
ar
X

iv
:2

10
5.

09
01

1v
1 

 [
m

at
h.

D
G

] 
 1

9 
M

ay
 2

02
1

Quaternionic Kähler metrics associated to special Kähler

manifolds with mutually local variations of BPS structures

Vicente Cortés and Iván Tulli

Department of Mathematics

University of Hamburg

Bundesstraße 55, D-20146 Hamburg, Germany

Abstract

We construct a quaternionic-Kähler manifold from a conical special Kähler manifold with a certain

type of mutually-local variation of BPS structures. We give global and local explicit formulas for the

quaternionic-Kähler metric, and specify under which conditions it is positive-definite. Locally, the

metric is a deformation of the 1-loop corrected Ferrara-Sabharval metric obtained via the supergravity

c-map. The type of quaternionic-Kähler metrics we obtain are related to work in the physics literature

by S. Alexandrov and S. Banerjee, where they discuss the hypermultiplet moduli space metric of type

IIA string theory, with mutually local D-instanton corrections.
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1 Introduction

The supergravity c-map arises in the physics literature in the context Calabi-Yau compactifications of
type IIA and type IIB string theories. Given a fixed Calabi-Yau 3-fold X , the supergravity c-map takes

the vector multiplet moduli space M
IIA/B
VM (X) to the hypermultiplet moduli space M

IIB/A
HM (X) [CFG89,

FS90]. Mathematically, it can be understood as a way of producing a 1-parameter family of quaternionic-
Kähler (QK) manifolds from a projective special Kähler manifold (PSK) [RLSV06, ACDM15]. The QK
metric one obtains is known as the 1-loop corrected Ferrara-Sabharwal metric gcFS.
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On the other hand, there is the much simpler rigid c-map [CFG89], which arises in the context of
4d N = 2 theories compactified on S1. Mathematically, the rigid c-map can be understood as a way of
producing a hyperkähler (HK) manifold from an affine special Kähler (ASK) manifold [Fre99, ACD02].
The HK metric one obtains is sometimes referred to as the “semi-flat” metric [GW00].

The rigid and the supergravity c-map have been studied in both the mathematics and physics lit-
erature, and they can be related via the so-called HK-QK correspondence [Hay08, ACM13, ACDM15,
APP11]. The HK-QK correspondence takes as input an HK manifold with a rotating S1-action and a
certain hyperholomorphic circle bundle; and produces a 1-parameter family of QK manifolds of the same
dimension as the HK manifold. By rotating S1-action we mean that it acts by isometries, rotates two of
the complex structures, and fixes the remaining complex structure.

On the other hand, the QK metric gcFS onM
IIA/B
HM (X) obtained via the supergravity c-map is expected

to receive several non-perturbative quantum corrections in the form of D-instanton and NS5-instanton
corrections, preserving the QK property. The inclusion of all such corrections has not been fully under-
stood, but a lot of progress has been made in the physics literature via the use of twistor space methods
(see for example the extensive reviews [Ale13, AMPP15] and the references therein). In particular, the
inclusion of D-instanton corrections on the type IIA side can be found in [APP11].

When considering only the so-called “mutually-local” D-instantons, the instanton corrected QK met-
ric on MIIA

HM(X) has been computed in [AB15]. Their computation starts from the assumption that
the corrected QK metric has an S1-action of isometries, preserving the QK-structure. The origin of
this assumption lies in the fact that D-instanton corrections are not expected to break the continuous
S1-symmetry shifting the NS-axion. This allows them to use the QK-HK correspondence, and use the
description of instanton corrections of [GMN10] on the HK side to describe the D-instanton corrections
on the QK metric. The computation in [AB15] is done at the twistor space level, and then some work is
required to extract the QK metric from the QK twistor space data.

The main objective of this work is to give a mathematical treatment of QK metrics involving a
mathematical notion of “mutually local D-instanton corrections”. Our methods are based on a direct
approach to the QK metric avoiding the use of twistor space and, thus, the technical difficulties arising
in the latter framework. More specifically:

• We will start with an integral conical affine special Kähler (CASK) manifold (M, gM , ωM ,∇, ξ,Λ)
(see Definitions 2.4 and 2.6) and a mutually-local variation of BPS structures (M,Λ, Z,Ω) (see
Definition 3.1 and 3.6), where (M,Λ, Z) is determined by the data of the integral CASK manifold.
The notion of variation of BPS structures [Bri19] is the part of the data that will be used to
implement the physical notion of “D-instanton corrections” to the QK metric.

• Following [GMN10], we will explicitly describe an HK structure (N := T ∗M/Λ∗, gN , ω1, ω2, ω3)
built out of (M, gM , ωM ,∇, ξ,Λ) and Ω, and refer to it as the “instanton corrected” HK structure.
The fact that the variation of BPS structures is mutually local circumvents the need of solving
the “GMN integral equations” (since in this case they become integral formulas) and dealing with
wall-crossing behavior. Our attitude will be to take the formulas (3.10) and (3.11) defining the
candidate Kähler forms ωα for α = 1, 2, 3 as an ansatz, and explicitly state under which conditions
they define an HK structure without using twistor space arguments. A key notion will be a non-
degeneracy condition of a certain tensor field T involving the ASK metric gM and the BPS indices
Ω, that will guarantee the non-degeneracy of ωα for α = 1, 2, 3 (see Definition 3.12). The main
result of Section 3 is Theorem 3.13. This theorem applies to ASK manifolds admitting a central
charge (see Definition 2.14), which includes the CASK case, where there is a canonical choice of
central charge (see Proposition 2.15):

Theorem 3.13: Consider an integral ASK manifold (M, gM , ωM ,∇,Λ) admitting a central charge
Z, together with a mutually local variation of BPS structures (M,Λ, Z,Ω). Then the triple
(ω1, ω2, ω3) of real 2-forms on N given in (3.10) and (3.11) defines a pseudo-HK structure on
N if and only if the tensor field T on N given in (3.14) is horizontally non-degenerate with respect
to the canonical projection π : N →M .

• Restricting back to the CASK case, if J is the complex structure on M and ξ the Euler vector
field, it was shown in [ACM13] that one can lift Jξ to N , giving an infinitesimal rotating circle
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action for the semi-flat HK metric. We will show that the same lift also defines an infinitesimal
rotating circle action for the instanton corrected HK structure (N, gN , ω1, ω2, ω3), see Proposition
3.20. This, together with the construction of the appropriate hyperholomorphic circle bundle over
N in Section 4 will allow us to apply the explicit formulas of [ACDM15, Theorem 2] for the HK-QK
correspondence, and hence obtain an “instanton corrected” QK manifold (N, gN ). The main result
of Section 4 is Theorem 4.10:

Theorem 4.10: Let (M, gM , ωM ,∇, ξ,Λ) be a connected integral CASK manifold together with a
mutually local (M,Λ, Z,Ω), where Z is the canonical central charge of a CASK manifold. Assume
that T is horizontally non-degenerate and that the flow of ξ generates a free-action of the monoid
R≥1. Furthermore, let (N, gN , ω1, ω2, ω3) be the associated pseudo-HK manifold; (P → N, η) the
associated hyperholomorphic circle bundle; N ′ ⊂ N the (non-empty) open subset defined in (4.26)
and θPi ∈ Ω1(P ), gP ∈ Sym2(P ), XP

1 ∈ Γ(TP ), f ∈ C∞(P ) the associated objects defined in
Section 4.2. If N ⊂ P |N ′ is any submanifold transversal to XP

1 , then

gN := −
1

f

(
gP −

2

f

3∑

i=0

(θPi )
2
)∣∣∣

N
(1.1)

is a pseudo-QK metric on N . Furthermore, if N ′
+ ⊂ N ′ is as in Lemma 4.8 and N is picked to also

satisfy N+ := N ∩N ′
+ 6= ∅, then gN is positive definite on N+.

• In Section 5 we apply Theorem 4.10 to the case of a CASK domain, and describe the resulting
(N, gN) in coordinates that realize gN as a deformation of the 1-loop corrected Ferrara-Sabharval
metric gcFS, see Theorem 5.4. We furthermore show in Proposition 5.6 that the subset N+ where
gN is positive definite in never empty (for our choice of N), and say something about the fate of
the Peccei-Quinn symmetries after instanton corrections in Corollary 5.7.

• Finally, in Section 5.2 we give a simple example of our constructions. In this example, we consider
a CASK domain whose associated PSK manifold is the complex hyperbolic space CHn with the
Bergman metric. If ρ denotes the usual dilaton coordinate, our example then gives a deformation
gN of gcFS in a neighborhood of ρ = ∞, where both gN and gcFS are defined and positive definite
(see Corollaries 5.10 and 5.11).

Regarding our results and the related work [AB15] in the physics literature:

• The argument we follow, although similar in spirit to the one in [AB15], gives a formal mathematical
proof that the final metric is QK. Furthermore, we obtain a global formula for the QK metric (1.1),
while in [AB15] only a local formula is found.

• In the local case of a CASK domain, the coordinate expression of gN in Theorem 5.4 should be
compared with the corresponding expression in [AB15]. In our case, gN turns out to be completely
explicit, avoiding the use of the implicitly defined R-parameter in [AB15]. We do however express
everything in terms of “classical coordinates”, whereas in [AB15] a “quantum corrected” dilaton
coordinate is used. See also Section 5.1 for some further comments on this.

• On the other hand, some effort has been made in indicating which expressions are due to “instanton
corrections”. This allows for a direct comparison with the usual 1-loop corrected Ferrara-Sabharval
metric gcFS, and realize the QK metric we obtain in the case of a CASK domain as deformations of
gcFS.

Acknowledgements: This work was supported by the Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” –
390833306. The idea for this work originated from discussions within our Swampland seminar, which is
part of the Cluster of Excellence Quantum Universe. The authors would like to thank Murad Alim, Jörg
Teschner, Timo Weigand and Alexander Westphal for the aforementioned discussions. Furthermore, the
authors would like to thank Danu Thung for comments on the draft.

2 Review of special Kähler manifolds and the rigid c-map

In this section we collect a few facts about affine special Kähler (ASK) manifolds, the rigid c-map, con-
ical affine special Kähler (CASK) manifolds and projective special Kähler (PSK) manifolds. Our main
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references are [Fre99, ACD02, CM09].

In the final subsection 2.4 we give a description of the semi-flat hyperkähler metric in terms of the
notion of central charges. This description will be convenient for the constructions of the later sections.

2.1 Affine special Kähler manifolds

Definition 2.1. an affine special Kähler (ASK) manifold is a tuple (M, g, ω,∇), where:

• (M, g, ω) is a pseudo-Kähler manifold. We denote by J the corresponding complex structure
determined by the relation g(J−,−) = ω(−,−).

• ∇ is a flat, torsion-free connection on M .

• ∇ω = 0 and d∇J = 0, where d∇ : Ωn
M (TM) → Ωn+1

M (TM) is the extension of ∇ : Ω0
M (TM) →

Ω1
M (TM) to higher degree forms, and we think of J as an element of Ω1

M (TM).

The fact that ∇ is flat and torsion-free, together with ∇ω = 0, implies that we can find ∇-flat
Darboux coordinates (xi, yi) for ω, i.e:

ω = dxi ∧ dyi with ∇dxi = 0, ∇dyi = 0 (2.1)

Definition 2.2. Coordinates (xi, yi) in an ASK manifold satisfying (2.1) are called affine special coor-
dinates.

On the other hand, the torsion free condition can be written as d∇(Id) = 0 where Id ∈ Ω1
M (TM) is

the identity map. Together with d∇J = 0, this implies that the projection π1,0 = 1
2 (Id− iJ) satisfies

d∇π
1,0 = d∇

(1
2
(Id− iJ)

)
= 0 (2.2)

By the Poincaré lemma, we can locally find a complex vector field ξ1,0 on M such that

∇ξ1,0 = π1,0 (2.3)

Consider a local flat Darboux frame (γ̃i, γ
i) with respect to ω. We can then write

ξ1,0 =
1

2
(ziγ̃i − wiγ

i) (2.4)

and obtain local complex valued functions zi and wi on M . The flatness of (γ̃i, γ
i) together with

∇ξ1,0 = π1,0 imply that zi and wi must be holomorphic. Furthermore, if we define xi := Re(zi) and
yi := −Re(wi), then using the fact that 2Re(∇ξ1,0) = 2Re(π1,0) = Id, we find that (xi, yi) is a local
coordinate system and that ∂xi = γ̃i, ∂yi

= γi. In particular (xi, yi) is an affine special coordinate system
and (zi), (wi) are systems of holomorphic coordinates.

Definition 2.3. A pair of holomorphic coordinate systems (zi) and (wi) satisfying (2.4) is called a
conjugate system of special holomorphic coordinates.

With respect to the special holomorphic coordinates zi (or wi), one can locally describe the ASK
geometry in terms of a holomorphic function F(zi) (usually known as the holomorphic prepotential)
satisfying

wi =
∂F

∂zi
(2.5)

The function F locally describes the ASK geometry in the sense that

ω =
i

2
Im(τij)dz

i ∧ dzj with τij :=
∂2F

∂zi∂zj
(2.6)

We will also make frequent use of the following additional data:

Definition 2.4. An integral ASK manifold is a tuple (M, g, ω,∇,Λ) such that:

• (M, g, ω,∇) is an ASK manifold.

