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Abstract

This is a continuation of our study on homogeneous locally conformally Kéhler and Sasaki mani-
folds. In a recent work [2], applying the technique of modification we have determined all homogeneous
Sasaki and Vaisman manifolds of unimodular Lie groups, up to modifications. In this paper we de-
termine all such modifications explicitly for the case of Lie groups, obtaining a complete classification
of unimodular Sasaki and Vaisman Lie groups. Furthermore, we determine the biholomorphism type
of a simply connected unimodular Vaisman Lie group of each type.

Introduction

In a series of our papers ([1], [2], [7], [8]) we have studied homogeneous locally conformally Kéahler
(shortly 1cK) and Sasaki manifolds. In our recent paper [2], applying the technique of modification
we have determined all homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to
modifications. In particular, for the case of unimodular Sasaki and Vaisman Lie groups we have obtained
the following basic result.

Theorem 1 A Sasaki unimodular Lie algebra is, up to modification, isomorphic to one of the three types:
Bom1, 51(2), s[(2,R), where hap,+1 is the Heisenberg Lie algebra of dimension 2m + 1. Accordingly, a
Vaisman unimodular Lie algebra is, up to modification, isomorphic to one of the following:

R@b2m+1, R@su(Q), R@EI(Q,R) (*)

In terms of Lie groups, a simply connected Sasaki unimodular Lie group is, up to modification, isomorphic
to one of the three types: Hapi1,SU(2), SL(2,R), where Hay, 1 is the Heisenberg group of dimension
2m+1. Accordingly, a simply connected Vaisman unimodular Lie group is, up to modification, isomorphic
to one of the following: .

R x Hopy1, R x SU(2), R x SL(2,R). (%)

Note that we have u(2) = R@su(2), gl(2,R) = R®sl((2,R); and from now on we denote the nilpotent
Lie algebra R®bhoy,+1 by ghopmo or gh for short, and the corresponding Lie group R x Hay, 1 by GHapyq0
or GH for short.
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In this paper we determine all possible modifications of Sasaki and Vaisman Lie algebras in the list of
the above theorem; and thus obtain a complete classification of simply connected Sasaki and Vasiman Lie
groups. It turns out that any modification of a reductive Hermitian Lie algebra with 1-dimensional center
(in particular, R@su(2), R@sl(2,R)) is isomorphic to the original one, whereas any modification ghb,,
of ghom+o preserves the Vaisman structures, defining a new family of unimodular Vaisman solvable Lie
algebras (see Section 4). Similarly, we can see that any modification of a semi-simple Sasaki Lie algebra
with trivial center is isomorphic to the original one, whereas any modification b5,, , ; of oy, 1 preserves the
Sasaki structure, defining a new family of unimodular Sasaki solvable Lie algebras (see Section 4). Note
that some partial results on unimodular Sasaki and/or Vaisman Lie groups (from different perspectives)
have been known lately, cf. [3], [4], [5], [11]; and for non-unimodular Sasaki and/or Vaisman Lie groups,

e.g. [3], [9].

In Section 1 we determine all the complex structures on u(2), gl(2,R) and gha 42, partially extending
and elaborating the results in our previous papers. We give unified proofs for the cases of u(2), gl(2,R)
based on the fact that their complexifications are the same. It appears that the determination of all
complex structures on ghg,,42 is not known; although it can be obtained in a similar way as for the
cases of u(2),gl(2,R). In Section 2 we determine all Vaisman structures compatible with the complex
structures on u(2), gl(2,R) and ghay,to which are determined in Section 1. We again make the proofs
for the cases of u(2), gl(2,R) in a unified form, but the consequences are quite different: as we have seen
in our previous papers, while all the 1cK structures on u(2) are of Vaisman type, there are on gl(2,R)
both 1cK structures of Vaisman type and those of non-Vaisman type. For the case of ghs,,42, we know
([10] [7]) that the only 1cK nilpotent Lie algebras are of Heisenberg type, that is, gham,12; and all these
IcK structures are of Vaisman type. Here, we determine all Vaisman structures on ghe,,+2 compatible
with the complex structures we have obtained in Section 1. In Section 3, we review and discuss in some
detail the technique of modification in the category of Hermitian Lie algebras and Sasaki Lie algebras.
The key points are that Modification is equivalence relation and preserves unimodularity, as shown in
our previous paper. In section 4 we determine all possible modifications of 1(2), gl(2,R) and ghay,42; and
thus obtain a complete classification of unimodular Sasaki and Vaisman Lie algebras. In Section 5, we see
that the complex structures on u(2), gl(2,R) and gha,, 2 are biholomorphic to C?\{0},C x H and C™*!
respectively; and any modification ghj,, o of gha,, 2 preserves the original complex structure cmH,

1 Complex structures on gl(2,R),u(2) and ghoy, 2

Recall that any left-invariant complex structure on a Lie group G with Lie algebra g induces an endo-
morphism .J € End g such that J2 = —Id and N; = 0, where N; € /\2 g* ® g is the Nijenhuis tensor of
J, defined with the help of the Lie bracket of g by

N;y(X,)Y):=[JX,JY] - [X,Y] - JX,JY] - JJX,Y] (1)
for X,Y € g.

An endomorphism J € End g such that J? = —Id and N; = 0 is called a complex structure on the Lie
algebra g and defines a left-invariant complex structure on any Lie group with Lie algebra g.

