ 2Tr

�
(3)

Y

y

�

(3)

Y

�

+ 3Y

y

u

Y

u

�

: (11b)

4

We use GUT 
harge normalization for the gauge 
oupling g

1

.

5

We do not dis
uss �nite threshold 
orre
tions, whi
h arise due to the fa
t that the singlet neutrinos

do not de
ouple abruptly [33℄. The resulting un
ertainty in the low-energy results is typi
ally not larger

than that due to two-loop e�e
ts. In the REAP software pa
kage des
ribed in Se
. 5, the 
orre
tions 
an

be implemented approximately by integrating out N

3

R

slightly below M

3

.

3
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(3)

Yν
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4
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−
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2
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Figure 1: Validity ranges of the e�e
tive theories (EFTs) in the renormalization s
ale �. At a s
ale 
lose to

the mass thresholds M

i

, the EFTs are related by mat
hing 
onditions. Although we show this illustration

for 3 heavy singlets, it is straightforward to generalize it to an arbitrary number (
f. [27℄).

One 
an now evolve the e�e
tive neutrino mass matrix down to the s
ale M

2

and

repeat the mat
hing pro
edure there. From integrating out N

2

R

at � = M

2

, the Yukawa

matrix gets further redu
ed and the e�e
tive neutrino mass operator re
eives an additional


ontribution. After a subsequent RG evolution to � = M

1

, the pro
edure is repeated for

N

1

R

. The emerging e�e
tive theories, as well as the quantities relevant to neutrino masses

in ea
h of them, are illustrated in Fig. 1.

In summary, the running of the e�e
tive neutrino mass matrix m

�

above and between

the see-saw s
ales is given by the running of two parts,

m

�

= �

v

2

4

�

(n)

�+ 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

: (12)

where n labels the e�e
tive theory (
f. Fig. 1). In the SM and the MSSM, the 1-loop

�-fun
tions for m

�

in the various e�e
tive theories 
an be summarized as

16�

2

d

(n)

X

dt

=

�

C

e

Y

y

e

Y

e

+ C

�

(n)

Y

y

�

(n)

Y

�

�

T

(n)

X +

(n)

X

�

C

e

Y

y

e

Y

e

+ C

�

(n)

Y

y

�

(n)

Y

�

�

+

(n)

��

X

(n)

X ; (13)

where

(n)

X stands for

(n)

� or for 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

, respe
tively. The 
oeÆ
ients C

i

and ��

i

are listed

in Tab. 1.
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Model

(n)

X C

e

C

�


avour-trivial term

(n)

��

X

SM

(n)

� �

3

2

1

2

2Tr

�
(n)

Y

y

�

(n)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

� 3g

2

2

+ �

SM 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

3

2

1

2

2Tr

�
(n)

Y

y

�

(n)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

�

9

10

g

2

1

�

9

2

g

2

2

MSSM

(n)

� 1 1 2Tr

�
(n)

Y

y

�

(n)

Y

�

+ 3Y

y

u

Y

u

�

�

6

5

g

2

1

� 6g

2

2

MSSM 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

1 1 2Tr

�(n)

Y

y

�

(n)

Y

�

+ 3Y

y

u

Y

u

�

�

6

5

g

2

1

� 6g

2

2

Table 1: CoeÆ
ients of the �-fun
tions of Eq. (13), whi
h govern the running of the e�e
tive neutrino

mass matrix in minimal see-saw models.

3 Analyti
 Understanding of the RG Evolution

The methods of [38, 31, 39, 20℄ 
an be used to derive di�erential equations for the running of

the neutrino masses, mixing angles and CP phases in the see-saw s
enario. In this se
tion,

we 
on
entrate on the full theory above the highest see-saw s
ale. The 
orresponding

di�erential equations for the running below the see-saw s
ales have been dis
ussed in

[40, 39, 20℄. We abbreviate the 
avour-dependent terms in the RGE (4) by

P := C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

: (14)

Due to the appearan
e of the neutrino Yukawa 
ouplings, the running depends on more

parameters than below the see-saw s
ale. In parti
ular, sin
e the see-saw formula does

not allow to determine Y

�

uniquely from the light neutrino mass matrix, the running is no

longer determined by (the RG extrapolation of) low-energy parameters only. Moreover,

Y

y

e

Y

e

and Y

y

�

Y

�

are not simultaneously diagonalizable in general. As a 
onsequen
e, the RG

evolution generates o�-diagonal entries in the 
harged lepton Yukawa 
ouplings, even if one

starts in a basis where they are diagonal (
f. the RGEs in App. D). This is also di�erent

from the situation below the see-saw s
ale and makes the results more 
ompli
ated.

In a given basis, Y

y

e

Y

e

and m

�


an be diagonalized by unitary matri
es, U

e

and U

�

,

respe
tively. The lepton mixing matrix is given by U

MNS

= U

y

e

U

�

. Keeping the basis �xed,

both matri
es 
hange with the renormalization s
ale, so that the RGEs of the mixing

parameters 
onsist of two parts, one 
oming from the RG 
hange of U

e

, and the other

from the 
hange of U

�

. We will refer to these as U

e

and U

�


ontribution in the following.

6

Further details and the derivation of the formulae are given in App. B.

We will �rst dis
uss the U

�


ontribution, whi
h is often dominant. An important result

is that in the RGEs above the see-saw s
ale, the same mass squared di�eren
es appear in

the denominators as below the see-saw s
ale, so that

��

12

;�'

1

;�'

2

;�Æ /

1

�m

2

sol

; (15a)

��

13

;��

23

/

1

�m

2

atm

; (15b)

6

One might wonder whether it is possible to simplify the situation by working in the basis where P

is diagonal. This is not the 
ase, sin
e the U

e


ontribution depends on a di�erent linear 
ombination of

Y

y

e

Y

e

and Y

y

�

Y

�

.

5



where, as usual, �m

2

atm

:= m

2

3

� m

2

2

and �m

2

sol

:= m

2

2

� m

2

1

.

7

Thus, �

12

and the phases

generi
ally still run faster than �

13

and �

23

. Besides, the running is suppressed by a strong

normal mass hierar
hy, as it is the 
ase below M

1

. For the unphysi
al phases

8

, we �nd a

generi
ally larger 
hange �Æ

e

/ 1=�m

2

sol

, while �Æ

�

;�Æ

�

/ 1=�m

2

atm

.

Often, the evolution will be dominated by a single element of P . Then, the derivatives

of the masses and mixing parameters are given by this element times the 
orresponding

entry in the tables of Se
. 3.3 and App. C. We will dis
uss an example in Se
. 6.1. Of


ourse, if several entries of P

fg

are relevant, one obtains the analyti
 des
ription by simply

adding up their 
ontributions. The tables are given in the basis where Y

e

is diagonal and

where the unphysi
al phases in the MNS matrix are zero (
f. Apps. B.1 and B.5). In order

to keep the expressions reasonably short, we only present the �rst order of the expansion

in the small CHOOZ angle �

13

. We furthermore use the abbreviation

� :=

�m

2

sol

�m

2

atm

: (16)

Its 
urrent best-�t value is � � 0:038 [41℄. Note that this value is measured at low energy.

It 
an 
hange signi�
antly, if the running of the mass eigenvalues is not a simple res
aling.

The tables in the appendix show that the numerators of the RGEs are of the order

of m

2

i

in the generi
 
ase, i.e. if there are no signi�
ant 
an
ellations. Then, the generi


enhan
ement and suppression fa
tors given in Tab. 2 yield a �rst estimate of the RG


hange of the mixing angles. In parti
ular, they allow to understand analyti
ally when the

evolution is enhan
ed or suppressed 
ompared to the naive estimate

��

naive

ij

=

1

16�

2

P

fg

� ln

M

GUT

M

�

; (17)

where P

fg

is assumed to dominate the running and M

�

is the 
orresponding see-saw s
ale.

The analogous fa
tors for the CP phases are given in Tab. 3. The size of quantum 
orre
-

tions 
an thus be estimated by multiplying ��

naive

ij

with the 
orresponding enhan
ement

or suppression fa
tor. As the mass hierar
hy is weaker in the neutrino se
tor than in the

quark se
tor, the 
hange of the mixing parameters in the MNS matrix is larger than that

of the ones in the CKM matrix.

The RG evolution 
an deviate signi�
antly from the generi
 estimate, if 
an
ellations

o

ur. For example, for non-zero '

1

�'

2

, the running of �

12

usually gets damped (as it is

the 
ase below the see-saw s
ales [42℄). Su
h e�e
ts 
an be understood from the 
omplete

formulae in App. C. However, 
are should be taken when estimating the RG e�e
ts for

spe
ial phase 
on�gurations with extreme 
an
ellations, su
h as '

1

� '

2

= �, as terms

proportional to �

13

(whi
h are negle
ted in our formulae) 
an be
ome important then.

3.1 Running of the Mixing Angles

From the generi
 enhan
ement and suppression fa
tors for the evolution of the solar angle

in Tab. 2, we see that all terms in

_

�

12

are enlarged by m

2

=�m

2

sol

for quasi-degenerate

7

For spe
i�
 textures, this observation has been made in [11, 8℄. The result 
an also be obtained by

using the formulae of [39℄.

8

The term \unphysi
al phases" is somewhat misleading here, sin
e the distin
tion between physi
al

and unphysi
al parameters is not 
ompletely trivial in the full theory, 
f. App. B.5.
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d. n.h. i.h. d. n.h. i.h. d. n.h. i.h.
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atm
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2

sol
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m
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2

atm

1 1

m

2
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2

atm

p

� O(�

13

)

ReP

32

m

2

�m

2

sol

1 �

�1
m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

1 1

ImP

21

m

2

�m

2

sol

O(�

13

) �

�1

m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ImP

31

m

2

�m

2

sol

O(�

13

) �

�1
m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ImP

32

O(�

13

) O(�

13

) O(�

13

)

m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

p

� O(�

13

)

Table 2: Generi
 enhan
ement and suppression fa
tors for the evolution of the angles, yielding an estimate

of the size of the RG e�e
t. The table entries 
orrespond to the terms in the mixing parameter RGEs

with the 
oeÆ
ient given by the �rst 
olumn. A `1' indi
ates that there is no generi
 enhan
ement or

suppression. `d.' stands for a degenerate neutrino mass spe
trum, i.e. �m

2

atm

� m

2

1

� m

2

2

� m

2

3

� m

2

.

`n.h.' denotes a normally hierar
hi
al spe
trum, i.e. m

1

� m

2

� m

3

, and `i.h.' means an inverted

hierar
hy, i.e. m

3

� m

1

. m

2

.

masses. Thus, there will be large RG e�e
ts, if the di�erent terms do not 
an
el ea
h

other. The term involving ImP

32

is an ex
eption, be
ause its leading order is proportional

to �

13

, so that it only plays a role in spe
ial 
ases. In the 
ase of a strong normal hierar
hy,

there is no enhan
ement. However, for a moderate hierar
hy where the square of the

lightest neutrino mass is small 
ompared to �m

2

atm

but larger than �m

2

sol

the running is

still enhan
ed bym

2

1

=�m

2

sol

. This is similar for an inverted hierar
hy, where the evolution is

generi
ally enhan
ed by �

�1

, be
ause the masses m

1

and m

2

are almost degenerate. Thus,

the RG 
hange of �

12

is generi
ally large for an inverted hierar
hy and for a degenerate

spe
trum, and small for a normal hierar
hy. This 
on
lusion is un
hanged 
ompared to

the region below the see-saw s
ale.

The enhan
ement and suppression fa
tors of �

13

are similar to those of �

23

. The evo-

lution of both angles does not depend on P

11

for �

13

= 0. The terms proportional to the

other P

fg

are enhan
ed by m

2

=�m

2

atm

in the degenerate 
ase, so that we expe
t signi�
ant

e�e
ts here as well. However, as already mentioned, they are usually smaller than those for

�

12

. For both hierar
hi
al spe
tra, the running is slow. For a diagonal P and an inverted

hierar
hy with m

3

= 0, �

13

does not run at all, if it vanishes at some energy, as it is the


ase below the see-saw s
ale [43℄. However, this is no longer true if P

21

or P

31

is non-zero.

As far as the dependen
e of the RGEs on the mixing parameters is 
on
erned, we �nd

from Tab. 12 that the terms in the RGEs whi
h are proportional to the diagonal elements

of P exhibit basi
ally the same behavior as the RGEs below the see-saw s
ale [20℄. The

running of �

12

and �

23

is damped by non-zero Majorana phases, while the situation is more

7




ompli
ated for �

13

. In parti
ular, the value of the Dira
 phase in the 
ase �

13

= 0 is

determined by the 
ondition that

_

Æ remain �nite. Additionally, the running is suppressed

if the mixing angles are small, as it is the 
ase in the quark se
tor. (This is another reason

why the leptoni
 mixings run faster than the quark mixings [44℄.)