• Λ ⊂ TM is a bundle Λ →M of ∇-flat lattices such that Λ⊗Z R = TM .

• Around any p ∈M , Λ →M admits a Darboux frame with respect to ω.

4



2.2 The rigid c-map

Given an ASK manifold (M, g, ω,∇) of signature (n,m), the rigid c-map associates to it a pseudo-
hyperkähler (HK) structure of signature (2n, 2m) on the cotangent bundle (T ∗M, gsf, I1, I2, I3). We use
the superscript sf since the metric is “semi-flat” in the sense that it restricts to a flat metric on the fibers.

The HK structure is defined as follows. Let π : T ∗M → M be the canonical projection, then the
connection ∇ allows us to do a splitting

T (T ∗M) = T h(T ∗M)⊕ T v(T ∗M) (2.7)

where T h(T ∗M) ∼= π∗TM and T v(T ∗M) = Ker(dπ) ∼= π∗T ∗M . With respect to this splitting we have

gsf := g ⊕ g−1, I3 := J ⊕ J∗, I1(v, w) := −ω−1(w) + ω(v), I2 := I3I1 (2.8)

where in the definition of I1 we think of ω as a map ω : TM → T ∗M . We remark that the fact that
this defines an actual HK structure on T ∗M really uses all the special Kähler conditions (see e.g. [Fre99,
Section 2] or [ACD02, Theorem 11]). The numbering of the Iα is set to match our later conventions.

If (M, g, ω,∇,Λ) is an integral ASK manifold, then the dual lattice Λ∗ ⊂ T ∗M is Lagrangian with
respect to the canonical holomorphic symplectic form on T ∗M (which coincides with ωsf

1 + iωsf
2 =

gsf(I1−,−) + igsf(I2−,−)), and we have:

Theorem 2.5. [Cor98, Theorem 3.1] and [Fre99, Theorem 3.4, Theorem 3.8]: Let (M, g, ω,∇,Λ) be an
integral ASK manifold. Let N := T ∗M/Λ∗ and consider the canonical projection π : N → M . Then
π : N → M has the structure of an integrable system, and N has a canonical pseudo-HK structure
induced from (T ∗M, gsf, I1, I2, I3).

2.3 CASK and PSK manifolds

Definition 2.6. A conical affine special Kähler (CASK) manifold is a tuple (M, g, ω,∇, ξ) where:

• (M, g, ω,∇) is an ASK manifold. We denote the complex structure by J .

• ∇ξ = Dξ = Id, where D denotes the Levi-Civita connection.

• g is positive definite on D = span{ξ, Jξ} and negative definite on D⊥.

Furthermore, an integral CASK manifold (M, g, ω,∇, ξ,Λ) is just an integral ASK manifold that is also
CASK (see Definition 2.4).

The vector fields ξ and Jξ satisfy the following identities with the Lie derivative: LξJ = LJξJ = 0,
Lξg = 2g, LJξg = 0, and LξJξ = 0 [CM09]. In other words, ξ is holomorphic and homothetic, Jξ is
holomorphic and Killing, and they commute.

In some cases we will assume that the holomorphic Killing vector Jξ generates a free S1-action on
M , and that the holomorphic homothetic vector ξ generates a free R>0-action on M . Under such a
condition, the function r :=

√
g(ξ, ξ) is a moment map for the S1-action, and if we define

S := {p ∈M | gp(ξ, ξ) = 1} (2.9)

then −g|S induces a positive definite Kähler metric gM on M := S/S1
Jξ = M//S1

Jξ (i.e. the Kähler
quotient). The relations between g, g|S and gM can be summarized as follows [ACDM15]: let πS :M →
M/R>0 = S and πM : S → S/S1 =M be the projections, and let

η̃ :=
1

r2
g(Jξ,−) = dc log(r) = i(∂ − ∂) log(r) (2.10)

we then have
g = dr2 + r2π∗

Sg|S g|S = η̃2|S − π∗
M
gM (2.11)

Definition 2.7. A projective special Kähler (PSK) manifold is a Kähler manifold (M, gM , ωM ) obtained
from a CASK manifold by the Kähler quotient from before.
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Given a CASK manifold (M, g, ω,∇, ξ) we can locally find a special affine coordinate system (xi, yi)
such that [CM09]:

ξ = xi∂xi + yi∂yi
(2.12)

Definition 2.8. A special affine coordinate system (xi, yi) satisfying (2.12) is called a conical special
affine coordinate system.

On the other hand, the global complex vector field

ξ1,0 :=
1

2
(ξ − iJξ) (2.13)

satisfies ∇ξ1,0 = π1,0, where π1,0 = 1
2 (Id− iJ) is the projection TM ⊗ C → T 1,0M [CM09]. By picking

a local flat Darboux frame (γ̃i, γ
i) for ω we can write

ξ1,0 =
1

2
(ziγ̃i − wiγ

i) (2.14)

and obtain holomorphic coordinate systems (zi) and (wi). It is easy to check that (xi := Re(zi), yi :=
−Re(wi)) give a system of conical special affine coordinates.

Definition 2.9. When (zi) and (wi) are defined by (2.14) using the globally defined ξ1,0 = 1
2 (ξ − iJξ)

we will call (zi) and (wi) a conjugate system of conical special holomorphic coordinates.

If (zi) and (wi) are a conjugate system of conical special holomorphic coordinates, then they are
homogeneous of degree 1 with respect to the (local) C×-action generated by {ξ, Jξ} (i.e. Lξz

j = zj ,
LJξz

j = izj, Lξw
j = wj , LJξw

j = iwj). In particular, this implies that Lξ1,0z
i = zi, so that

ξ1,0 = zi∂zi (2.15)

If we define τij by the relation dwi = τijdz
j , then a consequence of (2.14) and (2.15) is that wi = τijz

j .
This furthermore implies that F(zi) := 1

2τijz
izj is a holomorphic prepotential for the CASK geometry.

Finally, we remark that for a CASK manifold, the map r :=
√
g(ξ, ξ) gives a global Kähler potential

for ω:

ω =
i

2
∂∂r2 (2.16)

In conical holomorphic special coordinates (zi), this follows from
∂τij
∂zk z

j = 0 (which in turn follows from

the CASK relation wi = τijz
j) together with r2 = Im(τij)z

izj .

2.4 Central charges and the semi-flat metric

Let (M, g, ω,∇,Λ) be an integral ASK manifold. Here we present another description of the associated
semi-flat HK metric (N = T ∗M/Λ∗, gsf, ω1, ω2, ω3). This description is closer to the language of 4d
N = 2 SUSY theories, and will be more useful when we include the “instanton corrections” in the form
of variations of BPS structures [GMN10, Nei14].

Definition 2.10. Given an integral ASK manifold (M, g, ω,∇,Λ), ω|Λ×Λ defines an integral skew pairing
on Λ that we will denote by

〈−,−〉 := ω|Λ×Λ : Λ× Λ → Z (2.17)

By the definition of an integral ASK manifold, 〈−,−〉 admits local Darboux frames (γ̃i, γ
i). Our

convention will be that 〈γ̃i, γj〉 = δji .

Let (γ̃i, γ
i) be a Darboux frame of Λ over U ⊂ M . By possibly restricting U we can find a local

complex vector field ξ1,0 on U such that∇ξ1,0 = π1,0, and consider the corresponding system of conjugate
special holomorphic coordinates (zi) and (wi) determined by

ξ1,0 =
1

2

(
ziγ̃i − wiγ

i
)

(2.18)

Definition 2.11. A conjugate system of holomorphic special coordinates (zi), (wi) defined by (2.18)
with respect to a local Darboux frame of Λ will be called a conjugate system of integral holomorphic
special coordinates.
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Two such overlapping systems of conjugate holomorphic special coordinates are related by a (con-
stant) transformation in C2n ⋊ Sp(2n,Z) (the C2n factor is there because we can always shift ξ1,0 by a
complex parallel vector field when solving ∇ξ1,0 = π1,0).

Proposition 2.12. The following are equivalent:

• (M, g, ω,∇,Λ) admits a covering by conjugate systems of integral holomorphic special coordinates
{(Uα, (z

i
α), (wi,α))}α related on overlaps by a (constant) transformation in Sp(2n,Z).

• There is a holomorphic section Z of Λ∗ ⊗ C → M such that for any local Darboux frame (γ̃i, γ
i)

of Λ, the holomorphic functions (Zγi) and (Zγ̃i
) give a conjugate system of integral holomorphic

special coordinates.

Remark 2.13. In the above proposition Λ∗ → M denotes the dual of Λ → M . Furthermore, for γ
a section Λ over U ⊂ M , Zγ : U → C denotes the corresponding holomorphic function obtained by
contracting with γ.

Proof. Consider (Uα, {z
i
α}, {wi,α}) for some α, and the corresponding Darboux frame (γ̃i,α, γ

i
α) of Λ

over Uα ⊂ M . We locally define Z : Uα → Λ∗ ⊗ C as follows: given a section γ of Λ|Uα
we can write

γ = niγ̃i,α + niγ
i
α, and then define

Zγ = niwi,α + niz
i
α (2.19)

The fact that the conjugate systems of holomorphic special coordinates are related by a transformation
in Sp(2n,Z) then implies that the local definitions of Z glue together into a holomorphic section Z :
M → Λ∗ ⊗C. Furthermore, given any other Darboux frame (γ̃i, γ

i) of Λ over U , it is easy to check that
if U ∩ Uα 6= ∅ then

1

2

(
Zγi γ̃i − Zγ̃i

γi
)
=

1

2

(
Zγi

α
γ̃i,α − Zγ̃i,α

γiα

)
= ξ1,0 (2.20)

so {Zγi} and {Zγ̃i
} give a conjugate system of integral holomorphic special coordinates.

On the other hand, it is clear that if Z :M → Λ∗ ⊗ C exists, then the required cover exists.

For future reference we note that the section Z of Λ∗ ⊗ C has the following expansion in the dual
Darboux frame

Z = Zγi(γi)∗ + Zγ̃i
(γ̃i)

∗. (2.21)

It is related to ξ1,0 via ω(ξ1,0,−)|Λ = 1
2Z.

Definition 2.14. We will say that an integral ASK manifold (M, g, ω,∇,Λ) admits a central charge
homomorphism if it has a holomorphic section Z : M → Λ∗ ⊗ C satisfying the condition of Proposition
2.12.

Proposition 2.15. An integral CASK manifold (M, g, ω,∇, ξ,Λ) has a canonical central charge homo-
morphism Z : M → Λ∗ ⊗ C, which is unique up to the action of the group of global sections of Sp(Λ).
If (γ̃i, γ

i) is a Darboux frame of Λ, then (Zγi) and (Zγ̃i
) gives a conjugate system of integral, conical,

holomorphic special coordinates.

Proof. In the CASK case we have a global and canonical complex vector field ξ1,0 := 1
2 (ξ−iJξ) satisfying

∇ξ1,0 = π1,0. Any two conjugate systems of integral holomorphic coordinates defined by this ξ1,0 are
related by a transformation in Sp(2n,Z). This allows us to produce the required cover of Proposition
2.12 and hence a canonical central charge homomorphism. The fact that (Zγi) and (Zγ̃i

) are conical is
clear from the fact that we are using 1

2 (ξ − iJξ) to define Z.

We are now ready to give the description of gsf that will be useful for the following sections.

Proposition 2.16. Let (M, g, ω,∇,Λ) be an integral ASK manifold admitting a central charge Z :M →
Λ∗ ⊗ C, and let (N = T ∗M/Λ∗, gsf, I1, I2, I3) be the associated semi-flat HK manifold. Furthermore,
consider the torus bundle N →M defined by

Nu := {θ : Λu → R/2πZ | θγ+γ′ = θγ + θγ′} (2.22)
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Then N →M is canonically isomorphic to N →M . Furthermore, by using the induced1 pairing 〈−,−〉
on Λ∗ and the evaluation map θ : N → Λ∗ ⊗ R/2πZ, we can write the Kähler forms ωsf

α := gsf(Iα−,−)
as follows (see [Nei14]):

ωsf
1 + iωsf

2 = −
1

2π
〈dZ ∧ dθ〉

ωsf
3 =

1

4
〈dZ ∧ dZ〉 −

1

8π2
〈dθ ∧ dθ〉

(2.23)

Proof. Consider the natural projection p : R → R/2πZ, then the bundle isomorphism N ∼= N is given
by

[α] ∈ N = T ∗M/Λ∗ → p ◦ (2πα|Λ) ∈ N (2.24)

To check the claim on the Kähler forms, it is enough to show that in local coordinates we recover
the usual expressions. Fix a local Darboux frame (γ̃i, γ

i) of Λ over U , and consider the local coordinates
(Zγi , θγ̃i

, θγi) on N ∼= N , where θγ : N|U → R/2πZ is the contraction of θ with γ. We can then write

−
1

2π
〈dZ ∧ dθ〉 = −

1

2π
(dZγ̃i

∧ dθγi − dZγi ∧ dθγ̃i
) =

1

2π
dZγi ∧ (dθγ̃i

− τijdθγj ) (2.25)

where we used dZγ̃i
= τijdZγj . Similarly, using that τij must be symmetric (since (Zγ̃i

) and (Zγi) are a
conjugate system of holomorphic special coordinates), we find

1

4
〈dZ ∧ dZ〉 −

1

8π2
〈dθ ∧ dθ〉 =

1

4
(dZγ̃i

∧ dZγi − dZγi ∧ dZ γ̃i
)−

1

8π2
(dθγ̃i

∧ dθγi − dθγi ∧ dθγ̃i
)

=
i

2
Im(τij)dZγi ∧ dZγj −

1

4π2
dθγ̃i

∧ dθγi

=
i

2
Im(τij)dZγi ∧ dZγj +

i

8π2

(
Im(τ)

)ij
(dθγ̃i

− τikdθγk) ∧ (dθγ̃j
− τjldθγl)

(2.26)

Under our identification, and up to an overall normalization of the metric, these expressions reproduce
the usual formulas of the semi-flat HK metric (see for example [ACDM15, Proposition 3], while keeping
in mind the different sign conventions for special coordinates).

