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Abstract

This is a continuation of our study on homogeneous locally conformally Kähler and Sasaki mani-
folds. In a recent work [2], applying the technique of modification we have determined all homogeneous
Sasaki and Vaisman manifolds of unimodular Lie groups, up to modifications. In this paper we de-
termine all such modifications explicitly for the case of Lie groups, obtaining a complete classification
of unimodular Sasaki and Vaisman Lie groups. Furthermore, we determine the biholomorphism type
of a simply connected unimodular Vaisman Lie group of each type.

Introduction

In a series of our papers ([1], [2], [7], [8]) we have studied homogeneous locally conformally Kähler
(shortly lcK) and Sasaki manifolds. In our recent paper [2], applying the technique of modification
we have determined all homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups, up to
modifications. In particular, for the case of unimodular Sasaki and Vaisman Lie groups we have obtained
the following basic result.

Theorem 1 A Sasaki unimodular Lie algebra is, up to modification, isomorphic to one of the three types:
h2m+1, su(2), sl(2,R), where h2m+1 is the Heisenberg Lie algebra of dimension 2m + 1. Accordingly, a
Vaisman unimodular Lie algebra is, up to modification, isomorphic to one of the following:

R⊕ h2m+1, R⊕ su(2), R⊕ sl(2,R). (∗)

In terms of Lie groups, a simply connected Sasaki unimodular Lie group is, up to modification, isomorphic
to one of the three types: H2m+1, SU(2), S̃L(2,R), where H2m+1 is the Heisenberg group of dimension
2m+1. Accordingly, a simply connected Vaisman unimodular Lie group is, up to modification, isomorphic
to one of the following:

R×H2m+1, R× SU(2), R× S̃L(2,R). (∗∗)

Note that we have u(2) = R⊕ su(2), gl(2,R) = R⊕ sl(2,R); and from now on we denote the nilpotent
Lie algebra R⊕h2m+1 by gh2m+2 or gh for short, and the corresponding Lie group R×H2m+1 by GH2m+2

or GH for short.
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In this paper we determine all possible modifications of Sasaki and Vaisman Lie algebras in the list of
the above theorem; and thus obtain a complete classification of simply connected Sasaki and Vasiman Lie
groups. It turns out that any modification of a reductive Hermitian Lie algebra with 1-dimensional center
(in particular, R⊕ su(2), R⊕ sl(2,R)) is isomorphic to the original one, whereas any modification gh′2m+2

of gh2m+2 preserves the Vaisman structures, defining a new family of unimodular Vaisman solvable Lie
algebras (see Section 4). Similarly, we can see that any modification of a semi-simple Sasaki Lie algebra
with trivial center is isomorphic to the original one, whereas any modification h′2m+1 of h2m+1 preserves the
Sasaki structure, defining a new family of unimodular Sasaki solvable Lie algebras (see Section 4). Note
that some partial results on unimodular Sasaki and/or Vaisman Lie groups (from different perspectives)
have been known lately, cf. [3], [4], [5], [11]; and for non-unimodular Sasaki and/or Vaisman Lie groups,
e.g. [3], [9].

