CUTTING A CAKE FOR INFINITELY MANY GUESTS

ZSUZSANNA JANKÓ AND ATTILA JOÓ

Abstract

Fair division with unequal shares is an intensively studied recourse allocation problem. For $i \in[n]$, let μ_{i} be an atomless probability measure on the measurable space (C, \mathcal{S}) and let t_{i} be positive numbers (entitlements) with $\sum_{i=1}^{n} t_{i}=1$. A fair division is a partition of C into sets $S_{i} \in \mathcal{S}$ with $\mu_{i}\left(S_{i}\right) \geq t_{i}$ for every $i \in[n]$.

We introduce new algorithms to solve the fair division problem with irrational entitlements. They are based on the classical Last diminisher technique and we believe that they are simpler than the known methods. Then we show that a fair division always exists even for infinitely many players.

1. Introduction

Cake cutting is a metaphor of the distribution of some inhomogeneous continuos goods and is intensively investigated by not just mathematicians but economists and political scientists as well. The preferences of the players P_{i} involved in the sharing are usually represented as atomless probability measures μ_{i} defined on a common σ-algebra $\mathcal{S} \subseteq \mathcal{P}(C)$ of the possible 'slices' of the 'cake' C. One option of how a division can be "good" is proportionality. This means that each of the n players gets at least one nth of the cake according to their own measurement, i.e. $C=\bigsqcup_{i=1}^{n} S_{i}$ with $\mu_{i}\left(S_{i}\right) \geq \frac{1}{n}$. The division is called strongly proportional if all these inequalities are strict. For $n=2$ a proportional division can be found by the so called "Cut and choose" procedure. This was used by Abraham and Lot in the Bible to share Canaan. Abraham divided Canaan into two parts which have equal value for him and then Lot chose his favourite among these two parts leaving Abraham the other one. For a general n, Steinhaus challenged his students Banach and Knaster to find a solution that they successfully accomplished by developing the so called "Last Diminisher" procedure (see [12]). In this method P_{1} picks a slice T_{1} with $\mu_{1}\left(T_{1}\right)=\frac{1}{n}$. If $\mu_{2}\left(T_{1}\right)>\frac{1}{n}$, then P_{2} diminishes T_{1} in the sense that he takes an $T_{2} \subseteq T_{1}$ with $\mu_{2}\left(T_{2}\right)=\frac{1}{n}$, otherwise he lets $T_{2}:=T_{1}$. They proceed similarly and slice T_{n} is allocated to the player who lastly diminished or to P_{1} if nobody did so. Then the remaining cake worth at least $\frac{n-1}{n}$ for each of the remaining $n-1$ players and they can continue using the same protocol.

A natural extension of the concept of proportional division is the so called "fair division with unequal shares". In this variant there are entitlements $t_{i}>0$ associated to the players satisfying $\sum_{i} t_{i}=1$. A division is called (strongly) fair if the slice S_{i} given to player P_{i} worths for him at least (more than) t_{i}, i.e. $\mu_{i}\left(S_{i}\right) \geq t_{i}\left(\mu_{i}\left(S_{i}\right)>t_{i}\right)$ holds for each i. If all
of these entitlements are rational numbers, say $\frac{p_{1}}{q}, \ldots, \frac{p_{n}}{q}$, then a fair division according to them can be reduced to a proportional division problem for $\sum_{i=1}^{n} p_{i}$ players where measure μ_{i} is "cloned" to p_{i} copies. In the presence of irrational entitlements such a "player-cloning" argument is no more applicable.

Several finite procedures were developed to find a (strongly) fair division allowing irrational entitlements (see $[2,5,11]$). Our first contribution (Section 2) is two such proceeders which we believe are simpler than the known methods. Both of them are based on Last Diminisher-type of principles. In the first one we use rational approximation of irrationals while in the second one not even that is necessary.

It was shown in [6] based on Lyapunov's theorem that if not all the measures are identical, then a strongly proportional division exists. A constructive proof was obtained later in [13] which was then further developed for the case of unequal shares (i.e. strong fairness) in [2]. We point out in Section 3 that the strongly fair division problem (for potentially infinitely many players) can be actually reduced to the fair division problem in a completely elementary way, which reduction we need later.

In the last section (Section 4) we consider the (strongly) fair division problem for infinitely many players. Rational entitlements do not make this problem easier since representing them with a common denominator is impossible in general. Since the entitlements sum up to 1 , they must converge to 0 , thus extension of protocols in which one need to start with the smallest positive entitlement (like the one given in [5]) is problematic. By Last Diminisher-type of methods we are facing in addition the difficulty that diminishing infinitely often might be necessary in which case no "last diminisher" exists, moreover, we may end up with the empty set as a limit of the iterated trimmings. Eliminating one player and using induction for the rest is also not applicable for obvious reasons. Although the so called Fink protocol (see [7]) can be considered as such a player-eliminating recursive algorithm, it inspired our procedure that finds a fair division for infinitely many players.