Definition 1 Complex structures J; and Jo on a Lie algebra g are equivalent if there exists an automor-
phism ¢ of g such that ¢J1 = Ja¢.

In this section we determine all complex structures on u(2), gl(2,R) and ghay42, partially extending
and elaborating the arguments in our previous papers.



We already know all complex structures on gl(2,R) = R@sl(2,R) and u(2) = R@su(2) ([1], [7], [12]).
Since the complexifications of both Lie algebras are the same complex Lie algebra gl(2,C), we can treat
the determination of all complex structures on them simultaneously.

For g1 := R ®sl(2,R), take a basis { X1, Y7, Z1} for s[(2,R) with Lie bracket defined by
(X1, V1] =71, [Z1, Xa] = -1, [Z1, 1] = Xq, (2)

and T as a generator of the center R of g1, where we set

1/0 1 1/1 0 1/0 -1
X1_§<1 0>’Y1_§(0 —1)’Z1_§<1 0 >

For go := R @ su(2), take a basis {X2,Ys, Z5} with Lie bracket defined by
[X27}/2] = _227 [ZQ7X2] = _}/27 [227}/2] = X27 (3)

and T a generator of the center of go, where we set

ooz(i 9 )= (10) 2= (0 &)

We know that there exists a one-to-one correspondence between complex structures J on a (real) Lie
algebra g and complex Lie subalgebras h C gc which satisfy gc = h @ b (direct sum of vector spaces). It
is given by J — by :={X —/-1JX|X € g}.

For g1 and g2, we have the same complexification gc of g; (i = 1,2) given by
gc =9l(2,C) =gl(2,R) @ C=u(2) ® C.

We determine all complex subalgebras b of gc¢ satisfying gc = h © b, and thus determine all integrable
complex structures on g; (i = 1,2). Note that the complex conjugation is defined by its fixed point set

Gi-

We define a basis 8; = {T, U, V;, W;}, i = 1,2, for g¢ induced from g;, where T is a generator of the
center C of gc, and

Ui = V712, Vi = 3 (Xi ~ VOV, W= — (X 4 VI,

N | =

The non-zero Lie bracket are given by

Vi Wil = (~1)' 503, (U3 Vil = Vi, [0 W] = ~ W05

and the conjugation with respect to g;, ¢ = 1,2, is given by

T:Tu E:_Uh Vl:_Wlu WZ:_‘/;

In the following, we can safely omit subscripts ¢, since the Lie brackets are the same except the sign
for [V;, W;] = (—1)i%Ui, and conjugations are the same for §;, i = 1, 2.



Let a be the center of gc generated by T" and b the subalgebra of gc generated by U, V, W; that is,

we have

gc=adb
where a =< T >¢,b =< U,V,W >¢. Let w be the projection 7 : gc — b and ¢ the image of by m, then
¢ is a subalgebra of b which satisfies

b=c+T,
and dimeNt = 1. We can set abasisnof h asn = {P+Q, R} (P € a\{0},Q, R € b) such that Q € ¢NF,
and v = {Q, R} is a basis of ¢

h:<P+Q7R>C7 C:<Q,R>C, b:<Q7R7R>C'

Furthermore, since we have [Q, R] = [P+ Q, R] € cNh =< R >c and [b, b] = b, we see that [Q, R] = oR
with 0 € C\ {0}; and since @ € ¢NT we can also assume Q + @ = 0 so that @Q is of the form
aU + bV + bW (a € R, b € C).

We first consider the case where R = ¢V +rW (g, € C). We see by simple calculation that if b # 0,
then ¢ = sb,r = sb for some non zero constant s € C. But then R = —ER, contradicting the fact that
S

B ={Q, R, R} is a basis of b. Hence we must have b = 0, and q # 0,7 = 0 with 0 = a or ¢ = 0,7 # 0 with
o = —a. Therefore we can take, as a basis of h, n = {T +6U,V} or {T + 06U, W} with 6 = k+ /11 € C
and k # O:

h=<T+6U,V >c or <T+6UW >¢c.

Note that the latter defines a conjugate complex structure h of the former type b with the parameter —¢.
These conjugate complex structures are not equivalent (unless [ = 0) but define biholomorphic complex
structures on the associated Lie group G (see Section 5).

__ Inthe case where R = pU+qV +rW, p,q,r € Cwith p # 0, we show that there exists an automorphism
¢ on gc which maps hg to b, preserving the conjugation, where g is a subalgebra of gc of the first type
with p = 0. As in the first case, we must have [Q, R] = oR, 0 € C\ {0}. We may assume that p = 1. We
see, by simple calculation that

(a—0)g=0b, (a+0o)r="0, (—1)"(br —bq) =20

with b,q,7 # 0 and a # +o, from which we get

a’ + (_1)i|b|2 = 027 qr = _(_1)i7
4aRe(o)
la? = Ir]* = —
o]
From the first equation, we see that o must be real or pure imaginary. If o is pure imaginary, the
third equation vanishes. We have then [R, R] = 0, which contradicts the fact that b is semi-simple and
thus contain no abelian ideals.

We can define an automorphism ¢ on b by setting

]

o) = 20, 0(v) = W sw) = Mg

It extends to an automorphism g/b\ on gc which satisfies the required condition. Hence we have the
following.



