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Abstract

We construct a quaternionic-Kéhler manifold from a conical special Kahler manifold with a certain
type of mutually-local variation of BPS structures. We give global and local explicit formulas for the
quaternionic-K&hler metric, and specify under which conditions it is positive-definite. Locally, the
metric is a deformation of the 1-loop corrected Ferrara-Sabharval metric obtained via the supergravity
c-map. The type of quaternionic-K&hler metrics we obtain are related to work in the physics literature
by S. Alexandrov and S. Banerjee, where they discuss the hypermultiplet moduli space metric of type
ITA string theory, with mutually local D-instanton corrections.
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1 Introduction

The supergravity c-map arises in the physics literature in the context Calabi-Yau compactifications of
type IIA and type IIB string theories. Given a fixed Calabi-Yau 3-fold X, the supergravity c-map takes
the vector multiplet moduli space Mgf/{/ B(X ) to the hypermultiplet moduli space Mgﬁ/ A(X ) [CFG89,
FS90]. Mathematically, it can be understood as a way of producing a 1-parameter family of quaternionic-
Kéhler (QK) manifolds from a projective special K&hler manifold (PSK) [RLSV06, ACDM15]. The QK

metric one obtains is known as the 1-loop corrected Ferrara-Sabharwal metric gfg.
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On the other hand, there is the much simpler rigid c-map [CFG89], which arises in the context of
4d N = 2 theories compactified on S'. Mathematically, the rigid c-map can be understood as a way of
producing a hyperkéhler (HK) manifold from an affine special Kdhler (ASK) manifold [Fre99, ACD02].
The HK metric one obtains is sometimes referred to as the “semi-flat” metric [GWO00].

The rigid and the supergravity c-map have been studied in both the mathematics and physics lit-
erature, and they can be related via the so-called HK-QK correspondence [Hay08, ACM13, ACDM15,
APP11]. The HK-QK correspondence takes as input an HK manifold with a rotating S'-action and a
certain hyperholomorphic circle bundle; and produces a 1-parameter family of QK manifolds of the same
dimension as the HK manifold. By rotating S!'-action we mean that it acts by isometries, rotates two of
the complex structures, and fixes the remaining complex structure.

On the other hand, the QK metric gfq on Mgﬁ/ B(X ) obtained via the supergravity c-map is expected
to receive several non-perturbative quantum corrections in the form of D-instanton and NS5-instanton
corrections, preserving the QK property. The inclusion of all such corrections has not been fully under-
stood, but a lot of progress has been made in the physics literature via the use of twistor space methods
(see for example the extensive reviews [Alel3, AMPP15] and the references therein). In particular, the
inclusion of D-instanton corrections on the type ITA side can be found in [APP11].

When considering only the so-called “mutually-local” D-instantons, the instanton corrected QK met-
ric on M4 (X) has been computed in [AB15]. Their computation starts from the assumption that
the corrected QK metric has an S'-action of isometries, preserving the QK-structure. The origin of
this assumption lies in the fact that D-instanton corrections are not expected to break the continuous
Sl-symmetry shifting the NS-axion. This allows them to use the QK-HK correspondence, and use the
description of instanton corrections of [GMN10] on the HK side to describe the D-instanton corrections
on the QK metric. The computation in [AB15] is done at the twistor space level, and then some work is

required to extract the QK metric from the QK twistor space data.

The main objective of this work is to give a mathematical treatment of QK metrics involving a
mathematical notion of “mutually local D-instanton corrections”. Our methods are based on a direct
approach to the QK metric avoiding the use of twistor space and, thus, the technical difficulties arising
in the latter framework. More specifically:

e We will start with an integral conical affine special Kéahler (CASK) manifold (M, gar, war, V, &, A)
(see Definitions 2.4 and 2.6) and a mutually-local variation of BPS structures (M, A, Z, ) (see
Definition 3.1 and 3.6), where (M, A, Z) is determined by the data of the integral CASK manifold.
The notion of variation of BPS structures [Bril9] is the part of the data that will be used to
implement the physical notion of “D-instanton corrections” to the QK metric.

e Following [GMN10], we will explicitly describe an HK structure (N := T*M/A* gn, w1, ws,ws3)
built out of (M, gar,war, V, &, A) and Q, and refer to it as the “instanton corrected” HK structure.
The fact that the variation of BPS structures is mutually local circumvents the need of solving
the “GMN integral equations” (since in this case they become integral formulas) and dealing with
wall-crossing behavior. Our attitude will be to take the formulas (3.10) and (3.11) defining the
candidate Kahler forms w, for « = 1,2, 3 as an ansatz, and explicitly state under which conditions
they define an HK structure without using twistor space arguments. A key notion will be a non-
degeneracy condition of a certain tensor field T involving the ASK metric gp; and the BPS indices
Q, that will guarantee the non-degeneracy of w, for a = 1,2,3 (see Definition 3.12). The main
result of Section 3 is Theorem 3.13. This theorem applies to ASK manifolds admitting a central
charge (see Definition 2.14), which includes the CASK case, where there is a canonical choice of
central charge (see Proposition 2.15):

Theorem 3.13: Consider an integral ASK manifold (M, gy, war, V, A) admitting a central charge
Z, together with a mutually local variation of BPS structures (M,A,Z,). Then the triple
(w1, w2, ws) of real 2-forms on N given in (3.10) and (3.11) defines a pseudo-HK structure on
N if and only if the tensor field T on N given in (3.14) is horizontally non-degenerate with respect
to the canonical projection 7 : N — M.

e Restricting back to the CASK case, if J is the complex structure on M and £ the Euler vector
field, it was shown in [ACM13] that one can lift J¢ to N, giving an infinitesimal rotating circle



action for the semi-flat HK metric. We will show that the same lift also defines an infinitesimal
rotating circle action for the instanton corrected HK structure (N, gn, w1, w2, ws), see Proposition
3.20. This, together with the construction of the appropriate hyperholomorphic circle bundle over
N in Section 4 will allow us to apply the explicit formulas of [ACDM15, Theorem 2] for the HK-QK
correspondence, and hence obtain an “instanton corrected” QK manifold (N, g7)- The main result
of Section 4 is Theorem 4.10:

Theorem 4.10: Let (M, gar,war, V, &€, A) be a connected integral CASK manifold together with a
mutually local (M, A, Z,Q), where Z is the canonical central charge of a CASK manifold. Assume
that T is horizontally non-degenerate and that the flow of ¢ generates a free-action of the monoid
R>;. Furthermore, let (N, gn,w1,ws,ws) be the associated pseudo-HK manifold; (P — N,n) the
associated hyperholomorphic circle bundle; N’ C N the (non-empty) open subset defined in (4.26)
and 0 € QY(P), gp € Sym?(P), X' € I(TP), f € C=(P) the associated objects defined in
Section 4.2. If N C P|y- is any submanifold transversal to X{', then

gﬁ::_l(gp_zzs:w?ﬁ)‘ (1.1)
f F= N

is a pseudo-QK metric on N. Furthermore, if N ! C N'is as in Lemma 4.8 and N is picked to also
satisfy N. := N N N!_ # 0, then gy is positive definite on N,.

e In Section 5 we apply Theorem 4.10 to the case of a CASK domain, and describe the resulting
(N, g5) in coordinates that realize g5 as a deformation of the 1-loop corrected Ferrara-Sabharval
metric ggg, see Theorem 5.4. We furthermore show in Proposition 5.6 that the subset N where
g is positive definite in never empty (for our choice of N), and say something about the fate of
the Peccei-Quinn symmetries after instanton corrections in Corollary 5.7.

e Finally, in Section 5.2 we give a simple example of our constructions. In this example, we consider
a CASK domain whose associated PSK manifold is the complex hyperbolic space CH™ with the
Bergman metric. If p denotes the usual dilaton coordinate, our example then gives a deformation
g of g% in a neighborhood of p = oo, where both g5 and g% g are defined and positive definite
(see Corollaries 5.10 and 5.11).

Regarding our results and the related work [AB15] in the physics literature:

e The argument we follow, although similar in spirit to the one in [AB15], gives a formal mathematical
proof that the final metric is QK. Furthermore, we obtain a global formula for the QK metric (1.1),
while in [AB15] only a local formula is found.

e In the local case of a CASK domain, the coordinate expression of gz in Theorem 5.4 should be
compared with the corresponding expression in [AB15]. In our case, g5 turns out to be completely
explicit, avoiding the use of the implicitly defined R-parameter in [AB15]. We do however express
everything in terms of “classical coordinates”, whereas in [AB15] a “quantum corrected” dilaton
coordinate is used. See also Section 5.1 for some further comments on this.

e On the other hand, some effort has been made in indicating which expressions are due to “instanton
corrections”. This allows for a direct comparison with the usual 1-loop corrected Ferrara-Sabharval
metric ggg, and realize the QK metric we obtain in the case of a CASK domain as deformations of
9is
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2 Review of special Kahler manifolds and the rigid c-map

In this section we collect a few facts about affine special Kdhler (ASK) manifolds, the rigid c-map, con-
ical affine special Kéahler (CASK) manifolds and projective special Kéhler (PSK) manifolds. Our main



references are [Fre99, ACD02, CM09].

In the final subsection 2.4 we give a description of the semi-flat hyperkihler metric in terms of the
notion of central charges. This description will be convenient for the constructions of the later sections.

2.1 Affine special Kahler manifolds
Definition 2.1. an affine special Kihler (ASK) manifold is a tuple (M, g,w, V), where:

e (M, g,w) is a pseudo-Kahler manifold. We denote by J the corresponding complex structure
determined by the relation g(J—, —) = w(—, —).

e V is a flat, torsion-free connection on M.

e Vw =0 and dyJ = 0, where dy : Q% (TM) — Q31 (TM) is the extension of V : Q3,(TM) —
QY (T M) to higher degree forms, and we think of J as an element of Q},(TM).

The fact that V is flat and torsion-free, together with Vw = 0, implies that we can find V-flat
Darboux coordinates (z¢,y;) for w, i.e:
w=dz" Ndy; with Vdz' =0, Vdy, =0 (2.1)

Definition 2.2. Coordinates (z%,y;) in an ASK manifold satisfying (2.1) are called affine special coor-
dinates.

On the other hand, the torsion free condition can be written as dy (Id) = 0 where Id € Q},(T M) is
the identity map. Together with dyJ = 0, this implies that the projection 710 = 1(Id — i.J) satisfies

1

dyr'0 = dv<§(1d - Z'J)) =0 (2.2)

By the Poincaré lemma, we can locally find a complex vector field £° on M such that
vehd = 10 (2.3)

Consider a local flat Darboux frame (7;,~*) with respect to w. We can then write
10 _ 1, ix i

£ = 1% — wiy) 24)
and obtain local complex valued functions 2° and w; on M. The flatness of (7;,7%) together with
VELY = 710 imply that z* and w; must be holomorphic. Furthermore, if we define z° := Re(z?) and
y; := —Re(w;), then using the fact that 2Re(VEL?) = 2Re(n!?) = Id, we find that (2%, ;) is a local

coordinate system and that d,: = 7;, 9,, = 7. In particular (z,y;) is an affine special coordinate system
and (z*), (w;) are systems of holomorphic coordinates.