Theorem 1.1. Assume that (C, \mathcal{S}) is a measurable space and for $i \in \mathbb{N}, \mu_{i}$ is an atomless probability measure defined on \mathcal{S} and t_{i} is a positive number such that $\sum_{i=0}^{\infty} t_{i}=1$. Then there is a partition $C=\bigsqcup_{i=0}^{\infty} S_{i}$ such that $S_{i} \in \mathcal{S}$ with $\mu_{i}\left(S_{i}\right) \geq t_{i}$ for each $i \in \mathbb{N}$. Furthermore, if not all the μ_{i} are identical, then ' $\mu_{i}\left(S_{i}\right) \geq t_{i}$ ' can be strengthened to ${ }^{\prime} \mu_{i}\left(S_{i}\right)>t_{i}$ ' for every $i \in \mathbb{N}$.

Let us mention that cake cutting problems have a huge literature and this particular model and notion of fairness that we consider is only a tiny fragment of it. About the so called exact, envy-free and equitable divisions (none of which are extendable to infinitely many players for obvious reasons) and the corresponding existence results a brief but informative survey can be found in [4]. For a more general picture about this field, including completely different mathematical models of the problem, we refer to [1], [3], [9] and [10].

2. 'Last Diminisher'-TYPE of procedures for fair division with irrational ENTITLEMENTS

Our aim is to find a fair division S_{1}, \ldots, S_{n} for players P_{1}, \ldots, P_{n} with respective atomless probability measures μ_{1}, \ldots, μ_{n} and (potentially irrational) entitlements $0<t_{1} \leq t_{2} \leq$
$\cdots \leq t_{n}<1$ where $\sum_{i=1}^{n} t_{i}=1$. An algorithm was given in Section 7 of [5] that reduces this problem to two sub-problems in one of which the number of players is smaller by one while in the other all the entitlements are rational and the number of players remains the same. We introduce two algorithms both of which solves the problem in finitely many steps and based on 'Last diminisher'-type of ideas. The first one reduces the problem to another one in which either the number of players is smaller by one or all the entitlements are rationals and the number of players is the same. In this algorithm we need to pick rational numbers from non-degenerate intervals (which was used in the algorithms given in $[5,13])$. In the second algorithm no such rational approximation is needed.

As it is standard in the cake cutting literature, algorithms use certain queries. We allow the following operations.

- The four basic arithmetical operations and comparison on \mathbb{R}.
- The set operations on \mathcal{S}.
- Computing $\mu_{i}(S)$ for some $i \in[n]$ where slice S is obtained in a previous step.
- Cutting a slice $S^{\prime} \subseteq S$ with $\mu_{i}(S)=\alpha$ for an $i \in[n]$ and $\alpha \in\left[0, \mu_{i}(S)\right]$ where either $S=C$ or S is obtained in a previous step. ${ }^{1}$
2.1. Algorithm I. Player P_{1} picks some T_{1} with $\mu_{1}\left(T_{1}\right)=t_{1}$. If T_{i} is already defined for some $i<n$, we let $T_{i+1}:=T_{i}$ if $\mu_{i+1}\left(T_{i}\right) \leq t_{1}$ and we define T_{i+1} to be a subset of T_{i} with $\mu_{i+1}\left(T_{i+1}\right)=t_{1}$ if $\mu_{i+1}\left(T_{i}\right)>t_{1}$. After the recursion is done, $\mu_{i}\left(T_{n}\right) \leq t_{1}$ holds for each i and there is equality for at least one index.

If $\mu_{1}\left(T_{n}\right)=t_{1}$, then we let $S_{1}:=T_{n}$ and remove player P_{1} from the process. Since the rest of the cake worth at least $1-t_{1}$ for all the players, dividing it fairly with respect to the entitlements $\frac{t_{i}}{1-t_{1}}$ for $1<i \leq n$ leads to a fair division. Thus we invoke the algorithm for this sub-problem with less players.

If $\mu_{1}\left(T_{n}\right)<t_{1}$, then there must be a player who diminished the slice during the recursion. Let k be the largest index for which P_{k} is such a player. We allocate T_{n} to P_{k} but we do not remove P_{k} from the process unless $t_{1}=t_{k}$. In order to satisfy P_{k}, he needs to get at least the $t_{k}^{\prime}:=\frac{t_{k}-t_{1}}{\mu_{k}\left(C \backslash T_{n}\right)}$ fraction of the rest of the cake $C \backslash T_{n}$ according to his measure μ_{k}, while for $i \neq k$ player P_{i} should get at least the fraction $t_{i}^{\prime}:=\frac{t_{i}}{\mu_{i}\left(C \backslash T_{n}\right)}$ of $C \backslash T_{n}$ w.r.t. μ_{i}. As we already noticed $\mu_{i}\left(T_{n}\right) \leq t_{1}$ and hence $\mu_{i}\left(C \backslash T_{n}\right) \geq 1-t_{1}$ for every i, furthermore, the inequality is strict for $i=1$ in this branch of the case distinction. Therefore

$$
\sum_{i=1}^{n} t_{i}^{\prime}<\frac{t_{k}-t_{1}}{1-t_{1}}+\sum_{i \neq k} \frac{t_{i}}{1-t_{1}}=\frac{\left(\sum_{i=1}^{n} t_{i}\right)-t_{1}}{1-t_{1}}=1 .
$$