Proposition 1 Fach g;, i = 1,2, admits a family of complex structures J; 5,0 = k + /—11 (k # 0),
defined by
Jis(T —=12)=kZ, Jis(kZ)=—(T —12), J;sXi = £Y;, JisYi = FX,.

Conversely, the above family of complex structures exhausts all complex structures on each of the Lie
algebras g;.

We next determine all complex structures on gh = R @ ha,, 41 in the same vein as in the previous
cases. gh is a nilpotent Lie algebra with a standard basis § = {7, X,,Y;,Z | i, = 1,...,m} for which
non-zero Lie brackets are given by

(X;,Yi|=2,i=1,2,...m.

Let ghc = C @ bham1,c be the complexification of gh, where hop,41,c is the complex Heisenberg Lie
algebra. We have a basis {T,U,V;, W, | i,j =1,...,m} for ghc, where T is a generator of the center C
of ghc, and

1 1
U=—V=1Z, Vi=5(Xi = V=1Y), W) = =3 (X; +V-1Y)).

The non-zero Lie brackets are given by
1.
Vi, W;] = §U, 1=1,2,...,m;

and the conjugation with respect to g is given by

Let a =< T >¢ be the center of ghc and b = hoypi1.c =< U, Vi, W, | 4,5 = 1,...,m >c the subalgebra
of ghc generated by U, V;, W;; that is, we have

ghc =ad®b.
Let m be the projection 7 : ghc — b and ¢ the image of ) by 7, then ¢ is a subalgebra of b which satisfies
b=c+r,

and dimecNT=1. We can set a basisnof h asn={P+ Q,R;} (P €a\{0},Q,R;, €b, i =1,2,....m)
such that @ € ¢N¢, and v = {Q, R;} is a basis of ¢

h:<P+Q7Rl >c, ¢ =< QuRi >c, b=< QaR“R] >c -

Furthermore, since Q € ¢ N we can also assume @ + @ = 0 so that Q is of the form aU + > biVi+
> b;W;(a € R,b; € C). Since we have [b,b] =< U >¢, we can set [Q,R;] = o;U,[Rj, Ry] =
Bi kU (i, Bjx € C) and thus [Q, Ri] = a;U, [R;, Rk] = —B;1U. Tt follows that [c,¢] = [c,¢], and thus
it is a subspace of ¢cNT =< @ >c. In particular, we get [Q, R;] = 0:Q, [R;, Ri] = 7;1Q (04, 7j 1 € C).
Since [Rj, Rl, [Q, R;] € [b,h] while @ ¢ b, we must have o; = 0,7;, = 0 for all 4, j, k. Hence we have
[@Q,R;] = [R;, R] = 0 for all 4, j, k; and thus [c,¢] = [e,¢] = 0. In particular, @Q is in the center of b, i.e.
Q = aU (a # 0) and b; = 0. Therefore, we have < U >c¢c= [b,b] = [¢,T] =< Q >¢. We can also assume
(without loss of generality) the following:




where R, € < V;,W; >c and ¢; = +1.

For b =< Q, R;, R; >¢ we define an automorphism ¢ on b by

o(U) =Q,
o(V;) = Ri,¢(W;) = —R; for & =—1,
¢(Vi) = Ri,¢(W;) = —R; for g =1,

which extends to an automorphism (E on ghc preserving the conjugation. We have thus shown the
following.

Proposition 2 The Lie algebra gh = ROhap, 11 admits a family of complex structures J = Js. ¢, o,
c++v/—-1d e C (c#0),e; = +1, defined by

J(T —dZ) = cZ, J(cZ) = —(T — dZ), JX; = &;Y;, JY; = —;X;.

Conversely, the above family of complex structures exhausts all complex structures on gh.

Remark 1 In Proposition 2, the complex structure J with J(T —dZ) = c¢Z, JX; = ;Y and that with
J(T —dZ) = —cZ, JX; = —&;Y; are conjugate, and biholomorphic (with the opposite orientations if m
is even).

2 Vaisman structures on gl(2,R), u(2) and ghoy,1o

Definition 2 An almost Hermitian structure on a Lie algebra g is a pair ({-,-),J) consisting of a scalar
product (-,-) and a skew-symmetric complex structure J € so(g). The triple (g, (-,-), J) is called an almost
Hermitian Lie algebra. The almost Hermitian structure is called integrable (in which case the adjective
almost is dropped) if the Nijenhuis tensor Ny (1) vanishes, that is, N;(X,Y) =0 for all X,Y € g.

Definition 3 A Hermitian Lie algebra (g, (-,-),J) is called Kéhler if its fundamental 2-form w = (-, J-)
is closed. It is called locally conformally Kéhler (shortly 1cK) if

dw=wAN0

for some closed 1-form 0 € g* (called the Lee form). An lcK Lie algebra is called Vaisman if VO = 0 holds,
where V € g* ® s0(g) denotes the Levi-Civita connection. Allowing possibly indefinite scalar products, we

also consider the notion of locally conformally pseudo-Kéhler Lie algebras. Again they are called Vaisman
if VO =0 holds.

Note that lcK (respectively, Vaisman) Lie algebras (g, (-,-), J) correspond to Lie groups G with left-
invariant 1cK (respectively, Vaisman) structure. The correspondence is one-to-one if we restrict to simply
connected Lie groups.