Note that 1
4 〈dZ ∧ dZ〉 = i

2∂∂̄r
2 is precisely the Kähler form of the affine special Kähler manifold,

where r2 = − i
2 〈Z, Z̄〉. In the case of a conical affine special Kähler manifold, we can write this Kähler

potential as r2 = g(ξ, ξ), cf. (2.21).

3 Instanton corrected HK structures

Consider an integral ASK manifold (M, gM , ωM ,∇,Λ). We seek to include the data of a variation of
BPS structures over M , to get an “instanton corrected” pseudo-hyperkähler metric on N = T ∗M/Λ∗,
following [GMN10, Nei14].

On the other hand, it is known that the semi-flat HK metric on N coming from the CASK manifold
M has an infinitesimal rotating circle action [ACM13, ACDM15]. We wish to show that this infinites-
imal rotating action survives the instanton corrections coming from a mutually local variation of BPS
structures, with the aim of applying the HK-QK correspondence in the next sections.

We start by quickly reviewing in Section 3.1 the inclusion of instanton corrections according to the
work in the physics literature of [GMN10]. Section 3.1 is only meant as a motivation for the formulas
appearing in Section 3.2. In Section 3.2 we restrict to the simpler case of mutually local corrections, and
prove under which conditions we obtain an “instanton corrected” HK structure (see Theorem 3.13). The
proof is direct and explicit, avoiding the use of twistor space methods.

1We define the induced pairing by the property that γ 7→ 〈γ,−〉 maps the pairing in Λ to the pairing in Λ∗. With this

definition the dual of a Darboux basis is a Darboux basis. We will also keep using the notation 〈−,−〉 for the C-bilinear

extension of the pairing to Λ∗ ⊗ C
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3.1 Variations of BPS structures and instanton corrected HK metrics

To explain what we will mean by an instanton correction of the semi-flat HK structure, we will require
the notion of variations of BPS structures [Bri19].

Definition 3.1. A variation of (integral) BPS structures over a complex manifoldM is a tuple (M,Λ, Z,Ω),
where:

• Λ → M is a local system of lattices Λp
∼= Zr with a covariantly constant, skew, integer-valued

pairing 〈−,−〉.

• Z is a holomorphic section of Λ∗ ⊗ C →M .

• Ω : Λ → Z is a function (of sets) satisfying Ω(γ) = Ω(−γ) and the Kontsevich-Soibelman wall-
crossing formula [KS08, Bri19].

Remark 3.2. We will not need to fully state the KS wall-crossing formula, but will only mention some
consequences that this condition has on Ω. Consider the real codimension 1 subset W ⊂M defined by

W := {p ∈M | ∃γ, γ′ ∈ Supp(Ω) ∩ Λp, 〈γ, γ′〉 6= 0, Zγ/Zγ′ ∈ R>0} (3.1)

where Supp(Ω) := {γ ∈ Λ | Ω(γ) 6= 0}. The fact that Ω satisfies the wall-crossing formula implies
that for a local section γ of Λ, Ω(γ) is locally constant on M\W . Furthermore, the discontinuity at the
“wall” W is completely determined by the wall-crossing formula, and Ω is monodromy invariant (i.e. if
γp has monodromy A · γp for A ∈ Sp(Λp, 〈−,−〉) around a loop, then Ω(γp) = Ω(A · γp)).

The tuple (M,Λ, Z,Ω) should furthermore satisfy the following two properties:

• Support property: given a compact set K ⊂ M and a choice of covariantly constant norm | · | on
Λ|K ⊗Z R, there should be a constant C > 0 such that for any γ ∈ Λ|K ∩ Supp(Ω)

|Zγ | > C|γ| (3.2)

• Convergence property: for any R > 0 the series

∑

γ∈Λp

|Ω(γ)|e−R|Zγ | (3.3)

converges normally on compact subsets of M .

Remark 3.3.

• The support property implies that if γ ∈ Supp(Ω), then Zγ 6= 0. Furthermore, for any R > 0 and
p ∈M , there can only be finitely many Zγ with γ ∈ Λp ∩ Supp(Ω) and |Zγ | < R. In particular, we
must have |Zγ | → ∞ as |γ| → ∞ for γ ∈ Λp ∩ Supp(Ω).

• The convergence property is stronger than the one on [Bri19]. However, it will simplify technical
details of convergence and term by term differentiation of sums that will appear below in the case
that Supp(Ω) is infinite. We remark that the BPS indices appearing in the string theory setting
of [Ale13, AMPP15, AB15] are not expected to satisfy even the weaker convergence condition on
[Bri19].

We will only consider variation of BPS structures over an ASK manifold that are “adapted” to the
ASK structure in the following sense:

Definition 3.4. Let (M, gM , ωM ,∇,Λ) be an integral ASK manifold admitting a central charge Z :
M → Λ∗⊗C (recall Proposition 2.12 and 2.15). Having fixed a central charge Z, an adapted variation of
BPS structures over (M, gM , ωM ,∇,Λ) is a variation of BPS structures (M,Λ′, Z ′,Ω) such that (Λ′, Z ′) =
(Λ, Z). In the case of a CASK manifold we always take the canonical central charge.

Now consider an adapted variation of BPS structures (M,Λ, Z,Ω) over (M, gM , ωM ,∇,Λ). Further-
more, we consider the bundle π : M →M of “twisted” unitary characters given by

Mu := {θ : Λu → R/2πZ | θγ+γ′ = θγ + θγ′ + π〈γ, γ′〉} (3.4)
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Remark 3.5. The reason for considering twisted characters has to do with implementing the wall-
crossing formalism from [KS08]. We remark that M and N (see (2.22)) can be locally identified (non-
canonically), but they might differ topologically (see [GMN10] for a discussion on this).

In [GMN10, Nei14], the proposed intanton corrected HK structure on M is then described as follows:
first one must find locally defined functions Xγ : U ⊂ M × C× → C×, labeled by local sections γ of
Λ|π(U), and satisfying the “GMN equations”:

Xγ(θ, ζ) = X sf
γ (θ, ζ) exp

[
−

1

4πi

∑

γ′∈Λπ(θ)

Ω(γ′)〈γ, γ′〉

∫

R−Zγ′

dζ′

ζ′
ζ′ + ζ

ζ′ − ζ
log(1−Xγ′(θ, ζ′))

]
(3.5)

where
X sf

γ (θ, ζ) = exp[πζ−1Zγ + iθγ + πζZγ ] (3.6)

For a fixed θ ∈ M, the functions Xγ(θ, ζ) have discontinuities in ζ along the rays R−Zγ with γ ∈ Supp(Ω)

(the so-called BPS rays). Furthermore, a consequence of satisfying (3.5) is that Xγ+γ′ = (−1)〈γ,γ
′〉XγXγ′ ,

which is related to the twist in the unitary characters, and important for the wall-crossing formalism.

Then one defines the following C×-family of complex 2-forms on M:

̟(ζ) =
1

8π2
〈d log(X (ζ)) ∧ d log(X (ζ))〉 (3.7)

where d differentiates only in the M directions. The discontinuities of Xγ(ζ) in ζ turn out to not affect
̟(ζ). Moreover, the KS wall-crossing formula is used to argue that ̟(ζ) is actually well-defined over
W ⊂M , where the BPS indices Ω(γ) jump.

Finally, they argue that there is a hyperkähler twistor space structure on M × CP 1, whose O(2)-
twisted family of holomorphic symplectic forms is given by ζ̟(ζ)⊗∂ζ . In particular, if we expand ζ̟(ζ)
in ζ, we obtain an expression of the form

ζ̟(ζ) = −
i

2
̟ + ζω3 −

i

2
ζ2̟ (3.8)

where ̟ and ω3 give a holomorphic symplectic form and Kähler form with respect to one of the complex
structures; and Re(̟), Im(̟) and ω3 give a triple of Kähler forms for the hyperkähler structure.

3.2 Mutually local variations of BPS structures and the instanton corrected

HK structure

One of the main issues in describing the instanton corrected HK structure lies in solving the equations
(3.5). Below, we will restrict to a case where the integral equations (3.5) reduce to integral formulas,
and write down the candidate ̟ and ω3. We will then show in Theorem 3.13 under what conditions
they define a HK structure on N = T ∗M/Λ∗.

Definition 3.6. A variation of BPS structures (M,Λ, Z,Ω) is mutually local if γ, γ′ ∈ Supp(Ω) implies
that 〈γ, γ′〉 = 0.

Remark 3.7.

• The mutually local condition implies W = ∅, and hence no wall-crossing occurs for the BPS indices
Ω(γ). In particular, given a local section γ of Λ, Ω(γ) is a locally constant function on M .

• On the other hand, given (M, gM , ωM ,∇,Λ) with an adapted mutually local variation of BPS
structures, the mutually local condition implies that we can find a local Darboux frame (γ̃i, γ

i)
of Λ such that Supp(Ω) ⊂ spanZ{γ

i} (see Lemma 3.14 below). It is then easy to see that the
GMN equations (3.5) for {Xγ̃i

(ζ),Xγi(ζ)} reduce from integral equations to integral formulas. In
Lemma 3.10 below we write down the corresponding candidate ̟ and ω3 obtained from the explicit
formulas for {Xγ̃i

(ζ),Xγi(ζ)} (see also [GMN10, section 4.3 and 5.6]).
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Remark 3.8. For the rest of the paper we will only consider adapted variations of mutually local
BPS structures over an integral ASK manifold (M, gM , ωM ,∇,Λ) admitting a central charge (recall
Propositions 2.12, 2.15, and Definition 3.4). For simplicity, we will denote them just by Ω and refer to
them as mutually local variations of BPS structures, omitting the word “adapted”. In the CASK case
we always use the canonical central charge.

Consider (M, gM , ωM ,∇,Λ) with a mutually local variation of BPS structures Ω. Following, [GMN10,
section 4.3 and 5.6], we define the following forms on N = T ∗M/Λ∗ (we will omit from the notation
pullbacks by the canonical projection π : N →M):

Lemma 3.9. Consider a local section γ of Λ|U for U ⊂M and with γ ∈ Supp(Ω). Let

V inst
γ :=

1

2π

∑

n>0

einθγK0(2πn|Zγ |)

Ainst
γ := −

1

4π

∑

n>0

einθγ |Zγ |K1(2πn|Zγ |)
(dZγ

Zγ
−
dZγ

Zγ

) (3.9)

where K0 and K1 are modified Bessel functions of the second kind. Then V inst
γ ∈ C∞(π−1(U)) and

Ainst
γ ∈ Ω1(π−1(U)).

Proof. The convergence of the two series on the right-hand side of (3.9) is compact normal on the set
{p ∈ π−1(U) | Zγ(π(p)) 6= 0}, thanks to the asymptotics Kν(x) ∼

√
π
2xe

−x(1 + O( 1x)) for x → ∞,
ν = 0, 1. On the other hand, by the support property (3.2) and our assumption that γ ∈ Supp(Ω), we
must have {p ∈ π−1(U) | Zγ(π(p)) 6= 0} = π−1(U). Hence, as a consequence of compact convergence
V inst
γ defines a smooth function on π−1(U) and Ainst

γ defines a smooth 1-form on π−1(U).

The candidate instanton corrected ̟ and ω3 are then the following:

Lemma 3.10. Let

̟ := −
1

2π
〈dZ ∧ dθ〉+

∑

γ

(
Ω(γ)dZγ ∧ Ainst

γ +
iΩ(γ)

2π
V inst
γ dθγ ∧ dZγ

)
(3.10)

ω3 :=
1

4
〈dZ ∧ dZ〉 −

1

8π2
〈dθ ∧ dθ〉+

∑

γ

(
iΩ(γ)

2
V inst
γ dZγ ∧ dZγ +

Ω(γ)

2π
dθγ ∧ Ainst

γ

)
(3.11)

Then ̟ ∈ Ω2(N,C) and ω3 ∈ Ω2(N).

Remark 3.11. Notice that the sums over γ in the definitions of ̟ and ω3 are monodromy invariant
due to the monodromy invariance of Ω (see Remark 3.2), so they make global sense.