Thus we can pick rational numbers $t_{i}^{\prime \prime}>t_{i}^{\prime}$ with $\sum_{i \leq n} t_{i}^{\prime \prime}=1$. Finally, we use a subroutine to divide $C \backslash T_{n}$ fairly among the players w.r.t. the rational entitlements $t_{i}^{\prime \prime}$ to obtain a strongly fair division for the original problem.
2.2. Algorithm II. In this algorithm no 'rounding up to rationals' is necessary. We shall make several rounds and in each of them allocate a slice chosen in a 'Last diminisher' manner. The satisfied players are dropping out of the process. The algorithm itself is quite simple in this case as well but the proof of the correctness is somewhat more involved.

[^0]For $1 \leq i \leq n$, we denote by S_{i}^{m} the portion allocated to player P_{i} at the beginning of round m. We set $S_{i}^{0}=\emptyset$ for every i. The rest of the cake is $C_{m}:=C \backslash \bigcup_{i=1}^{n} S_{i}^{m}$. We also have improved entitlements t_{i}^{m} where $t_{i}^{0}:=t_{i}$. Let us define the set of indices of the players that are unsatisfied at the beginning of round m as

$$
I_{m}:=\left\{i \in[n]: t_{i}>\mu_{i}\left(S_{i}^{m}\right)\right\}
$$

If I_{m} is a singleton, $I_{m}=\{i\}$ say, then we allocate C_{m} to player P_{i} and the algorithm terminates. As long as I_{m} is not a singleton, the algorithm does the following. It considers the smallest $i_{m} \in I_{m}$ that minimizes $\frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m}\right)}{\mu_{i}\left(C_{m}\right)}$. Then player $P_{i_{m}}$ takes a $T_{1}^{m} \subseteq C_{m}$ with $\mu_{i_{m}}\left(T_{1}^{m}\right)=t_{i_{m}}^{m}-\mu_{i_{m}}\left(S_{i_{m}}^{m}\right)$. After that players P_{i} for $i \in I_{m} \backslash\left\{i_{m}\right\}$ diminish or keep unchanged the actual slice depending on if the value of their normed measures $\frac{\mu_{i}}{\mu_{i}\left(C_{m}\right)}$ exceed the constant $\frac{t_{i m}^{m}-\mu_{i_{m}}\left(S_{i m}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}$ on it or not. Eventually they obtain a $T_{\left|I_{m}\right|}^{m}=: R_{m}$ such that

$$
\begin{equation*}
\frac{\mu_{i}\left(R_{m}\right)}{\mu_{i}\left(C_{m}\right)} \leq \frac{t_{i_{m}}^{m}-\mu_{i_{m}}\left(S_{i_{m}}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)} \tag{1}
\end{equation*}
$$

for every $i \in I_{m}$ and there is equality for at least one index. Let $j_{m}:=i_{m}$ if there is equality at (1) for i_{m} and let j_{m} be the smallest index in I_{m} for which we have equality if the inequality is strict for i_{m}. We allocate R_{m} to player $P_{j_{m}}$, formally $S_{j_{m}}^{m+1}:=S_{j_{m}}^{m} \cup R_{m}$ and $S_{i}^{m+1}:=S_{i}^{m}$ for $i \in\{1, \ldots, n\} \backslash\left\{j_{m}\right\}$. For $i \in I_{m+1}$ let

$$
t_{i}^{m+1}:=\mu_{i}\left(S_{i}^{m+1}\right)+\frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\sum_{j \in I_{m+1}} \frac{t_{j}^{m}-\mu_{j}\left(S_{j}^{m+1}\right)}{\mu_{j}\left(C_{m+1}\right)}},
$$

which completes the description of the general step of the algorithm.
We turn to the proof of the correctness. First, we show by induction that the steps described above can be done, the algorithm maintains the equation

$$
\begin{equation*}
\sum_{i \in I_{m}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m}\right)}{\mu_{i}\left(C_{m}\right)}=1 \tag{2}
\end{equation*}
$$

and t_{i}^{m} is an increasing function of m for every i. For $m=0$, (2) says $\sum_{i=1}^{n} t_{i}=1$ which we assumed. Suppose we know the statement up to some m. If I_{m} is a singleton, then the algorithm terminates after round m and there is nothing to prove. Suppose that $\left|I_{m}\right|>1$. Since the summands at (2) are all positive, we have $\frac{t_{m}^{m}-\mu_{i_{m}}\left(S_{i m}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}<1$. Therefore $t_{i_{m}}^{m}-\mu_{i_{m}}\left(S_{i_{m}}^{m}\right)<\mu_{i_{m}}\left(C_{m}\right)$, thus there is indeed a $T_{1}^{m} \subseteq C_{m}$ with $\mu_{i_{m}}\left(T_{1}^{m}\right)=t_{i_{m}}^{m}-\mu_{i_{m}}\left(S_{i_{m}}^{m}\right)$. By subtracting both sides of (1) from 1 and taking the reciprocates we obtain

$$
\begin{equation*}
\frac{\mu_{i}\left(C_{m}\right)}{\mu_{i}\left(C_{m+1}\right)} \leq \frac{1}{1-\frac{t_{i_{m}^{m}}^{m}-\mu_{i_{m}}\left(S_{\left.i_{m}^{m}\right)}\right)}{\mu_{i_{m}}\left(C_{m}\right)}} \tag{3}
\end{equation*}
$$