Definition 4 A contact metric structure on a Lie algebra g of dimension 2n+1 is a quadruple (¢,n, (-, -), j)
consisting of a contact structure ¢ € g*, dA(dp)™ # 0, n € g (called the Reeb field), i(n)¢ = 1,i(n)do = 0,
a (1,1)-tensor J,J? = =1 + ¢ @ n and a scalar product {-,-), (X,Y) = ¢(X)p(Y) +d¢(JX,Y) for all
X, Y eg.



Definition 5 A Sasaki structure on a Lie algebra g is a contact metric structure (¢,n, (-, ), j) satisfying
(I, X],Y)+(X,[n,Y]) =0 for all X,Y € g (Killing field), and the integrability of J = J|D on D = ker ¢
(CR-structure).

Note that for any simply connected Sasaki Lie group G, its Kdhler cone C(G) is defined as C(G) =
R+ x G with the Kéhler form Q =rdr Ao+ % dgb, where a compatible complex structure J is defined by

Jn = —8T, J@ = (—r)n and J|’D J. For any Sasaki Lie group G with contact form ¢, we can define
an IcK form w = TQ Q= fdr A ¢ + do; or taking t = —2logr, w = —dt A ¢ + d¢ on R x G, which is of

Vaisman type. We can define a family of complex structures J compatible with w by
J(0y — dn) = en, J(en) = —(9, — dn), J|D = J,

where ¢,d € R (¢ # 0)). In other words, we can express J as

R 2 2 =N ~
JO; = <—£l>8t+ (C d >77, Jn = (—l) 8t+<é)775 JID=J.
C C C C

Conversely, any simply connected Vaisman Lie group is of the form R x G with lcK structure as above,
where G is a simply connected Sasaki Lie group.

We already know that the only reductive Lie algebras which admit 1cK structures are R @ sl(2,R)
and R @ su(2) ([1], [7]). For g1 = R @ sl(2,R), take a basis {X;,Y1, Z1} for s[(2,R) with Lie brackets
defined as in (2) and T as a generator of the center R of g1. Let ¢, 21, y1, 21, be the Maurer-Cartan forms
corresponding to T, X1, Y1, Z; respectively; then we have

dt:O,d.Il :yl/\zl,dylzzl/\xl,dzl :yl/\Il

and an 1cK structure wy = 23 At + y1 A 21 compatible with an integrable complex structure J; on g
defined by
Xy =V, )"V =Xy, W T=27,h7 =-T.

For go = R @ su(2), take a basis {Xs,Ys, Zo} for su(2) with Lie brackets defined as in (3) and T
as a generator of the center R of go. Let t,x2,y2, 22, be the Maurer-Cartan forms corresponding to
T, X5,Ys5, Z5 respectively; then we have

dt = 0,dwy = y2 N\ z2,dy2 = 22 N x2,dz0 = 22 N Yo

and an IcK structure ws = 2o At + x5 A yo compatible with an integrable complex structure J> on go
defined by
JoYo = Xo, JoXo = =Y, oT = Zs, JoZo = —T.

We know ([1], [8]) that any 1cK structure is of the form
Wiy = At +dy,

which is compatible with the above complex structure J; on g;, where ¢ = ax + by + cz with a,b,c € R.

We see that the bilinear form (U, V); 4 = wi(J;U, V) is represented, w.r.t. the basis {7, X;,Y;, Z;},
by the matrix



c b —a O c b —a 0
b ¢ 0 a -b ¢ 0 —a
A= —a 0 ¢ b |’ Az = a 0 ¢ —=b
0 a b c 0 a b c

Since (-, )i must be symmetric and positive definite, we must have a = b = 0 for go.

For g1, the characteristic polynomial of A; is given by
Da, (u) = {(u—0)* = (a® + 1)},

and has only positive roots if and only if ¢ > 0,¢? > a? + b?. The Lee form is # = ¢ and the Lee field is
1
&= B(CT —bX +aY),

with D = ¢2 — a? — b%. We have also ‘

<€7§>11¢ = 5
We can see that ([§,U], V)14 + (U, [§,V])1,4 Z 0 unless a =b=0. In fact for U=V = Z;,

2
<[€7Z1]721>11¢ + <Z17 [5721]>171/1 - 2<[§5 Z1]7Z1>1-,1ZJ = —5(6L2 + bz) =0
if and only if a = b = 0. Conversely for the case a = b = 0, it is easy to check that

<[§7 U]7 V>1,1Z1 + <U7 [57 V]>1,"/J =0
for all U, V. Therefore we have shown the following.
Proposition 3 (i) For Ji and w1,y defined above, (-, )1,y defines a (positive definite) lcK metric on

gl(2,R) if and only if ¢ > 0,¢? > a® +b%. It is of Vaisman type if and only if ¢ >0, a = b = 0; and
it is of non-Vaisman type if and only if ¢ > 0, ¢ > a® + b*> > 0.

(i1) For Jy and way defined above, (-, )2y defines a (positive definite) lcK metric on u(2) if and only
if ¢ >0,a =0=0; and thus it is always of Vaisman type.