If the diagonal elements are equal, their 
ontributions to the RGEs 
an
el exa
tly.

This follows from the fa
t that the mixing angles do not 
hange under the RG, if P is

the identity matrix and thus does not distinguish between the 
avours. Of 
ourse, this

statement holds also for the RGEs of the CP phases. It provides a 
onsisten
y 
he
k for

the results.

Interesting new e�e
ts o

ur for non-zero o�-diagonal elements in P . Some of their


oeÆ
ients in the RGEs do not vanish for vanishing mixings, so that non-zero mixing angles

are generated radiatively. Be
ause of this, it is possible to rea
h low-energy parameter

regions that are 
ompatible with experiment even if the neutrino mass matrix is diagonal

at the GUT s
ale [10℄. This is in striking 
ontrast to the region below the see-saw s
ale

and to the quark se
tor. The terms proportional to the real parts of the o�-diagonal P

fg

exhibit the same dependen
e on the Majorana phases as the diagonal elements. Some of

them are suppressed for large angles �

12

and �

23

. For example, the ReP

23


ontribution

to

_

�

23

vanishes for maximal atmospheri
 mixing. The in
uen
e of the imaginary parts

has quite a di�erent dependen
e on the mixing parameters, in parti
ular on the Majorana

phases. The 
orresponding terms be
ome maximal for non-vanishing phases, for instan
e

for '

1

� '

2

= �=2 in the 
ase of �

12

. Thus, the usual damping of the running by non-

zero Majorana phases does not always take pla
e above the see-saw s
ales. However, the

maximal damping for '

1

� '

2

= � (or '

i

= � in the 
ase of �

23

) still o

urs, sin
e the


oeÆ
ients of ImP

fg

are zero then. Some examples for the running with large imaginary

entries in P will be dis
ussed in Se
. 6.4.

3.2 Running of the Phases

The CP phases show a fast running in general. The 
orresponding generi
 enhan
ement

and suppression fa
tors are given in Tab. 3. As for the RGE of the Dira
 phase Æ, there is

always a term proportional to �

�1

13

, whi
h is further enhan
ed for a degenerate spe
trum.

This implies that the running of Æ is in general signi�
ant for small �

13

, irrespe
tively of

the hierar
hy.

9

For �

13

= 0, Æ and

_

Æ are unde�ned. However, it is possible to de�ne an

analyti
 
ontinuation yielding a smooth evolution [20℄. In addition, for the degenerate or

inversely hierar
hi
al spe
trum, the running of Æ gets enhan
ed by terms proportional to

m

2

=�m

2

sol

or �

�1

, respe
tively. The 
oeÆ
ients of P

fg

in

_

Æ are given in Tab. 13, from where

one obtains the RGE as

_

Æ = �

�1

13

_

Æ

(�1)

+

_

Æ

(0)

+O(�

13

).

The situation is similar for the Majorana phases. By the same reasoning as for the

running of the solar angle, the generi
 RG e�e
ts are large for degenerate masses and for an

inverted hierar
hy, while they are suppressed for a strong normal hierar
hy. The 
oeÆ
ients

of P

fg

in _'

i

are given in Tab. 14. These formulae are also important to understand the

evolution of the mixing angles in some 
ases. An example will be dis
ussed in Se
. 6.4.

The evolution of the Majorana phase di�eren
e is governed by a simple equation,

9

Note, however, that in measurable quantities Æ appears always in 
ombination with sin �

13

, so that

the RG 
hange of predi
tions for experiments may not be signi�
ant.

8
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+
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+ �
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31
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1 �
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m
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+ �
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ImP
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�

�1

13

+
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Table 3: Generi
 enhan
ement and suppression fa
tors for the evolution of the CP phases, yielding an

estimate of the size of the RG e�e
t. The table entries 
orrespond to the terms in the mixing parameter

RGEs with the 
oeÆ
ient given by the �rst 
olumn. A `1' indi
ates that there is no generi
 enhan
ement

or suppression. `d.' denotes a degenerate neutrino mass spe
trum, i.e. �m

2

atm

� m

2

1

� m

2

2

� m

2

3

� m

2

.

`n.h.' denotes a normally hierar
hi
al mass spe
trum, i.e. m

1

� m

2

� m

3

, and `i.h.' means an inverted

hierar
hy, i.e. m

3

� m

1

. m

2

.

16�
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( _'

1

� _'

2

)
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11

�4S

12


os 2�

12

P
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4S
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2

23


os 2�

12

P

33
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12

s

2

23


os 2�

12

ReP

21

�8S

12




23


os 2�

12


ot 2�

12

ReP

31

8S

12

s

23


os 2�

12


ot 2�

12

ReP

32

�4S

12


os 2�

12

sin 2�

23

ImP

21

�4Q

�

12




23


ot 2�

12

ImP

31

4Q

�

12

s

23


ot 2�

12

ImP

32

0

Table 4: CoeÆ
ients of P

fg

in the slope of the Majorana phase di�eren
e for �

13

= 0. The abbreviations

S

ij

and Q

�

ij

depend on the mass eigenvalues and phases only, and enhan
e the running for a degenerate

mass spe
trum sin
e they are of the form f

ij

(m

i

;m

j

; '

1

; '

2

)=(m

2

j

�m

2

i

). They are listed in Tab. 11. We

use the abbreviations 


ij

= 
os �

ij

and s

ij

= sin �

ij

(
f. App. A.1).
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2 sin 2�
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s

23

�2 sin 2�
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s
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0
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s
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12
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23

ImP

21

0 0 0

ImP

31

0 0 0

ImP

32

0 0 0

Table 5: CoeÆ
ients of P

fg

in the slope of the mass eigenvalues for �

13

= 0.

whi
h 
an be read o� from Tab. 4. It indi
ates strong running, sin
e the slope is still

inversely proportional to �m

2

sol

. However, in the 
ase of equal Majorana phases, only the

imaginary entries in P and terms proportional to �

13


ontribute to the running. Besides,

the 
ontribution proportional to the real parts is suppressed for large solar mixing.

If Y

y

�

Y

�

is 
lose to the identity matrix, its 
ontribution to the running is very small,

sin
e the terms proportional to the diagonal entries 
an
el approximately. Then, only the


ontribution from Y

y

e

Y

e

remains, so that the evolution above the see-saw s
ales is essentially

the same as below. However, many GUT models suggest a hierar
hi
al stru
ture for Y

�

like for the other Yukawa matri
es. Then the main 
ontribution will be due to P

33

and the

next-to-leading 
ontribution will be from ReP

32

, if Y

y

�

Y

�

is almost diagonal in the basis

with diagonal Y

y

e

Y

e

. Thus, the phase di�eren
e tends to de
rease while running down,

10

as it is the 
ase below the see-saw s
ales.

3.3 Running of the Masses

Below the see-saw s
ales, the evolution of the mass eigenvalues is, to a good approximation,

des
ribed by a universal s
aling 
aused by the 
avour-independent part of the RGE [40,

39, 20℄. This 
avour-independent term, however, be
omes smaller at high energies. In the

MSSM, it 
an even 
ross zero at some intermediate s
ale. Therefore, the 
avour-dependent

terms play a more important role above the see-saw s
ales, the more so they 
an be larger

if the entries of Y

�

are order one.

We list the 
oeÆ
ients in the slope of the mass eigenvalues and of the �m

2

s in Tab. 5

and Tab. 6, respe
tively. Clearly, the RGE for ea
h mass eigenvalue is proportional to the

mass eigenvalue itself. As a 
onsequen
e, the mass eigenvalues 
an never run from a �nite

value to zero or vi
e versa. In other words, the rank of the e�e
tive neutrino mass matrix

is 
onserved under the renormalization group. In 
ontrast, the mass squared di�eren
es


an, in prin
iple, run through zero. This, however, requires a very high value of m

1

.

The 
avour-independent term in the MSSM is subje
t to large 
an
ellations (
f. Eq.

(6b)). Note that the running of the mass eigenvalues strongly depends on the top Yukawa

10

More a

urately, it runs away from � and towards either 0 or 2�, i.e. j'

1

�'

2

j de
reases for j'

1

�'

2

j < �

and in
reases for j'

1

� '

2

j > �.
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31
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Table 6: CoeÆ
ients of P

fg

in the slope of the mass squared di�eren
es for �

13

= 0.


oupling y

t

, sin
e the term �� 
ontains 6y

2

t

, and on the gauge 
ouplings, whi
h run di�erently

for di�erent SUSY breaking s
ales. This 
ould, at least partially, explain why there exist

mutually in
onsistent numeri
al results for the s
aling of the mass eigenvalues below the

see-saw s
ales [20, 45, 46℄.

Between and above the see-saw s
ales, the running is strongly in
uen
ed by the neutrino

Yukawa 
ouplings. In parti
ular, depending on the size of the Y

�

entries, ��

MSSM


an

turn negative or not. For order one Y

�

entries, it typi
ally stays positive. However, in

su
h a situation, ��

MSSM

be
omes small so that P 
an dominate the running. Consider,

for instan
e, the 
ase of a dominant P

33

entry. Here, the 
oeÆ
ient of _m

2

is enhan
ed


ompared to the _m

1


oeÆ
ient by (m

2

=m

1

) 
ot

2

�

12

(
f. Tab. 5). In many 
ases �

12

is at

high s
ales mu
h smaller than its low-energy value, so that m

2

runs mu
h faster than m

1

.

As a 
onsequen
e, �m

2

sol


an be signi�
antly enhan
ed even for not too degenerate spe
tra.

A relatively drasti
 example is shown in Fig. 2. Clearly, the dis
repan
y in the s
aling of

�m

2

sol

and �m

2

atm

stems from the 
avour-dependent terms P . As tan� is large in this

example, the P

33

indu
ed terms 
ause important e�e
ts already below the see-saw s
ale.

The dominant e�e
t, however, is the running in the range M

3

� � � M

GUT

, i.e. over less

than two orders of magnitude. By inspe
ting the tables, we �nd that analogous features

are present if other elements of P are large. In parti
ular, one 
an enhan
e the evolution

of �m

2

atm

as well. Therefore we expe
t many models whi
h predi
t realisti
 values for the

masses at tree level to be ruled out by several standard deviations due to RG e�e
ts.

If, on the other hand, the eigenvalues of Y

y

�

Y

�

are mu
h smaller than 1, ��

MSSM

typi
ally


ips its sign. The entries of P are now small if tan � is small, and for large tan� they

are dominated by Y

y

e

Y

e

. Hen
e, for small tan �, ��

MSSM

still dominates the running of the

masses (away from its zero point). In 
ontrast, for large tan �, the 
ontribution of P (being

now dominated by Y

y

e

Y

e

) is of similar importan
e, as it is the 
ase for the running of the

e�e
tive neutrino mass operator � at high energies. Sin
e �� 
an be negative at s
ales 
lose

to the GUT s
ale now, the 
ontributions from the diagonal entries in P 
an de
rease the

RG e�e
ts. The o�-diagonal entries again 
an both in
rease and de
rease them.

Finally, let us mention that sin
e the terms in _m

i

involving the imaginary part of P

are proportional to sin �

13

, they do not 
ontribute in the approximation of vanishing �

13

.

Clearly, in the SM, �� dominates the running if Y

�

is small.

11
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Figure 2: Example where the 
avour-dependent terms dominate the running of the mass eigenvalues for

M

3

� � � M

GUT

in the MSSM. We use Y

�

= diag(0:02; 0:1; 1) and m

1

= 0:04 eV at the GUT s
ale as well

as a SUSY breaking s
ale of 200GeV and tan � = 50. M is 
hosen su
h that the low-energy parameters are


ompatible with experiment. The di�erent gray-shaded areas indi
ate the ranges of the e�e
tive theories

(
f. Fig. 1).

3.4 U

e

Contribution to the Running

As mentioned in the beginning of this se
tion, the RGE for Y

e


ontains non-diagonal

terms above and between the thresholds, so that there is an additional 
ontribution to the

running of the leptoni
 mixing angles and CP phases. In the see-saw s
enario, the RGE

for Y

e

above M

3

is given by

16�

2

dY

e

dt

= Y

e

(D

e

Y

y

e

Y

e

+D

�

Y

y

�

Y

�

) + �

e

Y

e

=: Y

e

F + �

e

Y

e

(18)

with

D

e

=

3

2

; D

�

= �

3

2

in the SM, (19a)

D

e

= 3 ; D

�

= 1 in the MSSM. (19b)

As usual, �

e

is 
avour diagonal (
f. App. D). The resulting 
ontributions to the evolution

of the angles for vanishing �

13

and y

e

; y

�

� y

�

are listed in Tab. 7. They 
an simply be

added to the expressions dis
ussed above (
f. App. B.4).