Note that player $P_{i_{m}}$ will be satisfied after round m if $j_{m}=i_{m}$ because in that case we have equality at (1) for i_{m}. We claim that

$$
\sum_{i \in I_{m+1}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\mu_{i}\left(C_{m+1}\right)} \leq 1
$$

and therefore $t_{i}^{m+1} \geq t_{i}^{m}$ by the definition of t_{i}^{m+1}, moreover, both of these inequalities are strict if $j_{m} \neq i_{m}$. Indeed

$$
\begin{aligned}
& \sum_{i \in I_{m+1}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\mu_{i}\left(C_{m+1}\right)} \leq \sum_{i \in I_{m}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\mu_{i}\left(C_{m+1}\right)}=\sum_{i \in I_{m}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\mu_{i}\left(C_{m}\right)} \cdot \frac{\mu_{i}\left(C_{m}\right)}{\mu_{i}\left(C_{m+1}\right)} \stackrel{(3)}{\leq} \\
& \sum_{i \in I_{m}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m+1}\right)}{\mu_{i}\left(C_{m}\right)} \cdot \frac{1}{1-\frac{t_{i m}^{m}-\mu_{i_{m}}\left(S_{i m}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}} \leq\left[\left(\sum_{i \in I_{m}} \frac{t_{i}^{m}-\mu_{i}\left(S_{i}^{m}\right)}{\mu_{i}\left(C_{m}\right)}\right)-\frac{\mu_{j_{m}}\left(R_{m}\right)}{\mu_{j_{m}}\left(C_{m}\right)}\right] \cdot \frac{1}{1-\frac{t_{i m}^{m}-\mu_{i_{m}}\left(S_{i m}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}} \\
& \stackrel{(2)}{=}\left[1-\frac{t_{i_{m}}^{m}-\mu_{i_{m}}\left(S_{i_{m}}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}\right] \frac{1}{1-\frac{t_{i m}^{m}-\mu_{i_{m}}\left(S_{i m}^{m}\right)}{\mu_{i_{m}}\left(C_{m}\right)}}=1,
\end{aligned}
$$

where the overestimation of $\frac{\mu_{i_{m}}\left(C_{m}\right)}{\mu_{i_{m}}\left(C_{m+1}\right)}$ via (3) was strict if $i_{m} \neq j_{m}$.
Suppose for a contradiction that the algorithm does not terminate for μ_{1}, \ldots, μ_{n} and t_{1}, \ldots, t_{n}. Let k be the smallest number for which $I_{k}=I_{m}$ for every $m>k$. Then $j_{k} \neq i_{k}$ since otherwise we had $I_{k+1}=I_{k} \backslash\left\{i_{k}\right\} \subsetneq I_{k}$. As we have already seen, this implies $t_{i}^{k+1}>t_{i}^{k} \geq t_{i}$ for every $i \in I_{k}$. Let $\left(m_{\ell}\right)_{\ell \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers with $m_{0}>k$ such that there are $i^{*}, j^{*} \in I_{k}$ with $i_{m_{\ell}}=i^{*}$ and $j_{m_{\ell}}=j^{*}$ for every ℓ. There cannot be a $\varepsilon>0$ such that $\mu_{j^{*}}\left(R_{m_{\ell}}\right) \geq \varepsilon$ for infinitely many ℓ because then $P_{j^{*}}$ would be eventually satisfied and removed from the process, contradicting the definition of k. Thus $\lim _{\ell \rightarrow \infty} \mu_{j^{*}}\left(R_{m_{\ell}}\right)=0$. Since there is equality for j^{*} at (1) for each m_{ℓ}, we know that

$$
\mu_{j^{*}}\left(R_{m_{\ell}}\right)=\left[t_{i^{*}}^{m_{\ell}}-\mu_{i^{*}}\left(S_{i^{*}}^{m_{\ell}}\right)\right] \frac{\mu_{j^{*}}\left(C_{m_{\ell}}\right)}{\mu_{i^{*}}\left(C_{m_{\ell}}\right)}
$$