In Section 1 we determine all the complex structures on u(2), gl(2,R) and gh2m+2, partially extending
and elaborating the results in our previous papers. We give unified proofs for the cases of u(2), gl(2,R)
based on the fact that their complexifications are the same. It appears that the determination of all
complex structures on gh2m+2 is not known; although it can be obtained in a similar way as for the
cases of u(2), gl(2,R). In Section 2 we determine all Vaisman structures compatible with the complex
structures on u(2), gl(2,R) and gh2m+2 which are determined in Section 1. We again make the proofs
for the cases of u(2), gl(2,R) in a unified form, but the consequences are quite different: as we have seen
in our previous papers, while all the lcK structures on u(2) are of Vaisman type, there are on gl(2,R)
both lcK structures of Vaisman type and those of non-Vaisman type. For the case of gh2m+2, we know
([10] [7]) that the only lcK nilpotent Lie algebras are of Heisenberg type, that is, gh2m+2; and all these
lcK structures are of Vaisman type. Here, we determine all Vaisman structures on gh2m+2 compatible
with the complex structures we have obtained in Section 1. In Section 3, we review and discuss in some
detail the technique of modification in the category of Hermitian Lie algebras and Sasaki Lie algebras.
The key points are that Modification is equivalence relation and preserves unimodularity, as shown in
our previous paper. In section 4 we determine all possible modifications of u(2), gl(2,R) and gh2m+2; and
thus obtain a complete classification of unimodular Sasaki and Vaisman Lie algebras. In Section 5, we see
that the complex structures on u(2), gl(2,R) and gh2m+2 are biholomorphic to C

2\{0},C×H and C
m+1

respectively; and any modification gh′2m+2 of gh2m+2 preserves the original complex structure Cm+1.

1 Complex structures on gl(2,R), u(2) and gh2m+2

Recall that any left-invariant complex structure on a Lie group G with Lie algebra g induces an endo-
morphism J ∈ End g such that J2 = −Id and NJ = 0, where NJ ∈

∧2
g∗ ⊗ g is the Nijenhuis tensor of

J , defined with the help of the Lie bracket of g by

NJ(X,Y ) := [JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ] (1)

for X,Y ∈ g.

An endomorphism J ∈ End g such that J2 = −Id and NJ = 0 is called a complex structure on the Lie
algebra g and defines a left-invariant complex structure on any Lie group with Lie algebra g.

Definition 1 Complex structures J1 and J2 on a Lie algebra g are equivalent if there exists an automor-
phism φ of g such that φJ1 = J2φ.

In this section we determine all complex structures on u(2), gl(2,R) and gh2m+2, partially extending
and elaborating the arguments in our previous papers.

2



We already know all complex structures on gl(2,R) = R⊕ sl(2,R) and u(2) = R⊕ su(2) ([1], [7], [12]).
Since the complexifications of both Lie algebras are the same complex Lie algebra gl(2,C), we can treat
the determination of all complex structures on them simultaneously.

For g1 := R⊕ sl(2,R), take a basis {X1, Y1, Z1} for sl(2,R) with Lie bracket defined by

[X1, Y1] = Z1, [Z1, X1] = −Y1, [Z1, Y1] = X1, (2)

and T as a generator of the center R of g1, where we set

X1 =
1

2

(
0 1
1 0

)
, Y1 =

1

2

(
1 0
0 −1

)
, Z1 =

1

2

(
0 −1
1 0

)
.

For g2 := R⊕ su(2), take a basis {X2, Y2, Z2} with Lie bracket defined by

[X2, Y2] = −Z2, [Z2, X2] = −Y2, [Z2, Y2] = X2, (3)

and T a generator of the center of g2, where we set

X2 =
1

2

(
0 −1
1 0

)
, Y2 =

√
−1
2

(
0 1
1 0

)
, Z2 =

√
−1
2

(
1 0
0 −1

)
.

We know that there exists a one-to-one correspondence between complex structures J on a (real) Lie
algebra g and complex Lie subalgebras h ⊂ gC which satisfy gC = h⊕ h (direct sum of vector spaces). It
is given by J 7→ hJ := {X −

√
−1JX |X ∈ g}.

For g1 and g2, we have the same complexification gC of gi (i = 1, 2) given by

gC = gl(2,C) = gl(2,R)⊗ C = u(2)⊗ C.

We determine all complex subalgebras h of gC satisfying gC = h ⊕ h, and thus determine all integrable
complex structures on gi (i = 1, 2). Note that the complex conjugation is defined by its fixed point set
gi.

We define a basis βi = {T, U, Vi,Wi}, i = 1, 2, for gC induced from gi, where T is a generator of the
center C of gC, and

Ui =
√
−1Zi, Vi =

1

2
(Xi −

√
−1Yi), Wi = −

1

2
(Xi +

√
−1Yi).