Definition 2.3. A pair of holomorphic coordinate systems (z%) and (w;) satisfying (2.4) is called a
conjugate system of special holomorphic coordinates.

With respect to the special holomorphic coordinates z° (or w;), one can locally describe the ASK
geometry in terms of a holomorphic function F(z%) (usually known as the holomorphic prepotential)
satisfying

o5
v 0z* (2:5)
The function § locally describes the ASK geometry in the sense that
; 2
w= %Im(ﬁj)dzi ANdZ with 7= % (2.6)

We will also make frequent use of the following additional data:

Definition 2.4. An integral ASK manifold is a tuple (M, g,w, V, A) such that:
e (M,g,w,V) is an ASK manifold.
e A CTM is a bundle A — M of V-flat lattices such that A ®z R =T M.

e Around any p € M, A — M admits a Darboux frame with respect to w.



2.2 The rigid c-map

Given an ASK manifold (M, g,w,V) of signature (n,m), the rigid c-map associates to it a pseudo-
hyperkihler (HK) structure of signature (2n,2m) on the cotangent bundle (T*M, g*f, I1, I, I3). We use
the superscript 3! since the metric is “semi-flat” in the sense that it restricts to a flat metric on the fibers.

The HK structure is defined as follows. Let w : T*M — M be the canonical projection, then the
connection V allows us to do a splitting

T(T*M) =T"(T*M) @ T (T*M) (2.7)
where Th(T*M) = 7*TM and T°(T*M) = Ker(dr) = 7*T*M. With respect to this splitting we have

¢l=gog™t, L=JoJ, L(vw) :=-wlw)+wk), L:=I (2.8)

where in the definition of I; we think of w as a map w : TM — T*M. We remark that the fact that
this defines an actual HK structure on T* M really uses all the special K&hler conditions (see e.g. [Fre99,
Section 2] or [ACD02, Theorem 11]). The numbering of the I, is set to match our later conventions.

If (M,g,w,V,A) is an integral ASK manifold, then the dual lattice A* C T*M is Lagrangian with

respect to the canonical holomorphic symplectic form on T*M (which coincides with wif + dws’ =

¢ (I —,—) +ig*(Ia—, —)), and we have:

Theorem 2.5. [Cor98, Theorem 3.1] and [Fre99, Theorem 3.4, Theorem 3.8]: Let (M, g,w,V,A) be an
integral ASK manifold. Let N := T*M/A* and consider the canonical projection 7 : N — M. Then
m : N — M has the structure of an integrable system, and N has a canonical pseudo-HK structure
induced from (T*M, g*', I}, I», I3).

2.3 CASK and PSK manifolds

Definition 2.6. A conical affine special Kidhler (CASK) manifold is a tuple (M, g,w, V, ) where:
e (M, g,w,V) is an ASK manifold. We denote the complex structure by .J.
e V¢ = D¢ =1d, where D denotes the Levi-Civita connection.

e g is positive definite on D = span{¢, J¢} and negative definite on D+.

Furthermore, an integral CASK manifold (M, g,w, V,£, A) is just an integral ASK manifold that is also
CASK (see Definition 2.4).

The vector fields & and J¢ satisfy the following identities with the Lie derivative: L¢J = Lj¢J =0,
Leg = 2g, Lyeg = 0, and L JE = 0 [CM09]. In other words, ¢ is holomorphic and homothetic, J¢ is
holomorphic and Killing, and they commute.

In some cases we will assume that the holomorphic Killing vector J¢ generates a free S'-action on
M, and that the holomorphic homothetic vector ¢ generates a free Rsg-action on M. Under such a
condition, the function r := /g(&, &) is a moment map for the S*-action, and if we define

S={peM | gy¢& =1} (2.9)

then —g|s induces a positive definite Kéhler metric g5y on M := S/Sj. = M//S], (i.e. the Kihler
quotient). The relations between g, ﬂ s and g7 can be summarized as follows [ACDM15]: let 7 : M —
M/Rso =S and 737 : S — S/S' = M be the projections, and let

_ 1 . =

7= T—Qg(JE, —) =dlog(r) =i(0 — 0)log(r) (2.10)
we then have

g=dr* +r°nsgls  gls =0’ls — Targnr (2.11)

Definition 2.7. A projective special Kéhler (PSK) manifold is a Kéhler manifold (M, g7, w7) obtained
from a CASK manifold by the Kéhler quotient from before.



Given a CASK manifold (M, g,w, V,£) we can locally find a special affine coordinate system (z¢, ;)
such that [CMO09]: .
E=2"0yi +yi0y, (2.12)

Definition 2.8. A special affine coordinate system (x%,y;) satisfying (2.12) is called a conical special
affine coordinate system.

On the other hand, the global complex vector field

1

&0 = 5(g —iJE) (2.13)

satisfies VEL0 = 710 where 70 = 1(Id — i.J) is the projection TM ® C — T"°M [CMO09]. By picking
a local flat Darboux frame (7;,7v*) for w we can write

1, .
¢ = 5 (27 —win’) (2.14)

and obtain holomorphic coordinate systems (z%) and (w;). It is easy to check that (z° := Re(z%),y; :=
—Re(w;)) give a system of conical special affine coordinates.

Definition 2.9. When (z') and (w;) are defined by (2.14) using the globally defined &0 = 1(¢ — iJ¢)
we will call (2*) and (w;) a conjugate system of conical special holomorphic coordinates.

If (2%) and (w;) are a conjugate system of conical special holomorphic coordinates, then they are
homogeneous of degree 1 with respect to the (local) C*-action generated by {, J¢} (i.e. Lezd = 27,
Ljed? =iz, Lew? = w?, Lyew? =iw?). In particular, this implies that Le1,02" = 2°, so that

e =20, (2.15)

If we define 7;; by the relation dw; = 7;;dz7, then a consequence of (2.14) and (2.15) is that w; = 7;;27.
This furthermore implies that §(2°) := 37;;227 is a holomorphic prepotential for the CASK geometry.

Finally, we remark that for a CASK manifold, the map r := /g(&, §) gives a global Kéhler potential
for w:

w= %a&ﬂ (2.16)

In conical holomorphic special coordinates (z*), this follows from g?,f 27 = 0 (which in turn follows from

the CASK relation w; = 7;;27) together with r? = Im(7;;)2%%".

2.4 Central charges and the semi-flat metric

Let (M, g,w,V,A) be an integral ASK manifold. Here we present another description of the associated
semi-flat HK metric (N = T*M/A*, ¢, w1, ws,ws). This description is closer to the language of 4d
N =2 SUSY theories, and will be more useful when we include the “instanton corrections” in the form
of variations of BPS structures [GMN10, Neil4].

Definition 2.10. Given an integral ASK manifold (M, g,w, V, A), w|axa defines an integral skew pairing
on A that we will denote by

<—,—> ::wlAXA:AXA—)Z (2.17)

By the definition of an integral ASK manifold, (—, —) admits local Darboux frames (;,7). Our
convention will be that (3;,77) = &7.

Let (9i,7") be a Darboux frame of A over U C M. By possibly restricting U we can find a local
complex vector field €10 on U such that VEH? = 719 and consider the corresponding system of conjugate
special holomorphic coordinates (2*) and (w;) determined by

1/ . .
€0 = 5 (Zz%, _ w”z) (2.18)
Definition 2.11. A conjugate system of holomorphic special coordinates (z%), (w;) defined by (2.18)
with respect to a local Darboux frame of A will be called a conjugate system of integral holomorphic
special coordinates.



Two such overlapping systems of conjugate holomorphic special coordinates are related by a (con-
stant) transformation in C?* x Sp(2n,Z) (the C?" factor is there because we can always shift £¢9 by a
complex parallel vector field when solving V&0 = 71.0),

Proposition 2.12. The following are equivalent:

e (M, g,w,V,A) admits a covering by conjugate systems of integral holomorphic special coordinates
{(Ua, (1), (wi,0)) }a related on overlaps by a (constant) transformation in Sp(2n,Z).

e There is a holomorphic section Z of A* @ C — M such that for any local Darboux frame (5;, ")
of A, the holomorphic functions (Z,:) and (Zz,) give a conjugate system of integral holomorphic
special coordinates.

Remark 2.13. In the above proposition A* — M denotes the dual of A — M. Furthermore, for ~
a section A over U C M, Z, : U — C denotes the corresponding holomorphic function obtained by
contracting with ~.

Proof. Consider (Uy, {2}, {wi o}) for some a, and the corresponding Darboux frame (3; 4,7.) of A
over U, C M. We locally define Z : U, — A* ® C as follows: given a section v of A|y, we can write
¥ =n'Y;.q +ny, and then define

Z, = niwi,a + nizé (2.19)

The fact that the conjugate systems of holomorphic special coordinates are related by a transformation
in Sp(2n,Z) then implies that the local definitions of Z glue together into a holomorphic section Z :
M — A* ® C. Furthermore, given any other Darboux frame (7;,v*) of A over U, it is easy to check that
ifUNU, # 0 then

1/, N 1/ .
5 (Zw%' — 75,7 ) =5 (sz;%,a - Z%,ﬂa) =t (2-20)

so {Z.,:} and {Z5,} give a conjugate system of integral holomorphic special coordinates.

On the other hand, it is clear that if Z : M — A* ® C exists, then the required cover exists. [l

For future reference we note that the section Z of A* @ C has the following expansion in the dual
Darboux frame '

It is related to &40 via w(EH0, —)|x = %Z'

Definition 2.14. We will say that an integral ASK manifold (M, g,w,V,A) admits a central charge
homomorphism if it has a holomorphic section Z : M — A* ® C satisfying the condition of Proposition
2.12.

Proposition 2.15. An integral CASK manifold (M, g,w, V, £, A) has a canonical central charge homo-
morphism Z : M — A* ® C, which is unique up to the action of the group of global sections of Sp(A).
If (3;,7") is a Darboux frame of A, then (Z,:) and (Z5,) gives a conjugate system of integral, conical,
holomorphic special coordinates.

Proof. In the CASK case we have a global and canonical complex vector field ¢10 := %(«E —iJ¢) satisfying
VELY = 71,0 Any two conjugate systems of integral holomorphic coordinates defined by this %9 are
related by a transformation in Sp(2n,Z). This allows us to produce the required cover of Proposition
2.12 and hence a canonical central charge homomorphism. The fact that (Z,:) and (Z5,) are conical is
clear from the fact that we are using % (¢ — i J€) to define Z. O

We are now ready to give the description of ¢*f that will be useful for the following sections.