In 
ontrast to the latter, all non-zero terms in the U

e


ontribution have a generi


enhan
ement fa
tor of 1. The reason for this is the strong hierar
hy among the 
harged

lepton masses. As a 
onsequen
e, the U

e


ontribution is negligible 
ompared to the U

�


ontribution, if the relevant fa
tor in Tab. 2 is mu
h larger than 1. If it is 
lose to 1,

both 
ontributions are generi
ally of the same order of magnitude. The U

e


ontribution


an even be dominant if the fa
tor is small. This is also possible, if 
an
ellations o

ur

between the leading-order terms in the RGEs.

To get a feeling for the size of the e�e
ts dis
ussed in this se
tion, let us 
onsider a

rough estimate. We assume that the running is linear on a logarithmi
 s
ale, that it is

12



16�

2

_

�

U

e

12

16�

2

_

�

U

e

13

16�

2

_

�

U

e

23

F

11

0 0 0

F

22

0 0 0

F

33

0 0 0

ReF

21

�


23

�s

23


os Æ 0

ReF

31

s

23

�


23


os Æ 0

ReF

32

0 0 �1

ImF

21

0 �s

23

sin Æ 0

ImF

31

0 �


23

sin Æ 0

ImF

32

0 0 0

Table 7: CoeÆ
ients of F

fg

in the U

e


ontribution to the slope of the mixing angles for �

13

= 0 and

y

e

; y

�

� y

�

.

dominated by a single entry y in Y

�

, whi
h is related to the light neutrino mass m

3

and

the see-saw s
ale M

3

by m

3

=

v

2

2

y

2

M

3

, and that the relevant term in Tab. 7 is of the order

of 1. Then we �nd

j��

U

e

j � j

_

�

U

e

j ln

M

GUT

M

3

� D

�

y

2

�

0:027 + 0:006 ln

m

3

=0:1 eV

y

2

�

: (20)

Thus, the 
hange is small, but it 
an still be relevant in the 
ontext of pre
ision studies

(e.g. the 
hange of �

13

), if y is large.

4 Running between the See-Saw S
ales

Between the see-saw s
ales, the singlets are partly integrated out, whi
h implies that only

a (n�1) � 3 submatrix of the neutrino Yukawa matrix remains. Therefore, we expe
t

that the running between the thresholds 
aused by the neutrino Yukawa matrix 
an di�er

signi�
antly from the running above or below them.

We now dis
uss the running due to the terms in the �-fun
tions with a 
avour stru
ture

proportional to the unit matrix. Below and above the see-saw s
ales, they only 
ause a


ommon s
aling of the elements of the neutrino mass matrix and thus leave the mixing

angles and phases un
hanged. Between the thresholds, however, the e�e
tive neutrino

mass matrix 
onsists of the two parts

(n)

� and 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

, as shown in Eq. (12). Here, the

mixing angles and phases 
hange in general, unless both parts are s
aled equally. From

table 1, we see that in the SM, the �-fun
tions

(n)

�

�

and

(n)

�

2Y

T

�

M

�1

Y

�

, have di�erent 
oeÆ
ients

in the terms proportional to the gauge 
ouplings and to the Higgs self-
oupling [27℄. This

di�eren
e 
an be understood by looking at the 
orresponding diagrams of the \full" and

the e�e
tive theory. For instan
e, the diagram for the 
orre
tion to the e�e
tive vertex

proportional to � and its 
ounterpart with the heavy singlet running in the loop are shown

in �gure 3. Diagram (a) is UV divergent, whereas diagram (b) is UV �nite. We thus get no


ontribution proportional to � for the �-fun
tion of the 
omposite operator. The situation

is similar for some of the diagrams 
orresponding to the vertex 
orre
tions proportional to

the gauge 
ouplings. Thus, in the SM, the RG s
aling of the two parts

(n)

� and 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

13
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Figure 3: Figure (a) shows the diagram whi
h gives the 
ontribution proportional to the Higgs self-


oupling in the �-fun
tion of the neutrino mass operator in the SM. Figure (b) shows its �nite 
ounterpart

with the heavy singlet running in the loop. The gray box labeled by �

i


orresponds to the 
ontribution

to the e�e
tive neutrino mass operator from integrating out the heavy singlet N

i

R

.

of the e�e
tive mass matrix between the thresholds, 
aused by the intera
tions with trivial


avour stru
ture, is di�erent. This implies a running of the mixing angles and CP phases in

addition to the running of the mass eigenvalues.

11

This e�e
t 
an even give the dominant


ontribution to the running of the mixing angles, as for instan
e in the example shown in

�gure 4 (from [11℄).

Due to the non-renormalization theorem in supersymmetri
 theories,

(n)

�

�

and

(n)

�

2Y

T

�

M

�1

Y

�

are identi
al in the MSSM (see Tab. 1 on p. 5), so that we 
an use the RGEs of Se
. 3

between the see-saw s
ales as well. In parti
ular, the enhan
ed running between the

thresholds due to terms with a trivial 
avour stru
ture does not o

ur. Of 
ourse, the

heavy degrees of freedom have to be integrated out �rst, i.e. all parameters have to be

repla
ed by the e�e
tive ones between the thresholds.

5 Mathemati
a Pa
kages for Numeri
al RG Analyses

5.1 Numeri
al Solution of the RGEs

The Mathemati
a pa
kage REAP (Renormalization Group Evolution of Angles and Phases)

numeri
ally solves the RGEs of the quantities relevant for neutrino masses, for example

the dimension 5 neutrino mass operator, the Yukawa matri
es and the gauge 
ouplings.

The �-fun
tions for the SM, the MSSM and two Higgs doublet models with Z

2

symmetry

for FCNC suppression (2HDM) with and without right-handed neutrinos are implemented.

In addition, the same models are available for Dira
 neutrinos. New models 
an be added

by the user. The heavy singlet neutrinos 
an be integrated out automati
ally at the


orre
t mass thresholds, as des
ribed in Se
. 2.

12

The software 
an also be applied to type

II see-saw models as long as one only 
onsiders the energy region below the additional

see-saw s
ale M

�

, where the new physi
s su
h as Higgs triplets only leads to another

11

To see this, let us assume that U

T

�

(n)

�+ 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

U is diagonal. Then U

T

�

a

(n)

�+ b 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

U

is in general only diagonal if a = b (
ommon s
aling).

12

We do not 
onsider SUSY threshold 
orre
tions [47℄, as they are usually numeri
ally less important

[48℄.

14
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Figure 4: Running from maximal solar mixing at M

GUT

to the experimentally preferred angle of the

LMA solution. The �gure shows an example in the SM with a negative CP parity for m

2

and a Yukawa

matrix Y

�

= 0:5 � diag("

2

; "; 1) at M

GUT

with " = 3:5 � 10

�3

and a normal mass hierar
hy (from [11℄). The

lightest neutrino has a mass of 0:004 eV (at low energy). The gray-shaded areas illustrate the validity

ranges of the e�e
tive theories emerging from integrating out the heavy singlet neutrinos.


ontribution to the e�e
tive neutrino mass operator. The pa
kage 
an be downloaded

from http://www.ph.tum.de/~rge/REAP/. Mathemati
a 5 is required.

5.2 Extra
tion of Mixing Parameters from Mass Matri
es

The pa
kage MixingParameterTools (MPT) allows to extra
t the physi
al lepton masses,

mixing angles and CP phases from the mass matri
es of the neutrinos and the 
harged

leptons. Thus, the running of the neutrino mass matrix 
al
ulated by REAP 
an be trans-

lated into the running of the mixing parameters and the mass eigenvalues. For the def-

inition of the mixing parameters, see App. A.1 and the do
umentation of the pa
kage.

MixingParameterTools 
an also be useful as a stand-alone appli
ation in order to study

textures without running, and it is not bound to the analysis of neutrino masses only

but may be used for quark and superpartner mass matri
es as well. Therefore, it 
an be

obtained separately from REAP at http://www.ph.tum.de/~rge/MPT/.

5.3 Example Cal
ulation

The following simple example demonstrates how to use the Mathemati
a pa
kages to 
al-


ulate the RG evolution of the neutrino mass matrix in the MSSM extended by three

heavy singlet neutrinos. Of 
ourse, further do
umentation is provided together with the

pa
kages.

1. The pa
kage 
orresponding to the model at the highest energy has to be loaded.

All other pa
kages needed in the 
ourse of the 
al
ulation are loaded automati
ally.

(Note that ` is the ba
kquote, whi
h is used in opening quotation marks, for example.)

Needs["REAP`RGEMSSM`"℄
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http://www.ph.tum.de/~rge/REAP/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/MPT/


2. Next, we spe
ify that we would like to use the MSSM with singlet neutrinos and

tan � = 50. Furthermore, we set the SUSY breaking s
ale to 200GeV and use the

SM as an e�e
tive theory below this s
ale.

RGEAdd["MSSM",RGEtan\[Beta℄->50℄

RGEAdd["SM",RGECutoff->200℄

3. Now we have to provide the initial values. For instan
e, let us set the GUT-s
ale

value of �

12

to 45

Æ

and that of the �rst Majorana phase to 50

Æ

. Besides, we use a

simple diagonal pattern for the neutrino Yukawa matrix and the default values of

the pa
kage for the remaining parameters.

RGESetInitial[2*10^16,

RGE\[Theta℄12->45 Degree,RGE\[Phi℄1->50 Degree,

RGEY\[Nu℄->{{1,0,0},{0,0.5,0},{0,0,0.1}}℄

4. RGESolve[low,high℄ solves the RGEs between the energy s
ales low and high. The

heavy singlets are integrated out automati
ally at their mass thresholds.

RGESolve[100,2*10^16℄

5. Using RGEGetSolution[s
ale,quantity℄ we 
an query the value of the quantity

given in the se
ond argument at the energy given in the �rst one. For example, this

returns the mass matrix of the light neutrinos at 100GeV:

MatrixForm[RGEGetSolution[100,RGEM\[Nu℄℄℄

6. To �nd the leptoni
 mass parameters, we use the fun
tion MNSParameters[m

�

,Y

e

℄

(whi
h also needs the Yukawa matrix of the 
harged leptons). The results are given

in the order ff�

12

; �

13

; �

23

; Æ; Æ

e

; Æ

�

; Æ

�

; '

1

; '

2

g; fm

1

;m

2

;m

3

g; fy

e

; y

�

; y

�

gg.

MNSParameters[

RGEGetSolution[100,RGEM\[Nu℄℄,RGEGetSolution[100,RGEYe℄℄

7. Finally, we 
an plot the running of the mixing angles:

Needs["Graphi
s`Graphi
s`"℄

mNu[x_℄:=RGEGetSolution[x,RGEM\[Nu℄℄

Ye[x_℄:=RGEGetSolution[x,RGEYe℄

\[Theta℄12[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,1℄℄

\[Theta℄13[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,2℄℄

\[Theta℄23[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,3℄℄

LogLinearPlot[{\[Theta℄12[x℄,\[Theta℄13[x℄,\[Theta℄23[x℄},

{x,100,2*10^16}℄
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6 Appli
ations

We now apply the analyti
al and numeri
al tools des
ribed in the previous se
tions to

some spe
i�
 
ases with interesting RG e�e
ts above, between and below the see-saw

s
ales within the 
onventional see-saw s
enario.

