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Abstrat

We systematially analyze quantum orretions in see-saw senarios, inluding e�ets

from above as well as below the see-saw sales. We derive approximate renormaliza-

tion group equations for neutrino masses, lepton mixings and CP phases, yielding an

analyti understanding and a simple estimate of the size of the e�ets. Even for hier-

arhial masses, they often exeed the preision of future experiments. Furthermore,

we provide a software pakage allowing for a onvenient numerial renormalization

group analysis, with heavy singlets being integrated out suessively at their mass

thresholds. We also disuss appliations to model building and related topis.
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1 Introdution

The observed smallness of neutrino masses �nds an attrative explanation in the see-saw

mehanism [1, 2, 3, 4, 5℄. The light neutrino masses are, at tree-level, given by the famous

see-saw relation

m

�

= �(m

Dira

�

)

T

M

�1

m

Dira

�

: (1)

This relation emerges from integrating out heavy, singlet neutrinos with mass matrix

M . The Dira neutrino mass m

Dira

�

is proportional to the neutrino Yukawa oupling

Y

�

. Clearly, the see-saw operates at high energy sales while its impliations are measured

by experiments at low sales. Therefore, the neutrino masses given by Eq. (1) are subjet

to quantum orretions, i.e. they are modi�ed by renormalization group (RG) running.

The running of neutrino masses and lepton mixing angles has been investigated inten-

sively in the literature. For non-hierarhial neutrino mass spetra, RG e�ets an be very

large and they an have interesting impliations for model building. For example, lepton

mixing angles an be magni�ed [6, 7, 8, 9, 10℄, bimaximal mixing at high energy an be

ompatible with low-energy experiments [11, 12, 13℄ or the small mass splittings an be

generated from exatly degenerate light neutrinos [14, 15, 16, 17, 18, 19℄. On the other

hand, faing the high preision of future neutrino experiments, rather small RG orretions

are important as well. For instane, deviations from �

13

= 0 or maximal mixing �

23

= �=4

are indued by RG e�ets [20, 21, 22℄ also for a hierarhial spetrum. However, in most

studies only the running of the dimension 5 operator has been onsidered, whih is only

appropriate for the energy range below the mass sale of the heavy singlets.

The importane of inluding the e�ets from energy ranges above and between these

mass thresholds when analyzing RG e�ets in GUT models has been pointed out in [23,

24, 25, 26, 27, 11, 8, 12, 13, 21℄. They are typially at least as important as the e�ets

from below the thresholds sine the relevant ouplings, i.e. the entries of Y

�

, an be of

order one, regardless of tan�.

1

Previous studies have investigated the RG e�ets above

the see-saw sales mainly numerially.

In this paper we derive formulae whih allow to understand the running of the neutrino

parameters above the see-saw sales analytially. We further provide a software pakage

for analyzing the RG evolution (with orret treatment of non-degenerate see-saw sales)

numerially. We apply our results to investigate onsequenes of the running above the

see-saw sales for model building and leptogenesis and ompare the size of RG orretions

to the preision of future experiments.

The paper is organized as follows: In Se. 2, we review how the preditions for neutrino

masses an be evolved from the GUT sale to the eletroweak sale. Se. 3 is dediated

to the analyti understanding of RG e�ets in see-saw senarios with speial emphasis on

the range between M

GUT

and the highest see-saw sale. In Se. 4, we analyze the run-

ning between the see-saw sales in more detail. Se. 5 ontains a brief desription of the

aompanying Mathematia pakages for numerial RG analyses (a detailed doumenta-

tion is available at http://www.ph.tum.de/~rge/). In Se. 6, we disuss appliations to

model building and related topis. Alternatives to the simplest see-saw senario are briey

disussed in Se. 7. Finally, Se. 8 ontains our onlusions.

1

Large entries of Y

�

ould be important in models of gauge-Yukawa uni�ation (see, e.g., [28℄), and

may even be important for preision gauge uni�ation in the MSSM [29℄.

1

http://www.ph.tum.de/~rge/


2 Running Neutrino Masses in See-Saw Senarios

In this setion, we disuss how to obtain the RG evolution of neutrino masses, starting

from initial onditions at a very high energy sale.

2

An important tehnial issue is that

the heavy singlet neutrinos involved in the see-saw mehanism have to be integrated out

one by one. Thus, one has to onsider a series of e�etive theories [26, 27℄. We will fous on

the SM and the MSSM amended by three singlet neutrinos N

i

R

or three singlet super�elds

�

i

, respetively. The disussion an be applied to other senarios, suh as multi-Higgs

models, and a di�erent number of singlets in a straightforward way.

We onsider the Lagrangian of the SM extended by

L

�

= �N

R

Y

�

`

L

e

�

y

�

1

2

N

R

MN

C

R

+ h.. ; (2)

where `

L

:= (`

1

L

; `

2

L

; `

3

L

)

T

denotes the left-handed lepton doublets, � is the Higgs doublet

and

e

� = i�

2

�

�

its harge onjugate. The supersript C denotes harge onjugation of

fermion �elds, and N

C

R

:= (N

R

)

C

. In the supersymmetri ase, � is replaed by the Higgs

doublet H

u

oupling to the up-type quarks.

In order to de�ne mass and mixing parameters as funtions of the renormalization sale

� above the highest see-saw sale, we onsider the e�etive light neutrino mass matrix

m

�

(�) = �

v

2

2

Y

T

�

(�)M

�1

(�)Y

�

(�) ; (3)

where Y

�

and M are �-dependent. The relevant Higgs vev is v = 246GeV in the SM and

v = 246GeV � sin� in the MSSM.

3

m

�

is the mass matrix of the three light neutrinos as

obtained from blok-diagonalizing the omplete 6� 6 neutrino mass matrix, following the

standard see-saw alulation. The sale-dependent mixing parameters are obtained from

m

�

(�) and the running harged lepton Yukawa matrix Y

e

(�). In Se. 3 we are going to

analyze the energy dependene of the parameters in the lepton setor suh as neutrino

masses, lepton mixing angles and CP phases above the highest see-saw sale analytially.

Therefore, we will make use of the RGE for the omposite quantity m

�

, alulated from

those for Y

�

and M [31, 32, 24, 25℄. It is given by

16�

2

dm

�

dt

= (C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

)

T

m

�

+m

�

(C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

) + ��m

�

(4)

with t := ln(�=�

0

),

C

e

= �

3

2

; C

�

=

1

2

in the SM, (5a)

C

e

= C

�

= 1 in the MSSM, (5b)

2

In the following we will refer to this high energy sale as M

GUT

, although it an be any other sale

where additional new physis, apart from the heavy singlet neutrinos, has to be taken into aount.

3

As indiated in Eq. (3), we do not take into aount the running of the Higgs vev. In priniple, v

runs as well, so that m

�

atually does not yield the physial neutrino masses. However, the evolution of v

depends on the renormalization sheme and on the de�nition of the Higgs mass, see e.g. [30℄, so that there

is no straightforward de�nition of a neutrino mass with a running vev. In any ase, the mixing angles

and phases are independent of the value of v. This de�nition has shown appropriate for the appliations

disussed in this paper, suh as leptogenesis.

2



and (with Y

e

, Y

d

and Y

u

being the Yukawa matries of harged leptons, down- and up-type

quarks, respetively)

4

��

SM

= �

9

10

g

2

1

�

9

2

g

2

2

+ 2Tr

�

Y

y

�

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

; (6a)

��

MSSM

= �

6

5

g

2

1

� 6g

2

2

+ 2Tr

�

Y

y

�

Y

�

+ 3Y

y

u

Y

u

�

: (6b)

The RGE (4) governs only the evolution of the light neutrino mass matrix above the

highest see-saw sale, whih is given by the mass eigenvalueM

3

of the heaviest singlet N

3

R

.

For � < M

3

, we obtain the orret RG evolution by integrating out N

3

R

. This leads to the

appearane of an e�etive neutrino mass operator

L

�

=

1

4

(3)

�

fg

(`

C

L

f

� �) (`

g

L

� �) + h.. ; (7)

where f; g 2 f1; 2; 3g are family indies and where the dot indiates the SU(2)

L

-invariant

ontrations. The oeÆient of this operator is obtained by the (tree-level) mathing

ondition

5

(3)

�

gf

= 2(Y

T

�

)

g3

M

�1

3

(Y

�

)

3f

; (8)

whih is imposed at � =M

3

. This expression is spei�ed in the mass basis for the singlets,

i.e. in the basis where M is diagonal. Let us mention that �nding the mathing sale

properly requires some are as the mass matrix M (and onsequently the eigenvalue M

3

)

itself is subjet to the RG evolution. As a onsequene, for sales below M

3

the e�etive

neutrino mass matrix an be desribed as a sum of two ontributions,

m

�

= �

v

2

4

�

(3)

�+ 2

(3)

Y

T

�

(3)

M

�1

(3)

Y

�

�

: (9)

The 2 � 3 Yukawa matrix

(3)

Y

�

is obtained by simply removing the last row of Y

�

in the

basis where M is diagonal. The 2 � 2 mass matrix

(3)

M is found from M by removing the

last row and olumn. By onstrution, m

�

is a ontinuous funtion of the renormalization

sale. The RG evolution of the seond term on the right-hand side of Eq. (9) is governed

by Eq. (4) with Y

�

replaed by

(3)

Y

�

. The running of the �rst term, on the other hand, is

determined by the RGE [27℄

16�

2

d

(3)

�

dt

=

�

C

e

Y

y

e

Y

e

+ C

�

(3)

Y

y

�

(3)

Y

�

�

T

(3)

�+

(3)

�

�

C

e

Y

y

e

Y

e

+ C

�

(3)

Y

y

�

(3)

Y

�

�

+

(3)

��

(3)

� (10)

with C

e

and C

�

as in Eqs. (5) [34, 35, 36, 37℄, and

(3)

��

SM

= �3g

2

2

+ 2Tr

�
(3)

Y

y

�

(3)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

+ � ; (11a)

(3)

��

MSSM

= �

6

5

g

2

1

� 6g

2

2

+ 2Tr

�
(3)

Y

y

�

(3)

Y

�

+ 3Y

y

u

Y

u

�

: (11b)

4

We use GUT harge normalization for the gauge oupling g

1

.

5

We do not disuss �nite threshold orretions, whih arise due to the fat that the singlet neutrinos

do not deouple abruptly [33℄. The resulting unertainty in the low-energy results is typially not larger

than that due to two-loop e�ets. In the REAP software pakage desribed in Se. 5, the orretions an

be implemented approximately by integrating out N

3

R

slightly below M

3

.

3

http://www.ph.tum.de/~rge/
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Figure 1: Validity ranges of the e�etive theories (EFTs) in the renormalization sale �. At a sale lose to

the mass thresholds M

i

, the EFTs are related by mathing onditions. Although we show this illustration

for 3 heavy singlets, it is straightforward to generalize it to an arbitrary number (f. [27℄).

One an now evolve the e�etive neutrino mass matrix down to the sale M

2

and

repeat the mathing proedure there. From integrating out N

2

R

at � = M

2

, the Yukawa

matrix gets further redued and the e�etive neutrino mass operator reeives an additional

ontribution. After a subsequent RG evolution to � = M

1

, the proedure is repeated for

N

1

R

. The emerging e�etive theories, as well as the quantities relevant to neutrino masses

in eah of them, are illustrated in Fig. 1.