Proposition 2.16. Let (M, g,w, V, A) be an integral ASK manifold admitting a central charge Z : M —
A* ® C, and let (N = T*M/A*, g%, I, I, I3) be the associated semi-flat HK manifold. Furthermore,
consider the torus bundle N — M defined by

Ny:={0:Ay > R/27Z | Oysp =0, + 06} (2.22)



Then N/ — M is canonically isomorphic to N — M. Furthermore, by using the induced! pairing (—, —)
on A* and the evaluation map 6 : N’ — A* ® R/27Z, we can write the Kihler forms ws := ¢{(1,—, —)
as follows (see [Neild]):

. 1
Wil +iwsf = —5-(dZ A df)

) o (2.23)
Wil = %4z ndZ) - 8?<d6 A df)

Proof. Consider the natural projection p : R — R/27Z, then the bundle isomorphism A" = N is given
by

[@] € N=T"M/A* = po (2malpy) € N (2.24)

To check the claim on the Kahler forms, it is enough to show that in local coordinates we recover

the usual expressions. Fix a local Darboux frame (7;,7%) of A over U, and consider the local coordinates
(Z,i,05,,0,:) on N = N, where 0, : N|y — R/27Z is the contraction of § with 7. We can then write

1 1 1
— %<dZ VAN d9> = —%(dZ% AN dtg,yi - dZ,yi A deqi) = %dZvi VAN (d@qi - Tijd@,yj) (2.25)

where we used dZz, = 7;;dZ.;. Similarly, using that 7;; must be symmetric (since (Z5,) and (Z,:) are a
conjugate system of holomorphic special coordinates), we find

— 1 1 — — 1
<dZ N dZ) — @<d9 74\ d9> = Z(dZ% A\ dZ»Yi — dZ.Yi A\ dZ%) — @(d@;i A\ de,yi — de,yi A\ deqi)

R

7 1
= §Im(7w)dZ71 A dZVj - md@’ﬁl A devi
- %Im(nj)dzvi NdZ.; + é (Tm (7)) (dB5, — Taxdb.x) A (b, — T51d6.)
i
(2.26)

Under our identification, and up to an overall normalization of the metric, these expressions reproduce
the usual formulas of the semi-flat HK metric (see for example [ACDM15, Proposition 3], while keeping
in mind the different sign conventions for special coordinates). O

Note that %(dZ NdZ) = %857"2 is precisely the Kéhler form of the affine special K&hler manifold,
where 72 = f%<Z, Z). In the case of a conical affine special Kéhler manifold, we can write this Kihler
potential as 1% = g(¢, ), cf. (2.21).

3 Instanton corrected HK structures

Consider an integral ASK manifold (M, gar,war, V,A). We seek to include the data of a variation of
BPS structures over M, to get an “instanton corrected” pseudo-hyperkdhler metric on N = T*M/A*,
following [GMN10, Neil4].

On the other hand, it is known that the semi-flat HK metric on N coming from the CASK manifold
M has an infinitesimal rotating circle action [ACM13, ACDM15]. We wish to show that this infinites-
imal rotating action survives the instanton corrections coming from a mutually local variation of BPS
structures, with the aim of applying the HK-QK correspondence in the next sections.

We start by quickly reviewing in Section 3.1 the inclusion of instanton corrections according to the
work in the physics literature of [GMN10]. Section 3.1 is only meant as a motivation for the formulas
appearing in Section 3.2. In Section 3.2 we restrict to the simpler case of mutually local corrections, and
prove under which conditions we obtain an “instanton corrected” HK structure (see Theorem 3.13). The
proof is direct and explicit, avoiding the use of twistor space methods.

IWe define the induced pairing by the property that v ~— {7, —) maps the pairing in A to the pairing in A*. With this
definition the dual of a Darboux basis is a Darboux basis. We will also keep using the notation (—, —) for the C-bilinear
extension of the pairing to A* ® C



3.1 Variations of BPS structures and instanton corrected HK metrics

To explain what we will mean by an instanton correction of the semi-flat HK structure, we will require
the notion of variations of BPS structures [Bril9).

Definition 3.1. A variation of (integral) BPS structures over a complex manifold M is a tuple (M, A, Z, ),
where:

e A — M is a local system of lattices A, = Z" with a covariantly constant, skew, integer-valued
pairing (—, —).
e 7 is a holomorphic section of A* @ C — M.

e O : A — Zis a function (of sets) satisfying Q(vy) = Q(—~) and the Kontsevich-Soibelman wall-
crossing formula [KS08, Bril9).

Remark 3.2. We will not need to fully state the KS wall-crossing formula, but will only mention some
consequences that this condition has on ). Consider the real codimension 1 subset W C M defined by

W:={peM | Fv,7 €Supp(Q)NA,, (v,7)#0, Z,/Z, € Rso} (3.1)

where Supp(2) := {y € A | Q(v) # 0}. The fact that Q satisfies the wall-crossing formula implies
that for a local section v of A, Q(v) is locally constant on M\W. Furthermore, the discontinuity at the
“wall” W is completely determined by the wall-crossing formula, and  is monodromy invariant (i.e. if
~p has monodromy A -, for A € Sp(A,, (—, —)) around a loop, then Q(v,) = Q(A4-7,)).

The tuple (M, A, Z, Q) should furthermore satisfy the following two properties:

e Support property: given a compact set K C M and a choice of covariantly constant norm | - | on
Ak ®z R, there should be a constant C' > 0 such that for any v € A|x N Supp(Q2)

12, > O (32)

e Convergence property: for any R > 0 the series

Y 2@ 7] (3.3)

YEAp
converges normally on compact subsets of M.
Remark 3.3.

e The support property implies that if v € Supp(f2), then Z, # 0. Furthermore, for any R > 0 and
p € M, there can only be finitely many Z, with v € A, NSupp(Q?) and |Z,| < R. In particular, we
must have |Z,| — oo as |y| — oo for v € A, N Supp(Q).

e The convergence property is stronger than the one on [Bril9]. However, it will simplify technical
details of convergence and term by term differentiation of sums that will appear below in the case
that Supp(?) is infinite. We remark that the BPS indices appearing in the string theory setting
of [Alel3, AMPP15, AB15] are not expected to satisfy even the weaker convergence condition on
[Bril9).

We will only consider variation of BPS structures over an ASK manifold that are “adapted” to the
ASK structure in the following sense:

Definition 3.4. Let (M, gy, war, V,A) be an integral ASK manifold admitting a central charge Z :
M — A*®C (recall Proposition 2.12 and 2.15). Having fixed a central charge Z, an adapted variation of
BPS structures over (M, gar,war, V, A) is a variation of BPS structures (M, A, Z/, Q) such that (A’, Z') =
(A, Z). In the case of a CASK manifold we always take the canonical central charge.

Now consider an adapted variation of BPS structures (M, A, Z,Q) over (M, gy, war, V, A). Further-
more, we consider the bundle 7 : M — M of “twisted” unitary characters given by

My :={0: Ay > R/27Z | Oysry =0, 404 +7(vy,7)} (3.4)



Remark 3.5. The reason for considering twisted characters has to do with implementing the wall-
crossing formalism from [KS08]. We remark that M and N (see (2.22)) can be locally identified (non-
canonically), but they might differ topologically (see [GMN10] for a discussion on this).

In [GMN10, Neil4], the proposed intanton corrected HK structure on M is then described as follows:
first one must find locally defined functions X, : U C M x C* — C*, labeled by local sections v of
Al )y, and satisfying the “GMN equations”:

' ¢ +¢
T

20,0 = 250,00 [~ 1= 3 2 [ log(1— 4, (0.C))]  (35)

T R_Z

’Y’EA.,‘.(Q) ~/

where .
X3(0,¢) = exp[n( ' Zy + 0, + 77, (3.

6)
For a fixed 6 € M, the functions X, (0, ¢) have discontinuities in ¢ along the rays R_Z., with v € Supp(£)
(the so-called BPS rays). Furthermore, a consequence of satisfying (3.5) is that X, = (—1){"7) X, &,
which is related to the twist in the unitary characters, and important for the wall-crossing formalism.

Then one defines the following C*-family of complex 2-forms on M:

2(C) = —5 (dlog(X(0)) A dlog(X(0))) (3.7)

82
where d differentiates only in the M directions. The discontinuities of X, ({) in ¢ turn out to not affect
w(¢). Moreover, the KS wall-crossing formula is used to argue that w(() is actually well-defined over
W C M, where the BPS indices Q(v) jump.

Finally, they argue that there is a hyperkihler twistor space structure on M x CP!, whose O(2)-
twisted family of holomorphic symplectic forms is given by (w(¢) ® 0¢. In particular, if we expand (w(¢)
in ¢, we obtain an expression of the form

i
(w(¢) =3
where w and w3 give a holomorphic symplectic form and Kéahler form with respect to one of the complex
structures; and Re(w), Im(w) and ws give a triple of K&hler forms for the hyperkéhler structure.

w + (w3 — %CQE (3.8)

3.2 Mutually local variations of BPS structures and the instanton corrected
HK structure

One of the main issues in describing the instanton corrected HK structure lies in solving the equations
(3.5). Below, we will restrict to a case where the integral equations (3.5) reduce to integral formulas,
and write down the candidate @ and ws. We will then show in Theorem 3.13 under what conditions
they define a HK structure on N = T*M/A*.

Definition 3.6. A variation of BPS structures (M, A, Z, Q) is mutually local if v,~" € Supp(£2) implies
that (y,7’) = 0.

Remark 3.7.

e The mutually local condition implies W = (J, and hence no wall-crossing occurs for the BPS indices
Q(7). In particular, given a local section v of A, () is a locally constant function on M.

e On the other hand, given (M, gns,war, V,A) with an adapted mutually local variation of BPS
structures, the mutually local condition implies that we can find a local Darboux frame (%;,7")
of A such that Supp(Q) C spany{y'} (see Lemma 3.14 below). It is then easy to see that the
GMN equations (3.5) for {A%,((), X,:(¢)} reduce from integral equations to integral formulas. In
Lemma 3.10 below we write down the corresponding candidate w and ws obtained from the explicit

formulas for {5, (¢), & (¢)} (see also [GMNI10, section 4.3 and 5.6]).

10



Remark 3.8. For the rest of the paper we will only consider adapted variations of mutually local
BPS structures over an integral ASK manifold (M, gar,war, V, A) admitting a central charge (recall
Propositions 2.12, 2.15, and Definition 3.4). For simplicity, we will denote them just by Q and refer to
them as mutually local variations of BPS structures, omitting the word “adapted”. In the CASK case
we always use the canonical central charge.

Consider (M, gpr,war, V, A) with a mutually local variation of BPS structures . Following, [GMN10,
section 4.3 and 5.6], we define the following forms on N = T*M/A* (we will omit from the notation
pullbacks by the canonical projection 7 : N — M):

Lemma 3.9. Consider a local section v of Al for U C M and with v € Supp(Q2). Let

ins 1 in
Vst = o Ze v Ko(2mn| Z,))

8
n>0
_ (3.9)
. Az, dZ
Amst . 0| 7, | K1 (20| Z, ( _—7)
3 4,;"1(")vzv

where Ko and K, are modified Bessel functions of the second kind. Then V"' € C>(x~(U)) and
At e QY (n~1(U)).