Proof. If Supp(Ω) is finite, then clearly ̟ and ω3 define smooth forms on N by the previous lemma.
Otherwise, consider a compact set K ⊂ N such that we have a frame (γ̃i, γ

i) of Λ|π(K), and a covariantly
constant choice of norm for Λ|π(K). Writing (3.10) and (3.11) with respect to dZγ̃i

dZγi , dθγ̃i
and dθγi ,

we can use the support property (3.2) to reduce the question of convergence of (3.10) and (3.11) to the
convergence of sums of the form

∑

γ

|Ω(γ)||Zγ |
2
∑

n>0

Kν(2πn|Zγ |) (3.12)

where ν = 0, 1. By the use of the asymptotics of the Bessel functions and the support property (3.2), it
is then easy to check that for any 0 < ǫ < 1 we can find C1 > 0 and C2 > 0 such for |γ| > C1 we have

|Zγ |
2
∑

n>0

Kν(2πn|Zγ |) < C2e
−2π(1−ǫ)|Zγ | (3.13)

(recall that by the support property |Zγ | → ∞ uniformly over K as |γ| → ∞ with γ ∈ Supp(Ω)). By the
convergence property (3.3), we then see that the infinite sums (3.12) converge normally over compact
subsets of N , and hence the (3.10) and (3.11) define smooth forms on N .

The reality of ω3 follows from the identities V inst
γ = V inst

−γ and Ainst
γ = −Ainst

−γ , together with the fact
that Ω(γ) = Ω(−γ).
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The key notion that will guarantee that the triple (ω1 := Re(̟), ω2 := Im(̟), ω3) defines a HK
structure on N is the following:

Definition 3.12. Let π : N → M be the canonical projection, where N = T ∗M/Λ∗. We will say that
(M, gM , ωM ,∇,Λ) and a mutually local Ω are compatible if the tensor field

T := π∗gM +
∑

γ

Ω(γ)V inst
γ π∗|dZγ |

2 (3.14)

on N is horizontally non-degenerate, i.e. T is non-degenerate on the normal bundle of the fibers.

Theorem 3.13. Consider an ASK manifold (M, gM , ωM ,∇,Λ) together with a mutually local variation
of BPS structures Ω. Then the triple (ω1 = Re(̟), ω2 = Im(̟), ω3) of real 2-forms on N define a
pseudo-HK structure on N if and only if (M, gM , ωM ,∇,Λ) and Ω are compatible.

Before doing the proof of Theorem 3.13, we will need two lemmas. Lemma 3.14 is a technical result
needed for Lemma 3.15; while Lemma 3.15 collects some useful expressions needed for the proof of
Theorem 3.13.

Lemma 3.14. Let Λ be a rank 2n lattice with a skew pairing ω : Λ × Λ → Z admitting a Darboux
basis, and let S ⊂ Λ be a subset such that γ, γ′ ∈ S implies ω(γ, γ′) = 0. Then there is a Darboux basis
(γ̃i, γ

i) of Λ such that S ⊂ spanZ{γ
i}.

Proof. Let L be a maximal isotropic subgroup of Λ such that S ⊂ L. Since Λ is a finitely generated
free abelian group, the same is true for L, and rk(L) ≤ rk(Λ) = 2n. We claim that rk(L) = n. To see
this, we consider the map ψω : Λ → Hom(L,Z) given by γ → ω(γ,−)|L. Because ω admits a Darboux
basis, ψω : Λ → Hom(L,Z) is surjective. Here we use that L is primitive (by maximality) and thus
the natural map Hom(Λ,Z) → Hom(L,Z) is surjective. This in turn follows from the fact that every
primitive system of vectors in a lattice can be extended to a basis. Hence, if we denote Lω := Ker(ψω),
we obtain rk(Lω) = rk(Λ) − rk(L). On the other hand, L ⊂ Lω implies that rk(L) ≤ rk(Lω), and since
L is a maximal isotropic sublattice containing S, we must have rk(L) = rk(Lω). It follows that rk(L) = n.

Now let {αi}i=1,..,n be a basis for L. Using again that L is a maximal isotropic sublattice, we have

that α1 is primitive in Λ. Now let (β̃i, β
i) be a Darboux basis of (Λ, ω). Writing α1 = biβ̃i + biβ

i and
using the fact that α1 is primitive, we must have gcd{bi, bi}ni=1 = 1. By Bezout’s identity, there exist
integers {ai, ai}ni=1 such that aib

i + bia
i = 1. Defining

α̃1 := aiβ̃i − aiβ
i (3.15)

we then see that ω(α̃1, α
1) = 1. We set γ1 := α1 and γ̃1 := α̃1.

Assume by induction that we have found {γ̃i, γi}i=1,...,r satisfying ω(γ̃i, γ
j) = δji , ω(γ

i, γj) = 0,
ω(γ̃i, γ̃j) = 0 and such that span(γ1, ...γr) = span(α1, ..., αr) ⊂ L. If r = n = rank(L) we are done.
Otherwise, pick αr+1 and define

γr+1 := αr+1 +

r∑

i=1

ω(αr+1, γ̃i)γ
i (3.16)

Then ω(γr+1, γi) = 0, ω(γr+1, γ̃i) = 0 and span(γ1, ..., γr+1) = span(α1, ..., αr+1). Furthermore, by
(3.16) and the fact that L is maximal isotropic, we again have that γr+1 is primitive. We then use

the Darboux frame (β̃i, β
i) and the Bezout identity the same way as before to find α̃r+1 such that

ω(α̃r+1, γ
r+1) = 1.

Define

γ̃r+1 := α̃r+1 −
r∑

i=1

ω(α̃r+1, γ
i)γ̃i +

r∑

i=1

ω(α̃r+1, γ̃i)γ
i (3.17)

we then have ω(γ̃r+1, γ
r+1) = 1 and for i = 1, ..., r we have ω(γ̃r+1, γ

i) = ω(γ̃r+1, γ̃i) = 0. Hence,
we have found {γ̃i, γi}i=1,...,r+1 satisfying ω(γ̃i, γ

j) = δji , ω(γ
i, γj) = 0, ω(γ̃i, γ̃j) = 0 and such that

span(γ1, ..., γr+1) = span(α1, ..., αr+1).

At the n-th step we then have a Darboux frame {γ̃i, γi} of Λ such that S ⊂ L = span(γ1, ..., γn),
which is what we wanted.
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Lemma 3.15. Let (M, gM , ωM ,∇,Λ) and Ω be as before. Given a local Darboux frame (γ̃i, γ
i) for Λ

such that Supp(Ω) ⊂ spanZ{γ
i} (see Lemma 3.14), we write γ = ni(γ)γ

i for γ ∈ Supp(Ω) and define the
complex 1-forms on N

Wi := dθγ̃i
− τijdθγj , W inst

i :=
∑

γ

Ω(γ)ni(γ)(2πA
inst
γ − iV inst

γ dθγ), Yi :=Wi +W inst
i (3.18)

where dZγ̃i
= τijdZγj . Furthermore, we define the matrices

Nij := Imτij , N inst
ij :=

∑

γ

Ω(γ)V inst
γ ni(γ)nj(γ), Mij := Nij +N inst

ij (3.19)

We then have

̟ =
1

2π
dZγi ∧ Yi, ω1 =

1

4π
(dZγi ∧ Yi + dZγi ∧ Y i), ω2 =

1

4πi
(dZγi ∧ Yi − dZγi ∧ Y i) (3.20)

and assuming Ω is compatible with the ASK manifold,

ω3 =
i

2
MijdZγi ∧ dZγj +

i

8π2
M ijYi ∧ Y j (3.21)

Remark 3.16. Note that the symmetric matrixMij is real, in virtue of the property Ω(−γ) = Ω(γ) and

V inst
γ = V inst

−γ . On the other hand, the fact thatMij is invertible follows from the compatibility condition

(3.14) written with respect to (γ̃i, γ
i).

Proof. Using that dZγ̃i
= τijdZγj we obtain

̟ = −
1

2π
〈dZ ∧ dθ〉+

∑

γ

Ω(γ)dZγ ∧ Ainst
γ +

iΩ(γ)

2π
V inst
γ dθγ ∧ dZγ

=
1

2π
dZγi ∧ (dθγ̃i

− τijdθγj ) +
1

2π
dZγi ∧

(∑

γ

Ω(γ)ni(γ)(2πA
inst
γ − iV inst

γ dθγ)
)

=
1

2π
dZγi ∧ Yi

(3.22)

The formulas for ω1 and ω2 then follow from ω1 = Re(̟) and ω2 = Im(̟).

On the other hand, to see that (3.21) holds it is easy to check that:

i

2
MijdZγi ∧ dZγj =

1

4
〈dZ ∧ dZ〉+

∑

γ

iΩ(γ)

2
V inst
γ dZγ ∧ dZγ (3.23)

while for the second term, after expanding the terms in Yi, using the fact that Mij is symmetric, and
reorganizing terms we obtain

i

8π2
M ijYi ∧ Y j =

i

8π2
M ij

(
2iMik[dθγ̃j

∧ dθγk +
∑

γ

Ω(γ)nj(γ)2πA
inst
γ ∧ dθγk +Re(τjl)dθγk ∧ dθγl ]

)

= −
1

4π2

[
dθγ̃k

∧ dθγk +
∑

γ

Ω(γ)2πAinst
γ ∧ dθγ +Re(τkl)dθγk ∧ dθγl

]

= −
1

8π2
〈dθ ∧ dθ〉+

∑

γ

Ω(γ)

2π
dθγ ∧ Ainst

γ

(3.24)

so that (3.21) holds.

Proof. (of Theorem 3.13) We start by showing that the compatibility assumption (3.14) implies the non-
degeneracy of the ωα forms. We fix a local Darboux frame (γ̃i, γ

i) with Supp(Ω) ⊂ span{γi} and denote
for simplicity Zi := Zγi. We work locally with the real frame ∂xi := ∂Zi + ∂

Z
i , ∂ui := i(∂Zi − ∂

Z
i),

∂θi := ∂θ
γi

and ∂θ̃i := ∂θγ̃i and recall that the compatibility condition (3.14) implies the invertibility of
the matrix Mij .
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• Non-degeneracy of ω1: we write below relations that are sufficient to deduce non-degeneracy. Using
(3.18) and (3.20) we obtain

ω1(∂θ̃i , ∂xj ) = −
δij
2π
, ω1(∂θi , ∂uj ) = −

1

2π
Mij

ω1(∂θ̃i , ∂θj ) = ω1(∂θi , ∂θj) = ω1(∂θ̃i , ∂θ̃j) = ω1(∂ui , ∂θ̃j ) = 0
(3.25)

So ω1 is represented by a block triangular matrix (with respect to the second diagonal) with
invertible diagonal blocks. Hence, we conclude that ω1 is non-degenerate.

• Non-degeneracy of ω2: as before, we write below sufficient relations to deduce non-degeneracy.
Using (3.18) and (3.20)

ω2(∂θ̃i , ∂uj ) = −
δij
2π
, ω2(∂θi , ∂xj) =

1

2π
Mij

ω2(∂θ̃i , ∂θj) = ω2(∂θi , ∂θj ) = ω2(∂θ̃i , ∂θ̃j ) = ω2(∂xi , ∂θ̃j ) = 0
(3.26)

So ω2 is represented by a block triangular matrix with invertible diagonal blocks (of size 2 dimR(M)
on the second diagonal). This shows that ω2 is nondegenerate.

• Non-degeneracy of ω3: using (3.11) and (3.19) we obtain the following sufficient relations to show
non-degeneracy

ω3(∂θ̃i , ∂θj ) = −
δij
4π2

, ω3(∂xi , ∂uj ) =Mij

ω3(∂ui , ∂uj ) = ω3(∂xi , ∂θ̃j ) = ω3(∂ui , ∂θ̃j ) = ω3(∂θ̃i , ∂θ̃j ) = 0
(3.27)

Using the block structure of the representing matrix we see that it can be transformed to block
diagonal form with invertible diagonal blocks using row and column operations. This proves that
it has maximal rank.

Now we check that
dωα = 0 α = 1, 2, 3 (3.28)

For α = 1, 2 it is enough to check that d̟ = 0, since ̟ = ω1 + iω2, and ω1 and ω2 are real. Using
(3.10), and the fact that the semi-flat part is closed, we have

d̟ =
∑

γ

Ω(γ)
[ i

2π
dV inst

γ ∧ dθγ ∧ dZγ − dZγ ∧ dAinst
γ

]

=
∑

γ

Ω(γ)
[
−

i

4π

∑

n>0

neinθγK1(2πn|Zγ |)
Zγ

|Zγ |
dZγ ∧ dθγ ∧ dZγ

−
i

4π

∑

n>0

neinθγK1(2πn|Zγ |)
|Zγ |

Zγ

dZγ ∧ dθγ ∧ dZγ

]

= 0

(3.29)

where we used that K ′
0 = −K1. On the other hand, using (3.11) and the fact that the semi-flat part is

closed, we obtain

dω3 =
∑

γ

Ω(γ)
[ i
2
dV inst

γ ∧ dZγ ∧ dZγ −
1

2π
dθγ ∧ dAinst

γ

]

=
∑

γ

Ω(γ)
[
−

1

4π

∑

n>0

neinθγK0(2πn|Zγ |)dθγ ∧ dZγ ∧ dZγ

+
1

4π
dθγ ∧

(∑

n>0

neinθγK0(2πn|Zγ |)dZγ ∧ dZγ

)]

= 0

(3.30)
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where we used the identity (xK1(x))
′ = −xK0(x).