6.1 RG E�e
ts for a Dominant (Y

�

)

33

Many uni�ed models relate the Yukawa 
ouplings of the di�erent 
harged fermions and

the neutrinos, e.g. Y

�

� Y

u

or Y

�

� Y

e

. For the 
harged fermions, the quantities a

essible

through observation are Y

y

Y , where Y denotes the 
orresponding Yukawa matrix. It is


onvenient to work in the basis where Y

y

u

Y

u

and Y

y

e

Y

e

are diagonal and positive, and the

diagonal entries are ordered as
endingly. In this basis, all three 
ombinations Y

y

Y have

a dominant 33 entry. In this subse
tion, we shall assume a similar pattern for Y

y

�

Y

�

,

i.e. (Y

y

�

Y

�

)

33

� y

2

3

� (Y

y

�

Y

�

)

ij 6=33

. Given su
h a hierar
hy for Y

y

�

Y

�

, the RG 
orre
tions

��

13

:= �

13

(M

SUSY

)� �

13

(M

GUT

) and ��

23


an be approximated by

��

13

�

�1

32�

2

�

C

e

y

2

�

ln

�

M

GUT

M

SUSY

�

+ C

�

y

2

3

ln

�

M

GUT

M

�

�

�

sin 2�

12

sin 2�

23

�

�

m

3

�m

2

atm

(1 + �)

[m

1


os('

1

� Æ)� (1 + �)m

2


os('

2

� Æ)� �m

3


os Æ℄ (21)

��

23

�

1

32�

2

�

C

e

y

2

�

ln

�

M

GUT

M

SUSY

�

+ C

�

y

2

3

ln

�

M

GUT

M

�

�

�

sin 2�

23

�

�

1

�m

2

atm

�




2

12

jm

2

e

i'

2

+m

3

j

2

+ s

2

12

jm

1

e

i'

1

+m

3

j

2

1 + �

�

; (22)

where M

�

denotes the mass s
ale of the heavy neutrino(s) with the large Yukawa 
ou-

plings.

13

To obtain these results, we read o� the RGEs from Tab. 12, and integrated them

with the approximation of 
onstant 
oeÆ
ients. This is reasonably a

urate, sin
e the

running of �

13

and �

23

is almost linear on logarithmi
 s
ales [20℄.

14

In the SM, the term proportional to y

2

�

is negligible, sin
e the Yukawa 
oupling is not

enhan
ed by tan �. However, the y

2

3


ontribution 
an be large, and it is not suppressed for

small tan �. Furthermore, ex
ept for y

3

andM

�

, only (the RG extrapolation of) low-energy

parameters enter the expressions (21) and (22).

In the 
ase of the solar angle, the running is strongly non-linear when the RG 
hange

is large. Then, the approximation used in the above equations does not yield reliable

results. Even by integrating the RGE (assuming �

12

to vary but the other parameters to be


onstant), one arrives at an expression whi
h does not represent an a

urate approximation

in many 
ases be
ause of the running of �m

2

sol

. Nevertheless, an inspe
tion of the RGE

reveals several qualitative features of the running su
h as the damping in
uen
e of the

phases, as dis
ussed in Se
. 3.1.

The running of the Majorana phases may be regarded as en
ouraging for the prospe
ts

of neutrinoless double � de
ay experiments: it is known that even if the mass eigenvalues

13

For the analyti
 estimates, we ignore 
ompli
ations due to the generi
ally non-degenerate see-saw

s
ales [27℄.

14

A 
omparison with numeri
al 
al
ulations shows that this is un
hanged in the presen
e of neutrino

Yukawa 
ouplings.

17



are large enough to make a dis
overy in future experiments possible, 
an
ellations may

strongly suppress the amplitude [49℄. This 
an dire
tly be seen from the fa
t that the

amplitude is governed by the e�e
tive neutrino mass

hm

�

i =

�

�

m

1




2

12




2

13

e

i'

1

+m

2

s

2

12




2

13

e

i'

2

+m

3

s

2

13

e

2iÆ

�

�

; (23)

whi
h is obviously suppressed if '

1

� '

2

is 
lose to �. However, for dominant P

33

, the

di�eren
e of Majorana phases is driven away from � at low energies due to RG e�e
ts (
f.

the dis
ussion in Se
. 3.2). This implies that 
an
ellations tend to be avoided. Note that

the 
ontribution from Y

y

e

Y

e

, whi
h persists below the see-saw s
ales, in
reases the e�e
t

[20℄.

6.2 Neutrino Yukawa Couplings with Two Large Entries

As another example, let us assume that the neutrino Yukawa matrix 
ontains two domi-

nant entries, (Y

�

)

33

� e

�i


(Y

�

)

32

� y

3

with an arbitrary phase 
, as it is the 
ase in many

models where the large atmospheri
 mixing angle emerges from Y

�

in the basis where Y

e

is diagonal. Then (Y

y

�

Y

�

)

33

� (Y

y

�

Y

�

)

22

, whi
h 
auses a 
an
ellation between the 
ontribu-

tions proportional to these terms in the RGEs of �

13

and �

23

. Thus, using the same linear

approximation as in Se
. 6.1, we obtain the 
hanges
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+

1
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�

y

2

3

sin 
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�

M
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M

�

�

sin 2�
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�

�

m

3

�m

2
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1
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1

� Æ)� (1 + �)m

2
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2
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3
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�
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�
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�
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�
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e
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1

e
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1
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�
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C

�

y

2
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�

M
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M

�

�

m

3

�m
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2

12

m

2

sin'

2

+ s

2

12

m

1

sin'

1

1 + �

�

+

1

16�

2

D

�

y

2

3


os 
 ln

�

M

GUT

M

�

�

: (25)

The 
hange proportional to the real part of P

32

vanishes for maximal atmospheri
 mixing.

Hen
e, the neutrino Yukawa 
ouplings only 
ontribute signi�
antly to the running of �

13

in this 
ase, if (Y

�

)

32

has a large imaginary part and if the CP phases are not 
lose to 0 or

�. In ��

23

, they always play a role by indu
ing o�-diagonal elements in Y

y

e

Y

e

, whi
h leads

to the last term in Eq. (25). This term is a
tually dominant in the 
ase of CP 
onservation

and small tan�.
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6.3 RG Corre
tions and Pre
ision Measurements

In this se
tion, we will estimate the order of magnitude of RG e�e
ts in see-saw models

and 
ompare it to the pre
ision of future measurements of neutrino mixing (see also [21,

19, 50, 51℄ for related works). We shall �rst 
onsider the e�e
ts of a large P

33

as an

example. For instan
e, P

33


an be generated from the entry (Y

�

)

33

. Note that this is only

an example. RG e�e
ts from di�erent stru
tures of Y

�


an be understood and estimated

using the analyti
 formulae of Se
. 3. Graphi
ally, the RG 
orre
tions 
aused by P

33

in

the MSSM with tan � = 20 are illustrated in Fig. 5. We have assumed the initial values

�

13

= 0, �

23

= �=4 and �

12

+ �

C

= �=4 (where �

C

is the Cabibbo angle) at high energy,

whi
h may be espe
ially interesting from a theoreti
al point of view [52, 53, 54℄. The


hanges of �

13

and �

23

have been 
al
ulated from the approximations (21) and (22). We

would like to stress that the mass squared di�eren
es are running quantities as well and

taking them as 
onstant, as it was done in Eqs. (21) and (22), restri
ts the a

ura
y of

the estimates. For produ
ing the plots in Fig. 5, we have used the values of �m

2

atm

and

�m

2

sol

at � = 10

14

GeV. For the 
onsidered parameter ranges and for m

t

(m

t

) = 175GeV

and M

SUSY

= 1TeV, the mass squared di�eren
es at � = 10

14

GeV are about a fa
tor

1:75 larger than the low-energy values. Note that their running depends sensitively on

the value of the top mass and on the SUSY breaking s
ale. The 
hange of �

12

has also

been determined assuming a linear running, whi
h is possible here be
ause only rather

small neutrino masses and a moderate value of tan � are 
onsidered in the plot. We have

used those values for the Majorana phases that do not damp the RG evolution, as well

as best-�t values for the os
illation parameters. For the see-saw s
ale asso
iated with the

large Yukawa 
oupling, we have used the approximation

M

�

�M

33

�

v

2

2

(Y

�

)

2

33

(m

�1

�

)

33

: (26)

To justify this, let us re
onstru
tM from Y

�

andm

�

using the inverse of the see-saw formula

(3), M = �

v

2

2

Y

�

m

�1

�

Y

T

�

, for a dominant entry (Y

�

)

33

in Y

�

and not too large neutrino

masses, m

1

. 0:1 eV. In this 
ase, one 
an see from m

�1

�

= U

�

diag(m

�1

1

;m

�1

2

;m

�1

3

)U

T

�

that all entries of the inverse light neutrino mass matrix are usually of the same order

of magnitude.

15

Consequently, M

33

is dominated by the term proportional to (Y

�

)

2

33

, i.e.

the one given in Eq. (26). Furthermore, M

33

is the dominant entry in M , so that it is

approximately equal to the largest eigenvalue M

3

=M

�

.

We �nd that the RG 
hanges are 
omparable to the sensitivities of planned pre
ision

experiments (
f. Tabs. 8 and 9) in the shaded parts of the parameter spa
e, providing a

reason to be optimisti
 about the potential of these experiments to �nd interesting results

and to 
onstrain model parameters. Compared to the 
hange due to the 
harged lepton

Yukawa 
ouplings alone [20℄, the gray-shaded regions are expanded, sin
e the 
ontribution

from the neutrino Yukawa 
ouplings has the same sign in the 
ase we 
onsidered. For a

very strong mass hierar
hy, we �nd very small RG e�e
ts in our example. One reason for

this is the de
rease of the enhan
ement fa
tors in the RGEs, as dis
ussed in Se
. 3.1, but

this is not the main e�e
t. What is more important is the in
rease ofM

�

. From Eq. (26) we

�nd that it is roughly proportional to m

�1

1

for a strong hierar
hy, so that it be
omes 
lose

15

Only for a narrow range in m

1

and a large di�eren
e of the Majorana phases, a suppression of the

element (m

�1

�

)

33

is possible. Then, Eq. (26) may not be a good approximation.
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Figure 5: Estimated RG 
orre
tions to �

13

= 0, �

23

= �=4 and �

12

+ �

C

= �=4 with a large P

33

in the

MSSM with tan � = 20, M

SUSY

= 1TeV and a normal neutrino mass ordering. For instan
e, P

33


an be

generated from the entry (Y

�

)

33

in the neutrino Yukawa matrix, whi
h was assumed here. The running

between the ele
troweak and the GUT s
ale has been 
al
ulated using the approximate formulae (21) and

(22). For produ
ing the plots we have used �m

2

atm

and �m

2

sol

at � = 10

14

GeV, whi
h, for the 
onsidered

parameter ranges, are about a fa
tor 1:75 larger than the low energy values. In Fig. (a) and (
) the CP

phases have been set to zero, and in Fig. (b) '

1

= 0 and '

2

= � was assumed, leading to un-suppressed

running. Besides, the initial 
ondition �

13

= 0 as well as the best-�t values for the remaining parameters

have been used.
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Current Beams D-CHOOZ T2K+NuMI Rea
tor-II JPARC-HK NuFa
t-II

0.14 0.061 0.032 0.023 0.014 10

�3

6� 10

�5

Table 8: Current and expe
ted sensitivities for sin

2

2�

13

at the 90% CL [55, 56, 57℄. The entry \Beams"

in
ludes the 
onventional beam experiments MINOS, ICARUS and OPERA. The last entry refers to an

advan
ed stage neutrino fa
tory with experiments at two di�erent baselines. The sensitivity of a �rst

stage neutrino fa
tory (\NuFa
t-I") is similar to that of JPARC-HK. For a des
ription of the experiments

and the assumptions used in the analysis, see [55, 56, 57℄ and referen
es therein. The numbers should

be treated with some 
are, sin
e they depend on the true values of the other os
illation parameters, in

parti
ular �m

2

atm

.

Current Beams T2K+NuMI JPARC-HK NuFa
t-II

0.16 0.1 0.050 0.020 0.055

Table 9: Current and expe
ted sensitivities for j0:5� sin

2

�

23

j [22℄. The numbers are the minimal values

required to ex
lude maximalmixing at the 90% CL. \Current" is the 
urrent limit from SuperKamiokande

[58℄, \Beams" means 
onventional neutrino beams. See [22℄ and referen
es therein for a des
ription of the

experiments and the analysis methods. As in Tab. 8, the results depend on the true values of the other

os
illation parameters.

to or even larger than M

GUT

. Consequently, the RG e�e
ts from (Y

�

)

33

be
ome negligible,

and we are left with the 
hange proportional to y

2

�

. This 
hange is small here, sin
e we are

using a moderate value of tan � = 20.

In order to demonstrate that RG 
orre
tions from Y

�

are not ne
essarily negligible for

a strongly hierar
hi
al spe
trum, let us 
onsider another example, where two elements of

Y

�

are large. The evolution of the atmospheri
 mixing angle and mass squared di�eren
e

is shown in Fig. 6 for �

23

= �=4 at high energy in the MSSM with di�erent values of tan �

and a strong normal mass hierar
hy. In this example, we have taken (Y

�

)

33

= (Y

�

)

32

= 1

at M

3

and assumed the other entries in Y

�

to be small in the basis where M and Y

e

are

diagonal. We have furthermore assumed that the right-handed neutrino with mass M

3

dominates in the see-saw formula, as it is the 
ase for heavy sequential dominan
e (HSD)

[59, 60℄.