Proof. The convergence of the two series on the right-hand 51de of (3.9) is compact normal on the set
{p e =X (U) | Z,(x(p)) # 0}, thanks to the asymptotics K,(z) ~ \/3z¢ *(1 4+ O(%)) for & — oo,
v = 0,1. On the other hand, by the support property (3.2) and our assumption that 'y € Supp(Q?), we
must have {p € 7= 1(U) | Z,(w(p)) # 0} = x~(U). Hence, as a consequence of compact convergence
Vst defines a smooth function on 7~ (U) and A" defines a smooth 1-form on 7= *(U). O

The candidate instanton corrected w and ws are then the following:

Lemma 3.10. Let

ws

w = f%wZ Ado)+> <Q( )dZ, N At 1 Q( )vmstdo AdZ > (3.10)
. .

Q). _ 0 .
(dZ A dZ) — §<d9 XUESS (#v;mtdz7 NdZ, + %d@7 A A;nst) (3.11)

4>|>~

Then w € Q?(N,C) and w3 € Q3(N).

Remark 3.11. Notice that the sums over 7 in the definitions of @ and ws are monodromy invariant
due to the monodromy invariance of 2 (see Remark 3.2), so they make global sense.

Proof. If Supp(?) is finite, then clearly w and w3 define smooth forms on N by the previous lemma.
Otherwise, consider a compact set K C N such that we have a frame (7;,7") of Al k), and a covariantly
constant choice of norm for Al x). Writing (3.10) and (3.11) with respect to dZ5, dZ.,:, df5, and db.;,
we can use the support property (3.2) to reduce the question of convergence of (3.10) and (3.11) to the
convergence of sums of the form

D 192,70 Ko (2nn|Z,) (3.12)

n>0

where v = 0, 1. By the use of the asymptotics of the Bessel functions and the support property (3.2), it
is then easy to check that for any 0 < € < 1 we can find C; > 0 and C3 > 0 such for |y| > C; we have

12,7 K, (2mn| Z,|) < Caem2m (1912 (3.13)
n>0
(recall that by the support property |Z,| — oo uniformly over K as |y| — oo with v € Supp(£2)). By the

convergence property (3.3), we then see that the infinite sums (3.12) converge normally over compact
subsets of N, and hence the (3.10) and (3.11) define smooth forms on N.

The reality of w3 follows from the identities Vinst = Vi‘}ft and Ast = AL“?Yt, together with the fact

that Q(y) = Q(—7). O
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The key notion that will guarantee that the triple (w1 := Re(w), w2 := Im(w),ws) defines a HK
structure on N is the following:

Definition 3.12. Let 7 : N — M be the canonical projection, where N = T*M/A*. We will say that
(M, gpr,wnr, V, A) and a mutually local © are compatible if the tensor field

Ti=r"ga + Y Q)VI"'7*|dZ, | (3.14)

on N is horizontally non-degenerate, i.e. T' is non-degenerate on the normal bundle of the fibers.

Theorem 3.13. Consider an ASK manifold (M, gar,war, V, A) together with a mutually local variation
of BPS structures . Then the triple (w1 = Re(w),ws = Im(w),ws) of real 2-forms on N define a
pseudo-HK structure on N if and only if (M, gar,war, V, A) and Q are compatible.

Before doing the proof of Theorem 3.13, we will need two lemmas. Lemma 3.14 is a technical result
needed for Lemma 3.15; while Lemma 3.15 collects some useful expressions needed for the proof of
Theorem 3.13.

Lemma 3.14. Let A be a rank 2n lattice with a skew pairing w : A x A — Z admitting a Darboux
basis, and let S C A be a subset such that v,v" € S implies w(y,7’) = 0. Then there is a Darboux basis
(5i,7%) of A such that S C spany{~‘}.

Proof. Let L be a maximal isotropic subgroup of A such that S C L. Since A is a finitely generated
free abelian group, the same is true for L, and rk(L) < rk(A) = 2n. We claim that rk(L) = n. To see
this, we consider the map v, : A = Hom(L,Z) given by v — w(y, —)|r. Because w admits a Darboux
basis, ¥, : A = Hom(L,Z) is surjective. Here we use that L is primitive (by maximality) and thus
the natural map Hom(A,Z) — Hom(L,Z) is surjective. This in turn follows from the fact that every
primitive system of vectors in a lattice can be extended to a basis. Hence, if we denote L“ := Ker(1),,),
we obtain rk(L*) = rk(A) — rk(L). On the other hand, L C L* implies that rk(L) < rk(L*), and since
L is a maximal isotropic sublattice containing S, we must have rk(L) = rk(L*). It follows that rk(L) = n.

Now let {a’};—1 ., be a basis for L. Using again that L is a maximal isotropic sublattice, we have

that o' is primitive in A. Now let (BZ, %) be a Darboux basis of (A,w). Writing ! = blﬁz + b;5" and
using the fact that o' is primitive, we must have ged{b%,b;}"_, = 1. By Bezout’s identity, there exist
integers {a;, a’}"_; such that a;b° + b;a’ = 1. Defining

&1 = ai@ — aiﬁi (315)

we then see that w(a,al) = 1. We set v! := o' and 71 = ay.

Assume by induction that we have found {%;,~'}i=1._, satisfying w(3;,77) = 87, w(y’,47) = 0,
w(¥:,7j) = 0 and such that span(y!,...y") = span(a!,...,a”) C L. If r = n = rank(L) we are done.
Otherwise, pick o' and define

= a T+1+Z (@ 3! (3.16)

Then w(y" ™, ~4%) = 0, w(y"*,5;) = 0 and span(y!,...,9" ™) = span(al,...,a" ). Furthermore, by
(3.16) and the fact that L is maximal isotropic, we again have that v"™1 is primitive. We then use
the Darboux frame (f;,3") and the Bezout identity the same way as before to find &,y such that
w(&'T+1’,7r+1) =1.

Define

T

T
Vr41 1= Qrg1 — Zw(&rﬂﬁiﬁi + ZW(&rHﬁiWi (3.17)
i1 i1
we then have w(¥,41,7" ™) = 1 and for i = 1,...,r we have w(F,41,7") = w(¥r41,7%) = 0. Hence,
we have found {7;,7"}iz1,.. r41 satisfying w(3;,77) = 6/, w(v",7?) = 0, w(3;,7;) = 0 and such that
span(yt, ..., 7"t = span(al,...,a" ).

At the n-th step we then have a Darboux frame {7;,7} of A such that S C L = span(v!,...,9"),
which is what we wanted. O
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Lemma 3.15. Let (M, gy, war, V,A) and Q be as before. Given a local Darboux frame (7;,7%) for A
such that Supp(Q) C spany {7’} (see Lemma 3.14), we write v = n;(y)7* for v € Supp(Q) and define the
complex 1-forms on N

Wi = dbs, — 73;d0,5, WSt = ZQ )2mARSt —iVIntd ), Y = Wi+ Wt (3.18)

where dZ5, = 7;;dZ.,;. Furthermore, we define the matrices

N;j = Imm;;, N;;St . ZQ V‘HSt (Mni(y), M= N;j + Nl'ifSt (3.19)

We then have
1 1 — — 1 _ —
w = %dZw ANY,, w= E(d271 NY; + dZVi A Yi), Wy = R(dZW NY, — dZ,yi AN Yi) (320)
and assuming () is compatible with the ASK manifold,
i — i i —
w3z = §Mide'Yi A dZ’Yj + @M ]}/i A Yj (321)

Remark 3.16. Note that the symmetric matrix M;; is real, in virtue of the property Q(—v) = Q(v) and
Vinst = Vi‘}ft. On the other hand, the fact that M;; is invertible follows from the compatibility condition
(3.14) written with respect to (3;,7").

Proof. Using that dZz, = 7;;dZ.; we obtain

1 Q( )
= ——(dZ Ndb E Q()dZy AN AP+ nstq0., A dZ,
w 27T< Adf) + (v)dZ, A —V A

.
1 .
= 5-dZy A (df, — Tijdbs) + —dZ A (ZQ ()(2r AL — iV ag,)) (3.22)
1
= —dZ, N\Y,
o 4
The formulas for wy and ws then follow from w; = Re(w) and we = Im(w).

On the other hand, to see that (3.21) holds it is easy to check that:

] __ __ 1) . _
%Mijdzw NdZy; = (dZ NdZ)+ Y #v;“stdz7 AdZ, (3.23)

A~ =

while for the second term, after expanding the terms in Y;, using the fact that M;; is symmetric, and
reorganizing terms we obtain

7 i — 7 i X ins
@M TY; A Yj = @M J (Q’LMik[de%. A\ d@.yk + Z Q(’}/)?’LJ‘(’}/)QTFAV A de,yk + Re(le)dGWk A d@vl])
vy

—1 ins
7 |05 A O DD Q2 AL A By + Re(mia)db A db |
ol

inst
5 (d@/\d@ +Z d9 A Al
(3.24)

so that (3.21) holds. O

Proof. (of Theorem 3.13) We start by showing that the compatibility assumption (3.14) implies the non-
degeneracy of the w, forms. We fix a local Darboux frame (7;,~*) with Supp(Q2) C span{~‘} and denote
for simplicity Z* := Z.,:. We work locally with the real frame 9,: := 7 + Oziy Oyi = i(0zi — O5i),
Oyi :=0p_, and 95 := Oy, and recall that the compatibility condition (3.14) implies the invertibility of

the matrix M;;.

13



e Nomn-degeneracy of wy: we write below relations that are sufficient to deduce non-degeneracy. Using
(3.18) and (3.20) we obtain

0ij 1
wl(agi,ﬁmj) = *2—;, wl(agi,auj) = 7§Mij

w1(0p,,0ps) = w1(0gi, 0gs) = w1(85,, 05 ) = w1 (0, O5,) =

(3.25)

So wy is represented by a block triangular matrix (with respect to the second diagonal) with
invertible diagonal blocks. Hence, we conclude that w; is non-degenerate.

e Non-degeneracy of ws: as before, we write below sufficient relations to deduce non-degeneracy.
Using (3.18) and (3.20)
(Sij 1
w2(0g., Ous) = o wa(0gi, 0pi) = %Mij
wg(agi,é?@j) = wg(é?@i, 59]‘) = wg(aai, agj) = wg(ami, agj) =

(3.26)

So wy is represented by a block triangular matrix with invertible diagonal blocks (of size 2 dimg (M)
on the second diagonal). This shows that ws is nondegenerate.

e Non-degeneracy of ws: using (3.11) and (3.19) we obtain the following sufficient relations to show
non-degeneracy

N
w3 (89 780 ) = 4 j 3(81-;,81“') = Mij (3 27)
W3(aui,au ) ( ):CU3(aui,a§j):CLJQ,(agi,agj):O

Using the block structure of the representing matrix we see that it can be transformed to block
diagonal form with invertible diagonal blocks using row and column operations. This proves that
it has maximal rank.