In summary, the running of the e�etive neutrino mass matrix m

�

above and between

the see-saw sales is given by the running of two parts,

m

�

= �

v

2

4

�

(n)

�+ 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

: (12)

where n labels the e�etive theory (f. Fig. 1). In the SM and the MSSM, the 1-loop

�-funtions for m

�

in the various e�etive theories an be summarized as

16�

2

d

(n)

X

dt

=

�

C

e

Y

y

e

Y

e

+ C

�

(n)

Y

y

�

(n)

Y

�

�

T

(n)

X +

(n)

X

�

C

e

Y

y

e

Y

e

+ C

�

(n)

Y

y

�

(n)

Y

�

�

+

(n)

��

X

(n)

X ; (13)

where

(n)

X stands for

(n)

� or for 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

, respetively. The oeÆients C

i

and ��

i

are listed

in Tab. 1.

4



Model

(n)

X C

e

C

�

avour-trivial term

(n)

��

X

SM

(n)

� �

3

2

1

2

2Tr

�
(n)

Y

y

�

(n)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

� 3g

2

2

+ �

SM 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

3

2

1

2

2Tr

�
(n)

Y

y

�

(n)

Y

�

+ Y

y

e

Y

e

+ 3Y

y

d

Y

d

+ 3Y

y

u

Y

u

�

�

9

10

g

2

1

�

9

2

g

2

2

MSSM

(n)

� 1 1 2Tr

�
(n)

Y

y

�

(n)

Y

�

+ 3Y

y

u

Y

u

�

�

6

5

g

2

1

� 6g

2

2

MSSM 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

1 1 2Tr

�(n)

Y

y

�

(n)

Y

�

+ 3Y

y

u

Y

u

�

�

6

5

g

2

1

� 6g

2

2

Table 1: CoeÆients of the �-funtions of Eq. (13), whih govern the running of the e�etive neutrino

mass matrix in minimal see-saw models.

3 Analyti Understanding of the RG Evolution

The methods of [38, 31, 39, 20℄ an be used to derive di�erential equations for the running of

the neutrino masses, mixing angles and CP phases in the see-saw senario. In this setion,

we onentrate on the full theory above the highest see-saw sale. The orresponding

di�erential equations for the running below the see-saw sales have been disussed in

[40, 39, 20℄. We abbreviate the avour-dependent terms in the RGE (4) by

P := C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

: (14)

Due to the appearane of the neutrino Yukawa ouplings, the running depends on more

parameters than below the see-saw sale. In partiular, sine the see-saw formula does

not allow to determine Y

�

uniquely from the light neutrino mass matrix, the running is no

longer determined by (the RG extrapolation of) low-energy parameters only. Moreover,

Y

y

e

Y

e

and Y

y

�

Y

�

are not simultaneously diagonalizable in general. As a onsequene, the RG

evolution generates o�-diagonal entries in the harged lepton Yukawa ouplings, even if one

starts in a basis where they are diagonal (f. the RGEs in App. D). This is also di�erent

from the situation below the see-saw sale and makes the results more ompliated.

In a given basis, Y

y

e

Y

e

and m

�

an be diagonalized by unitary matries, U

e

and U

�

,

respetively. The lepton mixing matrix is given by U

MNS

= U

y

e

U

�

. Keeping the basis �xed,

both matries hange with the renormalization sale, so that the RGEs of the mixing

parameters onsist of two parts, one oming from the RG hange of U

e

, and the other

from the hange of U

�

. We will refer to these as U

e

and U

�

ontribution in the following.

6

Further details and the derivation of the formulae are given in App. B.

We will �rst disuss the U

�

ontribution, whih is often dominant. An important result

is that in the RGEs above the see-saw sale, the same mass squared di�erenes appear in

the denominators as below the see-saw sale, so that

��

12

;�'

1

;�'

2

;�Æ /

1

�m

2

sol

; (15a)

��

13

;��

23

/

1

�m

2

atm

; (15b)

6

One might wonder whether it is possible to simplify the situation by working in the basis where P

is diagonal. This is not the ase, sine the U

e

ontribution depends on a di�erent linear ombination of

Y

y

e

Y

e

and Y

y

�

Y

�

.

5



where, as usual, �m

2

atm

:= m

2

3

� m

2

2

and �m

2

sol

:= m

2

2

� m

2

1

.

7

Thus, �

12

and the phases

generially still run faster than �

13

and �

23

. Besides, the running is suppressed by a strong

normal mass hierarhy, as it is the ase below M

1

. For the unphysial phases

8

, we �nd a

generially larger hange �Æ

e

/ 1=�m

2

sol

, while �Æ

�

;�Æ

�

/ 1=�m

2

atm

.

Often, the evolution will be dominated by a single element of P . Then, the derivatives

of the masses and mixing parameters are given by this element times the orresponding

entry in the tables of Se. 3.3 and App. C. We will disuss an example in Se. 6.1. Of

ourse, if several entries of P

fg

are relevant, one obtains the analyti desription by simply

adding up their ontributions. The tables are given in the basis where Y

e

is diagonal and

where the unphysial phases in the MNS matrix are zero (f. Apps. B.1 and B.5). In order

to keep the expressions reasonably short, we only present the �rst order of the expansion

in the small CHOOZ angle �

13

. We furthermore use the abbreviation

� :=

�m

2

sol

�m

2

atm

: (16)

Its urrent best-�t value is � � 0:038 [41℄. Note that this value is measured at low energy.

It an hange signi�antly, if the running of the mass eigenvalues is not a simple resaling.

The tables in the appendix show that the numerators of the RGEs are of the order

of m

2

i

in the generi ase, i.e. if there are no signi�ant anellations. Then, the generi

enhanement and suppression fators given in Tab. 2 yield a �rst estimate of the RG

hange of the mixing angles. In partiular, they allow to understand analytially when the

evolution is enhaned or suppressed ompared to the naive estimate

��

naive

ij

=

1

16�

2

P

fg

� ln

M

GUT

M

�

; (17)

where P

fg

is assumed to dominate the running and M

�

is the orresponding see-saw sale.

The analogous fators for the CP phases are given in Tab. 3. The size of quantum orre-

tions an thus be estimated by multiplying ��

naive

ij

with the orresponding enhanement

or suppression fator. As the mass hierarhy is weaker in the neutrino setor than in the

quark setor, the hange of the mixing parameters in the MNS matrix is larger than that

of the ones in the CKM matrix.

The RG evolution an deviate signi�antly from the generi estimate, if anellations

our. For example, for non-zero '

1

�'

2

, the running of �

12

usually gets damped (as it is

the ase below the see-saw sales [42℄). Suh e�ets an be understood from the omplete

formulae in App. C. However, are should be taken when estimating the RG e�ets for

speial phase on�gurations with extreme anellations, suh as '

1

� '

2

= �, as terms

proportional to �

13

(whih are negleted in our formulae) an beome important then.

3.1 Running of the Mixing Angles

From the generi enhanement and suppression fators for the evolution of the solar angle

in Tab. 2, we see that all terms in

_

�

12

are enlarged by m

2

=�m

2

sol

for quasi-degenerate

7

For spei� textures, this observation has been made in [11, 8℄. The result an also be obtained by

using the formulae of [39℄.

8

The term \unphysial phases" is somewhat misleading here, sine the distintion between physial

and unphysial parameters is not ompletely trivial in the full theory, f. App. B.5.

6



_

�

12

_

�

13

_

�

23

d. n.h. i.h. d. n.h. i.h. d. n.h. i.h.

P

11

m

2

�m

2

sol

1 �

�1

O(�

13

) O(�

13

) O(�

13

) O(�

13

) O(�

13

) O(�

13

)

P

22

m

2

�m

2

sol

1 �

�1

m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

1 1

P

33

m

2

�m

2

sol

1 �

�1
m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

1 1

ReP

21

m

2

�m

2

sol

1 �

�1
m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ReP

31

m

2

�m

2

sol

1 �

�1

m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ReP

32

m

2

�m

2

sol

1 �

�1
m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

1 1

ImP

21

m

2

�m

2

sol

O(�

13

) �

�1

m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ImP

31

m

2

�m

2

sol

O(�

13

) �

�1
m

2

�m

2

atm

1 1

m

2

�m

2

atm

p

� O(�

13

)

ImP

32

O(�

13

) O(�

13

) O(�

13

)

m

2

�m

2

atm

p

� O(�

13

)

m

2

�m

2

atm

p

� O(�

13

)

Table 2: Generi enhanement and suppression fators for the evolution of the angles, yielding an estimate

of the size of the RG e�et. The table entries orrespond to the terms in the mixing parameter RGEs

with the oeÆient given by the �rst olumn. A `1' indiates that there is no generi enhanement or

suppression. `d.' stands for a degenerate neutrino mass spetrum, i.e. �m

2

atm

� m

2

1

� m

2

2

� m

2

3

� m

2

.

`n.h.' denotes a normally hierarhial spetrum, i.e. m

1

� m

2

� m

3

, and `i.h.' means an inverted

hierarhy, i.e. m

3

� m

1

. m

2

.

masses. Thus, there will be large RG e�ets, if the di�erent terms do not anel eah

other. The term involving ImP

32

is an exeption, beause its leading order is proportional

to �

13

, so that it only plays a role in speial ases. In the ase of a strong normal hierarhy,

there is no enhanement. However, for a moderate hierarhy where the square of the

lightest neutrino mass is small ompared to �m

2

atm

but larger than �m

2

sol

the running is

still enhaned bym

2

1

=�m

2

sol

. This is similar for an inverted hierarhy, where the evolution is

generially enhaned by �

�1

, beause the masses m

1

and m

2

are almost degenerate. Thus,

the RG hange of �

12

is generially large for an inverted hierarhy and for a degenerate

spetrum, and small for a normal hierarhy. This onlusion is unhanged ompared to

the region below the see-saw sale.

The enhanement and suppression fators of �

13

are similar to those of �

23

. The evo-

lution of both angles does not depend on P

11

for �

13

= 0. The terms proportional to the

other P

fg

are enhaned by m

2

=�m

2

atm

in the degenerate ase, so that we expet signi�ant

e�ets here as well. However, as already mentioned, they are usually smaller than those for

�

12

. For both hierarhial spetra, the running is slow. For a diagonal P and an inverted

hierarhy with m

3

= 0, �

13

does not run at all, if it vanishes at some energy, as it is the

ase below the see-saw sale [43℄. However, this is no longer true if P

21

or P

31

is non-zero.

As far as the dependene of the RGEs on the mixing parameters is onerned, we �nd

from Tab. 12 that the terms in the RGEs whih are proportional to the diagonal elements

of P exhibit basially the same behavior as the RGEs below the see-saw sale [20℄. The

running of �

12

and �

23

is damped by non-zero Majorana phases, while the situation is more

7



ompliated for �

13

. In partiular, the value of the Dira phase in the ase �

13

= 0 is

determined by the ondition that

_

Æ remain �nite. Additionally, the running is suppressed

if the mixing angles are small, as it is the ase in the quark setor. (This is another reason

why the leptoni mixings run faster than the quark mixings [44℄.)

If the diagonal elements are equal, their ontributions to the RGEs anel exatly.

This follows from the fat that the mixing angles do not hange under the RG, if P is

the identity matrix and thus does not distinguish between the avours. Of ourse, this

statement holds also for the RGEs of the CP phases. It provides a onsisteny hek for

the results.