Remark 2 We can see that the Vaisman structure wy = z1 At + y1 A x1 is compatible with the complex
structures: J1 X1 = Y1, J1(T — dZy) = c¢Zy; and the Vaisman structure we = zo At + x2 Ays is compatible
with the complex structures: JoYo = Xo, Jo(T—dZ3) = ¢Zs. Hence, all complex structures on gl(2,R), u(2)
admit their compatible Vaisman structures, up to conjugation (see Remark 1).

For the case of ghay,42, which is a nilpotent Lie algebra with a standard basis 5 = {T, X;,Y;, Z} for
which non-zero Lie brackets are given by

[X’M}/’L] = Za 1= 1725"'5m5

We have the canonical Vaisman structure w = zAt + >, y; Ax;, which is compatible with the complex
structure J = J(5,, e5,...c0),0 = ¢+ /—1d € C (¢ # 0),&; = £1, defined by

J(T —dZ) = cZ, J(cZ) = —(T — dZ), JX; = &;Y;, JY; = —;X;,

ifand only ife; = 1,1 =1,2,...,m.



As in the previous cases, any IcK structure is of the form
Wy =P AL+ di,

where ¢ = 37" a;zi + 3070, bjy; + coz with ai,bj,co € R. By the compatibility with one of the above
complex structures J, (-, )y = w(J+,) must be symmetric and positive definite. Hence a; = b, =0, i =
1,...,m, cco > 0 and coe; > 0.

Proposition 4 For J and wy, defined above, (-,-)y defines a (positive definite) lcK metric on ghomt2 if
and only if cco > 0 and a; = b; = 0, sgn(co)e; =1 for i =1,2,..,m; and it is always of Vaisman type.
More generally, (-,-)y is a locally conformally pseudo-Kdhler metric if and only if co # 0 and a; =b; =0
fori=1,2,...m; again it is of Vaisman type.

Proof. It remains to check the Vaisman property. A straightforward calculation shows that the Lee field,
the metric dual of the Lee form 9, is of the form o7 + Z with ad+ 8 = 0 and that this implies V¢ = 0.

3 Modifications of Hermitian Lie algebras

In this section we review and discuss in some detail modification in the category of Hermitian and Sasaki
Lie algebras.

Given a Lie group G with Lie G = g, there is a one-to-one correspondence between (almost) Hermitian
structures on g and left-invariant (almost) Hermitian structures on G. We denote by so(g) (respectively,
u(g)) the orthogonal (respectively, unitary) Lie algebra of (g, (-,-),J); and by Dery(g) the subalgebra of
gl(g) consisting of skew-Hermitian derivations of g:

Dery(g) := Der(g) Nu(g),

where Der (g) is the derivation algebra of g.

Definition 6 A modification of an almost Hermitian Lie algebra (g, (-,-),J) is a Lie algebra homomor-
phism

¢ : g — Dery(g)
such that

(1) ¢(lg, g]) = 0 and

(i1) p(Imp(g)) =0, where Im¢(g) := ¢(g)g = {AX | A € ¢(g), X € g} denotes the image of the linear
Lie subalgebra ¢(g) C Dery(g).

Proposition 5 Given a modification ¢ of an almost Hermitian Lie algebra (g, (-,-),J), we define Lie
bracket [-,-] on g by
(X, Y] == [X, Y]+ ¢(X)Y — o(Y)X.

Denoting the resulting Lie algebra by g4, we obtain a new almost Hermitian Lie algebra (g4, (-,-),J).
Then (g, (-,-),J) is integrable if and only if (g, (-,-),J) is.



Proof. Using ¢([g,g]) = ¢(Im ¢(g)) = 0 and the abbreviation ¢x = ¢(X), we compute

[X, Y], Z]y = [[X,Y]+oxY —ovX,Z]g
= [[X,Y]+oxY — oy X, Z] — ¢2([X, Y] + dxY — ¢y X)
(X, Y]+ oxY — oy X, Z] = (02X, Y] = [X,02Y] = ¢20xY + ¢pzdy X.
So
SNX Y6 Zle = D (—0z6xY +éz6vX)= > (—6xdvZ+ ¢y dxZ)
cyclic cyclic cyclic
= - Z oix,y14 = 0.
cyclic

Using that [¢(g), J] = 0, one can easily check that the Nijenhuis tensor N? of J with respect to the
modified Lie bracket [-, -], coincides with N .

Proposition 6 Let (g4, (-,+),J) be a modification of a Hermitian Lie algebra (g, (-,-),JJ). Then (g4, {(-,-),J)
Kahler (respectively, lcK) if and only if (g, (-,-),J) is Kdhler (respectively, lcK).

Proof. The Levi-Civita connection V¢ of (g, (-,)) is given related to the Levi-Civita connection V
of g by
V? =V + 6. (4)
In fact, first V¢ is metric since V is metric and ¢ € g* ® so(g). Second, the torsion T'¢ of V¢ is related
to the torsion T" of V by

T(X,Y) =0.
Next, since ¢ takes values in the unitary Lie algebra u(g) = {4 € so(g) | [A, J] = 0} it follows from (4)

that
V] =VJ and V%w = Vw.

As a consequence, d®w = dw, where d® denotes the (Chevalley-Eilenberg) differential in the Lie algebra
gs. This proves that w is closed (respectively, conformally closed) in gy if and only if it is in g.