Now we check that
dwe, =0 a=1,2,3 (3.28)

For o« = 1,2 it is enough to check that dw = 0, since @w = wy + iws, and w1 and wy are real. Using
(3.10), and the fact that the semi-flat part is closed, we have

dow — ZQ [ A"t A dO, A dZ., — dZ, AdAmﬂ
=) 0 inby K, (20| Z,, Zy dZ, N db, N dZ.,
Z ] -7 Zne 12l 2, )7 A oy A .

——Znem‘)le(2m|Z| | 7|dZ A db., /\dZ}
n>0
=0

where we used that K = —Kj. On the other hand, using (3.11) and the fact that the semi-flat part is
closed, we obtain

dws = Z Oy [ AVI™ N dZy N dZ = =dd, A aar|
=3"00) [ — =N ne Ko (2| Z,|)d6, A dZ, A dZ,
2 Am 7;) (3.30)

1 . _
+ =dd, A (= e Ko(2mnl 2, ))dz, £ dZ,)]
& n>0
— 0
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where we used the identity (zK;(z)) = —xKo(x).
We now define three endomorphism fields by
Iy =—wi'low, (3.31)

where («, 8,7) are cyclically ordered. We will compute their action on a local frame of TN ® C and
check that I1I5 = I3 and I2 = —1.

We have a local frame of T*N @ C given by {dZ", d?i, Y;,Y;} (see Lemma 3.15). We consider the
dual frame of vector fields {A;, 4;, BY, B'}. Using (3.20) and (3.21) we find the following identities

1 X 1 )
A =)= —Y; B, —)=——dZ’
wildi—) = =Y wi(B-) =~
1 X 1 )
CLJQ(Ai, 7) = 4—7”}/1 WQ(BZ7 7) = 74—deZ (332)
1 —j ) i A
wy(Ai, =) = sMyydZ  wy(B',—) = 25 MYY,

The evaluation on the conjugate elements of the frame give the conjugate of the corresponding expres-
sions (recall that (M;;) is a real symmetric matrix).

This allows us to compute the action of I, on the frame, giving the following
— . 1 R
Il(Ai) - 27TMiij Il(Bl) - —2—MUAJ‘
™
L(A) = —27iMy B’ L(B') = —MVA, (3.33)

2T
I3(A;) =iA; I3(BY) =iB’

where again the value on the conjugate elements is given by taking conjugates on the RHS of the above
equalities. From (3.33) it is clear that

LI=I; I2=-1 for a=1,2,3 (3.34)

so each I, defines an almost complex structure on N, and they satisfy the quaternion relations. These
relations imply that the tensor field wy o I, = wa(lo—, —) is independent of « and that the pseudo-
Riemannian metric gy 1= —w,, o I, satisfies I gy = gy and gy (In—, —) = wa(—, —).

Hence, we conclude that (N, gy, I1, I2, I3) is almost pseudo-hyperkéihler, with dw, = 0. By Hitchin’s
lemma [Hit87, Lemma 6.8], (N, gn, I1, Iz, I3) is then pseudo-hyperkéhler.

We have shown the sufficiency of the compatibility condition (3.14). The necessity follows from the
previous identities used to show non-degeneracy of w,. Indeed, if T in (3.14) is horizontally degenerate
for some p € N, then with respect to a Darboux frame (7;,7%) of A around 7(p) € M with Supp(Q2) C
span{y’} the corresponding M;; is not invertible at p, and then the forms w, can be shown to be
degenerate at p. O

Corollary 3.17. Let (N,gn, 1,12, I3) and {dZ,W,d?,fi,E,?i} be the pseudo-HK manifold and local
frame of T*N ® C from the previous theorem. Then in such a frame the metric gy has the local form

__ 1 P

gN = dZ,yuMz'de,yj + 4—7‘_2YiMUYj
—inst
)

(3.35)
. _ 1 . . R
=dZ,:(Nij + NJ*)dZ.,; + W(Wi + W) (N 4+ N™H7 (W + W

Proof. The first equality follows from (3.21) together with the fact that dZ,: and Y; are (1,0) forms with
respect to I3 due to (3.33). The second equality follows from the formulas in Lemma 3.15. O
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Remark 3.18. the semi-flat HK metric corresponds in this case to
. — 1 Py
gSf = dZViNideWj + HWPN JW]' (336)

This expression shows that the torus bundle 7 : (N, ¢*f) — (M, gas) is a Riemannian submersion with
totally geodesic horizontal distribution and flat fibers. Due to the latter property, the metric g*f is called
semi-flat.

This picture is lost when including the instanton corrections. Indeed, the horizontal part of the

metric gy is no longer basic, since the functions Ni‘;‘“ are not basic. Moreover, the metric on the fibers

is no longer translational invariant and the coordinate vector fields %, 876
vt ~

are not horizontal, i.e.

perpendicular to the fibers.

3.2.1 The CASK case and the rotating action

We now assume that we start with an integral CASK manifold (M, gar,war, V, &, A), together with a
compatible, mutually-local Q. We denote by (N, gn,w1,ws,ws) the corresponding pseudo-HK manifold
from Theorem 3.13.

Definition 3.19. Let (V,gn,w1,w2,ws) be a pseudo-HK manifold. An infinitesimal rotating circle
action is a Killing vector field V on N such that Ly (w; + iw2) = i(w1 + iws) and Lyws = 0.

In [ACM13, Section 3] it is shown that one can lift J¢ from M to N, in such a way we get an
infinitesimal rotating circle action for the semi-flat HK structure on N. The lift V of J¢ is defined as
follows: if ¢* are special affine coordinates for M and (7*¢‘, p;) the corresponding coordinates on T* M,
then

V(r*q') =7 (J&(q)),  V(pi)=0 (3.37)

This local definition does not depend on the choice of special affine coordinates, and hence defines global
liftt V' of J§. The vector field V is, in fact, the V-horizontal lift of J¢ and furthermore descends to
N =T*M/A*.

Proposition 3.20. The vector field V' defines an infinitesimal rotating circle action for the instanton
corrected HK structure (N, gy, w1, wa,ws).

Proof. The vector field V' of N satisfies the following:

e The central charge Z satisfies Lyn*Z, = Lje¢Z, = iZ, (recall Proposition 2.15 and the remark
below Definition 2.9). Here and in the following we have omitted 7* on the right-hand side for ease
of notation, identifying function on M with functions on N via pull-back.

o The angle coordinates 6., are invariant by (3.37), i.e Ly 6, = 0.

From the previous two points and (3.9) we conclude that E\/V;“St =0 and EVAiW“St = 0. Hence, from
(3.10) and (3.11) we see that Ly w = iw while Lyyws = 0. This implies that Ly gy = 0 by differentiating
the identity gn = wzow] ows and using the skew-symmetry of w;, ' ows in the indices (a, ). We conclude
that V' defines an infinitesimal rotating circle action for the HK structure (N, gn,w1,ws,ws). O

Using our local expression (3.35) of gy, we see that we can write gy in the local real frame da’ :=
Re(dZ,:), du' :=1Im(dZ.:), a; :== Re(Y;) and f; := Im(Y;) as
. . . . 1 .
g = M;;(dz'dx’ + du'du’) + FMU (avia; + Bif5) (3.38)
7r

In particular, we see that if the (real) matrix M;; has signature (n,m) then ¢ has signature o(g) =
(4n,4m). In the CASK case we can say more:

Proposition 3.21. Let (N, gn,w1,ws,ws) be an instanton corrected HK metric associated to a connected
integral CASK manifold (M, w, gar, V, &, A) with a compatible Q. If the flow of £ induces a free-action
on M of the (multiplicative) monoid Rx1, then o(g) = o(g*f) = (4, 4n), where dim¢(M) =n + 1.
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Proof. By the connectedness assumption, it is enough to check the signature at a single point. We fix
p € M and consider the ray [, := R>q - p C M obtained by the free R>;-action on M, and a Darboux
frame (3;,7%) of A with Supp(Q) C span{~'} along l,. With respect to this frame we have the matrix
M;; controlling o(g):

Mij = Tm(rzj) + 3 Q(y)V,"ni()n; (7) (3:39)
gl

We consider the V-horizontal lift of £ to N. Such a lift generates a free R>j-action on 77 1(l,) C N
that scales Z., and leaves 0, invariant. The term N;; = Im(7;;) is invariant under the R>1-action scaling
the central charge (since M is CASK), while the terms V;“St are exponentially decreasing as we act
with a sufficiently big ¢ € R>; (due to the asymptotics of the Bessel functions). Hence, by the use of
the convergence property (3.3) and the R>;-action we can make M;; as close as we want to N;; for an
appropriate point in 771(1,). Hence, o(gn) = o(g*) = 20(gn) = (4, 4n). O

4 HK-QK correspondence for the corrected HK metric

Consider an integral CASK manifold (M, gar,war, V, &, A) together with a compatible, mutually local Q.
From the results of Theorem 3.13 and Proposition 3.20 we obtain an HK manifold (N, g, w1, wa, ws) with
an infinitesimal rotating action given by the vector field V. In this section we apply to (N, gn, w1, wa,ws)
the explicit description of the HK-QK correspondence found in [ACDM15, Theorem 2], to obtain a pos-
sibly indefinite QK manifold (N, g7).

One of the things that we will require in order to apply the HK-QK correspondence to (N, g, w1, wa, w3),
is an Sl-principal bundle 7y : P — N having a connection n € Q!(P) with curvature F' € Q?(N) satis-

fying
F =27n(ws — d(tvgn)) (4.1)

Remark 4.1. One can show that F' is of type (1, 1) with respect to the triple of complex structures I,, for
a =1,2,3 (see for example [Hit13, Proposition 1]). Hence, the principal circle bundle (7y : P — N,n)
is hyperholomorphic, in the sense that the complex line bundle associated to the defining representation
of U(1) is holomorphic for all three I,.

After constructing the required hyperholomorphic circle bundle in Section 4.1, we apply the HK-QK
correspondence in Section 4.2. The main result of this section is Theorem 4.10.

4.1 The hyperholomorphic circle bundle

In this section we construct the hyperholomorphic bundle (7 : P — N,n). We use the notation
wa : N — M for the natural projection.

Proposition 4.2. There exists an S'-principal bundle 7y : P — N with connection © having curvature
1 *
do = —EWNM@ A dB) (4.2)

Proof. We start by considering the trivial R-principal bundle T*"M x R — T*M. We denote by p :
T*M — A* @ R the evaluation map. Hence, if we are given a local trivialization (3;,~%) of A, then
(p5,,D~i) gives coordinates for the fibers of T*M. On T*M x R — T*M we define the connection

1
O :=do — E@’ dp) (4.3)

where o is a global coordinate on the R-fiber.