If $\lim _{\ell \rightarrow \infty} t_{i^{*}}^{m_{\ell}}-\mu_{i^{*}}\left(S_{i^{*}}^{m_{\ell}}\right)=0$, then $\mu_{i^{*}}\left(S_{i^{*}}^{m_{\ell}}\right) \geq t_{i^{*}}$ for a large enough ℓ because $t_{i^{*}}^{m_{0}}>t_{i^{*}}$ and $t_{i^{*}}^{m_{\ell}}$ is increasing in ℓ, a contradiction. Therefore we must have $\lim _{\ell \rightarrow \infty} \frac{\mu_{j^{*}}\left(C_{m_{\ell}}\right)}{\mu_{i^{*}}\left(C_{m_{\ell}}\right)}=0$. Since $\mu_{i^{*}}\left(C_{m_{\ell}}\right) \leq \mu_{i^{*}}\left(C_{m_{0}}\right)$, this implies $\lim _{\ell \rightarrow \infty} \mu_{j^{*}}\left(C_{m_{\ell}}\right)=0$. But then it follows from (2) that $\lim _{\ell \rightarrow \infty} t_{j^{*}}^{m_{\ell}}-\mu_{j^{*}}\left(S_{j^{*}}^{m}\right)=0$. As earlier with i^{*}, this implies that player $P_{j^{*}}$ will be eventually satisfied, which is a contradiction.

Finally, if $I_{m}=\{i\}$ for some $m \in \mathbb{N}$ and $i \in[n]$, then (2) ensures $\mu_{i}\left(C_{m}\right)=t_{i}^{m}-\mu_{i}\left(S_{i}^{m}\right)$ and therefore the inequality $t_{i}^{m} \geq t_{i}$ combined with the definition of I_{m} guarantee that all the players are satisfied when the algorithm terminates after round m.

3. From fairness to strong fairness, an elementary approach

Lemma 3.1. Assume that (C, \mathcal{S}) is a measurable space, I is a countable index set, and for $i \in I, \mu_{i}$ is an atomless probability measure defined on \mathcal{S} and t_{i} is a positive number such not all the μ_{i} are identical and $\sum_{i \in I} t_{i}=1$. Then there is a partition $C=C^{\prime} \sqcup C^{\prime \prime}$ and $t_{i}^{\prime}, t_{i}^{\prime \prime}>0$ with $\sum_{i \in I} t_{i}^{\prime}=\sum_{i \in I} t_{i}^{\prime \prime}=1$ such that $t_{i}^{\prime} \cdot \mu_{i}\left(C^{\prime}\right)+t_{i}^{\prime \prime} \cdot \mu_{i}\left(C^{\prime \prime}\right)>t_{i}$ for each $i \in I$.

Proof. Suppose that $j, k \in I$ and $C^{\prime} \in \mathcal{S}$ such that $\mu_{j}\left(C^{\prime}\right)<\mu_{k}\left(C^{\prime}\right)$. It is enough to find $s_{i}^{\prime}, s_{i}^{\prime \prime}>0$ with $\sum_{i \in I} s_{i}^{\prime}, \sum_{i \in I} s_{i}^{\prime \prime}<1$ and $s_{i}^{\prime} \cdot \mu_{i}\left(C^{\prime}\right)+s_{i}^{\prime \prime} \cdot \mu_{i}\left(C^{\prime \prime}\right)=t_{i}$ for every $i \in I$ because then

$$
t_{i}^{\prime}:=\frac{s_{i}^{\prime}}{\sum_{\ell \in I} s_{\ell}^{\prime}} \text { and } t_{i}^{\prime \prime}:=\frac{s_{i}^{\prime \prime}}{\sum_{\ell \in I} s_{\ell}^{\prime \prime}}
$$

are as desired. We are looking for $\varepsilon, \delta>0$ for which the definitions

- $s_{j}^{\prime}:=t_{j}-\varepsilon$
- $s_{j}^{\prime \prime}:=t_{j}+\varepsilon \cdot \frac{\mu_{j}\left(C^{\prime}\right)}{\mu_{j}\left(C^{\prime \prime}\right)}$
- $s_{k}^{\prime}:=t_{k}+\delta \cdot \frac{\mu_{k}\left(C^{\prime \prime}\right)}{\mu_{k}\left(C^{\prime}\right)}$
- $s_{k}^{\prime \prime}:=t_{k}-\delta$
- $s_{i}^{\prime \prime}:=s_{i}^{\prime}:=t_{i}$ for $i \in \mathbb{N} \backslash\{j, k\}$
are suitable. Note that whatever ε and δ we choose, $s_{i}^{\prime} \cdot \mu_{i}\left(C^{\prime}\right)+s_{i}^{\prime \prime} \cdot \mu_{i}\left(C^{\prime \prime}\right)=t_{i}$ will hold for each $i \in \mathbb{N}$. Thus the requirements $s_{i}^{\prime}, s_{i}^{\prime \prime}>0$ and $\sum_{i \in I} s_{i}^{\prime}, \sum_{i \in I} s_{i}^{\prime \prime}<1$ mean for ε and δ that they satisfy

$$
\begin{aligned}
& \varepsilon \in\left(0, t_{j}\right) \\
& \delta \in\left(0, t_{k}\right) \\
& \varepsilon>\delta \cdot \frac{\mu_{k}\left(C^{\prime \prime}\right)}{\mu_{k}\left(C^{\prime}\right)} \\
& \delta>\varepsilon \cdot \frac{\mu_{j}\left(C^{\prime}\right)}{\mu_{j}\left(C^{\prime \prime}\right)}
\end{aligned}
$$