We now define three endomorphism fields by

Iα = −ω−1
β ◦ ωγ (3.31)

where (α, β, γ) are cyclically ordered. We will compute their action on a local frame of TN ⊗ C and
check that I1I2 = I3 and I2α = −1.

We have a local frame of T ∗N ⊗ C given by {dZi, dZ
i
, Yi, Y i} (see Lemma 3.15). We consider the

dual frame of vector fields {Ai, Ai, B
i, B

i
}. Using (3.20) and (3.21) we find the following identities

ω1(Ai,−) =
1

4π
Yi ω1(B

i,−) = −
1

4π
dZi

ω2(Ai,−) =
1

4πi
Yi ω2(B

i,−) = −
1

4πi
dZi

ω3(Ai,−) =
i

2
MijdZ

j
ω3(B

i,−) =
i

8π2
M ijY j

(3.32)

The evaluation on the conjugate elements of the frame give the conjugate of the corresponding expres-
sions (recall that (Mij) is a real symmetric matrix).

This allows us to compute the action of Iα on the frame, giving the following

I1(Ai) = 2πMijB
j

I1(B
i) = −

1

2π
M ijAj

I2(Ai) = −2πiMijB
j

I2(B
i) =

i

2π
M ijAj

I3(Ai) = iAi I3(B
i) = iBi

(3.33)

where again the value on the conjugate elements is given by taking conjugates on the RHS of the above
equalities. From (3.33) it is clear that

I1I2 = I3 I2α = −1 for α = 1, 2, 3 (3.34)

so each Iα defines an almost complex structure on N , and they satisfy the quaternion relations. These
relations imply that the tensor field ωα ◦ Iα = ωα(Iα−,−) is independent of α and that the pseudo-
Riemannian metric gN := −ωα ◦ Iα satisfies I∗αgN = gN and gN (Iα−,−) = ωα(−,−).

Hence, we conclude that (N, gN , I1, I2, I3) is almost pseudo-hyperkähler, with dωα = 0. By Hitchin’s
lemma [Hit87, Lemma 6.8], (N, gN , I1, I2, I3) is then pseudo-hyperkähler.

We have shown the sufficiency of the compatibility condition (3.14). The necessity follows from the
previous identities used to show non-degeneracy of ωα. Indeed, if T in (3.14) is horizontally degenerate
for some p ∈ N , then with respect to a Darboux frame (γ̃i, γ

i) of Λ around π(p) ∈ M with Supp(Ω) ⊂
span{γi} the corresponding Mij is not invertible at p, and then the forms ωα can be shown to be
degenerate at p.

Corollary 3.17. Let (N, gN , I1, I2, I3) and {dZγi , dZγi , Yi, Y i} be the pseudo-HK manifold and local
frame of T ∗N ⊗ C from the previous theorem. Then in such a frame the metric gN has the local form

gN = dZγiMijdZγj +
1

4π2
YiM

ijY j

= dZγi(Nij +N inst
ij )dZγj +

1

4π2
(Wi +W inst

i )(N +N inst)ij(W j +W
inst

j )

(3.35)

Proof. The first equality follows from (3.21) together with the fact that dZγi and Yi are (1, 0) forms with
respect to I3 due to (3.33). The second equality follows from the formulas in Lemma 3.15.
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Remark 3.18. the semi-flat HK metric corresponds in this case to

gsf = dZγiNijdZγj +
1

4π2
WiN

ijW j (3.36)

This expression shows that the torus bundle π : (N, gsf) → (M, gM ) is a Riemannian submersion with
totally geodesic horizontal distribution and flat fibers. Due to the latter property, the metric gsf is called
semi-flat.

This picture is lost when including the instanton corrections. Indeed, the horizontal part of the
metric gN is no longer basic, since the functions N inst

ij are not basic. Moreover, the metric on the fibers

is no longer translational invariant and the coordinate vector fields ∂
∂Z

γi
, ∂
∂Zγi

are not horizontal, i.e.

perpendicular to the fibers.

3.2.1 The CASK case and the rotating action

We now assume that we start with an integral CASK manifold (M, gM , ωM ,∇, ξ,Λ), together with a
compatible, mutually-local Ω. We denote by (N, gN , ω1, ω2, ω3) the corresponding pseudo-HK manifold
from Theorem 3.13.

Definition 3.19. Let (N, gN , ω1, ω2, ω3) be a pseudo-HK manifold. An infinitesimal rotating circle
action is a Killing vector field V on N such that LV (ω1 + iω2) = i(ω1 + iω2) and LV ω3 = 0.

In [ACM13, Section 3] it is shown that one can lift Jξ from M to N , in such a way we get an
infinitesimal rotating circle action for the semi-flat HK structure on N . The lift V of Jξ is defined as
follows: if qi are special affine coordinates for M and (π∗qi, pi) the corresponding coordinates on T ∗M ,
then

V (π∗qi) = π∗
(
Jξ(qi)

)
, V (pi) = 0 (3.37)

This local definition does not depend on the choice of special affine coordinates, and hence defines global
lift V of Jξ. The vector field V is, in fact, the ∇-horizontal lift of Jξ and furthermore descends to
N = T ∗M/Λ∗.

Proposition 3.20. The vector field V defines an infinitesimal rotating circle action for the instanton
corrected HK structure (N, gN , ω1, ω2, ω3).

Proof. The vector field V of N satisfies the following:

• The central charge Z satisfies LV π
∗Zγ = LJξZγ = iZγ (recall Proposition 2.15 and the remark

below Definition 2.9). Here and in the following we have omitted π∗ on the right-hand side for ease
of notation, identifying function on M with functions on N via pull-back.

• The angle coordinates θγ are invariant by (3.37), i.e LV θγ = 0.

From the previous two points and (3.9) we conclude that LV V
inst
γ = 0 and LV A

inst
γ = 0. Hence, from

(3.10) and (3.11) we see that LV̟ = i̟ while LV ω3 = 0. This implies that LV gN = 0 by differentiating
the identity gN = ω3◦ω

−1
1 ◦ω2 and using the skew-symmetry of ω−1

α ◦ωβ in the indices (α, β). We conclude
that V defines an infinitesimal rotating circle action for the HK structure (N, gN , ω1, ω2, ω3).

Using our local expression (3.35) of gN , we see that we can write gN in the local real frame dxi :=
Re(dZγi), dui := Im(dZγi), αi := Re(Yi) and βi := Im(Yi) as

g =Mij(dx
idxj + duiduj) +

1

4π2
M ij(αiαj + βiβj) (3.38)

In particular, we see that if the (real) matrix Mij has signature (n,m) then g has signature σ(g) =
(4n, 4m). In the CASK case we can say more:

Proposition 3.21. Let (N, gN , ω1, ω2, ω3) be an instanton corrected HKmetric associated to a connected
integral CASK manifold (M,ω, gM ,∇, ξ,Λ) with a compatible Ω. If the flow of ξ induces a free-action
on M of the (multiplicative) monoid R≥1, then σ(g) = σ(gsf) = (4, 4n), where dimC(M) = n+ 1.
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Proof. By the connectedness assumption, it is enough to check the signature at a single point. We fix
p ∈ M and consider the ray lp := R≥1 · p ⊂ M obtained by the free R≥1-action on M , and a Darboux
frame (γ̃i, γ

i) of Λ with Supp(Ω) ⊂ span{γi} along lp. With respect to this frame we have the matrix
Mij controlling σ(g):

Mij = Im(τij) +
∑

γ

Ω(γ)V inst
γ ni(γ)nj(γ) (3.39)

We consider the ∇-horizontal lift of ξ to N . Such a lift generates a free R≥1-action on π−1(lp) ⊂ N
that scales Zγ and leaves θγ invariant. The term Nij = Im(τij) is invariant under the R≥1-action scaling
the central charge (since M is CASK), while the terms V inst

γ are exponentially decreasing as we act
with a sufficiently big t ∈ R≥1 (due to the asymptotics of the Bessel functions). Hence, by the use of
the convergence property (3.3) and the R≥1-action we can make Mij as close as we want to Nij for an
appropriate point in π−1(lp). Hence, σ(gN ) = σ(gsf) = 2σ(gM ) = (4, 4n).

4 HK-QK correspondence for the corrected HK metric

Consider an integral CASK manifold (M, gM , ωM ,∇, ξ,Λ) together with a compatible, mutually local Ω.
From the results of Theorem 3.13 and Proposition 3.20 we obtain an HK manifold (N, gN , ω1, ω2, ω3) with
an infinitesimal rotating action given by the vector field V . In this section we apply to (N, gN , ω1, ω2, ω3)
the explicit description of the HK-QK correspondence found in [ACDM15, Theorem 2], to obtain a pos-
sibly indefinite QK manifold (N, gN ).

One of the things that we will require in order to apply the HK-QK correspondence to (N, gN , ω1, ω2, ω3),
is an S1-principal bundle πN : P → N having a connection η ∈ Ω1(P ) with curvature F ∈ Ω2(N) satis-
fying

F = 2π(ω3 − d(ιV gN )) (4.1)

Remark 4.1. One can show that F is of type (1, 1) with respect to the triple of complex structures Iα for
α = 1, 2, 3 (see for example [Hit13, Proposition 1]). Hence, the principal circle bundle (πN : P → N, η)
is hyperholomorphic, in the sense that the complex line bundle associated to the defining representation
of U(1) is holomorphic for all three Iα.

After constructing the required hyperholomorphic circle bundle in Section 4.1, we apply the HK-QK
correspondence in Section 4.2. The main result of this section is Theorem 4.10.

4.1 The hyperholomorphic circle bundle

In this section we construct the hyperholomorphic bundle (πN : P → N, η). We use the notation
πM : N →M for the natural projection.

Proposition 4.2. There exists an S1-principal bundle πN : P → N with connection Θ having curvature

dΘ = −
1

4π
π∗
N 〈dθ ∧ dθ〉 (4.2)

Proof. We start by considering the trivial R-principal bundle T ∗M × R → T ∗M . We denote by p :
T ∗M → Λ∗ ⊗ R the evaluation map. Hence, if we are given a local trivialization (γ̃i, γ

i) of Λ, then
(pγ̃i

, pγi) gives coordinates for the fibers of T ∗M . On T ∗M × R → T ∗M we define the connection

Θ := dσ −
1

4π
〈p, dp〉 (4.3)

where σ is a global coordinate on the R-fiber.

We now define the bundle of discrete Heisenberg groups Heis(Λ∗) →M where Heis(Λ∗) := 2πΛ∗×πZ
and the group structure on the fibers is given by

(2πδ, πk) · (2πδ′, πk′) = (2π(δ + δ′), π(k + k′ + 〈δ, δ′〉)) (4.4)

We define a fiber-wise action (as bundles over M) of Heis(Λ∗) on T ∗M × R by
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(2πδ, πk) · (p, σ) = (p+ 2πδ, σ + πk +
1

4π
〈2πδ, p〉) (4.5)

and on T ∗M by
(2πδ, πk) · p = p+ 2πδ (4.6)

With these actions the projection T ∗M × R → T ∗M is clearly equivariant and Θ is invariant under
the action on T ∗M ×R. By taking the quotient we obtain an S1-principal bundle πN : P → N , and the
connection descends to a connection Θ on P . It is given by

Θ = dσ −
1

4π
π∗
N 〈θ, dθ〉 (4.7)

where the coordinate σ is now periodic with period π and transforms as σ 7→ σ′ = σ + 1
2π

∗
N 〈δ, θ〉 under

translations θ 7→ θ′ = θ+2πδ, δ ∈ Λ∗, in the sense that (θ, σ) and (θ′, σ′) describe the same point in the
fiber of P .

The following lemma gives an expression for ω3 that will be convenient for defining the connection η
on πN : P → N with curvature (4.1).

Lemma 4.3. For γ a section of Λ|U ∩ Supp(Ω) with U ⊂M , let ηinstγ ∈ Ω1(π−1
M (U)) be defined by

ηinstγ :=
i

8π2

∑

n>0

einθγ

n
|Zγ |K1(2πn|Zγ |)

(dZγ

Zγ
−
dZγ

Zγ

)
(4.8)

Letting r2 := gM (ξ, ξ), we can then write ω3 as follows:

ω3 =
i

2
∂∂r2 −

1

8π2
〈dθ ∧ dθ〉+ d

(∑

γ

Ω(γ)ηinstγ

)
(4.9)

Remark 4.4. Notice that
∑

γ Ω(γ)η
inst
γ makes global sense due to the monodromy invariance of Ω.

Furthermore,
∑

γ Ω(γ)η
inst
γ ∈ Ω1(N) by the same arguments of Lemma 3.10.

Proof. Since M is a CASK manifold, we have from (2.16):

ωM =
1

4
〈dZ ∧ dZ〉 =

i

2
∂∂r2 (4.10)

On the other hand, using the identity (xK1(x))
′ = −xK0(x) we see that the instanton correction terms

of ω3 satisfy

d
(∑

γ

Ω(γ)ηinstγ

)
=

∑

γ

(
iΩ(γ)

2
V inst
γ dZγ ∧ dZγ +

Ω(γ)

2π
dθγ ∧ Ainst

γ

)
(4.11)

where we used that compact normal convergence (3.3) lets us interchange sums and derivatives. The
formula (4.9) then follows by comparison with (3.11).