Proposition 7 A modification (g4, (-,-),J) of a Vaisman Lie algebra (g, (-,-),J) (of dimension > 4) with
Lee form 0 is Vaisman if and only if (Im ¢(g)) = 0.

Proof. By Proposition 6 we know that (g, (-, ), J) is 1cK. It is Vaisman if and only if V#6 = 0. Since
V6 = 0, the latter condition amounts to 6 o ¢x = 0 for all X € g, which is equivalent to §(Im ¢(g)) = 0.

4 Unimodular Sasaki and Vaisman Lie algebras

Let us denote by t7 = R? the Cartan subalgebra t? C u(g) consisting of purely imaginary diagonal
matrices. Given a linear map

i R#PHL g4,
we can define a meta-abelian Lie algebra m := R**1 x ;, C? by considering R*?T! as an abelian subalgebra
acting on the abelian ideal C? by 1. We decompose R?’*! = RZ; @ CP and consider the standard
symplectic form won V=CP @ C? =C™ =R*", m =p +q.

10



Lemma 1 The pull back of w via the projection m — V. A\Zyg +v — v (A € R,v € V), defines a 2-cocycle
W N m.

Proof. We check that }° ., ;. wa([X,Y],Z) = 0 for all X,V,Z € m. This is obviously satisfied if all
three vectors belong to the abelian subalgebra RZy @& CP or to the abelian ideal C9. If X7, X9 € RZy @ C?
and Y € C? then

D wn([X1, X2, Y) = wn((X2)Y, X1) — wn((X1)Y, X2) = 0,

cyclic

since CP and C? are w-orthogonal. Similarly, taking X € RZy @ CP and Y7,Ys € C? we obtain

D wn([X,Y1],Y2) = wn(¥(X)Y1, Y2) — wm((X)Y2, Y1) =0,

cyclic
since (X)) € u(q) C sp(R?7).
Next we consider the one-dimensional central extension

0—>RZ; — gh(yy) >m —0

of m by the cocycle wy. Explicitly, this means that the Lie bracket of gh(v)) is related to the Lie bracket
[, ]m of m by
(X, V] = [X, X]m +wn(X,Y)Z1, XY €m,

and [Z1,m] = 0. Note that gh(v) is a solvable Lie algebra, which is at most of 3-step type.

Theorem 1 Let g be a unimodular Lie algebra (of dimension > 4) which admits a Vaisman structure.
Then g is isomorphic to one of the following.

(1) g =u(2) = R@su(2),
(ii) 3 = gl(2,R) = R®sl(2,R), or
(iii) a solvable unimodular Lie algebra gh(v)) associated with a linear map 1 : R?T1 — R? as described

above.

Proof. By [2, Theorem 2.1] g is a modification of one of the following Lie algebras endowed with a
Vaisman structure: u(2), gl(2,R), or gh = R®hay, 1. We claim that in the first two cases any modification
gy of g is isomorphic to g. This follows from the next lemma. To state it we first need to define the
notion of a modification for Riemannian (rather than almost Hermitian) Lie algebras.

Definition 7 A Riemannian Lie algebra (g,({-,-)) is a Lie algebra endowed with a scalar product. A
modification of (g, (-,-)) is a Lie algebra homomorphism

¢ : g — Derso(g) = Der(g) Nso(g)

such that ¢([g,g]) = 0 and ¢(Im ¢(g)) = 0.

As before, a modification ¢ of a Riemannian Lie algebra (g, (-,-)) gives rise to a new Riemannian Lie
algebra (ge, (-,-)). The Lie algebra g, as well as the Riemannian Lie algebra (g4, (-,-)) will be again
called a modification of (g, (-, -)).

11



Lemma 2 Let g =R @ s, s = [g,9], be a reductive Lie algebra with one-dimensional center and (-,-) a
scalar product on g. Then any modification g of (g, (-,-)) is isomorphic to g.

Proof. Let Z be a generator of the center of g. Any modification ¢ : g — Derg,o(g) is completely
determined by ¢(Z) € Dergo(g), since ¢([g,9]) = ¢(s) = 0. Since the center is invariant under any
derivation and is one-dimensional, any skew-symmetric derivation necessarily acts trivially on the center.
This proves that Derg,(g) consists of inner derivations, that is ¢(Z) = adx, for some element X, € s.
The modified Lie bracket is therefore given by

(X +AZ)Y +uZly = [ X, Y]+ dadyx, Y —padx, X, X,Yes ApeR
One can easily check that the map
X+XM—»X+X+2X) (Xes AeR)

defines an isomorphism g4 = g.

Next we will describe all possible modifications of the Vaisman Lie algebra gh = R @ ha,n41. We have
seen in Section 2 that (up to an automorphism of gh) the Vaisman structure ((-,-),.J) is given by the
canonical Hermitian structure on V = C™ = R?>™ which is extended to gh = RZy +RZ; + V as follows,
where Z; denotes a generator of the center of hay, 1 = RZ; + V such that [X,Y] = w(X,Y)Z; for all
X,Y € V and Zy denotes a generator of the R-factor in gh = R @ hoy1. The scalar product of V
is extended such that Z,, Z; are orthonormal and perpendicular to V. The complex structure of V is
extended such that JZy = Z;. The Lee form 6 is then given by 6 = (Zp,-). We denote this Vaisman
structure by ((-,-), J).