Interesting new e�ets our for non-zero o�-diagonal elements in P . Some of their

oeÆients in the RGEs do not vanish for vanishing mixings, so that non-zero mixing angles

are generated radiatively. Beause of this, it is possible to reah low-energy parameter

regions that are ompatible with experiment even if the neutrino mass matrix is diagonal

at the GUT sale [10℄. This is in striking ontrast to the region below the see-saw sale

and to the quark setor. The terms proportional to the real parts of the o�-diagonal P

fg

exhibit the same dependene on the Majorana phases as the diagonal elements. Some of

them are suppressed for large angles �

12

and �

23

. For example, the ReP

23

ontribution

to

_

�

23

vanishes for maximal atmospheri mixing. The inuene of the imaginary parts

has quite a di�erent dependene on the mixing parameters, in partiular on the Majorana

phases. The orresponding terms beome maximal for non-vanishing phases, for instane

for '

1

� '

2

= �=2 in the ase of �

12

. Thus, the usual damping of the running by non-

zero Majorana phases does not always take plae above the see-saw sales. However, the

maximal damping for '

1

� '

2

= � (or '

i

= � in the ase of �

23

) still ours, sine the

oeÆients of ImP

fg

are zero then. Some examples for the running with large imaginary

entries in P will be disussed in Se. 6.4.

3.2 Running of the Phases

The CP phases show a fast running in general. The orresponding generi enhanement

and suppression fators are given in Tab. 3. As for the RGE of the Dira phase Æ, there is

always a term proportional to �

�1

13

, whih is further enhaned for a degenerate spetrum.

This implies that the running of Æ is in general signi�ant for small �

13

, irrespetively of

the hierarhy.

9

For �

13

= 0, Æ and

_

Æ are unde�ned. However, it is possible to de�ne an

analyti ontinuation yielding a smooth evolution [20℄. In addition, for the degenerate or

inversely hierarhial spetrum, the running of Æ gets enhaned by terms proportional to

m

2

=�m

2

sol

or �

�1

, respetively. The oeÆients of P

fg

in

_

Æ are given in Tab. 13, from where

one obtains the RGE as

_

Æ = �

�1

13

_

Æ

(�1)

+

_

Æ

(0)

+O(�

13

).

The situation is similar for the Majorana phases. By the same reasoning as for the

running of the solar angle, the generi RG e�ets are large for degenerate masses and for an

inverted hierarhy, while they are suppressed for a strong normal hierarhy. The oeÆients

of P

fg

in _'

i

are given in Tab. 14. These formulae are also important to understand the

evolution of the mixing angles in some ases. An example will be disussed in Se. 6.4.

The evolution of the Majorana phase di�erene is governed by a simple equation,

9

Note, however, that in measurable quantities Æ appears always in ombination with sin �

13

, so that

the RG hange of preditions for experiments may not be signi�ant.

8
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Table 3: Generi enhanement and suppression fators for the evolution of the CP phases, yielding an

estimate of the size of the RG e�et. The table entries orrespond to the terms in the mixing parameter

RGEs with the oeÆient given by the �rst olumn. A `1' indiates that there is no generi enhanement

or suppression. `d.' denotes a degenerate neutrino mass spetrum, i.e. �m

2

atm

� m

2

1

� m

2

2

� m

2

3

� m

2

.

`n.h.' denotes a normally hierarhial mass spetrum, i.e. m

1

� m

2

� m

3

, and `i.h.' means an inverted

hierarhy, i.e. m

3

� m

1

. m

2

.
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Table 4: CoeÆients of P

fg

in the slope of the Majorana phase di�erene for �

13

= 0. The abbreviations

S

ij

and Q

�

ij

depend on the mass eigenvalues and phases only, and enhane the running for a degenerate

mass spetrum sine they are of the form f

ij

(m

i

;m

j

; '

1

; '

2

)=(m

2

j

�m

2

i

). They are listed in Tab. 11. We

use the abbreviations 

ij

= os �

ij

and s

ij

= sin �

ij

(f. App. A.1).
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Table 5: CoeÆients of P

fg

in the slope of the mass eigenvalues for �

13

= 0.

whih an be read o� from Tab. 4. It indiates strong running, sine the slope is still

inversely proportional to �m

2

sol

. However, in the ase of equal Majorana phases, only the

imaginary entries in P and terms proportional to �

13

ontribute to the running. Besides,

the ontribution proportional to the real parts is suppressed for large solar mixing.

If Y

y

�

Y

�

is lose to the identity matrix, its ontribution to the running is very small,

sine the terms proportional to the diagonal entries anel approximately. Then, only the

ontribution from Y

y

e

Y

e

remains, so that the evolution above the see-saw sales is essentially

the same as below. However, many GUT models suggest a hierarhial struture for Y

�

like for the other Yukawa matries. Then the main ontribution will be due to P

33

and the

next-to-leading ontribution will be from ReP

32

, if Y

y

�

Y

�

is almost diagonal in the basis

with diagonal Y

y

e

Y

e

. Thus, the phase di�erene tends to derease while running down,

10

as it is the ase below the see-saw sales.

3.3 Running of the Masses

Below the see-saw sales, the evolution of the mass eigenvalues is, to a good approximation,

desribed by a universal saling aused by the avour-independent part of the RGE [40,

39, 20℄. This avour-independent term, however, beomes smaller at high energies. In the

MSSM, it an even ross zero at some intermediate sale. Therefore, the avour-dependent

terms play a more important role above the see-saw sales, the more so they an be larger

if the entries of Y

�

are order one.

We list the oeÆients in the slope of the mass eigenvalues and of the �m

2

s in Tab. 5

and Tab. 6, respetively. Clearly, the RGE for eah mass eigenvalue is proportional to the

mass eigenvalue itself. As a onsequene, the mass eigenvalues an never run from a �nite

value to zero or vie versa. In other words, the rank of the e�etive neutrino mass matrix

is onserved under the renormalization group. In ontrast, the mass squared di�erenes

an, in priniple, run through zero. This, however, requires a very high value of m

1

.

The avour-independent term in the MSSM is subjet to large anellations (f. Eq.

(6b)). Note that the running of the mass eigenvalues strongly depends on the top Yukawa

10

More aurately, it runs away from � and towards either 0 or 2�, i.e. j'

1

�'

2

j dereases for j'

1

�'

2

j < �

and inreases for j'

1

� '

2

j > �.
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Table 6: CoeÆients of P

fg

in the slope of the mass squared di�erenes for �

13

= 0.

oupling y

t

, sine the term �� ontains 6y

2

t

, and on the gauge ouplings, whih run di�erently

for di�erent SUSY breaking sales. This ould, at least partially, explain why there exist

mutually inonsistent numerial results for the saling of the mass eigenvalues below the

see-saw sales [20, 45, 46℄.

Between and above the see-saw sales, the running is strongly inuened by the neutrino

Yukawa ouplings. In partiular, depending on the size of the Y

�

entries, ��

MSSM

an

turn negative or not. For order one Y

�

entries, it typially stays positive. However, in

suh a situation, ��

MSSM

beomes small so that P an dominate the running. Consider,

for instane, the ase of a dominant P

33

entry. Here, the oeÆient of _m

2

is enhaned

ompared to the _m

1

oeÆient by (m

2

=m

1

) ot

2

�

12

(f. Tab. 5). In many ases �

12

is at

high sales muh smaller than its low-energy value, so that m

2

runs muh faster than m

1

.

As a onsequene, �m

2

sol

an be signi�antly enhaned even for not too degenerate spetra.

A relatively drasti example is shown in Fig. 2. Clearly, the disrepany in the saling of

�m

2

sol

and �m

2

atm

stems from the avour-dependent terms P . As tan� is large in this

example, the P

33

indued terms ause important e�ets already below the see-saw sale.

The dominant e�et, however, is the running in the range M

3

� � � M

GUT

, i.e. over less

than two orders of magnitude. By inspeting the tables, we �nd that analogous features

are present if other elements of P are large. In partiular, one an enhane the evolution

of �m

2

atm

as well. Therefore we expet many models whih predit realisti values for the

masses at tree level to be ruled out by several standard deviations due to RG e�ets.

If, on the other hand, the eigenvalues of Y

y

�

Y

�

are muh smaller than 1, ��

MSSM

typially

ips its sign. The entries of P are now small if tan � is small, and for large tan� they

are dominated by Y

y

e

Y

e

. Hene, for small tan �, ��

MSSM

still dominates the running of the

masses (away from its zero point). In ontrast, for large tan �, the ontribution of P (being

now dominated by Y

y

e

Y

e

) is of similar importane, as it is the ase for the running of the

e�etive neutrino mass operator � at high energies. Sine �� an be negative at sales lose

to the GUT sale now, the ontributions from the diagonal entries in P an derease the

RG e�ets. The o�-diagonal entries again an both inrease and derease them.

Finally, let us mention that sine the terms in _m

i

involving the imaginary part of P

are proportional to sin �

13

, they do not ontribute in the approximation of vanishing �

13

.

Clearly, in the SM, �� dominates the running if Y

�

is small.
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Figure 2: Example where the avour-dependent terms dominate the running of the mass eigenvalues for

M

3

� � � M

GUT

in the MSSM. We use Y

�

= diag(0:02; 0:1; 1) and m

1

= 0:04 eV at the GUT sale as well

as a SUSY breaking sale of 200GeV and tan � = 50. M is hosen suh that the low-energy parameters are

ompatible with experiment. The di�erent gray-shaded areas indiate the ranges of the e�etive theories

(f. Fig. 1).

3.4 U

e

Contribution to the Running

As mentioned in the beginning of this setion, the RGE for Y

e

ontains non-diagonal

terms above and between the thresholds, so that there is an additional ontribution to the

running of the leptoni mixing angles and CP phases. In the see-saw senario, the RGE

for Y

e

above M

3

is given by

16�

2

dY

e

dt

= Y

e

(D

e

Y

y

e

Y

e

+D

�

Y

y

�

Y

�

) + �

e

Y

e

=: Y

e

F + �

e

Y

e

(18)

with

D

e

=

3

2

; D

�

= �

3

2

in the SM, (19a)

D

e

= 3 ; D

�

= 1 in the MSSM. (19b)

As usual, �

e

is avour diagonal (f. App. D). The resulting ontributions to the evolution

of the angles for vanishing �

13

and y

e

; y

�

� y

�

are listed in Tab. 7. They an simply be

added to the expressions disussed above (f. App. B.4).

In ontrast to the latter, all non-zero terms in the U

e

ontribution have a generi

enhanement fator of 1. The reason for this is the strong hierarhy among the harged

lepton masses. As a onsequene, the U

e

ontribution is negligible ompared to the U

�

ontribution, if the relevant fator in Tab. 2 is muh larger than 1. If it is lose to 1,

both ontributions are generially of the same order of magnitude. The U

e

ontribution

an even be dominant if the fator is small. This is also possible, if anellations our

between the leading-order terms in the RGEs.

To get a feeling for the size of the e�ets disussed in this setion, let us onsider a

rough estimate. We assume that the running is linear on a logarithmi sale, that it is

12



16�

2

_

�

U

e

12

16�

2

_

�

U

e

13

16�

2

_

�

U

e

23

F

11

0 0 0

F

22

0 0 0

F

33

0 0 0

ReF

21

�

23

�s

23

os Æ 0

ReF

31

s

23

�

23

os Æ 0

ReF

32

0 0 �1

ImF

21

0 �s

23

sin Æ 0

ImF

31

0 �

23

sin Æ 0

ImF

32

0 0 0

Table 7: CoeÆients of F

fg

in the U

e

ontribution to the slope of the mixing angles for �

13

= 0 and

y

e

; y

�

� y

�

.

dominated by a single entry y in Y

�

, whih is related to the light neutrino mass m

3

and

the see-saw sale M

3

by m

3

=

v

2

2

y

2

M

3

, and that the relevant term in Tab. 7 is of the order

of 1. Then we �nd

j��

U

e

j � j

_

�

U

e

j ln

M

GUT

M

3

� D

�

y

2

�

0:027 + 0:006 ln

m

3

=0:1 eV

y

2

�

: (20)

Thus, the hange is small, but it an still be relevant in the ontext of preision studies

(e.g. the hange of �

13

), if y is large.