Corollary 4.5. Let πN : P → N and Θ be as in Proposition 4.2. Then the connection η ∈ Ω1(P ) given
by

η := Θ + 2ππ∗
N

( i
4
π∗
M (∂r2 − ∂r2) +

∑

γ

Ω(γ)ηinstγ − ιV gN

)
(4.12)

has curvature
F = 2π(ω3 − d(ιV gN )) (4.13)

Proof. The fact that dη = π∗
NF follows from the equations (4.2) and (4.9).

The following proposition characterizes the part of η containing the “instanton corrections”.

Proposition 4.6. The hyperholomorphic connection η on πN : P → N can be written as

η = Θ+ 2ππ∗
N

(
−

1

2
π∗
Mr

2η̃ + ηinst
)

(4.14)

where η̃ = 1
r2 ιJξgM and

ηinst :=
∑

γ

Ω(γ)ηinstγ − ιV (gN − π∗
MgM ) (4.15)

Furthermore, if Ω = 0 then ηinst = 0.
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Proof. We first show that Ω = 0 implies ηinst = 0. In a local Darboux frame (γ̃i, γ
i) of Λ with Supp(Ω) ⊂

span{γi}, we can write (recall Corollary 3.17)

ηinst =
∑

γ

Ω(γ)ηinstγ − ιV

(∑

γ

Ω(γ)V inst
γ |dZγ |

2 +
1

4π2
YiM

ijY j

)
(4.16)

If Ω = 0, it follows that Yi =Wi +W inst
i =Wi, and Mij = Nij +N inst

ij = Nij , so ιVWi = 0 implies that

ηinst = −ιV
( 1

4π2
WiN

ijWj

)
= 0 (4.17)

To show the remaining identity, we notice that from (4.12) and (4.15) we can write

η = Θ+2ππ∗
N

( i
4
π∗
M (∂r2−∂r2)−ιV π

∗
MgM+ηinst

)
= Θ+2ππ∗

N

(
π∗
M

( i
4
(∂r2−∂r2)−ιJξgM

)
+ηinst

)
(4.18)

Furthermore, recalling (2.10):

r2η̃ = ιJξgM =
r2

2
dc log(r2) =

i

2
(∂r2 − ∂r2) (4.19)

we obtain (4.14).

4.2 HK-QK correspondence

From the data of an integral CASK manifold (M, gM , ωM ,∇, ξ,Λ) with a compatible Ω, we have obtained
a pseudo-HK manifold (N, gN , I1, I2, I3) with an infinitesimal rotating circle action V and a hyperholo-
morphic circle bundle (πN : P → N, η). We now wish to apply [ACDM15, Theorem 2] to obtain a
pseudo-QK manifold. In order to match their conventions, we will need to consider 2πgN instead of gN ,
and take X = 2V , so that X satisfies LXI1 = −2I2, LXI2 = 2I1, LXI3 = 0, LXgN = 0. On the other
hand, in order to directly apply [ACDM15, Theorem 2], we will need to define several other pieces of
data associated to (N, 2πgN , I1, I2, I3) and (πN : P → N, η). This are given in Lemmas 4.7 and 4.8, and
in Definition 4.9 below.

Lemma 4.7. Let c ∈ R and let f, f1 ∈ C∞(N) be defined by

f := 2πr2 − c+ 4π
∑

γ

Ω(γ)ιV η
inst
γ , f1 := −2πr2 − c+ 4πιV η

inst (4.20)

Then f and f1 satisfy

df = −ιX(2πω3) = −4πιV ω3, f1 = f −
1

2
(2πgN (X,X)) = f − 4πgN (V, V ) (4.21)

Furthermore, if

f inst := 4π
∑

γ

Ω(γ)ιV η
inst
γ f inst

1 := 4πιV η
inst (4.22)

then Ω = 0 implies f inst = f inst
1 = 0.

Proof. We start by proving that df = −4πιV ω3. Using conical holomorphic special coordinates Zi we
have the local expression

V = iZi∂Zi − iZ
i
∂
Z

i r2 = NijZ
iZ

j
= Im(τij)Z

iZ
j

(4.23)

On the other hand we have the identity Zi ∂τij
∂Zk = 0 as a consequence of the CASK condition. It is then

easy to check that
i

2
ιV (∂∂r

2) = −
1

2
d(r2) (4.24)

From the same arguments of Proposition 3.20, it follows that LV η
inst
γ = 0. We then have

df = 2πd(r2) + 4π
∑

γ

Ω(γ)d(ιV η
inst
γ ) = −4π

( i
2
ιV (∂∂r

2) + ιV d
(∑

γ

Ω(γ)ηinstγ

))
= −4πιV ω3 (4.25)
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The remaining equation in (4.21) for f1 follows easily from π∗
MgM (V, V ) = gM (Jξ, Jξ) = gM (ξ, ξ) = r2

and the definition of ηinst in (4.15).

Finally, if Ω = 0 we clearly have f inst = 0, while f inst
1 = 0 follows from the fact that Ω = 0 implies

gN (V, V ) = gsf(V, V ) = π∗
MgM (V, V ).

Lemma 4.8. Assume that the flow of ξ induces a free-action on M of the monoid R≥1. Then the open
subset of N defined by

N ′ := {p ∈ N | f(p) 6= 0, f1(p) 6= 0, gN(Xp, Xp) 6= 0} ⊂ N (4.26)

is not empty. In particular, the open subset N ′
+ := {f > 0, f1 < 0} ⊂ N ′ is not empty.

Proof. The proof is similar to Proposition 3.21. Indeed, fix p ∈ N with πM (p) = q, consider the ray
lq := R≥1 ·q ⊂M , and pick some Darboux frame (γ̃i, γ

i) of Λ along the ray lq with Supp(Ω) ⊂ span{γi}.
By consider the ∇-flat lift of ξ to N , we obtain a R≥1-action on π−1

M (lq) ⊂ N that rescales Zγ , and
leaves invariant θγ . Writing f inst, f inst

1 with respect to (γ̃i, γ
i) and using the asymptotics of the Bessel

functions together with the convergence property, it is easy to see that given any ǫ > 0 the following
holds for sufficiently big t ∈ R≥1

|f inst(t · p)| < ǫ, |f inst(t · p)− f inst
1 (t · p)| = π|gN (Xt·p, Xt·p)− π∗

MgM (Xt·p, Xt·p)| < ǫ (4.27)

where in the last inequality we used the fact that gN(X,X) − π∗
MgM (X,X) only contains instanton

correction terms (see (3.35) and (4.23)).

In particular, for sufficiently big t we have

sign(f(t · p)) = sign(2πt2r2(q)− c) = 1, sign(f1(t · p)) = sign(−2πt2r2(q)− c) = −1

sign(gN (X(t · p), X(t · p))) = sign(t2r2(q)) = 1
(4.28)

so N ′ contains a point t · p where f > 0, f1 < 0 and gN (X,X) > 0.

Definition 4.9. Let N ′ ⊂ N be as in Lemma 4.8. On the total space of (πN : P |N ′ → N ′, η) we define
the following objects:

• We endow P |N ′ with the pseudo-Riemannian metric:

gP :=
2

f1
η2 + 2ππ∗

NgN (4.29)

and the vector field
XP

1 := X̃ + f1∂σ (4.30)

where X̃ denotes the horizontal lift of X and ∂σ the generator of the S1-principal action.

• Finally, we define the following 1-forms on P |N ′ :

θP0 := −
1

2
π∗
Ndf, θP1 := η +

1

2
π∗
N ιX(2πgN ), θP2 :=

1

2
π∗
N ιX(2πω2), θP3 := −

1

2
π∗
N ιX(2πω1)

(4.31)

We can now state the main theorem of this section:

Theorem 4.10. Let (M, gM , ωM ,∇, ξ,Λ) be a connected integral CASK manifold with a compatible
mutually local Ω, and assume that the flow of ξ generates a free-action of the monoid R≥1. Furthermore,
let (N, gN , I1, I2, I3) be the associated pseudo-HK manifold; (P → N, η) the associated hyperholomorphic
circle bundle; and θPi , gP , X

P
1 , f and N ′ ⊂ N as before. If N ⊂ P |N ′ is any submanifold transversal to

XP
1 , then

gN := −
1

f

(
gP −

2

f

3∑

i=0

(θPi )
2
)∣∣∣

N
(4.32)

is a pseudo-QK metric on N . Furthermore, if N is picked to also satisfy N+ := N ∩N ′
+ 6= ∅, then gN is

positive definite on N+.
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Proof. We have set everything up so that we can apply the explicit formulas of the HK-QK correspon-
dence in [ACDM15, Theorem 2] to the pseudo-HK manifold (N ′, 2πgN , I1, I2, I3) with the vector field
X = 2V and the hyperholomorphic circle bundle (P |N ′ → N ′, η) (notice that we restricted to N ′ of
Lemma 4.8). [ACDM15, Theorem 2] then guarantees that

g′ :=
1

2|f |

(
gP −

2

f

3∑

i=0

(θPi )
2
)∣∣∣

N
(4.33)

is a pseudo-QK metric on N . Hence, gN = −2sign(f)g′ is also a pseudo-QK metric on N .

By Proposition 3.21 we know that gN has signature (4, 4n), so by [ACM13, Corollary 1] we conclude

from the conditions f > 0, f1 < 0 that g′ = − sign(f)
2 gN = − 1

2gN is negative definite on N+, and hence

gN is positive definite on N+.

5 Instanton deformations of the 1-loop corrected Ferrara-Sabharwal

metric

In this section we wish to compute a coordinate expression for the QK metric gN of Theorem 4.10 in
the case of an integral CASK domain with a compatible mutually local Ω. This will allow us to see gN
as a deformation of the 1-loop corrected Ferrara-Sabharwal metric gcFS (see Theorem 5.4). Furthermore,
we specify in Proposition 5.6 when the QK metric is positive definite, and we discuss the fate of certain
Peccei-Quinn symmetries in Corollary 5.7.

Definition 5.1. [ACD02, CDS17] A CASK domain is tuple (M,F) where:

• M ⊂ Cn+1 − {0} is a C×-invariant domain. We denote the canonical holomorphic coordinates of
Cn+1 by zi, i = 0, 1, ..., n.

• F : M → C is a holomorphic function, homogeneous of degree 2 with respect to the natural
C

×-action on M .

• The matrix

Nij = Im
( ∂2F

∂zi∂zj

)
(5.1)

has signature (1, n) and Nijz
izj > 0 for all z ∈M .

To any CASK domain (M,F) we can associate a CASK manifold (M, gM , ωM ,∇, ξ) [ACD02] where
zi and wi = ∂F

∂zi (z
i) form a global system of conjugate conical holomorphic special coordinates. If

xi := Re(zi) and yi := −Re(wi), then ∇ is defined such that dxi and dyi are flat. Furthermore

gM = Nijdz
idzj , ωM =

i

2
Nijdz

i ∧ dzj = dxi ∧ dyi, ξ = zi∂zi + zi∂zi (5.2)

and if we define Λ → M by Λ := SpanZ{∂xi , ∂yi
}, then (M, gM , ωM ,∇, ξ,Λ) is an integral CASK

manifold.

Definition 5.2. A triple (M,F,Λ) where (M,F) is a CASK domain and Λ →M is the canonical integral
lattice from above above will be called an integral CASK domain.

Now consider an integral CASK domain (M,F,Λ), and let M∞ ⊂ M be an open subset invariant
under the S1 ⊂ C×-action and under the monoid action R≥1 ⊂ C×. Let (M∞, gM , ωM ,∇, ξ,Λ) be the
corresponding integral CASK manifold together with a compatible Ω such that Supp(Ω) ⊂ spanZ{∂yi

}.

Remark 5.3. The main reason to possibly restrict to M∞ is that in general it seems easier to find
compatible, non-trivial mutually local variations of BPS structures on M∞ than on M (see the example
of Section 5.2). Furthermore, notice that if (M, gM , ωM ) is the associated PSK manifold to (M,F) and
πM :M →M the projection, then πM (M∞) =M .
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Wewish to compute the pseudo-QKmetric gN from Theorem 4.10 associated to (M∞, gM , ωM ,∇, ξ,Λ)
and Ω, when we take

N := {Arg(z0) = 0} ⊂ P |N ′ (5.3)

This submanifold N is transverse to XP
1 = X̃ + f1∂σ since X̃|N = 2Ṽ |N 6∈ TN and ∂σ|N ∈ TN .

On [ACDM15, Theorem 5] it was shown that the case with Ω = 0 gives the 1-loop corrected Ferrara-
Sabharwal metric gcFS, so the case where Ω 6= 0 will give a deformation of gcFS.

On M we have the local coordinates

r =
√
gM (ξ, ξ) =

√
Nijziz

j > 0, φ := Arg(z0), X i := zi/z0 for i = 1, 2, ..., n (5.4)

As in [ACDM15], we will replace r with ρ = 2πr2 − c, the later coordinate representing the dilaton

coordinate for gcFS. We then have on N the local coordinates ρ, X i (for i = 1, 2, ..n), θ̃i := θ∂
xi
,

θi := θ∂yi
and σ. The coordinates ρ and X i are global on N , while the others satisfy that if δ ∈ Λ∗

and θ → θ + 2πδ, then σ → σ + 1
2 〈δ, θ〉 (see Proposition 4.2). We will furthermore use the following

“normalized” central charge Xγ := Zγ/z
0. In particular, for γ ∈ Supp(Ω) with γ = ni(γ)∂yi

, we have
Xγ = ni(γ)X

i where X0 := 1 and X i for i = 1, 2, ..., n are as before.