We now define the bundle of discrete Heisenberg groups Heis(A*) — M where Heis(A*) := 2nA* x 1Z
and the group structure on the fibers is given by

(278, k) - (2md', wk') = (2m(§ + 0"), w(k + k' + (5,8"))) (4.4)
We define a fiber-wise action (as bundles over M) of Heis(A*) on T*M x R by
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1
(2mo, k) - (p,o) = (p+ 270, 0 + wk + E<27r5, D)) (4.5)
and on T*M by
(27, k) - p = p + 270 (4.6)

With these actions the projection T*M x R — T* M is clearly equivariant and © is invariant under
the action on T*M x R. By taking the quotient we obtain an S!'-principal bundle 7y : P — N, and the
connection descends to a connection © on P. It is given by

1 *
O =do — EWNW, do) (4.7)

where the coordinate o is now periodic with period 7 and transforms as o — ¢’ = o + %ﬂ}*\,(é, ) under
translations § — 6’ = 0+ 270, § € A*, in the sense that (6,0) and (0, 0") describe the same point in the
fiber of P. O

The following lemma gives an expression for w3 that will be convenient for defining the connection n
on wy : P — N with curvature (4.1).

Lemma 4.3. For 7 a section of Al N Supp(2) with U C M, let " € Q! (7, (U)) be defined by

in inf dz, dZ
st = 87T2 Z L\ Z,| K1 (2| Z, ) ( 7;) (4.8)
Letting 72 := gar(&,€), we can then write w3 as follows:
_ 1 .2 mst
wy = 00 — — _L_(do n do) +d(ZQ ) (4.9)

Remark 4.4. Notice that > Q(y)ny inst makes global sense due to the monodromy invariance of (2.
Furthermore, > () st e Ql( ) by the same arguments of Lemma 3.10.

Proof. Since M is a CASK manifold, we have from (2.16):

1 _ ;
wy = 7(dZ A dZ) = %aaﬂ (4.10)

On the other hand, using the identity (xK;(z))’ = —xKo(z) we see that the instanton correction terms
of ws satisfy

(ZQ ) = Z<ZQ( R0 iz, dz, +wd9 /\A‘“St) (4.11)

where we used that compact normal convergence (3.3) lets us interchange sums and derivatives. The

formula (4.9) then follows by comparison with (3.11). O
Corollary 4.5. Let 7y : P — N and © be as in Proposition 4.2. Then the connection n € Q!(P) given
by
n:=0+ 27T7T;‘V( mh (Or? — or?) + ZQ mSt LVQN) (4.12)
has curvature
F =27n(ws — d(tygn)) (4.13)
Proof. The fact that dn = 73, F follows from the equations (4.2) and (4.9). O

The following proposition characterizes the part of n containing the “instanton corrections”.

Proposition 4.6. The hyperholomorphic connection n on 7y : P — N can be written as

1 . s
4 nmst) (4.14)

7729+27T7T}kv(—2

where 7] = T%LJggM and
1nst . ZQ mst _ LV(gN _ ﬂ-}kng) (415)

Furthermore, if Q = 0 then 7™ = 0.
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Proof. We first show that = 0 implies 7'"* = 0. In a local Darboux frame (7;,~*) of A with Supp() C
span{v‘}, we can write (recall Corollary 3.17)

1
st ZQ st LV(ZQ Wiz, | + 5 YiMYY) (4.16)

If Q =0, it follows that Y; = W; + Winst = W;, and M;; = N;; + Nz-ij‘-ISt = Njj;, so tyW; = 0 implies that
ins 1 YA
0" =~y (5 WNT; ) =0 (4.17)

To show the remaining identity, we notice that from (4.12) and (4.15) we can write

7 — .
n= @+27T7TN<47rM(87’ —or? )—LVﬂMquanSt) = O+27my (W}‘M (1(87’2787’2)7“5@\4) +7}mSt) (4.18)

Furthermore, recalling (2.10):

2 .
r2n = LjegMm = %dc log(TQ) = %(37’2 — 87"2) (4.19)

we obtain (4.14). m

4.2 HK-QK correspondence

From the data of an integral CASK manifold (M, gar, war, V, &, A) with a compatible 2, we have obtained
a pseudo-HK manifold (N, gy, I1, Iz, Is) with an infinitesimal rotating circle action V' and a hyperholo-
morphic circle bundle (7y : P — N,n). We now wish to apply [ACDM15, Theorem 2] to obtain a
pseudo-QK manifold. In order to match their conventions, we will need to consider 27wgy instead of gy,
and take X = 2V, so that X satisfies Lx Iy = =215, LxI> =211, LxI3 =0, Lxgn = 0. On the other
hand, in order to directly apply [ACDM15, Theorem 2], we will need to define several other pieces of
data associated to (N, 2mgn, I1, I, I3) and (7 : P — N,n). This are given in Lemmas 4.7 and 4.8, and
in Definition 4.9 below.

Lemma 4.7. Let ¢ € R and let f, f1 € C°°(N) be defined by
f=2mr*—c+4n Z Q(y)e n;“St, fi = —2mr® — ¢ + dmy st (4.20)
Then f and f; satisfy
df = —ux(2mws) = —dmyws,  fi=f— %(QWQN(XaX)) = [ —dmrgn(V.V) (4.21)

Furthermore, if
finst — 47TZQ( . n}ynst inst — 47TLv77inSt (422)

then Q = 0 implies fi"st = finst —

Proof. We start by proving that df = —4miyws. Using conical holomorphic special coordinates Z° we
have the local expression

V =iZi0y —iZ 0y 1> =Ny;Z'Z =Tm(r;)Z' 7 (4.23)

On the other hand we have the identity Z* g;i = 0 as a consequence of the CASK condition. It is then
easy to check that

i 5oy Lo
§LV(06T )= —ad(r ) (4.24)

From the same arguments of Proposition 3.20, it follows that Evniv’““ = 0. We then have
df = 2md(r?) + 47729 d(eyni™) = —47?( w (00r?) + Lvd(ZQ m“)) = —dmyws  (4.25)
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The remaining equation in (4.21) for f; follows easily from 74,90 (V, V) = g (JE, JE) = gar(€,€) = 12
and the definition of 7" in (4.15).

Finally, if 2 = 0 we clearly have fi*s* = 0, while fi"s* = 0 follows from the fact that Q = 0 implies
gn(V.V) = g (V.V) = 79 (V. V). 0

Lemma 4.8. Assume that the flow of £ induces a free-action on M of the monoid R>;. Then the open
subset of N defined by

N':={peN | f(p) #0, filp) #0, gn(Xp, Xp) #0} C N (4.26)
is not empty. In particular, the open subset N/ := {f >0, fi <0} C N’ is not empty.

Proof. The proof is similar to Proposition 3.21. Indeed, fix p € N with my(p) = ¢, consider the ray
ly == Rs>1-q C M, and pick some Darboux frame (7;,7") of A along the ray [, with Supp(Q) C span{y'}.
By consider the V-flat lift of ¢ to N, we obtain a Rsj-action on 7,,'(l;) C N that rescales Z,, and
leaves invariant 0.. Writing finst finst with respect to (3;,7") and using the asymptotics of the Bessel
functions together with the convergence property, it is easy to see that given any € > 0 the following
holds for sufficiently big ¢t € R>;

FEEp)l <€ [fEp) = [N p)| = N (Keps Xep) — Thugnr (Xep, Xep)| <€ (4.27)

where in the last inequality we used the fact that gy (X, X) — 73,90 (X, X) only contains instanton
correction terms (see (3.35) and (4.23)).

In particular, for sufficiently big ¢t we have

sign(f(t - p)) = sign(2wt*r*(q) — ¢) = 1, sign(fi(t - p)) = sign(—27t*r*(q) — ) = -1
sign(gn (X (t-p), X (t - p))) = sign(t*r?(q)) = 1

so N’ contains a point ¢ - p where f > 0, f1 < 0 and gy (X, X) > 0. O

(4.28)

Definition 4.9. Let N’ C N be as in Lemma 4.8. On the total space of (my : P|ns — N',n) we define
the following objects:

e We endow P|ys with the pseudo-Riemannian metric:

2 *
gp = EHQ + 2T N gN (4.29)
and the vector field B
XP =X+ fi0, (4.30)
where X denotes the horizontal lift of X and O, the generator of the S!'-principal action.

e Finally, we define the following 1-forms on P|y::

9(1)3 = ——mndf, 9{3 =0+ —mnix (2mgN), 95 = —myix (2mws), 9§ = —EWNLX(Qmul)

2 2 2
(4.31)

We can now state the main theorem of this section:

Theorem 4.10. Let (M, gy, wa, V, &€, A) be a connected integral CASK manifold with a compatible
mutually local €2, and assume that the flow of £ generates a free-action of the monoid R>;. Furthermore,
let (N, gn, I1, I2, I3) be the associated pseudo-HK manifold; (P — N, ) the associated hyperholomorphic
circle bundle; and 67, gp, X{', f and N’ C N as before. If N C P|y/ is any submanifold transversal to
XF then

PR (QP 22 i(gfy) ‘_ (4.32)
f Fi= N

is a pseudo-QK metric on N. Furthermore, if N is picked to also satisfy N, := N N N/ # 0, then gy is
positive definite on N .
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Proof. We have set everything up so that we can apply the explicit formulas of the HK-QK correspon-
dence in [ACDM15, Theorem 2] to the pseudo-HK manifold (N’ 27gn, I1, I, I3) with the vector field
X = 2V and the hyperholomorphic circle bundle (P|y, — N’,n) (notice that we restricted to N’ of
Lemma 4.8). [ACDM15, Theorem 2] then guarantees that

g = ol (gp ;Z )‘ (4.33)

=0

is a pseudo-QK metric on N. Hence, g3 = —2sign(f)g’ is also a pseudo-QK metric on N.

By Proposition 3.21 we know that gy has signature (4, 4n) so by [ACM13, Corollary 1] we conclude
from the conditions f > 0, f; < 0 that ¢’ = “gn(f)r = —1gy is negative definite on N, and hence
g s positive definite on N.. [l

5 Instanton deformations of the 1-loop corrected Ferrara-Sabharwal
metric

In this section we wish to compute a coordinate expression for the QK metric g5 of Theorem 4.10 in
the case of an integral CASK domain with a compatible mutually local 2. This will allow us to see g
as a deformation of the 1-loop corrected Ferrara-Sabharwal metric gfg (see Theorem 5.4). Furthermore,
we specify in Proposition 5.6 when the QK metric is positive definite, and we discuss the fate of certain
Peccei-Quinn symmetries in Corollary 5.7.

Definition 5.1. [ACD02, CDS17] A CASK domain is tuple (M, F) where:

e M C C" — {0} is a C*-invariant domain. We denote the canonical holomorphic coordinates of
C'tl by 24, i=0,1,..,n

e §: M — C is a holomorphic function, homogeneous of degree 2 with respect to the natural
C*-action on M.

e The matrix

0% )
021027
has signature (1,n) and N;;2'z7 > 0 for all z € M.

N;; = Im( (5.1)

To any CASK domain (M, F) we can associate a CASK manifold (M, gar,war, V, &) [ACDO02] where

zl and w; = gs( ) form a global system of conjugate conical holomorphic special coordinates. If

= Re(z%) and y; := —Re(w;), then V is defined such that dx’ and dy; are flat. Furthermore

gur = Nyjdzidz,  wyy = %Nijdzi ANdZF = dit Ady;, €= 20, + 70 (5.2)

and if we define A — M by A := Spany{0,:,0y,}, then (M, grr,warr, V,&,A) is an integral CASK
manifold.