16

This allows to approximately 
al
ulateM

3

� v

2

(Y

�

)

2

33

m

�1

3

with m

3

�

p

�m

2

atm

in this 
ase, and to 
onsider only one see-saw s
aleM

�

=M

3

when dis
ussing the running.

Eq. (25) then simpli�es to

��

23

�

1

32�

2

y

2

�

ln

�

M

GUT

M

SUSY

� �

1 + 2

p

�


2

12


os'

2

�

+

1

16�

2

ln

�

M

GUT

p

�m

2

atm

v

2

�

: (27)

The resulting 
hange of �

23

is in the range of about [1

Æ

; 5

Æ

℄. Thus, even with a strong

normal mass hierar
hy, the 
hange of the mixing angles 
an be within the sensitivity of

future long baseline experiments. The phase '

1

is irrelevant due to m

1

= 0, and '

2


annot


ause a signi�
ant damping as it appears together with the rather small quantity

p

�. In

Fig. 6, it has been set to 0.

As argued in Se
. 6.2, the running of U

e

(the se
ond term in Eq. (27)) 
annot be ne-

gle
ted in this example, be
ause the U

�


ontribution is strongly suppressed due to the


an
ellation between the terms proportional to P

22

and P

33

and the vanishing of the term

proportional to P

23

for maximal atmospheri
 mixing and real Y

�

. Even without 
an
ella-

tions, both 
ontributions are generi
ally of the same order of magnitude for hierar
hi
al

16

RG e�e
ts in this 
ase have been dis
ussed numeri
ally in [26℄, in agreement with our analyti
 results.
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Figure 6: Example for the running of �

23

, Fig. (a), and �m

2

atm

, Fig. (b), for a hierar
hi
al neutrino

spe
trum. The plots show the RG evolution in the MSSM for tan � = 55 (solid lines), 40 (dashed lines)

and 10 (dotted lines) with �

23

= 45

Æ

at high energy and present best-�t values for the other parameters as


onstraints at low energy. We have used (Y

�

)

33

= (Y

�

)

32

= 1 at the see-saw s
ale M

3

(in the basis where

M and Y

e

are diagonal) as an example (note that we use RL-
onvention for Y

�

). We have furthermore

assumed that the right-handed neutrino with mass M

3

dominates in the see-saw formulae, as in heavy

sequential dominan
e [59, 60℄, whi
h allows to approximately 
al
ulate M

3

from m

3

in the hierar
hi
al

s
heme. To a good approximation, only one see-saw s
ale is relevant for the running in this 
ase. The

gray regions 
orrespond to energies above this s
ale. The evolution of �m

2

atm

depends quite sensitively

on the value of the top mass and on the SUSY breaking s
ale. We have used m

t

(m

t

) = 175GeV and

M

SUSY

= 1TeV.
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Figure 7: Fast running of the solar angle despite large Majorana phases '

1

= �=2, '

2

= 0 in the MSSM

with tan � = 30, M

SUSY

= 1TeV and a normal mass hierar
hy. The evolution is dominated by the large

imaginary part of P

31

, see Eq. (28). Further initial 
onditions at the GUT s
ale M

GUT

= 2 � 10

16

GeV

were bimaximal mixing, m

1

= 0:08 eV, �m

2

sol

= 1:2 � 10

�4

eV

2

, and �m

2

atm

= 4 � 10

�3

eV

2

.

neutrino masses. Another lesson that 
an be learned from this example is that a 
omplete


an
ellation of the running is very unlikely. Hen
e, we always expe
t RG e�e
ts to be


omparable to the sensitivity of planned pre
ision experiments if there are large Yukawa


ouplings and if Y

�

and Y

e

are not simultaneously diagonal.

6.4 Large RG E�e
ts Despite Phases

The main new e�e
t above the see-saw thresholds is the appearan
e of o�-diagonal terms in

the Yukawa 
ouplings. As large o�-diagonal entries in the Yukawa matri
es are postulated

in a lot of fermion mass models in order to explain the large lepton mixing angles, we

expe
t an important impa
t on the running in many 
ases. As mentioned in Se
. 3.1,

the e�e
t of large imaginary entries in P is espe
ially unusual, sin
e their 
oeÆ
ients in

the RGEs of the mixing angles �

12

and �

23

vanish for zero Majorana phases and be
ome

maximal if the phases or their di�eren
e equal �=2. Thus, a fast running is now also

possible for large Majorana phases. A numeri
al example with

Y

�

(M

GUT

) =

0

�

0:001 0 0

0 0:01 0

�0:4i 0 0:5

1

A

) Y

y

�

Y

�

(M

GUT

) =

0

�

0:16 0 0:2i

0 0:0001 0

�0:2i 0 0:25

1

A

; (28)

i.e. a large and purely imaginary P

31

(as usual given in the basis where Y

e

is diagonal and

all unphysi
al phases are zero) is shown in Fig. 7. We used the MSSM with tan � = 30,

M

SUSY

= 1TeV, a normal hierar
hy, m

1

= 0:08 eV, �m

2

sol

= 1:2 � 10

�4

eV

2

, �m

2

atm

=

4�10

�3

eV

2

, '

1

= �=2, '

2

= 0 and bimaximalmixing at the GUT s
aleM

GUT

= 2�10

16

GeV.

Reasonable values for the low-energy os
illation parameters are rea
hed, and �m

2

sol

stays

positive. The running of the solar angle from maximal mixing to smaller values is 
aused

by the term proportional to ImP

31

in the RGE. A negative value of ImP

31

is required for

23



_

�

12

> 0 (
f. Tab. 12), whi
h is ne
essary to avoid running to the \dark side" of the solar

os
illation parameters (
orresponding to �m

2

sol

< 0 with our 
onventions). Alternatively,

one 
ould 
hoose ImP

31

> 0 and ex
hange the initial phases, i.e. '

1

= 0, '

2

= �=2. The

terms proportional to the diagonal elements P

11

and P

33

do not play a signi�
ant role

here, sin
e they have opposite signs and therefore 
an
el approximately. The example

demonstrates that for suÆ
iently large o�-diagonal entries in Y

y

�

Y

�

, it is possible to avoid

the requirement of an inverse hierar
hy of the neutrino Yukawa 
ouplings whi
h was found

for diagonal Y

y

�

Y

�

[11, 12, 13℄.

Adding another large imaginary entry in the 32-element,

Y

�

(M

GUT

) =

0

�

0:001 0 0

0 0:01 0

�0:4i �0:5i 0:5

1

A

) Y

y

�

Y

�

(M

GUT

) =

0

�

0:16 0:2 0:2i

0:2 0:25 0:25i

�0:2i �0:25i 0:25

1

A

; (29)

yields a rather extreme behavior of �

12

, as shown in Fig. 8. The highest see-saw s
ale lies

at about 8 � 10

13

GeV here, i.e. the turnaround in the running is not a threshold e�e
t.

Instead, it is due to the evolution of the Majorana phases, 
.f. the lower plot in Fig. 8.

Their di�eren
e initially equals �=2 but qui
kly starts to in
rease as soon as �

12

has moved

away from �=4. The evolution is dominated by the term proportional to ImP

31

, whi
h

is largest for '

1

� '

2

= �. At this point, sin('

1

� '

2

) 
hanges its sign, 
ausing a sign


hange in the 
ontributions of the imaginary parts of the o�-diagonal Yukawa 
ouplings

to the RGE for �

12

. This explains the minimum in the evolution of this angle. At lower

energies, the di�eren
e of the Majorana phases rea
hes a value of about 4:4 and remains

approximately 
onstant afterwards.

17

From Tab. 14, one would expe
t this value to be


loser to 2�. The di�eren
e is due to the subleading 
ontributions to the running (the

terms proportional to sin �

13

and the 
harged lepton 
ontribution), whi
h be
ome relevant

here be
ause of the strong damping of the leading terms.

6.5 Leptogenesis and RG Corre
tions

Leptogenesis [61℄ is an attra
tive explanation of the observed baryon-to-photon ratio

n

B

=n




= (6:5

+0:4

�0:3

) � 10

�10

[62℄. It typi
ally operates at the mass s
ale of the lightest right-

handed neutrino. In su
h a s
enario, we have to deal with three s
ales: the GUT s
ale

where the predi
tions for the model parameters are �xed, the s
ale of leptogenesis where

the parameters have to be right for su

essful baryogenesis, and the low s
ale at whi
h

the parameters 
an be measured in experiments. In parti
ular, one 
annot use GUT s
ale

parameters or experimental results dire
tly in order to test the viability of leptogenesis in

a given model, rather one has to take into a

ount quantum 
orre
tions. In the energy

range between the leptogenesis s
ale M

1

and the ele
troweak s
ale M

EW

, we 
an 
onsider

the running of the e�e
tive neutrino mass operator. For relating the see-saw parameters

at the GUT s
ale with the ones atM

1

, the evolution above and between the see-saw s
ales

has to be 
onsidered.

17

This happens even if the heaviest singlet neutrino is not integrated out, i.e. even if the large Yukawa


ouplings are not removed from the theory.

24



2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0°

15°

30°

45°

Θ12

Θ13

Θ23

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0°

15°

30°

45°

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0°

45°

90°

135°

180°

225°

270°

315° j1

j2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
log10HΜ�GeVL

0°

45°

90°

135°

180°

225°

270°

315°

Figure 8: Highly non-linear running of �

12

and the Majorana phases in an example with large imaginary

entries in the neutrino Yukawa matrix (see Eq. (29)). We used the MSSM with tan � = 10,M

SUSY

= 1TeV

and the following initial 
onditions at M

GUT

= 2 � 10

16

GeV: �

12

= �

23

= �=4, �

13

= 0, '

1

= �=2, '

2

= 0,

normal hierar
hy, m

1

= 0:08 eV, �m

2

sol

= 1:1 � 10

�4

eV

2

, �m

2

atm

= 4 � 10

�3

eV

2

.
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6.5.1 Corre
tions to De
ay Asymmetries and to the Neutrino Mass Bound

The de
ay asymmetry for leptogenesis in the SM [63℄ 
an be written as

"

1

�

3

8�

M

1

v

2

1

(Y

�

Y

y

�

)

11

X

f;g

Im [(Y

�

)

1f

(Y

�

)

1g

(m

�

�

)

fg

℄ ; (30)

if M

1

� M

2

;M

3

. In the MSSM, it is a fa
tor of 2 larger. In the 
ase of a type II see-

saw and for M

1

� M

�

, where M

�

is the mass of the SU(2)

L

-triplet Higgs, the de
ay

asymmetry for type II leptogenesis via the lightest right-handed neutrino 
oin
ides with

the result for the 
onventional see-saw [64℄. In the SM or for a moderate tan � in the

MSSM, the RG running from M

EW

to M

1

leads mainly to a s
aling of the neutrino mass

matrix m

�

. In
luding the RG e�e
ts results in an enhan
ement of the de
ay asymmetry

for leptogenesis by roughly 20% in the MSSM and 30% { 50% in the SM [65, 20℄. The

de
ay asymmetry 
an be 
al
ulated by the REAP pa
kage des
ribed in Se
. 5 as a fun
tion

of energy. Thus, one 
an easily 
he
k if a parti
ular high-energy model for fermion masses

is able to produ
e a large enough asymmetry. Let us remark that also the running of the

mixing angles 
an be very important for the 
al
ulation of the baryon asymmetry, as has

been shown re
ently for non-thermal leptogenesis models [66℄.

The requirement of su

essful baryogenesis via thermal leptogenesis imposes 
onstraints

on fermion mass models and even pla
es an upper bound on the mass of the light neutrinos

[67℄. With respe
t to quantum 
orre
tions to this mass bound, it turns out that there are

two e�e
ts operating in opposite dire
tions, whi
h partially 
an
el ea
h other [20, 45, 68℄:

on the one hand, the in
rease of the mass s
ale leads to a larger de
ay asymmetry 
ompared

to the one at low energies. On the other hand, it results in a stronger washout driven by

Yukawa 
ouplings. Taking into a

ount these e�e
ts and further 
orre
tions, one �nds that

the upper bound on the neutrino mass s
ale be
omes more restri
tive.

6.5.2 Models for Resonant Leptogenesis and RG Corre
tions

As an example where the running above the lowest see-saw s
ale 
an have large e�e
ts,

we 
onsider the RG 
orre
tions to the small mass splitting �M = jM

1

�M

2

j for resonant

leptogenesis [63, 69, 70, 71℄. Here, the de
ay asymmetry is enhan
ed 
ompared to Eq. (30).