4 Running between the See-Saw Sales

Between the see-saw sales, the singlets are partly integrated out, whih implies that only

a (n�1) � 3 submatrix of the neutrino Yukawa matrix remains. Therefore, we expet

that the running between the thresholds aused by the neutrino Yukawa matrix an di�er

signi�antly from the running above or below them.

We now disuss the running due to the terms in the �-funtions with a avour struture

proportional to the unit matrix. Below and above the see-saw sales, they only ause a

ommon saling of the elements of the neutrino mass matrix and thus leave the mixing

angles and phases unhanged. Between the thresholds, however, the e�etive neutrino

mass matrix onsists of the two parts

(n)

� and 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

, as shown in Eq. (12). Here, the

mixing angles and phases hange in general, unless both parts are saled equally. From

table 1, we see that in the SM, the �-funtions

(n)

�

�

and

(n)

�

2Y

T

�

M

�1

Y

�

, have di�erent oeÆients

in the terms proportional to the gauge ouplings and to the Higgs self-oupling [27℄. This

di�erene an be understood by looking at the orresponding diagrams of the \full" and

the e�etive theory. For instane, the diagram for the orretion to the e�etive vertex

proportional to � and its ounterpart with the heavy singlet running in the loop are shown

in �gure 3. Diagram (a) is UV divergent, whereas diagram (b) is UV �nite. We thus get no

ontribution proportional to � for the �-funtion of the omposite operator. The situation

is similar for some of the diagrams orresponding to the vertex orretions proportional to

the gauge ouplings. Thus, in the SM, the RG saling of the two parts

(n)

� and 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

13
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Figure 3: Figure (a) shows the diagram whih gives the ontribution proportional to the Higgs self-

oupling in the �-funtion of the neutrino mass operator in the SM. Figure (b) shows its �nite ounterpart

with the heavy singlet running in the loop. The gray box labeled by �

i

orresponds to the ontribution

to the e�etive neutrino mass operator from integrating out the heavy singlet N

i

R

.

of the e�etive mass matrix between the thresholds, aused by the interations with trivial

avour struture, is di�erent. This implies a running of the mixing angles and CP phases in

addition to the running of the mass eigenvalues.

11

This e�et an even give the dominant

ontribution to the running of the mixing angles, as for instane in the example shown in

�gure 4 (from [11℄).

Due to the non-renormalization theorem in supersymmetri theories,

(n)

�

�

and

(n)

�

2Y

T

�

M

�1

Y

�

are idential in the MSSM (see Tab. 1 on p. 5), so that we an use the RGEs of Se. 3

between the see-saw sales as well. In partiular, the enhaned running between the

thresholds due to terms with a trivial avour struture does not our. Of ourse, the

heavy degrees of freedom have to be integrated out �rst, i.e. all parameters have to be

replaed by the e�etive ones between the thresholds.

5 Mathematia Pakages for Numerial RG Analyses

5.1 Numerial Solution of the RGEs

The Mathematia pakage REAP (Renormalization Group Evolution of Angles and Phases)

numerially solves the RGEs of the quantities relevant for neutrino masses, for example

the dimension 5 neutrino mass operator, the Yukawa matries and the gauge ouplings.

The �-funtions for the SM, the MSSM and two Higgs doublet models with Z

2

symmetry

for FCNC suppression (2HDM) with and without right-handed neutrinos are implemented.

In addition, the same models are available for Dira neutrinos. New models an be added

by the user. The heavy singlet neutrinos an be integrated out automatially at the

orret mass thresholds, as desribed in Se. 2.

12

The software an also be applied to type

II see-saw models as long as one only onsiders the energy region below the additional

see-saw sale M

�

, where the new physis suh as Higgs triplets only leads to another

11

To see this, let us assume that U

T

�

(n)

�+ 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

U is diagonal. Then U

T

�

a

(n)

�+ b 2

(n)

Y

T

�

(n)

M

�1

(n)

Y

�

�

U

is in general only diagonal if a = b (ommon saling).

12

We do not onsider SUSY threshold orretions [47℄, as they are usually numerially less important

[48℄.

14

http://www.ph.tum.de/~rge/
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Figure 4: Running from maximal solar mixing at M

GUT

to the experimentally preferred angle of the

LMA solution. The �gure shows an example in the SM with a negative CP parity for m

2

and a Yukawa

matrix Y

�

= 0:5 � diag("

2

; "; 1) at M

GUT

with " = 3:5 � 10

�3

and a normal mass hierarhy (from [11℄). The

lightest neutrino has a mass of 0:004 eV (at low energy). The gray-shaded areas illustrate the validity

ranges of the e�etive theories emerging from integrating out the heavy singlet neutrinos.

ontribution to the e�etive neutrino mass operator. The pakage an be downloaded

from http://www.ph.tum.de/~rge/REAP/. Mathematia 5 is required.

5.2 Extration of Mixing Parameters from Mass Matries

The pakage MixingParameterTools (MPT) allows to extrat the physial lepton masses,

mixing angles and CP phases from the mass matries of the neutrinos and the harged

leptons. Thus, the running of the neutrino mass matrix alulated by REAP an be trans-

lated into the running of the mixing parameters and the mass eigenvalues. For the def-

inition of the mixing parameters, see App. A.1 and the doumentation of the pakage.

MixingParameterTools an also be useful as a stand-alone appliation in order to study

textures without running, and it is not bound to the analysis of neutrino masses only

but may be used for quark and superpartner mass matries as well. Therefore, it an be

obtained separately from REAP at http://www.ph.tum.de/~rge/MPT/.

5.3 Example Calulation

The following simple example demonstrates how to use the Mathematia pakages to al-

ulate the RG evolution of the neutrino mass matrix in the MSSM extended by three

heavy singlet neutrinos. Of ourse, further doumentation is provided together with the

pakages.

1. The pakage orresponding to the model at the highest energy has to be loaded.

All other pakages needed in the ourse of the alulation are loaded automatially.

(Note that ` is the bakquote, whih is used in opening quotation marks, for example.)

Needs["REAP`RGEMSSM`"℄
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2. Next, we speify that we would like to use the MSSM with singlet neutrinos and

tan � = 50. Furthermore, we set the SUSY breaking sale to 200GeV and use the

SM as an e�etive theory below this sale.

RGEAdd["MSSM",RGEtan\[Beta℄->50℄

RGEAdd["SM",RGECutoff->200℄

3. Now we have to provide the initial values. For instane, let us set the GUT-sale

value of �

12

to 45

Æ

and that of the �rst Majorana phase to 50

Æ

. Besides, we use a

simple diagonal pattern for the neutrino Yukawa matrix and the default values of

the pakage for the remaining parameters.

RGESetInitial[2*10^16,

RGE\[Theta℄12->45 Degree,RGE\[Phi℄1->50 Degree,

RGEY\[Nu℄->{{1,0,0},{0,0.5,0},{0,0,0.1}}℄

4. RGESolve[low,high℄ solves the RGEs between the energy sales low and high. The

heavy singlets are integrated out automatially at their mass thresholds.

RGESolve[100,2*10^16℄

5. Using RGEGetSolution[sale,quantity℄ we an query the value of the quantity

given in the seond argument at the energy given in the �rst one. For example, this

returns the mass matrix of the light neutrinos at 100GeV:

MatrixForm[RGEGetSolution[100,RGEM\[Nu℄℄℄

6. To �nd the leptoni mass parameters, we use the funtion MNSParameters[m

�

,Y

e

℄

(whih also needs the Yukawa matrix of the harged leptons). The results are given

in the order ff�

12

; �

13

; �

23

; Æ; Æ

e

; Æ

�

; Æ

�

; '

1

; '

2

g; fm

1

;m

2

;m

3

g; fy

e

; y

�

; y

�

gg.

MNSParameters[

RGEGetSolution[100,RGEM\[Nu℄℄,RGEGetSolution[100,RGEYe℄℄

7. Finally, we an plot the running of the mixing angles:

Needs["Graphis`Graphis`"℄

mNu[x_℄:=RGEGetSolution[x,RGEM\[Nu℄℄

Ye[x_℄:=RGEGetSolution[x,RGEYe℄

\[Theta℄12[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,1℄℄

\[Theta℄13[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,2℄℄

\[Theta℄23[x_℄:=MNSParameters[mNu[x℄,Ye[x℄℄[[1,3℄℄

LogLinearPlot[{\[Theta℄12[x℄,\[Theta℄13[x℄,\[Theta℄23[x℄},

{x,100,2*10^16}℄
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6 Appliations

We now apply the analytial and numerial tools desribed in the previous setions to

some spei� ases with interesting RG e�ets above, between and below the see-saw

sales within the onventional see-saw senario.

6.1 RG E�ets for a Dominant (Y

�

)

33

Many uni�ed models relate the Yukawa ouplings of the di�erent harged fermions and

the neutrinos, e.g. Y

�

� Y

u

or Y

�

� Y

e

. For the harged fermions, the quantities aessible

through observation are Y

y

Y , where Y denotes the orresponding Yukawa matrix. It is

onvenient to work in the basis where Y

y

u

Y

u

and Y

y

e

Y

e

are diagonal and positive, and the

diagonal entries are ordered asendingly. In this basis, all three ombinations Y

y

Y have

a dominant 33 entry. In this subsetion, we shall assume a similar pattern for Y

y

�

Y

�

,

i.e. (Y

y

�

Y

�

)

33

� y

2

3

� (Y

y

�

Y

�

)

ij 6=33

. Given suh a hierarhy for Y

y

�

Y

�

, the RG orretions

��

13

:= �

13

(M

SUSY

)� �

13

(M

GUT

) and ��

23

an be approximated by

��

13

�

�1

32�
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�

C

e
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M

SUSY

�

+ C

�

y

2

3

ln

�
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�

sin 2�
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os Æ℄ (21)
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�
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�
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2

12

jm

2

e

i'

2

+m

3

j

2

+ s

2

12

jm

1

e

i'

1

+m

3

j

2

1 + �

�

; (22)

where M

�

denotes the mass sale of the heavy neutrino(s) with the large Yukawa ou-

plings.

13

To obtain these results, we read o� the RGEs from Tab. 12, and integrated them

with the approximation of onstant oeÆients. This is reasonably aurate, sine the

running of �

13

and �

23

is almost linear on logarithmi sales [20℄.

14

In the SM, the term proportional to y

2

�

is negligible, sine the Yukawa oupling is not

enhaned by tan �. However, the y

2

3

ontribution an be large, and it is not suppressed for

small tan �. Furthermore, exept for y

3

andM

�

, only (the RG extrapolation of) low-energy

parameters enter the expressions (21) and (22).

In the ase of the solar angle, the running is strongly non-linear when the RG hange

is large. Then, the approximation used in the above equations does not yield reliable

results. Even by integrating the RGE (assuming �

12

to vary but the other parameters to be

onstant), one arrives at an expression whih does not represent an aurate approximation

in many ases beause of the running of �m

2

sol

. Nevertheless, an inspetion of the RGE

reveals several qualitative features of the running suh as the damping inuene of the

phases, as disussed in Se. 3.1.

The running of the Majorana phases may be regarded as enouraging for the prospets

of neutrinoless double � deay experiments: it is known that even if the mass eigenvalues

13

For the analyti estimates, we ignore ompliations due to the generially non-degenerate see-saw

sales [27℄.

14

A omparison with numerial alulations shows that this is unhanged in the presene of neutrino

Yukawa ouplings.
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are large enough to make a disovery in future experiments possible, anellations may

strongly suppress the amplitude [49℄. This an diretly be seen from the fat that the

amplitude is governed by the e�etive neutrino mass

hm

�

i =

�

�

m

1



2

12



2

13

e

i'

1

+m

2

s

2

12



2

13

e

i'

2

+m

3

s

2

13

e

2iÆ

�

�

; (23)

whih is obviously suppressed if '

1

� '

2

is lose to �. However, for dominant P

33

, the

di�erene of Majorana phases is driven away from � at low energies due to RG e�ets (f.

the disussion in Se. 3.2). This implies that anellations tend to be avoided. Note that

the ontribution from Y

y

e

Y

e

, whih persists below the see-saw sales, inreases the e�et

[20℄.