Definition 5.2. A triple (M, §, A) where (M, §) is a CASK domain and A — M is the canonical integral
lattice from above above will be called an integral CASK domain.

Now consider an integral CASK domain (M,§,A), and let Mo, C M be an open subset invariant
under the S* C C*-action and under the monoid action R>q C C*. Let (Meo, gn,wnr, V, &, A) be the
corresponding integral CASK manifold together with a compatible € such that Supp(€2) C spany {0y, }.

Remark 5.3. The main reason to possibly restrict to M., is that in general it seems easier to find
compatible, non-trivial mutually local variations of BPS structures on M, than on M (see the example
of Section 5.2). Furthermore, notice that if (M, g57,ws7) is the associated PSK manifold to (M, §) and
757 : M — M the projection, then m57(Ms) = M.
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We wish to compute the pseudo-QK metric g5 from Theorem 4.10 associated to (Moo, gar, war, V, &, A)
and 2, when we take

N := {Arg(z?) = 0} C P|n (5.3)

This submanifold N is transverse to X = X + f19, since X|x = 2V|w & TN and 9, € TN.
On [ACDM15, Theorem 5| it was shown that the case with = 0 gives the 1-loop corrected Ferrara-
Sabharwal metric gfq, so the case where € # 0 will give a deformation of gfg.

On M we have the local coordinates

=Vom(&,€) =/ Nijziz >0, ¢:=Arg(z?), X':=2/:" for i=1,2,...,n (5.4)

As in [ACDM15], we will replace r with p = 2712 — ¢, the later coordinate representing the dilaton
coordinate for g&g. We then have on N the local coordinates p, X* (for i = 1,2,..n), 0; = 2
0" := 05, and 0. The coordinates p and X' are global on N, while the others satisfy that if § € A*
and 6 — 0 + 276, then 0 — o + 2(5,0) (see Proposition 4.2). We will furthermore use the following

“normalized” central charge X., := Z,/z°. In particular, for v € Supp(Q?) with v = n;(v)9,,, we have
X, =n;(7) X" where X° :=1 and X' for i = 1,2, ..., n are as before.

Theorem 5.4. Consider an integral CASK domain (M, F,A) and let (M, g57) be the associated PSK
manifold. Furthermore, let (M, 9M, WM, V,&, A) be as before with a compatible mutually local Q
satisfying Supp(2) C spany{9,, }. Taking N as in (5.3), the expression for the QK metric g5 of Theorem

4.10 in the coordinates p, X¢, 6;, 6" and o takes the form:

gﬁ _ p +c (gM o eIC Z Q Vinst

P dX7+X7(7dp +%)‘2)

20p+c¢) 2

1 p+207 fmst 5 st st 2
. dp? + 2dpdfins + (dfins )
4(p +c+ ) 1 c Pt st

o e 1nst
(da 47T<9,d9> 4K+ +

(p‘i‘finSt)Q(p-f—QC—finSt) +C+f1nst - |N

1 m in ij 1nst

(p+c)e® | ins . ns dp A\ 2
: W!X (Wi Wi ) +2m;ﬂ<v>Av t(V)(deXV(Q(HC) )

p+c+fi‘“(d% 2 nin5t|_)2_ ptec (dC/C)2
p+finst 2 p+C+fLrlSt - IN p+finst

(5.5)

+

where L = — 1og(Nini7j) is a Kéhler potential for gz7; n''s® are given by

ot % ((27Tninst -~ ~) (Qﬂ- Z Q(y mst fl;St 77)) (5.6)

1nst

and
fmst = (fmst + flnst)/2 (57)

Furthermore, the forms 1-forms Wnst|+ ~ and niest |+ ~ do not have dp components.

Proof. The proof is given in appendix A. Furthermore, coordinate expressions for df"s*|5 and W™st|5
are given in (A.21) and (A.24); while coordinate expressions for |5 can be found using (A.25). O

Remark 5.5. By setting Q@ = 0 in (5.5) all the instanton terms vanish, and we recover gig:

2 4 1 2
o =P S LT g2y Lc))(da —(0.d6) - gd(ﬁ/c)

p Hp+ " TR T2 58)
92 N '

——W(N”—MXlXJ)Wj

2mp p

Indeed, the scaled metric 4gfg matches (2.2) of [AB15] after an easy change of variables involving only
rescalings (and keeping in mind the different conventions in defining N;;).
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Proposition 5.6. The subset Ny ={f>0, fi<0}cC N_is non-empty, and gz is positive-definite
on Ny. Furthermore, there is a non-empty neighborhood of Noo C Ny of p = 0o where ggg is defined
and positive definite. In particular, g5 gives a deformation of gfg on N

Proof. Fix a point (p, X*, 6%, 51-, o) € N. The key observation is that with respect to our coordinates
st finst () as p — oo, due to the exponential decay of the Bessel functions as p — oo and the
convergence property (3.3). This follows from the dependence of the Bessel functions on |Z,| and the
identity

[ptc
1Z,| = |ZO||X7| = TGK(X)/2|X7| = ?elC(X)/2|X_Y|, v € Supp(f2) (5.9)
Hence, for sufficiently big p we have f = p + f™' > 0 and fi = —p — 2c + fi*st < 0, and hence

(p, X',0°,0;,0) € N4. By Theorem 4.10 it then follows that g is positive definite on N .

On the other hand, [ACDM15, Theorem 5] shows that gfg is positive definite and defined on {p >
max{0,—2c}} C N. Hence, taking Noo = N4 N {p > max{0, —2c}} gives the required neighborhood of
p = oQ. O

We finish this section with a few words about the Heisenberg group of isometries for certain lifts
of gfg and gp. Consider the trivial bundle of Heisenberg groups M x R,s¢ % Heiss,3(R), where we

identify Heisg,3(R) = R2("+D+1 and suggestively denote a point of R2(»+1+1 by (6~’i,9i,0) = (0,0).
The group structure is given by

0,0)-(0,0") = (04 0,0+ 0 + ﬁ(@,e») (5.10)

Both metrics g5 and ggg lift to an open subset of M x R,>0 x Heison43(R). Indeed, we just take the

same formulas (5.5) and (5.8) as before, where now (6;, 6%, ) are global coordinates of R21)+1 Then
we can explicitly check that Heiso,43(R) acts by isometries on gfig, while for g5 we have the following:

Corollary 5.7. Consider the previous lifts of g5 to an open subset of M x R,>0 x Heisap13(R). For
v € Supp(f2) we denote v = n;(vy)dy,, and we define d; := ged({n:(7)}yesupp(e)) for i = 0,1...,n such
that {n;(7)}yesupp) 7 {0}. If Q@ # 0, then the following proper subgroup of Heisz,;3(R) acts by
isometries on the lift of g

277

{(i,n', k) € Heisgpy3(R) | n' € for i =0,1,...,n such that {n:(v)} esupp() # {0}} (5.11)

7

Proof. This follows from the explicit formula (5.5), together with the fact that in all the instanton

0 imn(v)0?

correction terms the coordinates ([91, %) only enter in terms of functions of the form ™% = ¢
with m € Z and v € Supp(f2), breaking the allowed shifts of §’ to discrete shifts. In particular, if j is
such that {n;(vy)} esupp() # 0, then a shift in 67 must preserve ¢ (M for all v € Supp(f), which
implies that the allowed shifts of #7 must lie in 27Z/d,. O

Remark 5.8. In the physics parlance, the previous corollary says that including “mutually local instan-
ton corrections” break the allowed shifts of the “electric” angles 67 to discrete shifts. Non-mutually local
instanton corrections are expected to further break down the allowed shifts of the “magnetic” angles 0;
to discrete shifts.

5.1 Comments on the metric
We make some comments on our expression (5.5) compared to the one obtained in (3.6) of [AB15].

e The function f = p+ f"* that appears as the Hamiltonian for the infinitesimal rotating action of
(N, gn,w1,we,ws) with respect w3 can be thought as a “quantum corrected” dilaton coordinate.
Indeed, in [Alel3, AMPP15, AB15] the dilaton coordinate is built out of what they call a “contact
potential” of the QK twistor space, and this contact potential can be related to a Hamiltonian for
the infinitesimal rotating action (see for example the end remarks of [AMNP15]).

In the twistor approach of [AB15], it seems that the natural coordinate to consider is the quantum
corrected dilaton f instead of p. The fact that they use f as a coordinate is what gives rise to
their implicitly defined R-function in their expression for the instanton corrected metric (see their
equations (3.6) and (3.7)).

23



e We have an “S!-bundle term” or “NS-axion bundle term”, given by

pFct [ ( 1 c ; st )2
_ __(do — —(0,df) — Sd°K + i L T C s )
(p+f1nst)2(p+20_ finst) o 47T< > 4 + |N +C+f1nst |N

in (5.5). Since do appears only in this term, gz has an S Laction by isometries (as expected from
HK-QK correspondence). Furthermore, by using the expression (A.25) we see that the connection
form of the circle bundle does not have a dp component. In [AB15] an analogous conclusion is
reached in terms of the quantum corrected dilaton direction df.

e In the case of gfq the dilaton coordinate p is orthogonal to the rest of the coordinates. This is not
the case when including the instanton corrections, due the non-trivial mixing of dp with dX i do
and df; in (5.5). However, by the previous comment there is no mixing between dp and do, so these
two directions remain orthogonal. As in the previous point, in [AB15] an analogous conclusion is
obtained in terms of f = p+ fiost.

e The symplectic invariance that needs to be checked in [AB15] is automatic from our construction.
Indeed, all the objects of Section 3 and 4 involved in the construction of g5 do not depend on the
choice of any Darboux frame, so the (non-explicit) symplectic invariance of formula (5.5) follows
automatically.

5.2 An example

Here we present a simple example of our previous constructions where the PSK manifold associated to
the CASK manifold is the complex hyperbolic space CH™.

We start with a CASK domain (M, §) given as follows:
o We take M = {(z°,z1,..,2") e C" 1 | 202> "0 | |27}

e The holomorphic prepotential is given by
0 ny _ boooy2 2
B, ) = () = Y P) (5.12)
In particular, we obtain a CASK manifold (M, g, war, V,§) where V = D = d and:

Wy = %(dzo Adz’ — zn; dz' A dz'), gu = d2°dz° — Zn;dzidzi, €=20,+7'05  (5.13)

A global conjugate system of conical special holomophic coordinates is given by
2w = Tijzj (5.14)
where 7;; = diag(i, —i, ..., —i). In the corresponding global conical affine special coordinates (z',y;) =

(Re(z%), —Re(w;)) we set A = Spany{9,:, 0y, }, so that (M,§,A) is an integral CASK domain.