For resonan
e e�e
ts in the de
ay asymmetries to be maximal, a mass splitting of

1

2

times

one of the de
ay widths (in the MSSM)

�

1

�

M

0

8�

(Y

�

Y

y

�

)

11

; �

2

�

M

0

8�

(Y

�

Y

y

�

)

22

; (31)

with M

2

� M

1

:= M

0

, is required. Given a model for neutrino masses with su
h a small

mass splitting de�ned at M

GUT

, the de
ay rate 
an be a�e
ted signi�
antly by the RG

evolution of the mass matrix of the heavy right-handed neutrinos fromM

GUT

toM

1

�M

2

.

Resonant leptogenesis with exa
tly degenerate heavy singlets atM

GUT

has been dis
ussed,

e.g., in [72, 73, 74℄. The running of M and Y

�

betweenM

GUT

and M

1

, taking into a

ount

the e�e
ts between the see-saw thresholds, 
an be 
omputed 
onveniently using the software

pa
kages presented in Se
. 5.
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7 Alternative S
enarios

For the examples in Se
. 6, we have fo
used on the 
onventional see-saw me
hanism in the

SM and in the MSSM. We now give a brief outlook on other s
enarios. Some of them are

already implemented in the software pa
kages REAP/MPT introdu
ed in Se
. 5.

7.1 Type II See-Saw

A generalization of the 
onventional see-saw is the type II see-saw [75, 76, 77℄, where

an additional 
ontribution to the neutrino mass matrix, e.g. from an indu
ed vev of a

SU(2)

L

-triplet Higgs, is present. Below the additional see-saw s
ale given by the mass

M

�

of the triplet, it 
an be integrated out, only leaving an additional 
ontribution to the

e�e
tive neutrino mass operator. The pa
kages REAP/MPT and the analyti
 formulae for

the running of the neutrino parameters 
an thus be applied for analyzing type II see-saw

s
enarios belowM

�

. AboveM

�

, the RGEs are modi�ed due to the additional intera
tions.

7.2 Dira
 Neutrinos

At present it is not known whether the nature of neutrino masses is Dira
 or Majorana.

The RG evolution of Dira
 neutrino masses is studied in [44℄. The pa
kages REAP/MPT 
an

also be used in this 
ase.

7.3 Two Higgs Models

We restri
t our dis
ussion to a 
lass of 2HDMs where 
avour 
hanging neutral 
urrents

(FCNCs) are naturally absent [78, 79, 80℄. The Yukawa 
ouplings of the theory are given

by

L

2HDM

Yukawa

= �

2

X

i=1

n

z

(i)

e

e

R

Y

(i)

e

`

L

�

(i)y

+ z

(i)

�

N

R

Y

(i)

�

`

L

e

�

(i)y

+ z

(i)

d

d

R

Y

(i)

d

Q

L

�

(i)y

+ z

(i)

u

u

R

Y

(i)

u

Q

L

e

�

(i)y

o

+ h.
. ; (32)

where either z

(1)

f

or z

(2)

f

has to be zero for ea
h f 2 fe; �; d; ug in order to ensure the

absen
e of FCNCs. In order to generate masses via Yukawa 
ouplings, z

(1)

f

= 1 for z

(2)

f

= 0

and vi
e versa. By 
onvention, the right-handed 
harged leptons always 
ouple to the �rst

Higgs, i.e. z

(1)

e

= 1; z

(2)

e

= 0.

It is known that in these kind of models there are (at least) two e�e
tive neutrino mass

operators. Furthermore, RG e�e
ts are 
omparatively large, sin
e one has both the tan �

enhan
ement as well as the absen
e of 
an
ellations due to the SUSY non-renormalization

theorem. An analyti
 understanding of the RG e�e
ts is more diÆ
ult to obtain, sin
e the

two 
omponents of the e�e
tive neutrino mass matrix

m

�

= �

v

2

1

4

�

(11)

�

v

2

2

4

�

(22)

(33)

run di�erently. Here, more investigations are needed, whi
h are beyond the s
ope of this

study. With the REAP pa
kage, an extensive numeri
al analysis is possible. Re
ently, the

27

http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/
http://www.ph.tum.de/~rge/


RGEs in multi-Higgs models have been derived [81℄. The stru
ture of the �-fun
tions is

very similar.

7.4 Split SUSY

Let us note that the RGEs for the e�e
tive neutrino mass operator in the SM des
ribe the

running in the framework of `split supersymmetry' [82, 83℄ as well, ex
ept for a 
ontribution

to the 
avour-trivial part of the RGE (
f. App. D.3). This implies in parti
ular that running

e�e
ts for the mixing angles are suppressed 
ompared to the MSSM (with not too small

tan �). The negative g

2

2


ontribution to the 
avour-trivial part of the RGE gets repla
ed

by a positive g

1

1


ontribution. This e�e
t in
reases the running of the mass eigenvalues.

7.5 Other Alternative Sour
es of Neutrino Masses

If the dimension 5 neutrino mass operator does not give the leading 
ontribution, possible

alternative sour
es to the light neutrino masses 
an have interesting 
onsequen
es. Neu-

trino masses 
an e.g. emerge from the K�ahler potential in supersymmetri
 theories. It has

been observed that in this 
ase, large mixing angles 
an be an infrared �xed point of the

renormalization group [84, 85℄. In the SM, e�e
ts of additional dimension 6 operators on

the running of the dimension 5 neutrino mass operator have been 
onsidered in [86℄.

8 Dis
ussion and Con
lusions

We have dis
ussed the running of neutrino masses and leptoni
 mixing parameters in

see-saw models involving singlet neutrinos. At energies above the masses of these heavy

parti
les, their Yukawa 
ouplings to the left-handed leptons play an important role. As

they may be of order 1, they 
an 
ause signi�
ant quantum 
orre
tions. We have derived

approximate renormalization group equations (RGEs) for the mixing angles, CP phases

and mass eigenvalues. Due to the large number of parameters in the see-saw s
enario, the

details of the running strongly depend on the spe
i�
 model under 
onsideration. One is

still able to obtain an extensive analyti
 understanding of the RG e�e
ts. It is instru
tive

to 
ompare the RGEs of the physi
al mixing parameters f 

`

g = f�

12

; �

32

; �

23

; Æ; '

1

; '

2

g

above the see-saw s
ales,

�

d

d�

 

`

=

f

`

(m

k

;phases)

m

2

i

�m

2

j

� F

(�)

`

(Y

�

; Y

e

; f 

`

g) + F

(e)

`

(Y

�

; Y

e

; f 

`

g) (34)

to those des
ribing the evolution below the see-saw s
ales. The latter are obtained by

repla
ing F

(�)

`

(Y

�

; Y

e

; f 

`

g) by F

`

(Y

e

; f 

`

g) and F

(e)

`

by zero in Eq. (34). Most importantly,

the stru
ture of the RGEs of the mixing parameters is the same above and below the see-

saw s
ales. Hen
e, there are features 
ommon to the evolution above and below. For a

degenerate spe
trum, the �rst mass quotient in (34) be
omes large, yielding strong RG

e�e
ts. There are, however, important di�eren
es as well. First, the dimensionless fun
tion

F

`

(Y

e

; f 

`

g) vanishes for zero mixing, whi
h is not the 
ase for F

(�)

`

(Y

�

; Y

e

; f 

`

g). Zero

mixing angles are hen
e not stable under the RG in the full see-saw framework. Se
ond, in

the SM or the MSSM with small tan �, RG e�e
ts are small below the see-saw s
ales. In
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ontrast, above the entries of Y

�


an be of order one and 
ause important running e�e
ts.

Third, the RGE 
ontains the F

(e)

`

(Y

�

; Y

e

; f 

`

g) term, whi
h des
ribes the radiative rotation

of Y

y

e

Y

e

in the presen
e of neutrino Yukawa 
ouplings Y

�

. Finally, between the thresholds,

there are important e�e
ts in non-supersymmetri
 theories whi
h stem from the di�erent

s
aling of di�erent parts of the e�e
tive neutrino mass matrix.

We listed the leading order RG 
oeÆ
ients for the mixing parameter RGEs in extensive

tables. Our results allow to obtain a qualitative understanding of generi
 e�e
ts su
h as the

in
uen
e of the CP phases and that of the absolute neutrino mass s
ale. For example, non-

zero phases often damp the running, but some terms in the RGEs are a
tually enhan
ed

by them. A rough quantitative estimate of the size of the RG e�e
ts is possible as well.

Although the 
hange of the mixing angles is quite small for strongly hierar
hi
al masses

(in the 
ase of a normal hierar
hy), it turns out that often it is still 
omparable to the

sensitivities of planned os
illation experiments. Therefore, quantum 
orre
tions should not

be negle
ted in any study of fermion mass models if one aims at theoreti
al predi
tions

whose pre
ision mat
hes that of the experiments. The neutrino mass eigenvalues always


hange signi�
antly due to the RG evolution. This means that a model predi
ting pre
isely

the measured value of �m

2

atm

= 2:1 �10

�3

eV

2

at the GUT s
ale would a
tually be ex
luded

by several standard deviations. Another 
onsequen
e is a 
orre
tion to the mass bound

from thermal leptogenesis. Furthermore, the running of the masses of the singlet neutrinos

is important for models of resonant leptogenesis.

In order to obtain pre
ise quantitative results, the 
omplete system of 
oupled RGEs

has to be solved. Therefore, one has to resort to numeri
al 
al
ulations. For this purpose,

we have developed a set of Mathemati
a pa
kages, whi
h are available at the web page

http://www.ph.tum.de/~rge/. The pa
kage REAP solves the RGEs and thus provides the

neutrino mass matrix as well as the other parameters su
h as Yukawa 
ouplings at ea
h

energy. In models with heavy singlet neutrinos, they are integrated out automati
ally at

the 
orresponding mass thresholds. Thus, the e�e
ts of non-degenerate singlet masses,

whi
h are generally sizable, are 
orre
tly taken into a

ount. From the results of REAP,

MixingParameterTools allows to extra
t the values of the mixing angles, phases and mass

eigenvalues.
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Appendix

A Conventions for Mixing Parameters and Experi-

mental Data

A.1 Conventions

Here, we des
ribe our 
onventions 
on
erning mixing angles and phases. For a general

unitary matrix we 
hoose the so-
alled standard-parametrization

U = diag(e

iÆ

e

; e

iÆ

�

; e

iÆ

�

) � V � diag(e

�i'

1

=2

; e

�i'

2

=2

; 1) (A.1)

where

V =

0
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23
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s
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23




13

1

A

(A.2)

with 


ij

and s

ij

de�ned as 
os �

ij

and sin �

ij

, respe
tively.

The MNS mixing matrix U

MNS

is de�ned to diagonalize the e�e
tive neutrino mass

matrix m

�

in the basis where Y

y

e

Y

e

= diag(y

2

e

; y

2

�

; y

2

�

),

U

T

MNS

m

�

U

MNS

= diag

�

m

1

;m

2

;m

3

�

: (A.3)

The mass eigenvalues m

i

are positive, and m

1

< m

2

< m

3

for a normal hierar
hy or

m

3

< m

1

< m

2

for an inverted hierar
hy, respe
tively. For our 
onventions for extra
ting

the mixing parameters from the MNS matrix, we would like to refer the reader to Ref. [20℄

and the do
umentation of the MixingParameterTools pa
kage asso
iated with this study.

A.2 Experimental Data

An overview over the best-�t values and allowed ranges for the neutrino os
illation pa-

rameters resulting from a global �t to the experimental data [41℄ is given in Tab. 10.

Parameter Best-�t value 3� range

�

12

33:2

Æ

28:7

Æ

:: 38:1

Æ

�

23

45:0

Æ

35:7

Æ

:: 55:6

Æ

�

13

0

Æ

0

Æ

:: 13:1

Æ

�m

2

sol

7:9 � 10

�5

eV

2

(7:1 :: 8:9) � 10

�5

eV

2

j�m

2

atm

j 2:1 � 10

�3

eV

2

(1:3 :: 3:2) � 10

�3

eV

2

Table 10: Overview of experimental results for neutrino os
illation parameters [41℄.
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B Derivation of the Analyti
 Formulae

This appendix 
ontains a 
ouple of te
hni
al details relevant for the derivation of the

analyti
 formulae dis
ussed in the main part. Our derivation is based on earlier works

[38, 31, 39℄, but di�ers from them by a few steps allowing to express the running of

the mixing parameters by the mixing parameters themselves rather than mixing matrix

elements [20℄ (see also [87℄ for real 
ouplings).