6.2 Neutrino Yukawa Couplings with Two Large Entries

As another example, let us assume that the neutrino Yukawa matrix ontains two domi-

nant entries, (Y

�

)

33

� e

�i

(Y

�

)

32

� y

3

with an arbitrary phase , as it is the ase in many

models where the large atmospheri mixing angle emerges from Y

�

in the basis where Y

e

is diagonal. Then (Y

y

�

Y

�

)

33

� (Y

y

�

Y

�

)

22

, whih auses a anellation between the ontribu-

tions proportional to these terms in the RGEs of �

13

and �

23

. Thus, using the same linear

approximation as in Se. 6.1, we obtain the hanges
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16�
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The hange proportional to the real part of P

32

vanishes for maximal atmospheri mixing.

Hene, the neutrino Yukawa ouplings only ontribute signi�antly to the running of �

13

in this ase, if (Y

�

)

32

has a large imaginary part and if the CP phases are not lose to 0 or

�. In ��

23

, they always play a role by induing o�-diagonal elements in Y

y

e

Y

e

, whih leads

to the last term in Eq. (25). This term is atually dominant in the ase of CP onservation

and small tan�.
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6.3 RG Corretions and Preision Measurements

In this setion, we will estimate the order of magnitude of RG e�ets in see-saw models

and ompare it to the preision of future measurements of neutrino mixing (see also [21,

19, 50, 51℄ for related works). We shall �rst onsider the e�ets of a large P

33

as an

example. For instane, P

33

an be generated from the entry (Y

�

)

33

. Note that this is only

an example. RG e�ets from di�erent strutures of Y

�

an be understood and estimated

using the analyti formulae of Se. 3. Graphially, the RG orretions aused by P

33

in

the MSSM with tan � = 20 are illustrated in Fig. 5. We have assumed the initial values

�

13

= 0, �

23

= �=4 and �

12

+ �

C

= �=4 (where �

C

is the Cabibbo angle) at high energy,

whih may be espeially interesting from a theoretial point of view [52, 53, 54℄. The

hanges of �

13

and �

23

have been alulated from the approximations (21) and (22). We

would like to stress that the mass squared di�erenes are running quantities as well and

taking them as onstant, as it was done in Eqs. (21) and (22), restrits the auray of

the estimates. For produing the plots in Fig. 5, we have used the values of �m

2

atm

and

�m

2

sol

at � = 10

14

GeV. For the onsidered parameter ranges and for m

t

(m

t

) = 175GeV

and M

SUSY

= 1TeV, the mass squared di�erenes at � = 10

14

GeV are about a fator

1:75 larger than the low-energy values. Note that their running depends sensitively on

the value of the top mass and on the SUSY breaking sale. The hange of �

12

has also

been determined assuming a linear running, whih is possible here beause only rather

small neutrino masses and a moderate value of tan � are onsidered in the plot. We have

used those values for the Majorana phases that do not damp the RG evolution, as well

as best-�t values for the osillation parameters. For the see-saw sale assoiated with the

large Yukawa oupling, we have used the approximation

M

�

�M

33

�

v

2

2

(Y

�

)

2

33

(m

�1

�

)

33

: (26)

To justify this, let us reonstrutM from Y

�

andm

�

using the inverse of the see-saw formula

(3), M = �

v

2

2

Y

�

m

�1

�

Y

T

�

, for a dominant entry (Y

�

)

33

in Y

�

and not too large neutrino

masses, m

1

. 0:1 eV. In this ase, one an see from m

�1

�

= U

�

diag(m

�1

1

;m

�1

2

;m

�1

3

)U

T

�

that all entries of the inverse light neutrino mass matrix are usually of the same order

of magnitude.

15

Consequently, M

33

is dominated by the term proportional to (Y

�

)

2

33

, i.e.

the one given in Eq. (26). Furthermore, M

33

is the dominant entry in M , so that it is

approximately equal to the largest eigenvalue M

3

=M

�

.

We �nd that the RG hanges are omparable to the sensitivities of planned preision

experiments (f. Tabs. 8 and 9) in the shaded parts of the parameter spae, providing a

reason to be optimisti about the potential of these experiments to �nd interesting results

and to onstrain model parameters. Compared to the hange due to the harged lepton

Yukawa ouplings alone [20℄, the gray-shaded regions are expanded, sine the ontribution

from the neutrino Yukawa ouplings has the same sign in the ase we onsidered. For a

very strong mass hierarhy, we �nd very small RG e�ets in our example. One reason for

this is the derease of the enhanement fators in the RGEs, as disussed in Se. 3.1, but

this is not the main e�et. What is more important is the inrease ofM

�

. From Eq. (26) we

�nd that it is roughly proportional to m

�1

1

for a strong hierarhy, so that it beomes lose

15

Only for a narrow range in m

1

and a large di�erene of the Majorana phases, a suppression of the

element (m

�1

�

)

33

is possible. Then, Eq. (26) may not be a good approximation.
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Figure 5: Estimated RG orretions to �

13

= 0, �

23

= �=4 and �

12

+ �

C

= �=4 with a large P

33

in the

MSSM with tan � = 20, M

SUSY

= 1TeV and a normal neutrino mass ordering. For instane, P

33

an be

generated from the entry (Y

�

)

33

in the neutrino Yukawa matrix, whih was assumed here. The running

between the eletroweak and the GUT sale has been alulated using the approximate formulae (21) and

(22). For produing the plots we have used �m

2

atm

and �m

2

sol

at � = 10

14

GeV, whih, for the onsidered

parameter ranges, are about a fator 1:75 larger than the low energy values. In Fig. (a) and () the CP

phases have been set to zero, and in Fig. (b) '

1

= 0 and '

2

= � was assumed, leading to un-suppressed

running. Besides, the initial ondition �

13

= 0 as well as the best-�t values for the remaining parameters

have been used.
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Current Beams D-CHOOZ T2K+NuMI Reator-II JPARC-HK NuFat-II

0.14 0.061 0.032 0.023 0.014 10

�3

6� 10

�5

Table 8: Current and expeted sensitivities for sin

2

2�

13

at the 90% CL [55, 56, 57℄. The entry \Beams"

inludes the onventional beam experiments MINOS, ICARUS and OPERA. The last entry refers to an

advaned stage neutrino fatory with experiments at two di�erent baselines. The sensitivity of a �rst

stage neutrino fatory (\NuFat-I") is similar to that of JPARC-HK. For a desription of the experiments

and the assumptions used in the analysis, see [55, 56, 57℄ and referenes therein. The numbers should

be treated with some are, sine they depend on the true values of the other osillation parameters, in

partiular �m

2

atm

.

Current Beams T2K+NuMI JPARC-HK NuFat-II

0.16 0.1 0.050 0.020 0.055

Table 9: Current and expeted sensitivities for j0:5� sin

2

�

23

j [22℄. The numbers are the minimal values

required to exlude maximalmixing at the 90% CL. \Current" is the urrent limit from SuperKamiokande

[58℄, \Beams" means onventional neutrino beams. See [22℄ and referenes therein for a desription of the

experiments and the analysis methods. As in Tab. 8, the results depend on the true values of the other

osillation parameters.

to or even larger than M

GUT

. Consequently, the RG e�ets from (Y

�

)

33

beome negligible,

and we are left with the hange proportional to y

2

�

. This hange is small here, sine we are

using a moderate value of tan � = 20.

In order to demonstrate that RG orretions from Y

�

are not neessarily negligible for

a strongly hierarhial spetrum, let us onsider another example, where two elements of

Y

�

are large. The evolution of the atmospheri mixing angle and mass squared di�erene

is shown in Fig. 6 for �

23

= �=4 at high energy in the MSSM with di�erent values of tan �

and a strong normal mass hierarhy. In this example, we have taken (Y

�

)

33

= (Y

�

)

32

= 1

at M

3

and assumed the other entries in Y

�

to be small in the basis where M and Y

e

are

diagonal. We have furthermore assumed that the right-handed neutrino with mass M

3

dominates in the see-saw formula, as it is the ase for heavy sequential dominane (HSD)

[59, 60℄.

16

This allows to approximately alulateM

3

� v

2

(Y

�

)

2

33

m

�1

3

with m

3

�

p

�m

2

atm

in this ase, and to onsider only one see-saw saleM

�

=M

3

when disussing the running.

Eq. (25) then simpli�es to

��

23

�

1

32�

2

y

2

�

ln

�

M

GUT

M

SUSY

� �

1 + 2

p

�

2

12

os'

2

�

+

1

16�

2

ln

�

M

GUT

p

�m

2

atm

v

2

�

: (27)

The resulting hange of �

23

is in the range of about [1

Æ

; 5

Æ

℄. Thus, even with a strong

normal mass hierarhy, the hange of the mixing angles an be within the sensitivity of

future long baseline experiments. The phase '

1

is irrelevant due to m

1

= 0, and '

2

annot

ause a signi�ant damping as it appears together with the rather small quantity

p

�. In

Fig. 6, it has been set to 0.

As argued in Se. 6.2, the running of U

e

(the seond term in Eq. (27)) annot be ne-

gleted in this example, beause the U

�

ontribution is strongly suppressed due to the

anellation between the terms proportional to P

22

and P

33

and the vanishing of the term

proportional to P

23

for maximal atmospheri mixing and real Y

�

. Even without anella-

tions, both ontributions are generially of the same order of magnitude for hierarhial

16

RG e�ets in this ase have been disussed numerially in [26℄, in agreement with our analyti results.
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Figure 6: Example for the running of �

23

, Fig. (a), and �m

2

atm

, Fig. (b), for a hierarhial neutrino

spetrum. The plots show the RG evolution in the MSSM for tan � = 55 (solid lines), 40 (dashed lines)

and 10 (dotted lines) with �

23

= 45

Æ

at high energy and present best-�t values for the other parameters as

onstraints at low energy. We have used (Y

�

)

33

= (Y

�

)

32

= 1 at the see-saw sale M

3

(in the basis where

M and Y

e

are diagonal) as an example (note that we use RL-onvention for Y

�

). We have furthermore

assumed that the right-handed neutrino with mass M

3

dominates in the see-saw formulae, as in heavy

sequential dominane [59, 60℄, whih allows to approximately alulate M

3

from m

3

in the hierarhial

sheme. To a good approximation, only one see-saw sale is relevant for the running in this ase. The

gray regions orrespond to energies above this sale. The evolution of �m

2

atm

depends quite sensitively

on the value of the top mass and on the SUSY breaking sale. We have used m

t

(m

t

) = 175GeV and

M

SUSY

= 1TeV.
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Figure 7: Fast running of the solar angle despite large Majorana phases '

1

= �=2, '

2

= 0 in the MSSM

with tan � = 30, M

SUSY

= 1TeV and a normal mass hierarhy. The evolution is dominated by the large

imaginary part of P

31

, see Eq. (28). Further initial onditions at the GUT sale M

GUT

= 2 � 10

16

GeV

were bimaximal mixing, m

1

= 0:08 eV, �m

2

sol

= 1:2 � 10

�4

eV

2

, and �m

2

atm

= 4 � 10

�3

eV

2

.

neutrino masses. Another lesson that an be learned from this example is that a omplete

anellation of the running is very unlikely. Hene, we always expet RG e�ets to be

omparable to the sensitivity of planned preision experiments if there are large Yukawa

ouplings and if Y

�

and Y

e

are not simultaneously diagonal.