Using the invariance of the center and the derived ideal under any derivation, it is easy to see that
Dery(gh) = u(m) with the natural action on V.= C™ C gh. Let ¢ : gh — u(m) be a modification of the
Vaisman Lie algebra (gh, (-, ), J). Note that due to ¢(gh) C u(m) C ker0, (ghe, (-, -), J) is again a Vaisman
Lie algebra in virtue of Proposition 7. Since ¢([gh, gh]) = 0, ¢ factorizes through the abelian quotient Lie
algebra gh/RZ; 2 RZy,®V. In particular, ¢(gh) C u(m) is abelian and we can assume (up to conjugation
in u(m)) that ¢ takes values in the standard Cartan subalgebra t” C u(m). We denote by ¢ : RZo@V — t™
the induced homomorphism. Since ¢(gh) is a subalgebra of u(gh), we can decompose V- =V, @ V; as
an orthogonal sum of J-invariant subspaces, where Vy = ker¢(gh) := {v € V | ¢(gh)v = 0} = CP and
Vi = Im¢(gh) = C9. This implies that ¢ : gh — t7 C u(V1) = u(g). Next the condition ¢(Im ¢(gh))
implies that ¢ vanishes on V; and, hence, can be considered as a linear map 1 : RZy @ Vo — t¢. Now
one can check that the modification ghy coincides with the Lie algebra gh(v) described above. Note that
gh(v) is a unimodular solvable Lie algebra since modifications preserve unimodularity.

Corollary 1 Let b be a unimodular Lie algebra which admits a Sasaki structure. Then g is isomorphic
to one of the following.

(i) b = su(2),
(i) b =sl(2,R), or

(iii) a solvable unimodular Lie algebra Ham11(p) associated with a linear map ¢ : R*P — RY as described
above.
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5 Biholomorphism types of gl(2,R), u(2) and gha,2

In this section, we determine the biholomorphism type of each simply connected unimodular Lie group
listed in the main theorem; namely we show that R x SL(2,R), R x SU(2), and GHapr2 = R X Hoptn
with its modification G Ha,,12(1)) are biholomorphic to H x C, C?\{0}, and C™*! respectively. Note that
this result is concerned with all invariant complex structures on these Lie groups we have determined in
Section 1, which is independent of the existence of Vaisman structures on them. It turned out as seen in
Section 2 that all these complex structures admit compatible Vaisman structures.

For the case of R x ﬁ@, R), we first consider a diffeomorphism ®:

®:GLT(2,R) — H x C*

a b ac+ bd D
9—(c d)ﬁ(m)”—l(m)’d”—“%

where D = det g = ad — bc > 0. Note that by the Iwasawa decomposition g can be expressed uniquely as
- 1 =z VY 0 cosf) —sinf
g_\/5<0 1)( 0 \/§1><sin6‘ cosf ’

ac + bd D v=To _d+v-1lc
T=\|\>STm | Y= =75/ € = T 5
PR R NE
If we consider the canonical action of GL*(2,R) on H, then we have g - /—1 = z + /—1y with the
isotropy subgroup R* x SO(2) at v/—1. We see that ® defines a biholomorphism between GL™ (2, R) and
H x C*. In fact, recall that for g1 = R @ sl(2,R), we have a basis {T, X1,Y1,Z1} of g1 as

1/1 0 1/0 1 1/1 0 1/0 -1
T‘§<o 1>’X1_§<1 0>’Y1_§(0 —1)’Zl_§<1 0 >

They are pushed forward by ® to the vector fields, which are expressed in the local coordinates (z +
V=Ty,reV=1), 4> 0,7 = V@ + & > 0 of H x C*, as

defined by

where

0 ) 0 1 g r . 0
X = ycos29% - ysm296—y +3 00329% t3 5111295,
. 0 o 1 . a r 0
Y! = ys1n20% + ycos296—y +3 SIDQQ% -3 cos295,
10 r 0
r_ Y r_ Y
=50 20r’
respectively. For the canonical complex structure J on H x C* defined by
0 0 0 0

%:a_yv (TE):%a

we have the compatibility
JX| =Y, JT" = Z};

and thus @ defines a biholomorphic map. Then it induces a biholomorphic map ® between their universal
coverings (R x SL(2,R), J) and H x C, where J is the induced integrable complex structure from .J.
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We now consider a biholomorphic map ®5 from (R x SL(2,R),J) to H x C*, where J(T — 1Z;) =
kZy,JX1 =Yy for § =k + -1,k #0.

We consider
®s5: R x SL(2,R) — H x C*

(2 ) () ()

defined by

02+d2 C2+d2

where § = k ++/—11. Then X{ and Y/ are the same as before, whereas Z] and T" are changed to the
following.
10 r 0 10
—— T =k=——+1l=—.
200 20r 200
Clearly we have
JX| =Y{, J(T' —12}) = kZ,,

and thus ®; defines a biholomorphic map.