B.1 General Strategy

In an arbitrary basis, one 
an de�ne unitary matri
es U

�

and U

e

by

U

�

(t)

T

m

�

(t)U

�

(t) = diag

�

m

1

(t);m

2

(t);m

3

(t)

�

; (B.4a)

U

e

(t)

y

Y

y

e

Y

e

(t)U

e

(t) = diag

�

y

2

e

(t); y

2

�

(t); y

2

�

(t)

�

; (B.4b)

where m

�

is the e�e
tive light neutrino mass matrix of Eq. (3). The MNS matrix is then

given by

U

MNS

(t) = U

y

e

(t)U

�

(t) : (B.5)

For 
onvenien
e, we 
hoose to work in a basis, 
alled referen
e basis in the following, where

Y

y

e

Y

e

(t

0

) = diag

�

y

2

e

(t

0

); y

2

�

(t

0

); y

2

�

(t

0

)

�

: (B.6)

Obviously, U

e

(t

0

) = 1 and U

MNS

(t

0

) = U

�

(t

0

).

Let us now 
onsider the 
hanges 
aused by 
hanging the renormalization s
ale a

ording

to t

0

! t

0

+�t (with �t being small). The RGE (4) for m

�

indu
es a 
hange

m

�

(t

0

+�t) = m

�

(t

0

) +

�t

16�

2

�

P (t

0

)

T

m

�

(t

0

) +m

�

(t

0

)P (t

0

) + ��(t

0

)m

�

(t

0

)

�

+O

�

(�t)

2

�

(B.7)

with P = (C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

) in the energy region above the highest see-saw s
ale. We

restri
t our derivation to this region. As explained in Se
. 4, the results for the MSSM 
an

also be applied between the see-saw s
ales after repla
ing Y

�

by

(n)

Y

�

. However, this is not

possible in the SM. Due to the 
hange of m

�

,

U

�

(t

0

+�t) = U

�

(t

0

) + �t U

�

(t

0

)T +O

�

(�t)

2

�

; (B.8)

where T is to be 
al
ulated below. This relation, however, does not give the full RG 
hange

of U

MNS

, sin
e also Y

y

e

Y

e

gets rotated,

Y

y

e

Y

e

(t

0

+�t) = Y

y

e

Y

e

(t

0

) +

�t

16�

2

�

F
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)Y

y

e

Y

e

(t

0

) + Y

y

e

Y

e

F (t

0

) + f(t

0

)Y

y

e

Y

e
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0

)

�

+O

�

(�t)

2

�

; (B.9)

where F = (D

e

Y

y

e

Y

e

+ D

�

Y

y

�

Y

�

) and f = 2Re�

e

. Hen
e, U

e

(t

0

+ �t) is di�erent from

U

e

(t

0

) = 1 in general,

U

e

(t

0

+�t) = U

e

(t

0

) + �t U

e

(t

0

)X +O

�

(�t)

2

�

; (B.10)
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with X to be 
al
ulated below.

Using Eq. (B.5) together with Eqs. (B.8) and (B.10), we thus get two 
ontributions to

the 
hange of the MNS matrix,

U

MNS

(t

0

+�t) = U

MNS

(t

0

) + �t

�

U

MNS

(t

0

)T +X

y

U

MNS

(t

0

)

�

+O

�

(�t)

2

) : (B.11)

We 
all them the U

�

and the U

e


ontribution. Following the analysis of [20℄, this relation

allows to derive RGEs for the mixing parameters.

Before going to the a
tual 
al
ulation, we would like to stress that to derive the mixing

parameter RGEs, it is useful to work in the referen
e basis. The resulting equations,

however, are basis-independent. Of 
ourse, if one 
hanges the basis, one needs to transform

P and F a

ordingly, whi
h means that the tables in Se
. 3 and App. C are 
hanged as

well.

B.2 RG Corre
tions Indu
ed by P

This part of the derivation 
oin
ides with the one performed in [20℄ ex
ept for the fa
t

that we have to deal with a non-diagonal P . Rather than repeating the analysis of [20℄,

we just summarize the results: the evolution of U

�

is found to be des
ribed by

U

y

�

_

U

�

= T ; (B.12)

where the entries of T are given by

16�

2

ImT

ij

= �

m

i

�m

j

m

i

+m

j

ImP

0

ij

; (B.13a)

16�

2

ReT

ij

= �

m

i

+m

j

m

i

�m

j

ReP

0

ij

: (B.13b)

m

i

denote the eigenvalues of the e�e
tive neutrino mass matrix m

�

(
f. App. A.1), and

P

0

= U

y

�

P U

�

.

B.3 Contribution from the Running of Y

e

Let us now derive the U

e


ontribution to the RGEs stemming from the fa
t that Y

y

e

Y

e


hanges its stru
ture under the RG. To 
al
ulate the 
orresponding 
hange of the MNS

matrix, we only need the running of the unitary matrix U

e

whi
h diagonalizes Y

y

e

Y

e

. Using

Eq. (18), it is easy to 
he
k that

16�

2

d

dt

Y

y

e

Y

e

= F

y

Y

y

e

Y

e

+ Y

y

e

Y

e

F + 2Re�

e

Y

y

e

Y

e

: (B.14)

Plugging this into the inverse of Eq. (B.4b), Y

y

e

Y

e

= U

e

diag(y

2

e

; y

2

�

; y

2

�

)U

y

e

=: U

e

DU

y

e

, we

obtain

d

dt

(U

e

DU

y

e

) =

_

U

e

DU

y

e

+ U

e

D

_

U

y

e

+ U

e

_

DU

y

e

=

1

16�
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F

y
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e

DU

y

e

+ U

e

DU

y

e

F + 2Re�

e

U

e

DU

y

e

�

: (B.15)
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Multiplying by U

y

e

from the left and by U

e

from the right yields

U

y

e

_

U

e

D +D

_

U

y

e

U

e

+

_

D =

1

16�

2

�

F

0 y

D +D F

0

+ 2Re�

e

D

�

; (B.16)

where F

0

:= U

y

e

F U

e

. The evolution of U

e


an be written as

d

dt

U

e

= U

e

X ; (B.17)

where X is anti-Hermitian. Inserting this relation and using the anti-Hermiti
ity yields

_

D =

1

16�

2

�

F

0 y

D +DF

0

+ 2Re�

e

D

�

�X D +DX : (B.18)

By analyzing the o�-diagonal parts, we �nd

y

2

i

X

ij

�X

ij

y

2

j

= �

1

16�

2

�

(F

0y

)

ij

y

2

j

+ y

2

i

F
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ij

�

; (B.19)

where y

1

� y

e

et
. For Hermitian F , this 
an be written as

16�

2

X

ij

=

y

2

j

+ y

2

i

y

2

j

� y

2

i

F

0

ij

: (B.20)

Due to the strong hierar
hy of the 
harged lepton Yukawa 
ouplings, the y

i

dependent fa
tor

is approximately �1. The 
orresponding equations for the U

�


ontribution, Eqs. (B.13),


ontain the light neutrino mass eigenvalues, so that a signi�
ant enhan
ement of T

ij

, the

analogon of X

ij

, o

urs for quasi-degenerate neutrino masses. In this 
ase, we expe
t the

U

e


ontribution to give only a small 
orre
tion, unless severe 
an
ellations o

ur in the U

�


ontribution. However, for a strong normal neutrino mass hierar
hy, both 
ontributions

are generi
ally of the same order of magnitude. The diagonal parts of X, whi
h only

in
uen
e the evolution of the unphysi
al phases, remain undetermined.

B.4 Combination of both Contributions

Inserting Eqs. (B.12) and (B.17) into Eq. (B.5), we �nd at t = t

0

in the referen
e basis

d

dt

U

MNS

= U

MNS

T +X

y

U

MNS

(B.21)

or

U

y

MNS

_

U

MNS

= T � U

y
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X U

MNS

=: R

TX

: (B.22)

Note that this is a relation for U

MNS

where both X and T depend on how we split U

MNS

into U

e

and U

�

. Spe
i�
ally, in an arbitrary basis we have

U

y

MNS

_

U

MNS

= U

e

T U

y

e

� U

y

�

X U

�

: (B.23)

As both sides of the last equation are anti-Hermitian, the derivatives of the mixing param-

eters are found from the system of linear equations

X

k

A

(k)

_

�

k

+ iS

(k)

_

�

k

= R

TX

; (B.24)
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where f�

k

g := f�

12

; �

13

; �

23

; Æ; Æ

e

; Æ

�

; Æ

�

; '

1

; '

2

g. The real matri
es A

(k)

and S

(k)

are anti-

symmetri
 and symmetri
, respe
tively. Hen
e, ea
h A

(k)

has 3 
hara
teristi
 elements and

ea
h S

(k)

has 6, so that we 
an regard Eq. (B.24) as a system of 9 linear equations,
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v 
an be split into two parts,

v = v

T

+ v

X

; (B.26)

where v

T

is built from T and v

X

is built from �U

y

MNS

X U

MNS

. In parti
ular, ea
h

_

�

k

, for

instan
e

_

�

12

, is the sum of two 
ontributions, one from T (i.e. from the running of m

�

) and

one from X (i.e. from the running of Y

e

).

B.5 Comment: `Unphysi
al' Phases

The RGEs in the full theory 
ontain the entries of P . However, the phases appearing in

the o�-diagonal elements of P are not basis-independent, rather they 
an be 
hanged by a

transformation using the `unphysi
al' phases Æ

e

, Æ

�

and Æ

�

only. To see this, let us perform

(in the basis where Y

y

e

Y

e

is diagonal) a transformation K,
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; e

R

K

�! K e
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; (B.27)

where K = diag(e
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1

; e

i�

2

; e

i�

3

) is a diagonal phase matrix. Y

y

e

Y

e

is invariant under this

transformation, yet it 
hanges the e�e
tive neutrino mass matrix a

ording to

m

�
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�
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: (B.28)

Hen
e, also U

MNS

gets 
hanged under this transformation,

U

MNS

K

�! K U

MNS

; (B.29)

i.e.K a�e
ts the phases Æ

e

, Æ

�

and Æ

�

in the standard parametrization (A.1). Furthermore,

it rotates the phases of the o�-diagonal entries of Y

y

�

Y

�

as

Y

y

�

Y

�

K

�! K Y

y

�

Y

�
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: (B.30)
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This shows that one has to spe
ify both the phases Æ

e

, Æ

�

, Æ

�

and the arguments of the

o�-diagonal entries of Y

y

�

Y

�

, as one set of parameters 
an be traded for the other. In other

words, two theories with equal P but di�erent phases Æ

f

are not equivalent. In the main

text, we use the 
onvention

Æ

e

= Æ

�

= Æ

�

= 0 : (B.31)

As a te
hni
al 
omment, we would like to mention that in order to diagonalize a gen-

eral neutrino mass matrix m

�

, the parameters Æ

e

, Æ

�

and Æ

�

are needed. Only after the

transformation with K = diag(e

�iÆ

e

; e

�iÆ

�

; e

�iÆ

�

), one 
an write the MNS matrix without

Æ

e

, Æ

�

and Æ

�

. The step of going to the basis where Æ

e

= Æ

�

= Æ

�

= 0 has often not been

mentioned expli
itly in the literature. In this 
ontext, we would like to 
omment that, of


ourse, Æ

e

, Æ

�

and Æ

�

are subje
t to quantum 
orre
tions with their RGEs depending on the

physi
al parameters.

_

Æ

e

has a term proportional to 1=�m

2

sol

whereas

_

Æ

�

and

_

Æ

�

are both

proportional to 1=�m

2

atm

.

18

C RGE CoeÆ
ients

In the following, we show the RGEs for the lepton mixing parameters obtained from

the derivation dis
ussed above. We give the �rst order of the expansion in the small

CHOOZ angle �

13

. We furthermore use the abbreviation � for the ratio of the mass

squared di�eren
es, 
f. Eq. (16).

The results are presented in the form of tables whi
h list the 
oeÆ
ients of P

fg

=

(C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

)

fg

in the RGEs. Thus, if only a single element of P is dominant, the

derivatives of the mixing parameters are found from the 
orresponding rows in the tables.

Of 
ourse, if several entries of P

fg

are relevant, their 
ontributions simply add up. While

the 
omplete RGEs are basis-independent, the table entries do depend on the 
hoi
e of the

basis, sin
e P is basis-dependent. We use the basis where Y

e

is diagonal and where the

unphysi
al phases in the MNS matrix are zero.