If $\mu_{j}\left(C^{\prime}\right)=0$, then the last inequality is redundant and the existence of a solution is straightforward. Otherwise the last two inequalities demand

$$
\frac{\mu_{k}\left(C^{\prime \prime}\right)}{\mu_{k}\left(C^{\prime}\right)}<\frac{\varepsilon}{\delta}<\frac{\mu_{j}\left(C^{\prime \prime}\right)}{\mu_{j}\left(C^{\prime}\right)}
$$

Since $\frac{\mu_{k}\left(C^{\prime \prime}\right)}{\mu_{k}\left(C^{\prime}\right)}<\frac{\mu_{j}\left(C^{\prime \prime}\right)}{\mu_{j}\left(C^{\prime}\right)}$ follows from $\mu_{j}\left(C^{\prime}\right)<\mu_{k}\left(C^{\prime}\right)$, the desired ε and δ exist in this case as well.

Let μ_{i}^{\prime} be the restriction of $\frac{\mu_{i}}{\mu_{i}\left(C^{\prime}\right)}$ to $\mathcal{S} \cap \mathcal{P}\left(C^{\prime}\right)$ if $\mu_{i}\left(C^{\prime}\right) \neq 0$ and an arbitrary atomless probability measure on $\mathcal{S} \cap \mathcal{P}\left(C^{\prime}\right)$ if $\mu_{i}\left(C^{\prime}\right)=0$. We define $\mu_{i}^{\prime \prime}$ analogously with respect to $C^{\prime \prime}$.

Corollary 3.2. Assume the settings of Lemma 3.1. If $\left\{S_{i}^{\prime}: i \in I\right\}$ is a fair division with respect to $\mu_{i}^{\prime}, t_{i}^{\prime}(i \in I)$ and $\left\{S_{i}^{\prime \prime}: i \in I\right\}$ is a fair divisions with respect to $\mu_{i}^{\prime \prime}, t_{i}^{\prime \prime}(i \in I)$, then for $S_{i}:=S_{i}^{\prime} \cup S_{i}^{\prime \prime},\left\{S_{i}: i \in I\right\}$ is a strongly fair division with respect to $\mu_{i}, t_{i}(i \in I)$.

Proof. We have $\mu_{i}\left(S_{i}^{\prime}\right) \geq t_{i}^{\prime} \cdot \mu_{i}\left(C^{\prime}\right)$ and $\mu_{i}\left(S_{i}^{\prime \prime}\right) \geq t_{i}^{\prime \prime} \cdot \mu_{i}\left(C^{\prime \prime}\right)$ by fairness, thus by Lemma 3.1

$$
\mu_{i}\left(S_{i}\right)=\mu_{i}\left(S_{i}^{\prime} \sqcup S_{i}^{\prime \prime}\right)=\mu_{i}\left(S_{i}^{\prime}\right)+\mu_{i}\left(S_{i}^{\prime \prime}\right) \geq t_{i}^{\prime} \cdot \mu_{i}\left(C^{\prime}\right)+t_{i}^{\prime \prime} \cdot \mu_{i}\left(C^{\prime \prime}\right)>t_{i}
$$

4. Existence of a fair division for infinitely many players

We repeat the theorem here for convenience.
Theorem 1.1. Assume that (C, \mathcal{S}) is a measurable space and for $i \in \mathbb{N}, \mu_{i}$ is an atomless probability measure defined on \mathcal{S} and t_{i} is a positive number such that $\sum_{i=0}^{\infty} t_{i}=1$. Then there is a partition $C=\bigsqcup_{i=0}^{\infty} S_{i}$ such that $S_{i} \in \mathcal{S}$ with $\mu_{i}\left(S_{i}\right) \geq t_{i}$ for each $i \in \mathbb{N}$. Furthermore, if not all the μ_{i} are identical, then ' $\mu_{i}\left(S_{i}\right) \geq t_{i}$ ' can be strengthened to ${ }^{\prime} \mu_{i}\left(S_{i}\right)>t_{i}$ ' for every $i \in \mathbb{N}$.

Proof. Without loss of generality we may looking for a sub-partition instead of a partition, i.e. we can relax ' $C=\bigsqcup_{i=0}^{\infty} S_{i}$ ' to ' $C \supseteq \bigsqcup_{i=0}^{\infty} S_{i}$ ' since the remaining surplus part of the cake can be given to anybody. The last sentence of Theorem 1.1 follows from the rest of it via Corollary 3.2.