6.4 Large RG E�ets Despite Phases

The main new e�et above the see-saw thresholds is the appearane of o�-diagonal terms in

the Yukawa ouplings. As large o�-diagonal entries in the Yukawa matries are postulated

in a lot of fermion mass models in order to explain the large lepton mixing angles, we

expet an important impat on the running in many ases. As mentioned in Se. 3.1,

the e�et of large imaginary entries in P is espeially unusual, sine their oeÆients in

the RGEs of the mixing angles �

12

and �

23

vanish for zero Majorana phases and beome

maximal if the phases or their di�erene equal �=2. Thus, a fast running is now also

possible for large Majorana phases. A numerial example with

Y

�

(M

GUT

) =

0

�

0:001 0 0

0 0:01 0

�0:4i 0 0:5

1

A

) Y

y

�

Y

�

(M

GUT

) =

0

�

0:16 0 0:2i

0 0:0001 0

�0:2i 0 0:25

1

A

; (28)

i.e. a large and purely imaginary P

31

(as usual given in the basis where Y

e

is diagonal and

all unphysial phases are zero) is shown in Fig. 7. We used the MSSM with tan � = 30,

M

SUSY

= 1TeV, a normal hierarhy, m

1

= 0:08 eV, �m

2

sol

= 1:2 � 10

�4

eV

2

, �m

2

atm

=

4�10

�3

eV

2

, '

1

= �=2, '

2

= 0 and bimaximalmixing at the GUT saleM

GUT

= 2�10

16

GeV.

Reasonable values for the low-energy osillation parameters are reahed, and �m

2

sol

stays

positive. The running of the solar angle from maximal mixing to smaller values is aused

by the term proportional to ImP

31

in the RGE. A negative value of ImP

31

is required for

23



_

�

12

> 0 (f. Tab. 12), whih is neessary to avoid running to the \dark side" of the solar

osillation parameters (orresponding to �m

2

sol

< 0 with our onventions). Alternatively,

one ould hoose ImP

31

> 0 and exhange the initial phases, i.e. '

1

= 0, '

2

= �=2. The

terms proportional to the diagonal elements P

11

and P

33

do not play a signi�ant role

here, sine they have opposite signs and therefore anel approximately. The example

demonstrates that for suÆiently large o�-diagonal entries in Y

y

�

Y

�

, it is possible to avoid

the requirement of an inverse hierarhy of the neutrino Yukawa ouplings whih was found

for diagonal Y

y

�

Y

�

[11, 12, 13℄.

Adding another large imaginary entry in the 32-element,

Y

�

(M

GUT

) =

0

�

0:001 0 0

0 0:01 0

�0:4i �0:5i 0:5

1

A

) Y

y

�

Y

�

(M

GUT

) =

0

�

0:16 0:2 0:2i

0:2 0:25 0:25i

�0:2i �0:25i 0:25

1

A

; (29)

yields a rather extreme behavior of �

12

, as shown in Fig. 8. The highest see-saw sale lies

at about 8 � 10

13

GeV here, i.e. the turnaround in the running is not a threshold e�et.

Instead, it is due to the evolution of the Majorana phases, .f. the lower plot in Fig. 8.

Their di�erene initially equals �=2 but quikly starts to inrease as soon as �

12

has moved

away from �=4. The evolution is dominated by the term proportional to ImP

31

, whih

is largest for '

1

� '

2

= �. At this point, sin('

1

� '

2

) hanges its sign, ausing a sign

hange in the ontributions of the imaginary parts of the o�-diagonal Yukawa ouplings

to the RGE for �

12

. This explains the minimum in the evolution of this angle. At lower

energies, the di�erene of the Majorana phases reahes a value of about 4:4 and remains

approximately onstant afterwards.

17

From Tab. 14, one would expet this value to be

loser to 2�. The di�erene is due to the subleading ontributions to the running (the

terms proportional to sin �

13

and the harged lepton ontribution), whih beome relevant

here beause of the strong damping of the leading terms.

6.5 Leptogenesis and RG Corretions

Leptogenesis [61℄ is an attrative explanation of the observed baryon-to-photon ratio

n

B

=n



= (6:5

+0:4

�0:3

) � 10

�10

[62℄. It typially operates at the mass sale of the lightest right-

handed neutrino. In suh a senario, we have to deal with three sales: the GUT sale

where the preditions for the model parameters are �xed, the sale of leptogenesis where

the parameters have to be right for suessful baryogenesis, and the low sale at whih

the parameters an be measured in experiments. In partiular, one annot use GUT sale

parameters or experimental results diretly in order to test the viability of leptogenesis in

a given model, rather one has to take into aount quantum orretions. In the energy

range between the leptogenesis sale M

1

and the eletroweak sale M

EW

, we an onsider

the running of the e�etive neutrino mass operator. For relating the see-saw parameters

at the GUT sale with the ones atM

1

, the evolution above and between the see-saw sales

has to be onsidered.

17

This happens even if the heaviest singlet neutrino is not integrated out, i.e. even if the large Yukawa

ouplings are not removed from the theory.
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Figure 8: Highly non-linear running of �

12

and the Majorana phases in an example with large imaginary

entries in the neutrino Yukawa matrix (see Eq. (29)). We used the MSSM with tan � = 10,M

SUSY

= 1TeV

and the following initial onditions at M

GUT

= 2 � 10

16

GeV: �

12

= �

23

= �=4, �

13

= 0, '

1

= �=2, '

2

= 0,

normal hierarhy, m

1

= 0:08 eV, �m

2

sol

= 1:1 � 10

�4

eV

2

, �m

2

atm

= 4 � 10

�3

eV

2

.
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6.5.1 Corretions to Deay Asymmetries and to the Neutrino Mass Bound

The deay asymmetry for leptogenesis in the SM [63℄ an be written as

"

1

�

3

8�

M

1

v

2

1

(Y

�

Y

y

�

)

11

X

f;g

Im [(Y

�

)

1f

(Y

�

)

1g

(m

�

�

)

fg

℄ ; (30)

if M

1

� M

2

;M

3

. In the MSSM, it is a fator of 2 larger. In the ase of a type II see-

saw and for M

1

� M

�

, where M

�

is the mass of the SU(2)

L

-triplet Higgs, the deay

asymmetry for type II leptogenesis via the lightest right-handed neutrino oinides with

the result for the onventional see-saw [64℄. In the SM or for a moderate tan � in the

MSSM, the RG running from M

EW

to M

1

leads mainly to a saling of the neutrino mass

matrix m

�

. Inluding the RG e�ets results in an enhanement of the deay asymmetry

for leptogenesis by roughly 20% in the MSSM and 30% { 50% in the SM [65, 20℄. The

deay asymmetry an be alulated by the REAP pakage desribed in Se. 5 as a funtion

of energy. Thus, one an easily hek if a partiular high-energy model for fermion masses

is able to produe a large enough asymmetry. Let us remark that also the running of the

mixing angles an be very important for the alulation of the baryon asymmetry, as has

been shown reently for non-thermal leptogenesis models [66℄.

The requirement of suessful baryogenesis via thermal leptogenesis imposes onstraints

on fermion mass models and even plaes an upper bound on the mass of the light neutrinos

[67℄. With respet to quantum orretions to this mass bound, it turns out that there are

two e�ets operating in opposite diretions, whih partially anel eah other [20, 45, 68℄:

on the one hand, the inrease of the mass sale leads to a larger deay asymmetry ompared

to the one at low energies. On the other hand, it results in a stronger washout driven by

Yukawa ouplings. Taking into aount these e�ets and further orretions, one �nds that

the upper bound on the neutrino mass sale beomes more restritive.

6.5.2 Models for Resonant Leptogenesis and RG Corretions

As an example where the running above the lowest see-saw sale an have large e�ets,

we onsider the RG orretions to the small mass splitting �M = jM

1

�M

2

j for resonant

leptogenesis [63, 69, 70, 71℄. Here, the deay asymmetry is enhaned ompared to Eq. (30).

For resonane e�ets in the deay asymmetries to be maximal, a mass splitting of

1

2

times

one of the deay widths (in the MSSM)

�

1

�

M

0

8�

(Y

�

Y

y

�

)

11

; �

2

�

M

0

8�

(Y

�

Y

y

�

)

22

; (31)

with M

2

� M

1

:= M

0

, is required. Given a model for neutrino masses with suh a small

mass splitting de�ned at M

GUT

, the deay rate an be a�eted signi�antly by the RG

evolution of the mass matrix of the heavy right-handed neutrinos fromM

GUT

toM

1

�M

2

.

Resonant leptogenesis with exatly degenerate heavy singlets atM

GUT

has been disussed,

e.g., in [72, 73, 74℄. The running of M and Y

�

betweenM

GUT

and M

1

, taking into aount

the e�ets between the see-saw thresholds, an be omputed onveniently using the software

pakages presented in Se. 5.
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7 Alternative Senarios

For the examples in Se. 6, we have foused on the onventional see-saw mehanism in the

SM and in the MSSM. We now give a brief outlook on other senarios. Some of them are

already implemented in the software pakages REAP/MPT introdued in Se. 5.

7.1 Type II See-Saw

A generalization of the onventional see-saw is the type II see-saw [75, 76, 77℄, where

an additional ontribution to the neutrino mass matrix, e.g. from an indued vev of a

SU(2)

L

-triplet Higgs, is present. Below the additional see-saw sale given by the mass

M

�

of the triplet, it an be integrated out, only leaving an additional ontribution to the

e�etive neutrino mass operator. The pakages REAP/MPT and the analyti formulae for

the running of the neutrino parameters an thus be applied for analyzing type II see-saw

senarios belowM

�

. AboveM

�

, the RGEs are modi�ed due to the additional interations.

7.2 Dira Neutrinos

At present it is not known whether the nature of neutrino masses is Dira or Majorana.

The RG evolution of Dira neutrino masses is studied in [44℄. The pakages REAP/MPT an

also be used in this ase.

7.3 Two Higgs Models

We restrit our disussion to a lass of 2HDMs where avour hanging neutral urrents

(FCNCs) are naturally absent [78, 79, 80℄. The Yukawa ouplings of the theory are given

by

L

2HDM

Yukawa

= �

2

X

i=1

n

z

(i)

e

e

R

Y

(i)

e

`

L

�

(i)y

+ z

(i)

�

N

R

Y

(i)

�

`

L

e

�

(i)y

+ z

(i)

d

d

R

Y

(i)

d

Q

L

�

(i)y

+ z

(i)

u

u

R

Y

(i)

u

Q

L

e

�

(i)y

o

+ h.. ; (32)

where either z

(1)

f

or z

(2)

f

has to be zero for eah f 2 fe; �; d; ug in order to ensure the

absene of FCNCs. In order to generate masses via Yukawa ouplings, z

(1)

f

= 1 for z

(2)

f

= 0

and vie versa. By onvention, the right-handed harged leptons always ouple to the �rst

Higgs, i.e. z

(1)

e

= 1; z

(2)

e

= 0.

It is known that in these kind of models there are (at least) two e�etive neutrino mass

operators. Furthermore, RG e�ets are omparatively large, sine one has both the tan �

enhanement as well as the absene of anellations due to the SUSY non-renormalization

theorem. An analyti understanding of the RG e�ets is more diÆult to obtain, sine the

two omponents of the e�etive neutrino mass matrix

m

�

= �

v

2

1

4

�

(11)

�

v

2

2

4

�

(22)

(33)

run di�erently. Here, more investigations are needed, whih are beyond the sope of this

study. With the REAP pakage, an extensive numerial analysis is possible. Reently, the
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RGEs in multi-Higgs models have been derived [81℄. The struture of the �-funtions is

very similar.