18

The 
orresponding formulae below the see-saw s
ales 
an be obtained from the web page

http://www.physik.tu-muen
hen.de/~mratz/Analyti
Formulae/. There, the RG evolution of the Æ

f

phases depends on the physi
al parameters, but the RGEs of the physi
al parameters are independent of

the Æ

f

phases.
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Table 12: CoeÆ
ients of P

fg

in the RGEs of the mixing angles �

ij

in the limit �

13

! 0. The abbreviations

A

�

ij

, B

�

ij

, S

ij

and Q

�

ij

depend on the mass eigenvalues and phases only, and enhan
e the running for a

degenerate mass spe
trum, sin
e they are of the form f

ij

(m

i

;m

j

; phases)=(m

2

j

� m

2

i

). They are listed in

Tab. 11.
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D RGEs for See-Saw Models

In order to 
al
ulate the RG evolution of the e�e
tive neutrino mass matrix, the RGEs for

all the parameters of the theory have to be solved simultaneously. We therefore summarize

the RGEs for the minimal see-saw extensions of the SM, of the 
lass of 2HDMs des
ribed in

Se
. 7.3, and of the MSSM. We list the MS 1-loop results in the SM and 2HDM, as well as

the 2-loop RGEs for the e�e
tive neutrino mass operator, the singlet mass matrix and the

Yukawa 
ouplings in the MSSM. For further RGEs and referen
es, see e.g. [88, 89, 90, 91℄.

We use the notation de�ned in Se
. 2. In parti
ular, a supers
ript (n) denotes a quantity

between the nth and the (n+1)th mass threshold. The RGEs for the SM, 2HDM or MSSM

without singlet neutrinos 
an be re
overed by setting the neutrino Yukawa 
oupling to zero.

In the full theories above the highest see-saw s
ale, the supers
ript (n) has to be omitted.

The RGEs for the gauge 
ouplings are well-known and not a�e
ted by the additional

singlets at 1-loop order. They are given by

16�
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with (b

SU(3)

C

; b

SU(2)

L

; b

U(1)

Y

) = (�7;�

19

6

;

41

10

) in the SM, (�7;�3;

21

5

) in the 2HDMs and

(�3; 1;

33

5

) in the MSSM. For U(1)

Y

, we use GUT 
harge normalization.

D.1 The RGEs in the Extended SM

In the SM extended by singlet neutrinos, the RG evolution is governed by the �-fun
tions

[31, 27℄
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We use the 
onvention that the Higgs self-intera
tion term in the Lagrangian is �

�

4
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y
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2

.

D.2 The RGEs in Extended 2HDMs

Here, we list the �-fun
tions for the 
lass of 2HDMs des
ribed in Se
. 7.3 [92, 32, 37℄. The


oeÆ
ients z

(i)

f

determine whi
h fermion 
ouples to whi
h Higgs, 
f. Eq. (32).
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For the parameters of the Higgs intera
tion Lagrangian, the �-fun
tions are [92℄ (Note that

we use di�erent 
onventions for the renormalizable Higgs 
ouplings, as spe
i�ed in [37℄.)
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D.3 Split Supersymmetry

The �-fun
tions for the renormalizable 
ouplings in the framework of split SUSY are

listed in Ref. [83℄. The diagrams 
ontributing to the RGE of the e�e
tive neutrino mass
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Figure 9: Additional diagrams 
ontributing to the wavefun
tion renormalization of the Higgs in split

SUSY. The Higgsino is denoted by

e

�, and

e

B and

f

W

a

represent the Bino and the Winos.

operator are those relevant in the SM, amended by two diagrams involving Higgsinos and

gauginos (
f. Fig. 9). These diagrams 
ontribute to the 
avour-trivial part of the RGE. At

1 loop, we obtain for the divergent parts of the renormalization 
onstants in dimensional

regularization and in the MS s
heme
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Clearly, the term involving the gauge 
ouplings in the 
avour-diagonal part di�ers from

the SM 
ase.

D.4 The RGEs in the MSSM Extended by Heavy Singlets
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The 1-loop parts are given by [32, 27℄
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The results for the 2-loop parts, whi
h are an extension of the usual 2-loop �-fun
tions

for the MSSM [93℄, are [94℄

(4�)

4

(n)

�

(2)

�

=

�

� 6Tr(Y

u

Y

y

d

Y

d

Y

y

u

)� 18Tr(Y

u

Y

y

u

Y

u

Y

y

u

) � 2Tr(

(n)

Y

�

Y

y

e

Y

e

(n)

Y

y

�

)

� 6Tr(

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

) +

8

5

g

2

1

Tr(Y

y

u

Y

u

) + 32g

2

3

Tr(Y

y

u

Y

u

) +

207

25

g

4

1

+

18

5

g

2

1

g

2

2

+ 15g

4

2

�

(n)

�

�

�

2(Y

y

e

Y

e

Y

y

e

Y

e

)

T

+ 2(

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

)

T

+

�

Tr(

(n)

Y

�

(n)

Y

y

�

) + 3Tr(Y

u

Y

y

u

)

�

(

(n)

Y

y

�

(n)

Y

�

)

T

+

�

�

6

5

g

2

1

+ Tr(Y

e

Y

y

e

) + 3Tr(Y

d

Y

y

d

)

�

(Y

y

e

Y

e

)

T

�

(n)

�

�

(n)

�

�

2Y

y

e

Y

e

Y

y

e

Y

e

+ 2

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

+

�

Tr(

(n)

Y

�

(n)

Y

y

�

) + 3Tr(Y

u

Y

y

u

)

�

(n)

Y

y

�

(n)

Y

�

+

�

�

6

5

g

2

1

+ Tr(Y

e

Y

y

e

) + 3Tr(Y

d

Y

y

d

)

�

Y

y

e

Y

e

�

; (D.40a)

(4�)

4

(n)

�

(2)

M

=

(n)

M

�

� 2

(n)

Y

�

�

Y

T

e

Y

�

e

(n)

Y

T

�

� 2

(n)

Y

�

�

(n)

Y

T

�

(n)

Y

�

�

(n)

Y

T

�

� 6

(n)

Y

�

�

(n)

Y

T

�

Tr(Y

u

Y

y

u

)

� 2

(n)

Y

�

�

(n)

Y

T

�

Tr(

(n)

Y

�

(n)

Y

y

�

) +

6

5

g

2

1

(n)

Y

�

�

(n)

Y

T

�

+ 6g

2

2

(n)

Y

�

�

(n)

Y

T

�

�

+

�

� 2

(n)

Y

�

Y

y

e

Y

e

(n)

Y

y

�

� 2

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

� 6

(n)

Y

�

(n)

Y

y

�

Tr(Y

u

Y

y

u

)� 2

(n)

Y

�

(n)

Y

y

�

Tr(

(n)

Y

�

(n)

Y

y

�

)

+

6

5

g

2

1

(n)

Y

�

(n)

Y

y

�

+ 6g

2

2

(n)

Y

�

(n)

Y

y

�

�

(n)

M ; (D.40b)

43



(4�)

4

(n)

�

(2)

Y

�

=

(n)

Y

�

�

� 2Y

y

e

Y

e

Y

y

e

Y

e

� 2Y

y

e

Y

e

(n)

Y

y

�

(n)

Y

�

� 4

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

� 3Y

y

e

Y

e

Tr(Y

d

Y

y

d

)

� Y

y

e

Y

e

Tr(Y

e

Y

y

e

)� 3

(n)

Y

y

�

(n)

Y

�

Tr(

(n)

Y

�

(n)

Y

y

�

)� 9

(n)

Y

y

�

(n)

Y

�

Tr(Y

u

Y

y

u

)� Tr(

(n)

Y

�

Y

y

e

Y

e

(n)

Y

y

�

)

� 3Tr(

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

)� 3Tr(Y

u

Y

y

d

Y

d

Y

y

u

)� 9Tr(Y

u

Y

y

u

Y

u

Y

y

u

) +

6

5

g

2

1

Y

y

e

Y

e

+

6

5

g

2

1

(n)

Y

y

�

(n)

Y

�

+ 6g

2

2

(n)

Y

y

�

(n)

Y

�

+

4

5

g

2

1

Tr(Y

y

u

Y

u

) + 16g

2

3

Tr(Y

y

u

Y

u

) +

207

50

g

4

1

+

9

5

g

2

1

g

2

2

+

15

2

g

4

2

�

;

(D.40
)

(4�)

4

(n)

�

(2)

Y

d

= Y

d

�

� 4Y

y

d

Y

d

Y

y

d

Y

d

� 2Y

y

u

Y

u

Y

y

d

Y

d

� 2Y

y

u

Y

u

Y

y

u

Y

u

� 9Tr(Y

d

Y

y

d

Y

d

Y

y

d

)

� 3Tr(Y

d

Y

y

u

Y

u

Y

y

d

)� 3Tr(Y

e

Y

y

e

Y

e

Y

y

e

)�Tr(Y

e

(n)

Y

y

�

(n)

Y

�

Y

y

e

)� 9Y

y

d

Y

d

Tr(Y

d

Y

y

d

)

� 3Y

y

d

Y

d

Tr(Y

e

Y

y

e

)� Y

y

u

Y

u

Tr(

(n)

Y

�

(n)

Y

y

�

)� 3Y

y

u

Y

u

Tr(Y

u

Y

y

u

) + 6g

2

2

Y

y

d

Y

d

+

4

5

g

2

1

Y

y

d

Y

d

+

4

5

g

2

1

Y

y

u

Y

u

�

2

5

g

2

1

Tr(Y

y

d

Y

d

) +

6

5

g

2

1

Tr(Y

y

e

Y

e

) + 16g

2

3

Tr(Y

y

d

Y

d

)

+

287

90

g

4

1

+ g

2

1

g

2

2

+

15

2

g

4

2

+

8

9

g

2

1

g

2

3

+ 8g

2

2

g

2

3

�

16

9

g

4

3

�

; (D.40d)

(4�)

4

(n)

�

(2)

Y

u

= Y

u

n

�2Y

y

d

Y

d

Y

y

d

Y

d

� 2Y

y

d

Y

d

Y

y

u

Y

u

� 4Y

y

u

Y

u

Y

y

u

Y

u

� 3Y

y

d

Y

d

Tr(Y

d

Y

y

d

)

� Y

y

d

Y

d

Tr(Y

e

Y

y

e

)� 9Y

y

u

Y

u

Tr(Y

u

Y

y

u

)� 3Y

y

u

Y

u

Tr(

(n)

Y

�

(n)

Y

y

�

)

� 3Tr(Y

u

Y

y

d

Y

d

Y

y

u

)� 9Tr(Y

u

Y

y

u

Y

u

Y

y

u

)� Tr(

(n)

Y

�

Y

y

e

Y

e

(n)

Y

y

�

)� 3Tr(

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

)

+

2

5

g

2

1

Y

y

d

Y

d

+

2

5

g

2

1

Y

y

u

Y

u

+ 6g

2

2

Y

y

u

Y

u

+

4

5

g

2

1

Tr(Y

y

u

Y

u

) + 16g

2

3

Tr(Y

y

u

Y

u

)

+

2743

450

g

4

1

+ g

2

1

g

2

2

+

15

2

g

4

2

+

136

45

g

2

1

g

2

3

+ 8g

2

2

g

2

3

�

16

9

g

4

3

�

; (D.40e)

(4�)

4

(n)

�

(2)

Y

e

= Y

e

�

� 4Y

y

e

Y

e

Y

y

e

Y

e

� 2

(n)

Y

y

�

(n)

Y

�

Y

y

e

Y

e

� 2

(n)

Y

y

�

(n)

Y

�

(n)

Y

y

�

(n)

Y

�

� 9Y

y

e

Y

e

Tr(Y

d

Y

y

d

)

� 3Y

y

e

Y

e

Tr(Y

e

Y

y

e

)�

(n)

Y

y

�

(n)

Y

�

Tr(

(n)

Y

�

(n)

Y

y

�

)� 3

(n)

Y

y

�

(n)

Y

�

Tr(Y

u

Y

y

u

)� 9Tr(Y

d

Y

y

d

Y

d

Y

y

d

)

� 3Tr(Y

d

Y

y

u

Y

u

Y

y

d

)� 3Tr(Y

e

Y

y

e

Y

e

Y

y

e

)�Tr(Y

e

(n)

Y

y

�

(n)

Y

�

Y

y

e

) +

6

5

g

2

1

Tr(Y

y

e

Y

e

)

+ 6g

2

2

Y

y

e

Y

e

�

2

5

g

2

1

Tr(Y

y

d

Y

d

) + 16g

2

3

Tr(Y

y

d

Y

d

) +

27

2

g

4

1

+

9

5

g

2

1

g

2

2

+

15

2

g

4

2

�

:

(D.40f)

The 2-loop �-fun
tions for the gauge 
ouplings in the presen
e of Y

�


an be found in [29℄.
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