Theorem 5.4. Consider an integral CASK domain (M,F,Λ) and let (M, gM ) be the associated PSK
manifold. Furthermore, let (M∞, gM , ωM ,∇, ξ,Λ) be as before with a compatible mutually local Ω
satisfying Supp(Ω) ⊂ spanZ{∂yi

}. Taking N as in (5.3), the expression for the QK metric gN of Theorem

4.10 in the coordinates ρ, X i, θ̃i, θ
i and σ takes the form:

gN =
ρ+ c

ρ+ f inst

(
gM − eK

∑

γ

Ω(γ)V inst
γ

∣∣∣dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

)∣∣∣
2)

+
1

2(ρ+ f inst)2

(ρ+ 2c− f inst

2(ρ+ c)
dρ2 + 2dρdf inst|N + (df inst)2|N

)

+
4(ρ+ c+ f inst

− )

(ρ+ f inst)2(ρ+ 2c− f inst
1 )

(
dσ −

1

4π
〈θ, dθ〉 −

c

4
dcK + ηinst+ |N +

f inst
+ − c

ρ+ c+ f inst
−

ηinst− |N

)2

−
1

2π(ρ+ f inst)
(Wi +W inst

i |N )(N +N inst)ij(W j +W
inst

j |N )

+
(ρ+ c)eK

π(ρ+ f inst)2

∣∣∣X i(Wi +W inst
i |N ) + 2πi

∑

γ

Ω(γ)Ainst
γ (V )

(
dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

))∣∣∣
2

+
ρ+ c+ f inst

−

ρ+ f inst

(dcK
2

+
2

ρ+ c+ f inst
−

ηinst− |N

)2

−
ρ+ c

ρ+ f inst

(dcK
2

)2

(5.5)

where K = − log(NijX
iX

j
) is a Kähler potential for gM ; ηinst± are given by

ηinst± :=
1

2

((
2πηinst −

f inst
1

2
η̃
)
±
(
2π

∑

γ

Ω(γ)ηinstγ −
f inst

2
η̃
))

(5.6)

and
f inst
± := (f inst ± f inst

1 )/2 (5.7)

Furthermore, the forms 1-forms W inst
i |N and ηinst± |N do not have dρ components.

Proof. The proof is given in appendix A. Furthermore, coordinate expressions for df inst|N and W inst
i |N

are given in (A.21) and (A.24); while coordinate expressions for ηinst± |N can be found using (A.25).

Remark 5.5. By setting Ω = 0 in (5.5) all the instanton terms vanish, and we recover gcFS:

gcFS =
ρ+ c

ρ
gM +

ρ+ 2c

4(ρ+ c)ρ2
dρ2 +

4(ρ+ c)

ρ2(ρ+ 2c)

(
dσ −

1

4π
〈θ, dθ〉 −

c

4
dcK

)2

−
1

2πρ
Wi

(
N ij −

2(ρ+ c)eK

ρ
X iX

j
)
W j

(5.8)

Indeed, the scaled metric 4gcFS matches (2.2) of [AB15] after an easy change of variables involving only
rescalings (and keeping in mind the different conventions in defining Nij).
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Proposition 5.6. The subset N+ = {f > 0, f1 < 0} ⊂ N is non-empty, and gN is positive-definite
on N+. Furthermore, there is a non-empty neighborhood of N∞ ⊂ N+ of ρ = ∞ where gcFS is defined
and positive definite. In particular, gN gives a deformation of gcFS on N∞.

Proof. Fix a point (ρ,X i, θi, θ̃i, σ) ∈ N . The key observation is that with respect to our coordinates
f inst, f inst

1 → 0 as ρ → ∞, due to the exponential decay of the Bessel functions as ρ → ∞ and the
convergence property (3.3). This follows from the dependence of the Bessel functions on |Zγ | and the
identity

|Zγ | = |z0||Xγ | = reK(X)/2|Xγ | =

√
ρ+ c

2π
eK(X)/2|Xγ |, γ ∈ Supp(Ω) (5.9)

Hence, for sufficiently big ρ we have f = ρ + f inst > 0 and f1 = −ρ − 2c + f inst
1 < 0, and hence

(ρ,X i, θi, θ̃i, σ) ∈ N+. By Theorem 4.10 it then follows that gN is positive definite on N+.

On the other hand, [ACDM15, Theorem 5] shows that gcFS is positive definite and defined on {ρ >
max{0,−2c}} ⊂ N . Hence, taking N∞ = N+ ∩ {ρ > max{0,−2c}} gives the required neighborhood of
ρ = ∞.

We finish this section with a few words about the Heisenberg group of isometries for certain lifts
of gcFS and gN . Consider the trivial bundle of Heisenberg groups M × Rρ>0 × Heis2n+3(R), where we

identify Heis2n+3(R) ∼= R2(n+1)+1 and suggestively denote a point of R2(n+1)+1 by (θ̃i, θ
i, σ) = (θ, σ).

The group structure is given by

(θ, σ) · (θ′, σ′) = (θ + θ′, σ + σ′ +
1

4π
〈θ, θ′〉) (5.10)

Both metrics gN and gcFS lift to an open subset of M ×Rρ>0 ×Heis2n+3(R). Indeed, we just take the

same formulas (5.5) and (5.8) as before, where now (θ̃i, θ
i, σ) are global coordinates of R2(n+1)+1. Then

we can explicitly check that Heis2n+3(R) acts by isometries on gcFS, while for gN we have the following:

Corollary 5.7. Consider the previous lifts of gN to an open subset of M × Rρ>0 × Heis2n+3(R). For
γ ∈ Supp(Ω) we denote γ = ni(γ)∂yi

, and we define di := gcd({ni(γ)}γ∈Supp(Ω)) for i = 0, 1..., n such
that {ni(γ)}γ∈Supp(Ω) 6= {0}. If Ω 6= 0, then the following proper subgroup of Heis2n+3(R) acts by
isometries on the lift of gN :

{(η̃i, η
i, κ) ∈ Heis2n+3(R) | ηi ∈

2πZ

di
for i = 0, 1, ..., n such that {ni(γ)}γ∈Supp(Ω) 6= {0}} (5.11)

Proof. This follows from the explicit formula (5.5), together with the fact that in all the instanton

correction terms the coordinates (θ̃i, θ
i) only enter in terms of functions of the form eimθγ = eimnj(γ)θ

j

with m ∈ Z and γ ∈ Supp(Ω), breaking the allowed shifts of θj to discrete shifts. In particular, if j is

such that {nj(γ)}γ∈Supp(Ω) 6= 0, then a shift in θj must preserve einj(γ)θ
j

for all γ ∈ Supp(Ω), which
implies that the allowed shifts of θj must lie in 2πZ/dj.

Remark 5.8. In the physics parlance, the previous corollary says that including “mutually local instan-
ton corrections” break the allowed shifts of the “electric” angles θj to discrete shifts. Non-mutually local
instanton corrections are expected to further break down the allowed shifts of the “magnetic” angles θ̃j
to discrete shifts.

5.1 Comments on the metric

We make some comments on our expression (5.5) compared to the one obtained in (3.6) of [AB15].

• The function f = ρ+ f inst that appears as the Hamiltonian for the infinitesimal rotating action of
(N, gN , ω1, ω2, ω3) with respect ω3 can be thought as a “quantum corrected” dilaton coordinate.
Indeed, in [Ale13, AMPP15, AB15] the dilaton coordinate is built out of what they call a “contact
potential” of the QK twistor space, and this contact potential can be related to a Hamiltonian for
the infinitesimal rotating action (see for example the end remarks of [AMNP15]).

In the twistor approach of [AB15], it seems that the natural coordinate to consider is the quantum
corrected dilaton f instead of ρ. The fact that they use f as a coordinate is what gives rise to
their implicitly defined R-function in their expression for the instanton corrected metric (see their
equations (3.6) and (3.7)).
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• We have an “S1-bundle term” or “NS-axion bundle term”, given by

4
ρ+ c+ f inst

−

(ρ+ f inst)2(ρ+ 2c− f inst
1 )

(
dσ −

1

4π
〈θ, dθ〉 −

c

4
dcK + ηinst+ |N +

f inst
+ − c

ρ+ c+ f inst
−

ηinst− |N

)2

in (5.5). Since dσ appears only in this term, gN has an S1-action by isometries (as expected from
HK-QK correspondence). Furthermore, by using the expression (A.25) we see that the connection
form of the circle bundle does not have a dρ component. In [AB15] an analogous conclusion is
reached in terms of the quantum corrected dilaton direction df .

• In the case of gcFS the dilaton coordinate ρ is orthogonal to the rest of the coordinates. This is not
the case when including the instanton corrections, due the non-trivial mixing of dρ with dX i, dθi

and dθ̃i in (5.5). However, by the previous comment there is no mixing between dρ and dσ, so these
two directions remain orthogonal. As in the previous point, in [AB15] an analogous conclusion is
obtained in terms of f = ρ+ f inst.

• The symplectic invariance that needs to be checked in [AB15] is automatic from our construction.
Indeed, all the objects of Section 3 and 4 involved in the construction of gN do not depend on the
choice of any Darboux frame, so the (non-explicit) symplectic invariance of formula (5.5) follows
automatically.

5.2 An example

Here we present a simple example of our previous constructions where the PSK manifold associated to
the CASK manifold is the complex hyperbolic space CHn.

We start with a CASK domain (M,F) given as follows:

• We take M = {(z0, z1, ..., zn) ∈ Cn+1 | |z0|2 >
∑n

i=1 |z
i|2}.

• The holomorphic prepotential is given by

F(z0, ..., zn) =
i

2
((z0)2 −

n∑

i=1

(zi)2) (5.12)

In particular, we obtain a CASK manifold (M, gM , ωM ,∇, ξ) where ∇ = D = d and:

ωM =
i

2
(dz0 ∧ dz0 −

n∑

i=1

dzi ∧ dzi), gM = dz0dz0 −
n∑

i=1

dzidzi, ξ = zi∂zi + zi∂zi (5.13)

A global conjugate system of conical special holomophic coordinates is given by

zi, wi = τijz
j (5.14)

where τij = diag(i,−i, ...,−i). In the corresponding global conical affine special coordinates (xi, yi) =
(Re(zi),−Re(wi)) we set Λ = SpanZ{∂xi , ∂yi

}, so that (M,F,Λ) is an integral CASK domain.

The associated PSK manifold (M, gM , ωM ) is described as follows:

• We have M = M/C×. If n = 0 then M is just a point; otherwise M = {(X1, ..., Xn) ∈
Cn |

∑n
i=1 |X

i|2 < 1} with projection πM :M → M given by π(z0, z1, ..., zn) = (z1/z0, ..., zn/z0).

• Setting X i = zi/z0 for i = 0, 1, ..., n, the Kähler potential for gM is given by

K = − log(X iIm
( ∂2F

∂zi∂zj

)
X

j
) = − log(1−

n∑

i=1

|X i|2) (5.15)

which gives the metric

gM =
(1−

∑n
j=1 |X

j|2)
∑n

i=1 |dX
i|2 + |

∑n
i=1X

j
dXj |2

(1−
∑n

i=1 |X
i|2)2

(5.16)

This identifies (M, gM , ωM ) as the complex hyperbolic space CHn.
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In the global Darboux frame (γ̃i, γ
i) := (∂xi , ∂yi

) of Λ, we consider a mutually local variation of BPS
structures with Supp(Ω) = {±γ0} and Ω(±γ0) = m for some m ∈ Z − {0}. We remark that Zγ0 = z0

does not vanish on M , and hence Ω satisfies the support property. The rest of the properties required
by a mutually local variation of BPS structures are trivial to check.

Remark 5.9. One can of course consider more complicated mutually local variations of BPS structures.
The one chosen above is only to simplify the argument below regarding the non-degeneracy of the tensor
T (recall Definition 3.12).

Notice that the tensor field

T = π∗
M (gM ) +

∑

γ

Ω(γ)V inst
γ π∗

M |dZγ |
2 = π∗

M (gM ) + Ω(γ0)(V inst
γ0 + V inst

−γ0 )π∗
M |dz0|2 (5.17)

does not satisfy the compatibility condition for all points in N = T ∗M/Λ∗ ∼= M × (S1)2n+2 unless
Ω = 0. However, due to the exponential decay of the Bessel functions in V inst

γ0 in the variable |z0|, this

can be fixed by restricting M to the domain MK := {(z0, ..., zn) ∈ M | |z0| > K > 0} for K > 0
sufficiently big. MK carries a free S1-action generated by Jξ, and a free action generated by ξ of the
monoid R≥1 ⊂ C×. In particular, MK ⊂ M is an open subset of the form M∞ considered in the first
part of Section 5, so we can apply Theorem 5.4 to obtain a QK metric (N, gN) associated to the PSK
manifold (CHn, gM , ωM ), and given by (5.5). We then obtain the following immediate corollary using
Proposition 5.6:

Corollary 5.10. There is a neighborhood N∞ ⊂ N+ of ρ = ∞, where both QK metrics gcFS and gN
associated to (CHn, gM ) are defined and positive definite. In particular gN gives a deformation of gcFS
on N∞.