7.4 Split SUSY

Let us note that the RGEs for the e�etive neutrino mass operator in the SM desribe the

running in the framework of `split supersymmetry' [82, 83℄ as well, exept for a ontribution

to the avour-trivial part of the RGE (f. App. D.3). This implies in partiular that running

e�ets for the mixing angles are suppressed ompared to the MSSM (with not too small

tan �). The negative g

2

2

ontribution to the avour-trivial part of the RGE gets replaed

by a positive g

1

1

ontribution. This e�et inreases the running of the mass eigenvalues.

7.5 Other Alternative Soures of Neutrino Masses

If the dimension 5 neutrino mass operator does not give the leading ontribution, possible

alternative soures to the light neutrino masses an have interesting onsequenes. Neu-

trino masses an e.g. emerge from the K�ahler potential in supersymmetri theories. It has

been observed that in this ase, large mixing angles an be an infrared �xed point of the

renormalization group [84, 85℄. In the SM, e�ets of additional dimension 6 operators on

the running of the dimension 5 neutrino mass operator have been onsidered in [86℄.

8 Disussion and Conlusions

We have disussed the running of neutrino masses and leptoni mixing parameters in

see-saw models involving singlet neutrinos. At energies above the masses of these heavy

partiles, their Yukawa ouplings to the left-handed leptons play an important role. As

they may be of order 1, they an ause signi�ant quantum orretions. We have derived

approximate renormalization group equations (RGEs) for the mixing angles, CP phases

and mass eigenvalues. Due to the large number of parameters in the see-saw senario, the

details of the running strongly depend on the spei� model under onsideration. One is

still able to obtain an extensive analyti understanding of the RG e�ets. It is instrutive

to ompare the RGEs of the physial mixing parameters f 

`

g = f�

12

; �

32

; �

23

; Æ; '

1

; '

2

g

above the see-saw sales,

�

d

d�

 

`

=

f

`

(m

k

;phases)

m

2

i

�m

2

j

� F

(�)

`

(Y

�

; Y

e

; f 

`

g) + F

(e)

`

(Y

�

; Y

e

; f 

`

g) (34)

to those desribing the evolution below the see-saw sales. The latter are obtained by

replaing F

(�)

`

(Y

�

; Y

e

; f 

`

g) by F

`

(Y

e

; f 

`

g) and F

(e)

`

by zero in Eq. (34). Most importantly,

the struture of the RGEs of the mixing parameters is the same above and below the see-

saw sales. Hene, there are features ommon to the evolution above and below. For a

degenerate spetrum, the �rst mass quotient in (34) beomes large, yielding strong RG

e�ets. There are, however, important di�erenes as well. First, the dimensionless funtion

F

`

(Y

e

; f 

`

g) vanishes for zero mixing, whih is not the ase for F

(�)

`

(Y

�

; Y

e

; f 

`

g). Zero

mixing angles are hene not stable under the RG in the full see-saw framework. Seond, in

the SM or the MSSM with small tan �, RG e�ets are small below the see-saw sales. In
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ontrast, above the entries of Y

�

an be of order one and ause important running e�ets.

Third, the RGE ontains the F

(e)

`

(Y

�

; Y

e

; f 

`

g) term, whih desribes the radiative rotation

of Y

y

e

Y

e

in the presene of neutrino Yukawa ouplings Y

�

. Finally, between the thresholds,

there are important e�ets in non-supersymmetri theories whih stem from the di�erent

saling of di�erent parts of the e�etive neutrino mass matrix.

We listed the leading order RG oeÆients for the mixing parameter RGEs in extensive

tables. Our results allow to obtain a qualitative understanding of generi e�ets suh as the

inuene of the CP phases and that of the absolute neutrino mass sale. For example, non-

zero phases often damp the running, but some terms in the RGEs are atually enhaned

by them. A rough quantitative estimate of the size of the RG e�ets is possible as well.

Although the hange of the mixing angles is quite small for strongly hierarhial masses

(in the ase of a normal hierarhy), it turns out that often it is still omparable to the

sensitivities of planned osillation experiments. Therefore, quantum orretions should not

be negleted in any study of fermion mass models if one aims at theoretial preditions

whose preision mathes that of the experiments. The neutrino mass eigenvalues always

hange signi�antly due to the RG evolution. This means that a model prediting preisely

the measured value of �m

2

atm

= 2:1 �10

�3

eV

2

at the GUT sale would atually be exluded

by several standard deviations. Another onsequene is a orretion to the mass bound

from thermal leptogenesis. Furthermore, the running of the masses of the singlet neutrinos

is important for models of resonant leptogenesis.

In order to obtain preise quantitative results, the omplete system of oupled RGEs

has to be solved. Therefore, one has to resort to numerial alulations. For this purpose,

we have developed a set of Mathematia pakages, whih are available at the web page

http://www.ph.tum.de/~rge/. The pakage REAP solves the RGEs and thus provides the

neutrino mass matrix as well as the other parameters suh as Yukawa ouplings at eah

energy. In models with heavy singlet neutrinos, they are integrated out automatially at

the orresponding mass thresholds. Thus, the e�ets of non-degenerate singlet masses,

whih are generally sizable, are orretly taken into aount. From the results of REAP,

MixingParameterTools allows to extrat the values of the mixing angles, phases and mass

eigenvalues.
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Appendix

A Conventions for Mixing Parameters and Experi-

mental Data

A.1 Conventions

Here, we desribe our onventions onerning mixing angles and phases. For a general

unitary matrix we hoose the so-alled standard-parametrization

U = diag(e

iÆ

e

; e

iÆ

�

; e

iÆ

�

) � V � diag(e

�i'

1

=2

; e

�i'

2

=2

; 1) (A.1)

where

V =

0

�
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13

s

12



13

s

13

e

�iÆ

�

23

s

12

� s

23

s

13



12

e

iÆ



23



12

� s

23

s

13

s

12

e

iÆ

s

23



13

s

23

s

12

� 

23

s

13



12

e

iÆ

�s

23



12

� 

23

s

13

s

12

e

iÆ



23



13

1

A

(A.2)

with 

ij

and s

ij

de�ned as os �

ij

and sin �

ij

, respetively.

The MNS mixing matrix U

MNS

is de�ned to diagonalize the e�etive neutrino mass

matrix m

�

in the basis where Y

y

e

Y

e

= diag(y

2

e

; y

2

�

; y

2

�

),

U

T

MNS

m

�

U

MNS

= diag

�

m

1

;m

2

;m

3

�

: (A.3)

The mass eigenvalues m

i

are positive, and m

1

< m

2

< m

3

for a normal hierarhy or

m

3

< m

1

< m

2

for an inverted hierarhy, respetively. For our onventions for extrating

the mixing parameters from the MNS matrix, we would like to refer the reader to Ref. [20℄

and the doumentation of the MixingParameterTools pakage assoiated with this study.

A.2 Experimental Data

An overview over the best-�t values and allowed ranges for the neutrino osillation pa-

rameters resulting from a global �t to the experimental data [41℄ is given in Tab. 10.

Parameter Best-�t value 3� range

�

12

33:2

Æ

28:7

Æ

:: 38:1

Æ

�

23

45:0

Æ

35:7

Æ

:: 55:6

Æ

�

13

0

Æ

0

Æ

:: 13:1

Æ

�m

2

sol

7:9 � 10

�5

eV

2

(7:1 :: 8:9) � 10

�5

eV

2

j�m

2

atm

j 2:1 � 10

�3

eV

2

(1:3 :: 3:2) � 10

�3

eV

2

Table 10: Overview of experimental results for neutrino osillation parameters [41℄.
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B Derivation of the Analyti Formulae

This appendix ontains a ouple of tehnial details relevant for the derivation of the

analyti formulae disussed in the main part. Our derivation is based on earlier works

[38, 31, 39℄, but di�ers from them by a few steps allowing to express the running of

the mixing parameters by the mixing parameters themselves rather than mixing matrix

elements [20℄ (see also [87℄ for real ouplings).

B.1 General Strategy

In an arbitrary basis, one an de�ne unitary matries U

�

and U

e

by

U

�

(t)

T

m

�

(t)U

�

(t) = diag

�

m

1

(t);m

2

(t);m

3

(t)

�

; (B.4a)

U

e

(t)

y

Y

y

e

Y

e

(t)U

e

(t) = diag

�

y

2

e

(t); y

2

�

(t); y

2

�

(t)

�

; (B.4b)

where m

�

is the e�etive light neutrino mass matrix of Eq. (3). The MNS matrix is then

given by

U

MNS

(t) = U

y

e

(t)U

�

(t) : (B.5)

For onveniene, we hoose to work in a basis, alled referene basis in the following, where

Y

y

e

Y

e

(t

0

) = diag

�

y

2

e

(t

0

); y

2

�

(t

0

); y

2

�

(t

0

)

�

: (B.6)

Obviously, U

e

(t

0

) = 1 and U

MNS

(t

0

) = U

�

(t

0

).

Let us now onsider the hanges aused by hanging the renormalization sale aording

to t

0

! t

0

+�t (with �t being small). The RGE (4) for m

�

indues a hange

m

�

(t

0

+�t) = m

�

(t

0

) +

�t

16�

2

�

P (t

0

)

T

m

�

(t

0

) +m

�

(t

0

)P (t

0

) + ��(t

0

)m

�

(t

0

)

�

+O

�

(�t)

2

�

(B.7)

with P = (C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

) in the energy region above the highest see-saw sale. We

restrit our derivation to this region. As explained in Se. 4, the results for the MSSM an

also be applied between the see-saw sales after replaing Y

�

by

(n)

Y

�

. However, this is not

possible in the SM. Due to the hange of m

�

,

U

�

(t

0

+�t) = U

�

(t

0

) + �t U

�

(t

0

)T +O

�

(�t)

2

�

; (B.8)

where T is to be alulated below. This relation, however, does not give the full RG hange

of U

MNS

, sine also Y

y

e

Y

e

gets rotated,

Y

y

e

Y

e

(t

0

+�t) = Y

y

e

Y

e

(t

0

) +

�t

16�

2

�

F

y

(t

0

)Y

y

e

Y

e

(t

0

) + Y

y

e

Y

e

F (t

0

) + f(t

0

)Y

y

e

Y

e

(t

0

)

�

+O

�

(�t)

2

�

; (B.9)

where F = (D

e

Y

y

e

Y

e

+ D

�

Y

y

�

Y

�

) and f = 2Re�

e

. Hene, U

e

(t

0

+ �t) is di�erent from

U

e

(t

0

) = 1 in general,

U

e

(t

0

+�t) = U

e

(t

0

) + �t U

e

(t

0

)X +O

�

(�t)

2

�

; (B.10)
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with X to be alulated below.

Using Eq. (B.5) together with Eqs. (B.8) and (B.10), we thus get two ontributions to

the hange of the MNS matrix,

U

MNS

(t

0

+�t) = U

MNS

(t

0

) + �t

�

U

MNS

(t

0

)T +X

y

U

MNS

(t

0

)

�

+O

�

(�t)

2

) : (B.11)

We all them the U

�

and the U

e

ontribution. Following the analysis of [20℄, this relation

allows to derive RGEs for the mixing parameters.

Before going to the atual alulation, we would like to stress that to derive the mixing

parameter RGEs, it is useful to work in the referene basis. The resulting equations,

however, are basis-independent. Of ourse, if one hanges the basis, one needs to transform

P and F aordingly, whih means that the tables in Se. 3 and App. C are hanged as

well.