For $n \in \mathbb{N}$, we let $t_{0}^{n}, t_{1}^{n}, \ldots, t_{n}^{n}$ to be the first $n+1$ entitlements scaled to sum up to 1 , i.e.

$$
t_{i}^{n}:=\frac{t_{i}}{\sum_{j=0}^{n} t_{j}} .
$$

Observation 4.1. $\left(1-t_{n+1}^{n+1}\right) t_{i}^{n}=t_{i}^{n+1}$ and $\lim _{n \rightarrow \infty} t_{i}^{n}=t_{i}$.
Proof.

$$
\begin{aligned}
\frac{t_{i}^{n+1}}{t_{i}^{n}} & =\frac{\sum_{j=0}^{n} t_{j}}{\sum_{j=0}^{n+1} t_{j}}=\frac{\sum_{j=0}^{n+1} t_{j}-t_{n+1}}{\sum_{j=0}^{n+1} t_{j}}=1-t_{n+1}^{n+1}, \\
\lim _{n \rightarrow \infty} t_{i}^{n} & =\lim _{n \rightarrow \infty} \frac{t_{i}}{\sum_{j=0}^{n} t_{j}}=\frac{t_{i}}{\lim _{n \rightarrow \infty} \sum_{j=0}^{n} t_{j}}=t_{i} .
\end{aligned}
$$

We shall define recursively $S_{i}^{n} \in \mathcal{S}$ for $i, n \in \mathbb{N}$ with $i \leq n$ in such a way that
(i) $C=\bigsqcup_{i \leq n} S_{i}^{n}$ for every n;
(ii) $\mu_{i}\left(S_{i}^{n}\right) \geq t_{i}^{n}$;
(iii) For every fixed $i \in \mathbb{N}$ the sequence $\left(S_{i}^{n}\right)_{n \geq i}$ is \subseteq-decreasing.

Observe that conditions (i) and (ii) say that for each fixed n the sets $S_{0}^{n}, S_{1}^{n}, \ldots, S_{n}^{n}$ form a fair division with respect to the measures μ_{i} and entitlements t_{i}^{n}. Although such a fair division can be found for every particular n, it cannot be guaranteed without condition (iii) that they have a meaningful "limit" which provides a fair division in the original settings.
We let $S_{0}^{0}:=C$ which obviously satisfies the conditions. Suppose that $S_{0}^{n}, S_{1}^{n} \ldots, S_{n}^{n}$ are already defined for some $n \in \mathbb{N}$. We need to find for each $i \leq n$ an $S_{i}^{n+1} \subseteq S_{i}^{n}$ with $\mu_{i}\left(S_{i}^{n+1}\right) \geq t_{i}^{n+1}$ in such a way that for

$$
S_{n+1}^{n+1}:=C \backslash \bigcup_{i \leq n} S_{i}^{n+1}
$$

we have $\mu_{n+1}\left(S_{n+1}^{n+1}\right) \geq t_{n+1}^{n+1}$. For the last inequality it is enough to ensure that

$$
\begin{equation*}
\mu_{n+1}\left(S_{i}^{n} \backslash S_{i}^{n+1}\right) \geq \mu_{n+1}\left(S_{i}^{n}\right) \cdot t_{n+1}^{n+1} \text { for } i \leq n . \tag{4}
\end{equation*}
$$

Indeed, since

$$
S_{n+1}^{n+1}=\bigsqcup_{i \leq n} S_{i}^{n} \backslash S_{i}^{n+1},
$$

the inequalities (4) imply

$$
\begin{aligned}
\mu_{n+1}\left(S_{n+1}^{n+1}\right) & =\mu_{n+1}\left(\bigsqcup_{i \leq n} S_{i}^{n} \backslash S_{i}^{n+1}\right)=\sum_{i=0}^{n} \mu_{n+1}\left(S_{i}^{n} \backslash S_{i}^{n+1}\right) \geq \sum_{i=0}^{n} \mu_{n+1}\left(S_{i}^{n}\right) \cdot t_{n+1}^{n+1} \\
& =t_{n+1}^{n+1} \cdot \sum_{i=0}^{n} \mu_{n+1}\left(S_{i}^{n}\right)=t_{n+1}^{n+1} \cdot \mu_{n+1}(C)=t_{n+1}^{n+1} \cdot 1=t_{n+1}^{n+1}
\end{aligned}
$$

where we used (i) combined with the fact that μ_{n+1} is a probability measure. Therefore it is enough to find for every $i \leq n$ an $S_{i}^{n+1} \subseteq S_{i}^{n}$ such that

$$
\begin{align*}
\mu_{i}\left(S_{i}^{n+1}\right) & \geq t_{i}^{n+1} \tag{5}\\
\mu_{n+1}\left(S_{i}^{n} \backslash S_{i}^{n+1}\right) & \geq \mu_{n+1}\left(S_{i}^{n}\right) \cdot t_{n+1}^{n+1} . \tag{6}
\end{align*}
$$