The associated PSK manifold (M, 937> wyr) is described as follows:

e We have M = M/C*. If n = 0 then M is just a point; otherwise M = {(X1 Xm) €
Cr | S, |X'? < 1} with projection w57 : M — M given by m(2°, z1,. ( 1720, .., 27/ 20).

e Setting X¢ = 2%/2° for i = 0,1, ..., n, the Kihler potential for 937 is given by
K=-1o (Xilm( "8 )Yj) = —log(1 — zn: 1 X2) (5.15)

& 021027 BT '
which gives the metric
n i n 4 n =7 i

(1= S [XOP) S X 4+ S, X -

I = (12, [X7P?)2

This identifies (M, g37, w37) as the complex hyperbolic space CH™.
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In the global Darboux frame (3;,7") := (9., 9,,) of A, we consider a mutually local variation of BPS
structures with Supp(Q2) = {£+°} and Q(£+°) = m for some m € Z — {0}. We remark that Z,0 = z°
does not vanish on M, and hence §) satisfies the support property. The rest of the properties required
by a mutually local variation of BPS structures are trivial to check.

Remark 5.9. One can of course consider more complicated mutually local variations of BPS structures.
The one chosen above is only to simplify the argument below regarding the non-degeneracy of the tensor
T (recall Definition 3.12).

Notice that the tensor field

T =mhy(gnr) + Y QY™ wiydZ,|* = wiy (gar) + QOO (VIS + VIR ) [d=)? (5.17)
ol

does not satisfy the compatibility condition for all points in N = T*M/A* = M x (S*)?"*2 unless
Q) = 0. However, due to the exponential decay of the Bessel functions in V;Q“ in the variable |2°|, this
can be fixed by restricting M to the domain My := {(2°,...,2") e M | [2°| > K > 0} for K > 0
sufficiently big. M carries a free S'-action generated by J&, and a free action generated by & of the
monoid R>y € C*. In particular, Mg C M is an open subset of the form M., considered in the first
part of Section 5, so we can apply Theorem 5.4 to obtain a QK metric (N, gx) associated to the PSK
manifold (CH™, g37,wy;), and given by (5.5). We then obtain the following immediate corollary using
Proposition 5.6:

Corollary 5.10. There is a neighborhood No, C N of p = oo, where both QK metrics g%g and gx
associated to (CH™, g3;) are defined and positive definite. In particular gy gives a deformation of gfg
on N .

A interesting and simpler case is given by taking n = 0, where M = C* and M = CH® = {x} reduces
to a point. The 1-loop corrected Ferrara-Sabharval metric ggpg associated to this case is known as the
universal hypermultiplet. For ¢ > 0 it is a complete QK metric [CDS17, Corollary 15] on

T*C* x R,

Nuyg :=
vl Heis(A*) IR,

(5.18)

where Heis(A*) — C* and its fiber-wise action on T*C* xR, — C* is as in the proof of Proposition 4.2,
and R,~o = {z° € C* | p=27[2°? —c¢ >0, Arg(z°) =0}. Nyn has only one non-compact direction
given by p, and hence two infinite ends corresponding to p — oo and p — 0. In [CRT21, Theorem 4.6]
it is shown that for pg > 0, the subset {p > po} C Nyg has finite volume, while {0 < p < po} C Nuyn
has infinite volume. Hence, we obtain:

Corollary 5.11. Let (N, gx) be the (positive definite) QK metric from the previous example, associ-
ated to the PSK manifold M = {x}. Then (N4, g5) gives a deformation of the universal hypermultiplet
(NuH, 9fg) near its infinite end of finite volume.

A Coordinate computation of the instanton deformation of ggg

In this appendix we prove Theorem 5.4.

Proof. (of Theorem 5.4) We start computing —%ﬁp, and then deal with the restriction to N. To ease
the notations, we will omit pullbacks by projections. Furthermore, we denote Z* := Zp, = z".

We will use the following expressions for 6", which follow from their definition (4.31) together with
the formulas for n, f and w, given in (4.12), (4.20) and (3.20), respectively:
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1 1.
oF = ——df = —27rdr — —clf‘nst

0F =n+ 1LX(27rgN) =0+ 2mygn = O + 27r(1r 7+ ZQ mst)

—da+27r( 275 — Si 0, do) +ZQ i)
or = %Lx(QWCUQ) = 2miyws = (Re(zim) - Im(ZQ(fy)%rA;“St(V)dZw)) (A1)

= Re (ZiWZ- + ZWIS oy Q(y)AiV“St(V)WdZW)

5

or = f%LX(le) — oy = (Im (ZY;) + Re(Z Q(y)2m ARt (V )dZV))

- Im(ziwi + ZIWInst 4 oni ( 3 Q(V)A‘V“St(V)dZV))

3

We start by computing

2 2

2.2 2Py A2
In order to do this, we use the expression of 1 in (4.14), of f; and f in (4.20), and of f"s* and finst

in (4.22) to get

22 2Py =

—n’ — <®+ n+fn+2wn‘“5t*—in8tﬁ)2 2(®+ 77+f77+27rZQ st finStﬁ)
f f 2 2 f 2 2

h
(A.3)
we wish to rewrite this in such a way that © + £7) only appears in one term. We will use the notations

H50) + (roame - 53))

1nst

ni}st = %((27”7inst o

ins s (A.4)
s (o 5) - G S - 1)
so that we can rewrite (A.3) as follows
%772 f(ep) f—(®+ 77+f77+77‘f“+ TSt)Q f(®+ 77+f77+77‘nSt ni_I‘St)Q
2 2o S a2+ 2) o G "

E i) 2y

After completing the square for the terms with © in (A.5) and organizing the remaining terms, the
previous expression can be written as

L2y - (- D)o gronn s el (B D)o () 0o

We now compute

§<0£’>2 car (A7)

We recall that we can write gy as (see Corollary 3.17):

2mgN —
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1
gN = Thgum + Y Q)VI"dZ, |2+—YMZ Y; (A.8)

~

while using (2.11) and omitting in the notation pullbacks by projections we have

~L@n? (a9

2 _
TN 2f

2 ins 1 N
FO0) = 2m(dr? 4 27— gy) + DS QVIAZI 4 VMY )
Y

Using the “dilaton” coordinate p = 277r? — ¢ we obtain:

N — 2(913)2 __pH2e— dp® + (p+ o) (7 ) + QWZQ WAt |dZ,|* + L vy,
T A(p+c)(p+ fimst) VT g
1 . .
_ _ 2dod inst 4 (d inst 2)
S ey (2™ + (@)

(A.10)

where we combined the dp? terms coming from 2wdr? and df?. The change to p is done to compare more
easily with ggg.

Finally, since 65 and 61" are the real and imaginary part of the same complex form, we get

- %(%’)2 +(05)%) = —; Z'W; + ZTWinst 4 z‘(ZQ(y)QwA;“St(V)dZW) ]2 (A.11)
Y

Combining the results (A.6), (A.10), (A.11); writing the coefficients in terms of p, the constant ¢ and
instanton correction terms; and using the notation

Jirnst = (finst + finst)/Q fﬂlst = (finst o finSt)/2 (A12)
we obtain

1 ~ 14 +c 2m inst 2
— 9P = inst gﬁ - inst Z Q(V)V'Y |dZ'Y|
f p+f p+ st <

1 p+20_finst 5 . .
_ d 2dod inst d inst 2)
o (s O )
p+c+firlst mst
+4 - — ((-—) + = + inst s S lnst)
(erf‘nSt)Q(erch finst) U +C+f1nstn

/ (A13)
- i inst) (A7 o pyinstyij Tr7inst
27T(erfmst)(W + WIS (N NS (T 4 T

‘Zl Wi+ Ziwinst —I—z( ZQ )2m AP (V' )d2Z, ) ’

+ —
(p+f1nst

p+c+fl—n5t 2 inst p+C ~2
+ inst (77 inst - ) - inst n
p+f p+c+ fI p+f

Now we wish to restrict the previous expression to N and use the coordinates p, X (fori = 1,2,...,n),

0:—, 0’ and o previously defined before Theorem 5.4. We also recall the normalized central charge
X., = Z,/2°. In particular, for v € Supp(y) with v = n;(7)d,, we have X, = n;(7)X* with X° = 1.

With respect to these coordinates

02 _ 2 Kk_ PTC
pr— = — A-14

where K is a Kahler potential for the PSK metric g7 given by K = — 1og(Nini7j).
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Using (A.14) we can write
1
n= %dc log(r?) = d(Arg(z°)) — EdCIC (A.15)
so that 77l = —3d°K.

Using (A.14) and |2°]|5 = (2°)?|5, we find that for v € Supp(€),

0 o % i _ -~
az,/2°| = ni(7) (X + X = )’N X, +X7(2(p+6) +5 ) (A.16)
so that
_ inst 2 _ IC _pTec + ¢ mst dp % ‘2

Furthermore, we can write

‘ZZW + Ziwinst 4 z( Z Q(y)2m AT (V) dZ, )

(p + fmst

_(pto)e
- 7r(p+ finst)?

(A.18)

- —_— ins dp aK
XIW; + XWE g 2 (3 Q) A (V) (X + X S
[xtwi + x'W] o 2 D0V (454 (g + 5
Hence, putting all together we obtain the desired expression for g5 given in (5.5).

We also give the coordinate expressions for dfi"st|5, Winst| < and n'P*|w. By Lemma 4.7 we have
df = —4miyws, so by (3.11):

dfinst _QW(ZQ Wi Z,dZ. + ZdZ.) Z’Z (Zem‘) |Z,| K1 (27n| Z, |))d9 ) (A.19)

o n>0

On the other hand, using (A.14) and (A.16)

2,07 + 22| = PO (X, (4%, + X (52 BN) 4 X (4, 1 (5 + )

27 20p+c¢) 2 20p+c) 2
_(pto) x b o dp dK
= LR (Re(XdX) 1 | (2<p+c>+ 3))
(A.20)
so that
ins ins dp
df™st =2(p + c)e ’CZQ YVnst | (Re(XWdX X, |2(2(p+c ))
- o) — (A.21)
PTC Kk ey oind P /2
— /B ;—W (; e |K1 27m,/ X, |
where

ins 1 in6 p+c K
Vit = = e ~K0(27rm/76 /2|X7|)) (A.22)

n>0
On the other hand, using (A.14) and (A.16) again, we find that

(B D] = (ST

v Zy
(p+c)e® <
—F g Im(X,dX,,)

(A.23)
w(|dZ, )z =
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Using the equalities (A.23) we can compute W/t |5 and niPst|5. For W[™t|% we obtain

Winst | = ZQ [ ,/p;f ’C/QZemele |K1(2ﬂ'm/p2+ Px, |))(%—C§:)+iv—;mt|ﬁd97}

(A.24)
while from (4.8) and (4.16) we obtain
1nst { p+ C K/2 € p+C K/2 dXV o dY’Y
v = &r2\ 27 ¢ (;) (27Tn\/ o © |XV|))( X, X, )
" (A.25)

M|
472

1nst| Z Q ( mst + V,jnSt|ﬁIm(X7dY7)) WZmSt( )|ﬁRe(WJ + W]i_nst|ﬁ)

From the last equations we can find the expressions for n'f*|% from (A.4). In particular, we conclude

that W'/ and n'P*| have no dp components. O
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