A interesting and simpler case is given by taking n = 0, whereM = C× andM = CH0 = {∗} reduces
to a point. The 1-loop corrected Ferrara-Sabharval metric gcFS associated to this case is known as the
universal hypermultiplet. For c ≥ 0 it is a complete QK metric [CDS17, Corollary 15] on

NUH :=
T ∗

C
× × Rσ

Heis(Λ∗)

∣∣∣
Rρ>0

(5.18)

where Heis(Λ∗) → C× and its fiber-wise action on T ∗C××Rσ → C× is as in the proof of Proposition 4.2,
and Rρ>0 = {z0 ∈ C× | ρ = 2π|z0|2 − c > 0, Arg(z0) = 0}. NUH has only one non-compact direction
given by ρ, and hence two infinite ends corresponding to ρ → ∞ and ρ → 0. In [CRT21, Theorem 4.6]
it is shown that for ρ0 > 0, the subset {ρ > ρ0} ⊂ NUH has finite volume, while {0 < ρ < ρ0} ⊂ NUH

has infinite volume. Hence, we obtain:

Corollary 5.11. Let (N+, gN) be the (positive definite) QK metric from the previous example, associ-
ated to the PSK manifold M = {∗}. Then (N+, gN ) gives a deformation of the universal hypermultiplet
(NUH, g

c
FS) near its infinite end of finite volume.

A Coordinate computation of the instanton deformation of gcFS

In this appendix we prove Theorem 5.4.

Proof. (of Theorem 5.4) We start computing − 1
f g̃P , and then deal with the restriction to N . To ease

the notations, we will omit pullbacks by projections. Furthermore, we denote Zi := Z∂yi
= zi.

We will use the following expressions for θPi , which follow from their definition (4.31) together with
the formulas for η, f and ωα given in (4.12), (4.20) and (3.20), respectively:
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θP0 = −
1

2
df = −2πrdr −

1

2
df inst

θP1 = η +
1

2
ιX(2πgN ) = η + 2πιV gN = Θ+ 2π

(1
2
r2η̃ +

∑

γ

Ω(γ)ηinstγ

)

= dσ + 2π
(1
2
r2η̃ −

1

8π2
〈θ, dθ〉 +

∑

γ

Ω(γ)ηinstγ

)

θP2 =
1

2
ιX(2πω2) = 2πιV ω2 =

(
Re(ZiYi)− Im

(∑

γ

Ω(γ)2πAinst
γ (V )dZγ

))

= Re
(
ZiWi + ZiW inst

i + 2πi
∑

γ

Ω(γ)Ainst
γ (V )dZγ

)

θP3 = −
1

2
ιX(2πω1) = −2πιV ω1 =

(
Im(ZiYi) + Re

(∑

γ

Ω(γ)2πAinst
γ (V )dZγ

))

= Im
(
ZiWi + ZiW inst

i + 2πi
(∑

γ

Ω(γ)Ainst
γ (V )dZγ

))

(A.1)

We start by computing

2

f1
η2 −

2

f
(θP1 )

2 ⊂ g̃P (A.2)

In order to do this, we use the expression of η in (4.14), of f1 and f in (4.20), and of f inst and f inst
1

in (4.22) to get

2

f1
η2−

2

f
(θP1 )

2 =
2

f1

(
Θ+

c

2
η̃+

f1
2
η̃+2πηinst−

f inst
1

2
η̃
)2

−
2

f

(
Θ+

c

2
η̃+

f

2
η̃+2π

∑

γ

Ω(γ)ηinstγ −
f inst

2
η̃
)2

(A.3)
we wish to rewrite this in such a way that Θ + c

2 η̃ only appears in one term. We will use the notations

ηinst+ :=
1

2

((
2πηinst −

f inst
1

2
η̃
)
+
(
2π

∑

γ

Ω(γ)ηinstγ −
f inst

2
η̃
))

ηinst− :=
1

2

((
2πηinst −

f inst
1

2
η̃
)
−
(
2π

∑

γ

Ω(γ)ηinstγ −
f inst

2
η̃
)) (A.4)

so that we can rewrite (A.3) as follows

2

f1
η2 −

2

f
(θP1 )

2 =
2

f1

(
Θ+

c

2
η̃ +

f1
2
η̃ + ηinst+ + ηinst−

)2

−
2

f

(
Θ+

c

2
η̃ +

f

2
η̃ + ηinst+ − ηinst−

)2

=
( 2

f1
−

2

f

)(
Θ+

c

2
η̃ + ηinst+

)2

+ 2
( 2

f1
+

2

f

)(
Θ+

c

2
η̃ + ηinst+

)
ηinst−

+
2

f1

(f1
2
η̃ + ηinst−

)2

−
2

f

(f
2
η̃ − ηinst−

)2

(A.5)

After completing the square for the terms with Θ in (A.5) and organizing the remaining terms, the
previous expression can be written as

2

f1
η2 −

2

f
(θP1 )

2 =
( 2

f1
−

2

f

)(
Θ+

c

2
η̃ + ηinst+ +

f + f1
f − f1

ηinst−

)2

+
(f1
2

−
f

2

)(
η̃ +

( 4

f1 − f

)
ηinst−

)2

(A.6)

We now compute

2πgN −
2

f
(θP0 )

2 ⊂ g̃P (A.7)

We recall that we can write gN as (see Corollary 3.17):
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gN = π∗
MgM +

∑

γ

Ω(γ)V inst
γ |dZγ |

2 +
1

4π2
YiM

ijY j (A.8)

while using (2.11) and omitting in the notation pullbacks by projections we have

2πgN −
2

f
(θP0 )

2 = 2π
(
dr2 + r2(η̃2 − gM ) +

∑

γ

Ω(γ)V inst
γ |dZγ |

2 +
1

4π2
YiM

ijY j

)
−

1

2f
(df)2 (A.9)

Using the “dilaton” coordinate ρ = 2πr2 − c we obtain:

2πgN −
2

f
(θP0 )

2 =−
ρ+ 2c− f inst

4(ρ+ c)(ρ+ f inst)
dρ2 + (ρ+ c)(η̃2 − gM ) + 2π

∑

γ

Ω(γ)V inst
γ |dZγ |

2 +
1

2π
YiM

ijY j

−
1

2(ρ+ f inst)

(
2dρdf inst + (df inst)2

)

(A.10)

where we combined the dρ2 terms coming from 2πdr2 and df2. The change to ρ is done to compare more
easily with gcFS.

Finally, since θP2 and θP3 are the real and imaginary part of the same complex form, we get

−
2

f
((θP2 )

2 + (θP3 )
2) = −

2

f

∣∣∣ZiWi + ZiW inst
i + i

(∑

γ

Ω(γ)2πAinst
γ (V )dZγ

)∣∣∣
2

(A.11)

Combining the results (A.6), (A.10), (A.11); writing the coefficients in terms of ρ, the constant c and
instanton correction terms; and using the notation

f inst
+ := (f inst + f inst

1 )/2 f inst
− := (f inst − f inst

1 )/2 (A.12)

we obtain

−
1

f
g̃P =

ρ+ c

ρ+ f inst
gM −

2π

ρ+ f inst

∑

γ

Ω(γ)V inst
γ |dZγ |

2

+
1

2(ρ+ f inst)2

(ρ+ 2c− f inst

2(ρ+ c)
dρ2 + 2dρdf inst + (df inst)2

)

+ 4
ρ+ c+ f inst

−

(ρ+ f inst)2(ρ+ 2c− f inst
1 )

(
Θ+

c

2
η̃ + ηinst+ +

f inst
+ − c

ρ+ c+ f inst
−

ηinst−

)2

−
1

2π(ρ+ f inst)
(Wi +W inst

i )(N +N inst)ij(W j +W
inst

j )

+
2

(ρ+ f inst)2

∣∣∣ZiWi + ZiW inst
i + i

(∑

γ

Ω(γ)2πAinst
γ (V )dZγ

)∣∣∣
2

+
ρ+ c+ f inst

−

ρ+ f inst

(
η̃ −

2

ρ+ c+ f inst
−

ηinst−

)2

−
ρ+ c

ρ+ f inst
η̃2

(A.13)

Now we wish to restrict the previous expression to N and use the coordinates ρ, X i (for i = 1, 2, ..., n),

θ̃i, θ
i and σ previously defined before Theorem 5.4. We also recall the normalized central charge

Xγ = Zγ/z
0. In particular, for γ ∈ Supp(γ) with γ = ni(γ)∂yi

we have Xγ = ni(γ)X
i with X0 = 1.

With respect to these coordinates

|z0|2 = r2eK =
ρ+ c

2π
eK (A.14)

where K is a Kähler potential for the PSK metric gM given by K = − log(NijX
iX

j
).
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Using (A.14) we can write

η̃ =
1

2
dc log(r2) = d(Arg(z0))−

1

2
dcK (A.15)

so that η̃|N = − 1
2d

cK.

Using (A.14) and |z0|2|N = (z0)2|N , we find that for γ ∈ Supp(Ω),

dZγ/z
0
∣∣∣
N

= ni(γ)
(
dX i +X idz

0

z0

)∣∣∣
N

= dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

)
(A.16)

so that

−
2π

ρ+ f inst

∑

γ

Ω(γ)V inst
γ |dZγ |

2
∣∣∣
N

= −eK
ρ+ c

ρ+ f inst

∑

γ

Ω(γ)V inst
γ

∣∣∣dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

)∣∣∣
2

(A.17)

Furthermore, we can write

2

(ρ+ f inst)2

∣∣∣ZiWi + ZiW inst
i + i

(∑

γ

Ω(γ)2πAinst
γ (V )dZγ

)∣∣∣
2∣∣∣

N

=
(ρ+ c)eK

π(ρ+ f inst)2

∣∣∣X iWi +X iW inst
i |N + 2πi

(∑

γ

Ω(γ)Ainst
γ (V )

(
dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

))∣∣∣
2

(A.18)

Hence, putting all together we obtain the desired expression for gN given in (5.5).

We also give the coordinate expressions for df inst|N , W inst
i |N and ηinst± |N . By Lemma 4.7 we have

df = −4πιV ω3, so by (3.11):

df inst = 2π
(∑

γ

Ω(γ)V inst
γ (ZγdZγ + ZγdZγ)−

∑

γ

iΩ(γ)

2π2

(∑

n>0

einθγ |Zγ |K1(2πn|Zγ |)
)
dθγ

)
(A.19)

On the other hand, using (A.14) and (A.16)

ZγdZγ + ZγdZγ

∣∣∣
N

=
(ρ+ c)

2π
eK

(
Xγ

(
dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

))
+Xγ

(
dXγ +Xγ

( dρ

2(ρ+ c)
+
dK

2

))

=
(ρ+ c)

π
eK

(
Re(XγdXγ) + |Xγ |

2
( dρ

2(ρ+ c)
+
dK

2

))

(A.20)

so that

df inst|N =2(ρ+ c)eK
∑

γ

Ω(γ)V inst
γ |N

(
Re(XγdXγ) + |Xγ |

2
( dρ

2(ρ+ c)
+
dK

2

))

−

√
ρ+ c

2π
eK/2

∑

γ

iΩ(γ)

π

(∑

n>0

einθγ |Xγ |K1

(
2πn

√
ρ+ c

2π
eK/2|Xγ |

))
dθγ

(A.21)

where

V inst
γ |N =

1

2π

∑

n>0

einθγK0

(
2πn

√
ρ+ c

2π
eK/2|Xγ |

))
(A.22)

On the other hand, using (A.14) and (A.16) again, we find that

(dZγ

Zγ
−
dZγ

Zγ

)∣∣∣
N

=
(dXγ

Xγ
−
dXγ

Xγ

)

ιV (|dZγ |
2)|N = −

(ρ+ c)eK

2π
Im(XγdXγ)

(A.23)
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Using the equalities (A.23) we can compute W inst
i |N and ηinst± |N . For W inst

i |N we obtain

W inst
i |N = −

∑

γ

Ω(γ)ni(γ)
[1
2

√
ρ+ c

2π
eK/2

∑

n>0

einθγ |Xγ |K1

(
2πn

√
ρ+ c

2π
eK/2|Xγ |

))(dXγ

Xγ
−
dXγ

Xγ

)
+iV inst

γ |Ndθγ
]

(A.24)
while from (4.8) and (4.16) we obtain

ηinstγ |N =
i

8π2

√
ρ+ c

2π
eK/2

(∑

n>0

einθγ

n
|Xγ |K1

(
2πn

√
ρ+ c

2π
eK/2|Xγ |

))(dXγ

Xγ
−
dXγ

Xγ

)

ηinst|N =
∑

γ

Ω(γ)
(
ηinstγ |N + V inst

γ |N Im(XγdXγ)
)
−
M ij |N
4π2

W inst
i (V )|NRe(Wj +W inst

j |N )

(A.25)

From the last equations we can find the expressions for ηinst± |N from (A.4). In particular, we conclude
that W inst

i |N and ηinst± |N have no dρ components.
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