Let $i \leq n$ be fixed. If $\mu_{n+1}\left(S_{i}^{n}\right)=0$, then we let $S_{i}^{n+1}:=S_{i}^{n}$ which is clearly appropriate since $t_{i}^{n} \geq t_{i}^{n+1}$ (see Observation 4.1). Suppose that $\mu_{n+1}\left(S_{i}^{n}\right)>0$ and note that $\mu_{i}\left(S_{i}^{n}\right) \geq$ $t_{i}^{n}>0$ by assumption. We claim that choosing S_{i}^{n+1} to be the slice corresponding to i in a fair division of S_{i}^{n} between P_{i} and P_{n+1} with respect to the restrictions of $\frac{\mu_{i}}{\left.\mu_{i} S_{i}^{n}\right)}$ and $\frac{\mu_{n+1}}{\mu_{n+1}\left(S_{i}^{n}\right)}$ to $\mathcal{S} \cap \mathcal{P}\left(S_{i}^{n}\right)$ and respective entitlements $1-t_{n+1}^{n+1}$ and t_{n+1}^{n+1} is suitable. Indeed, by the fairness of the obtained bipartition $\left\{S_{i}^{n+1}, S_{i}^{n} \backslash S_{i}^{n+1}\right\}$ of S_{i}^{n} we have

$$
\begin{aligned}
\frac{\mu_{i}\left(S_{i}^{n+1}\right)}{\mu_{i}\left(S_{i}^{n}\right)} & \geq 1-t_{n+1}^{n+1}, \\
\frac{\mu_{n+1}\left(S_{i}^{n} \backslash S_{i}^{n+1}\right)}{\mu_{n+1}\left(S_{i}^{n}\right)} & \geq t_{n+1}^{n+1} .
\end{aligned}
$$

Here the second inequality is equivalent with (6) and the first one implies (5) since

$$
\mu_{i}\left(S_{i}^{n+1}\right) \geq\left(1-t_{n+1}^{n+1}\right) \mu_{i}\left(S_{i}^{n}\right) \geq\left(1-t_{n+1}^{n+1}\right) t_{i}^{n}=t_{i}^{n+1}
$$

where we used $\mu_{i}\left(S_{i}^{n}\right) \geq t_{i}^{n}$ and Observation 4.1. The recursion is done.
We define $S_{i}:=\bigcap_{n \geq i} S_{i}^{n}$ for $i \in \mathbb{N}$. Then for $i<j$ we have $S_{i} \cap S_{j}=\emptyset$ because $S_{i} \subseteq S_{i}^{j}, S_{j} \subseteq S_{j}^{j}$ and $S_{i}^{j} \cap S_{j}^{j}=\emptyset$ by (i), furthermore,

$$
\mu_{i}\left(S_{i}\right)=\mu_{i}\left(\bigcap_{n \geq i} S_{i}^{n}\right)=\lim _{n \rightarrow \infty} \mu_{i}\left(S_{i}^{n}\right) \geq \lim _{n \rightarrow \infty} t_{i}^{n}=t_{i}
$$

by (iii), (ii) and Observation 4.1. This completes the proof of Theorem 1.1.

References

[1] J. B Barbanel, The geometry of efficient fair division, Cambridge University Press, 2005.
[2] J. B Barbanel et al., Game-theoretic algorithms for fair and strongly fair cake division with entitlements, Colloquium math, 1995, pp. 59-53.
[3] S. J Brams, S. J. Brams, and A. D Taylor, Fair division: From cake-cutting to dispute resolution, Cambridge University Press, 1996.
[4] G. Chèze, Existence of a simple and equitable fair division: A short proof, Mathematical Social Sciences 87 (2017), 92-93.
[5] Á. Cseh and T. Fleiner, The complexity of cake cutting with unequal shares, ACM Transactions on Algorithms (TALG) 16 (2020), no. 3, 1-21.
[6] L. E Dubins and E. H Spanier, How to cut a cake fairly, The American Mathematical Monthly 68 (1961), no. 1P1, 1-17.
[7] A. Fink, A note on the fair division problem, Mathematics Magazine 37 (1964), 341-242.
[8] P. Lorenc and R. Wituła, Darboux property of the nonatomic σ-additive positive and finite dimensional vector measures, Zeszyty Naukowe. Matematyka Stosowana/Politechnika Śląska (2013).
[9] A. D Procaccia, Cake cutting algorithms, Handbook of computational social choice, chapter 13, 2015.
[10] J. Robertson and W. Webb, Cake-cutting algorithms: Be fair if you can, CRC Press, 1998.
[11] H. Shishido and D.-Z. Zeng, Mark-choose-cut algorithms for fair and strongly fair division, Group Decision and Negotiation 8 (1999), no. 2, 125-137.
[12] H. Steihaus, The problem of fair division, Econometrica 16 (1948), 101-104.
[13] D. R Woodall, A note on the cake-division problem, Journal of Combinatorial Theory, Series A 42 (1986), no. 2, 300-301.

Zsuzsanna Jankó, Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest, Budapest, Hungary; Institute of Economics, Centre for Economic and Regional Studies, Budapest, Hungary

Email address: zsuzsanna.janko@uni-corvinus.hu, janko.zsuzsanna@krtk.hu
Attila Joó, Department of Mathematics, University of Hamburg, Hamburg, Germany; Set theory, logic and topology research division, Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Email address: attila.joo@uni-hamburg.de, jooattila@renyi.hu

[^0]: ${ }^{1}$ It is well-defined because μ_{i} is atomless (see [8, Theorem 5]).