B.2 RG Corretions Indued by P

This part of the derivation oinides with the one performed in [20℄ exept for the fat

that we have to deal with a non-diagonal P . Rather than repeating the analysis of [20℄,

we just summarize the results: the evolution of U

�

is found to be desribed by

U

y

�

_

U

�

= T ; (B.12)

where the entries of T are given by

16�

2

ImT

ij

= �

m

i

�m

j

m

i

+m

j

ImP

0

ij

; (B.13a)

16�

2

ReT

ij

= �

m

i

+m

j

m

i

�m

j

ReP

0

ij

: (B.13b)

m

i

denote the eigenvalues of the e�etive neutrino mass matrix m

�

(f. App. A.1), and

P

0

= U

y

�

P U

�

.

B.3 Contribution from the Running of Y

e

Let us now derive the U

e

ontribution to the RGEs stemming from the fat that Y

y

e

Y

e

hanges its struture under the RG. To alulate the orresponding hange of the MNS

matrix, we only need the running of the unitary matrix U

e

whih diagonalizes Y

y

e

Y

e

. Using

Eq. (18), it is easy to hek that

16�

2

d

dt

Y

y

e

Y

e

= F

y

Y

y

e

Y

e

+ Y

y

e

Y

e

F + 2Re�

e

Y

y

e

Y

e

: (B.14)

Plugging this into the inverse of Eq. (B.4b), Y

y

e

Y

e

= U

e

diag(y

2

e

; y

2

�

; y

2

�

)U

y

e

=: U

e

DU

y

e

, we

obtain

d

dt

(U

e

DU

y

e
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_

U

e

DU

y

e

+ U

e

D

_

U

y

e

+ U

e

_

DU
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e
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1

16�
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y

U

e

DU
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e

+ U

e

DU

y

e

F + 2Re�

e

U

e

DU

y

e

�

: (B.15)
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Multiplying by U

y

e

from the left and by U

e

from the right yields

U

y

e

_

U

e

D +D

_

U

y

e

U

e

+

_

D =

1

16�

2

�

F

0 y

D +D F

0

+ 2Re�

e

D

�

; (B.16)

where F

0

:= U

y

e

F U

e

. The evolution of U

e

an be written as

d

dt

U

e

= U

e

X ; (B.17)

where X is anti-Hermitian. Inserting this relation and using the anti-Hermitiity yields

_

D =

1

16�

2

�

F

0 y

D +DF

0

+ 2Re�

e

D

�

�X D +DX : (B.18)

By analyzing the o�-diagonal parts, we �nd

y

2

i

X

ij

�X

ij

y

2

j

= �

1

16�

2

�

(F

0y

)

ij

y

2

j

+ y

2

i

F

0

ij

�

; (B.19)

where y

1

� y

e

et. For Hermitian F , this an be written as

16�

2

X

ij

=

y

2

j

+ y

2

i

y

2

j

� y

2

i

F

0

ij

: (B.20)

Due to the strong hierarhy of the harged lepton Yukawa ouplings, the y

i

dependent fator

is approximately �1. The orresponding equations for the U

�

ontribution, Eqs. (B.13),

ontain the light neutrino mass eigenvalues, so that a signi�ant enhanement of T

ij

, the

analogon of X

ij

, ours for quasi-degenerate neutrino masses. In this ase, we expet the

U

e

ontribution to give only a small orretion, unless severe anellations our in the U

�

ontribution. However, for a strong normal neutrino mass hierarhy, both ontributions

are generially of the same order of magnitude. The diagonal parts of X, whih only

inuene the evolution of the unphysial phases, remain undetermined.

B.4 Combination of both Contributions

Inserting Eqs. (B.12) and (B.17) into Eq. (B.5), we �nd at t = t

0

in the referene basis

d

dt

U

MNS

= U

MNS

T +X

y

U

MNS

(B.21)

or

U

y

MNS

_

U

MNS

= T � U

y

MNS

X U

MNS

=: R

TX

: (B.22)

Note that this is a relation for U

MNS

where both X and T depend on how we split U

MNS

into U

e

and U

�

. Spei�ally, in an arbitrary basis we have

U

y

MNS

_

U

MNS

= U

e

T U

y

e

� U

y

�

X U

�

: (B.23)

As both sides of the last equation are anti-Hermitian, the derivatives of the mixing param-

eters are found from the system of linear equations

X

k

A

(k)

_

�

k

+ iS

(k)

_

�

k

= R

TX

; (B.24)
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where f�

k

g := f�

12

; �

13

; �

23

; Æ; Æ

e

; Æ

�

; Æ

�

; '

1

; '

2

g. The real matries A

(k)

and S

(k)

are anti-

symmetri and symmetri, respetively. Hene, eah A

(k)

has 3 harateristi elements and

eah S

(k)

has 6, so that we an regard Eq. (B.24) as a system of 9 linear equations,
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v an be split into two parts,

v = v

T

+ v

X

; (B.26)

where v

T

is built from T and v

X

is built from �U

y

MNS

X U

MNS

. In partiular, eah

_

�

k

, for

instane

_

�

12

, is the sum of two ontributions, one from T (i.e. from the running of m

�

) and

one from X (i.e. from the running of Y

e

).

B.5 Comment: `Unphysial' Phases

The RGEs in the full theory ontain the entries of P . However, the phases appearing in

the o�-diagonal elements of P are not basis-independent, rather they an be hanged by a

transformation using the `unphysial' phases Æ

e

, Æ

�

and Æ

�

only. To see this, let us perform

(in the basis where Y

y

e

Y

e

is diagonal) a transformation K,

`

L

K

�! K `

L

; e

R

K

�! K e

R

; (B.27)

where K = diag(e

i�

1

; e

i�

2

; e

i�

3

) is a diagonal phase matrix. Y

y

e

Y

e

is invariant under this

transformation, yet it hanges the e�etive neutrino mass matrix aording to

m

�

K

�! K

�

m

�

K

y

: (B.28)

Hene, also U

MNS

gets hanged under this transformation,

U

MNS

K

�! K U

MNS

; (B.29)

i.e.K a�ets the phases Æ

e

, Æ

�

and Æ

�

in the standard parametrization (A.1). Furthermore,

it rotates the phases of the o�-diagonal entries of Y

y

�

Y

�

as

Y

y

�

Y

�

K

�! K Y

y

�

Y

�

K

y

: (B.30)

34



This shows that one has to speify both the phases Æ

e

, Æ

�

, Æ

�

and the arguments of the

o�-diagonal entries of Y

y

�

Y

�

, as one set of parameters an be traded for the other. In other

words, two theories with equal P but di�erent phases Æ

f

are not equivalent. In the main

text, we use the onvention

Æ

e

= Æ

�

= Æ

�

= 0 : (B.31)

As a tehnial omment, we would like to mention that in order to diagonalize a gen-

eral neutrino mass matrix m

�

, the parameters Æ

e

, Æ

�

and Æ

�

are needed. Only after the

transformation with K = diag(e

�iÆ

e

; e

�iÆ

�

; e

�iÆ

�

), one an write the MNS matrix without

Æ

e

, Æ

�

and Æ

�

. The step of going to the basis where Æ

e

= Æ

�

= Æ

�

= 0 has often not been

mentioned expliitly in the literature. In this ontext, we would like to omment that, of

ourse, Æ

e

, Æ

�

and Æ

�

are subjet to quantum orretions with their RGEs depending on the

physial parameters.

_

Æ

e

has a term proportional to 1=�m

2

sol

whereas

_

Æ

�

and

_

Æ

�

are both

proportional to 1=�m

2

atm

.

18

C RGE CoeÆients

In the following, we show the RGEs for the lepton mixing parameters obtained from

the derivation disussed above. We give the �rst order of the expansion in the small

CHOOZ angle �

13

. We furthermore use the abbreviation � for the ratio of the mass

squared di�erenes, f. Eq. (16).

The results are presented in the form of tables whih list the oeÆients of P

fg

=

(C

e

Y

y

e

Y

e

+ C

�

Y

y

�

Y

�

)

fg

in the RGEs. Thus, if only a single element of P is dominant, the

derivatives of the mixing parameters are found from the orresponding rows in the tables.

Of ourse, if several entries of P

fg

are relevant, their ontributions simply add up. While

the omplete RGEs are basis-independent, the table entries do depend on the hoie of the

basis, sine P is basis-dependent. We use the basis where Y

e

is diagonal and where the

unphysial phases in the MNS matrix are zero.

18

The orresponding formulae below the see-saw sales an be obtained from the web page

http://www.physik.tu-muenhen.de/~mratz/AnalytiFormulae/. There, the RG evolution of the Æ

f

phases depends on the physial parameters, but the RGEs of the physial parameters are independent of

the Æ

f

phases.
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Table 12: CoeÆients of P
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in the RGEs of the mixing angles �
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in the limit �
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! 0. The abbreviations
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). They are listed in

Tab. 11.
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Table 13: CoeÆients of P
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in the derivative of the Dira CP phase. The omplete RGE is given by
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Table 14: CoeÆients of P

fg

in the RGEs of the Majorana phases for �

13

= 0.
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D RGEs for See-Saw Models

In order to alulate the RG evolution of the e�etive neutrino mass matrix, the RGEs for

all the parameters of the theory have to be solved simultaneously. We therefore summarize

the RGEs for the minimal see-saw extensions of the SM, of the lass of 2HDMs desribed in

Se. 7.3, and of the MSSM. We list the MS 1-loop results in the SM and 2HDM, as well as

the 2-loop RGEs for the e�etive neutrino mass operator, the singlet mass matrix and the

Yukawa ouplings in the MSSM. For further RGEs and referenes, see e.g. [88, 89, 90, 91℄.

We use the notation de�ned in Se. 2. In partiular, a supersript (n) denotes a quantity

between the nth and the (n+1)th mass threshold. The RGEs for the SM, 2HDM or MSSM

without singlet neutrinos an be reovered by setting the neutrino Yukawa oupling to zero.

In the full theories above the highest see-saw sale, the supersript (n) has to be omitted.

The RGEs for the gauge ouplings are well-known and not a�eted by the additional

singlets at 1-loop order. They are given by
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D.1 The RGEs in the Extended SM

In the SM extended by singlet neutrinos, the RG evolution is governed by the �-funtions

[31, 27℄
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D.2 The RGEs in Extended 2HDMs

Here, we list the �-funtions for the lass of 2HDMs desribed in Se. 7.3 [92, 32, 37℄. The

oeÆients z
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f

determine whih fermion ouples to whih Higgs, f. Eq. (32).
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For the parameters of the Higgs interation Lagrangian, the �-funtions are [92℄ (Note that

we use di�erent onventions for the renormalizable Higgs ouplings, as spei�ed in [37℄.)
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D.3 Split Supersymmetry

The �-funtions for the renormalizable ouplings in the framework of split SUSY are

listed in Ref. [83℄. The diagrams ontributing to the RGE of the e�etive neutrino mass

41



�

φ

φ̃

B̃

φ
�

φ

φ̃

W̃ a

φ

Figure 9: Additional diagrams ontributing to the wavefuntion renormalization of the Higgs in split
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e
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e
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operator are those relevant in the SM, amended by two diagrams involving Higgsinos and

gauginos (f. Fig. 9). These diagrams ontribute to the avour-trivial part of the RGE. At

1 loop, we obtain for the divergent parts of the renormalization onstants in dimensional

regularization and in the MS sheme
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Clearly, the term involving the gauge ouplings in the avour-diagonal part di�ers from

the SM ase.

D.4 The RGEs in the MSSM Extended by Heavy Singlets
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The 1-loop parts are given by [32, 27℄
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The results for the 2-loop parts, whih are an extension of the usual 2-loop �-funtions

for the MSSM [93℄, are [94℄
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The 2-loop �-funtions for the gauge ouplings in the presene of Y

�

an be found in [29℄.
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