For the case of R x SU(2), we consider a canonical diffeomorphism ®s:

5 : R x SU(2) — C*\{0}

defined

(t,21,22) — (e“zl, 65t22)7

where § = k + +/—11 and SU(2) is identified with
S% = {(21,22) € C?| |21 > + |22 = 1}
by the correspondence
(% 7)o e

Then ®; induces a biholomorphism between R x SU(2) with J; and C?\{0}. In fact, recall that for
g2 := R @ su(2), we set a basis { X2, Y2, Zo} of su(2) as

R R R T C A

2\1 0 2\ v—1 0 0 —v—1
and T as a generator of the center R . They are pushed forward by ®s to the vector fields given as
1 7] 7] V-1 0 7]
X/ = —(—29— 71 —— Y/ = —  ( —25—— S
2 2 ( 22821 +21822)7 2 2 ( 22821 +21822)7
V-1 0 0 0 0 4] 0 0 ) 0 0
Z/ = — P _ 2 — — Zo— T/ = — P — P — 24— 2o —
2 2 (21621 + 22(922 21(921 22(922)7 2(21(9 1 +Z2622)+2 1621 * 22(922),

respectively. Then we have
JX, =Yy, J(T' —17%) = kZ),

and thus ®s defines a biholomorphic map.
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We now consider the case of GHgppp2 = R X Hopyq1. Let haopyq1 be the Heisenberg Lie algebra of
dimension 2m+ 1 and Hy,, 41 be the corresponding Lie group. gha,m4+2 = R@® bayy41 has a canonical basis
{X.,Y;,Z,T} for which non-zero Lie brackets are defined by

[XZ7}/’L] = Z7
where i = 1, ..., m; and the complex structure J = Js, § = k + [\/—1, defined by
JX,=¢eY, JY,=—X;, J(T=12)=kZ, J(kZ) = —(T - 12),

where ¢, = +1,i=1,...,m.

We consider the bijective map ®5 : GHapio = Hopmy1 X R — C™ 1 defined by

1 x =z
(| 0 Ln y* |,t) = (x+V-1y, (th+%(|\x|\2+|b’||2))+\/—_1(2(“4'2’)—3‘1'}’))7
0O 0 1

where x = (21,22, .., Zm), Y = (Y1,Y2, o0y Ym) E R™ x-y = Z:Zl ei vy and [|x||? = x - x.

The basis {X;,Y;, Z, T} of gham+2 is given in the coordinates of Happ1 X R as

0 0 o 0 0
8_90i’}/j__ Z==,T=

Xi = ) ) a0
oy, " 5 BE ot

and they are pushed forward by the map ®;5 to

8 8 a I a (9 8 ; a ;o a a
z_axz xzat yzazv Y; _8yj+y]8t+$_78z, A _2827 T _2kat+2laza

respectively. Then we have
JX! =Y/ J(T' -1Z"Y=kZ' i=1,2,..,m,

and thus ®; defines a biholomorphic map (cf. [6]).

We can express the group operation on G'Ha,, 1 in the coordinates of C™*1! as
(w,v) - (z,u) = (W+2z,v+W-2z+u),

where w = (wy,wa, -+ ,wm),z = (21,22, ,2m) € C™ and v,u € C.
We finally consider the case of the modifications G Hayy,42(%) of GHay,ro. Recall (see Section 3) that
gh(v) is expressed as the central extension of m, where m = R?’T! x,, C? with the action ¢ : R#?T1 — ¢,

where t is the cartan subalgebra of u(q). Since t is abelian subalgebra of u(q), we can take a canonical
basis 8 = {X;,Y}, Zo} of m for which non-zero Lie brackets is given by

(X, Xptj] = Ypijs [Xis Ypij] = = Xpj,
Vi, Xpts] = Yopijs [Yis Ypril = —Xpis,
[Zo, Xp+i] = Ypii, [Z0, Ypri]l = —Xpiy,
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where p+q¢=2m,i=1,2,...,p,7 =1,2,...,q. Note that some of the adjoint actions ad X;,ad Y or ad Zy
can be trivial; the case all of them are trivial corresponds the case m = R x C™. Then ghap,42(¢)) is a
central extension of m with the generator Z; of R

0 — RZ1 = ghami2(¥) > m — 0,
where the additional non-zero Lie brackets is given by
(Xi,Yi] = Z1, i=1,2,...,m.
We can see that the complex structure J on gho,to:
JXi =Y, JY; = —X;, 020 = 21,021 = —Zo, i, = 1,2, ..., m.
is also integrable for gha,12(w).
Let G Ha,,12(10) be the Lie group corresponding to gha,,+2(1), which is a central extension of R?P1 x

Ca:
1 =R = GHapio(1h) — R?PT x C7 — 1.

where the group structure on R??*1 x C? is given by the action ¢ : R??*1 — Aut(C9):
YEN((21, 22,0, 29)) = (T iz @V T by L eV ),

with #; = tie; (e;: the i-the unit vector in R**1) and a% € R, i =1,2,...,2p+ 1. To be more precise its
group multiplication is given as

vV—lapt vV—lasxt vV—1lag-t
(t,wi,wa, ..., wq) - (8, 21,22, ..., 2¢) = (t+s,w1 +e 1tz e 220, € 1 24)s

3

where t,s,a; € R?*T! j = 1,2,...,¢q. This group multiplication can be extended holomorphically to
GHapi2(1), since the map A defined on G Ha,y, 12 in the coordinates C™*1:

A (317227 e 7Z’m7u) — (Alzlv)\QZQv e ,)\mZm,U),

for [\;| =1,i=1,2,...,m, is an automorphism of GHa,,12(1). In particular, GHa,y2(1)) is biholomor-
phic to C™*1,
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