The non-zero Lie bracket are given by

[Vi,Wi] = (−1)i 1
2
Ui, [Ui, Vi] = Vi, [Ui,Wi] = −Wi;

and the conjugation with respect to gi, i = 1, 2, is given by

T = T, Ui = −Ui, Vi = −Wi, Wi = −Vi.

In the following, we can safely omit subscripts i, since the Lie brackets are the same except the sign
for [Vi,Wi] = (−1)i 12Ui, and conjugations are the same for βi, i = 1, 2.
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Let a be the center of gC generated by T and b the subalgebra of gC generated by U, V,W ; that is,
we have

gC = a⊕ b

where a =< T >C, b =< U, V,W >C. Let π be the projection π : gC → b and c the image of h by π, then
c is a subalgebra of b which satisfies

b = c+ c,

and dim c∩ c = 1. We can set a basis η of h as η = {P +Q,R} (P ∈ a \ {0}, Q,R ∈ b) such that Q ∈ c∩ c,
and γ = {Q,R} is a basis of c:

h =< P +Q,R >C, c =< Q,R >C, b =< Q,R,R >C .

Furthermore, since we have [Q,R] = [P +Q,R] ∈ c∩ h =< R >C and [b, b] = b, we see that [Q,R] = σR
with σ ∈ C \ {0}; and since Q ∈ c ∩ c we can also assume Q + Q = 0 so that Q is of the form
aU + bV + bW (a ∈ R, b ∈ C).

We first consider the case where R = qV + rW (q, r ∈ C). We see by simple calculation that if b 6= 0,

then q = sb, r = sb for some non zero constant s ∈ C. But then R = − s̄
s
R, contradicting the fact that

β = {Q,R,R} is a basis of b. Hence we must have b = 0, and q 6= 0, r = 0 with σ = a or q = 0, r 6= 0 with
σ = −a. Therefore we can take, as a basis of h, η = {T + δU, V } or {T + δU,W} with δ = k+

√
−1 l ∈ C

and k 6= 0:
h =< T + δU, V >C or < T + δU,W >C .

Note that the latter defines a conjugate complex structure h of the former type h with the parameter −δ̄.
These conjugate complex structures are not equivalent (unless l = 0) but define biholomorphic complex
structures on the associated Lie group G (see Section 5).

In the case where R = pU+qV +rW, p, q, r ∈ C with p 6= 0, we show that there exists an automorphism
φ̂ on gC which maps h0 to h, preserving the conjugation, where h0 is a subalgebra of gC of the first type
with p = 0. As in the first case, we must have [Q,R] = σR, σ ∈ C \ {0}. We may assume that p = 1. We
see, by simple calculation that

(a− σ)q = b, (a+ σ)r = b, (−1)i(br − bq) = 2σ

with b, q, r 6= 0 and a 6= ±σ, from which we get

a2 + (−1)i|b|2 = σ2, qr = −(−1)i,

|q|2 − |r|2 =
4aRe(σ)

|b|2 .

From the first equation, we see that σ must be real or pure imaginary. If σ is pure imaginary, the
third equation vanishes. We have then [R,R] = 0, which contradicts the fact that b is semi-simple and
thus contain no abelian ideals.

We can define an automorphism φ on b by setting

φ(U) =
1

σ
Q, φ(V ) =

|b|
2σ
R, φ(W ) = − |b|

2σ
R.

It extends to an automorphism φ̂ on gC which satisfies the required condition. Hence we have the
following.
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Proposition 1 Each gi, i = 1, 2, admits a family of complex structures Ji,δ, δ = k +
√
−1 l (k 6= 0),

defined by
Ji,δ(T − lZ) = kZ, Ji,δ(kZ) = −(T − lZ), Ji,δXi = ±Yi, Ji,δYi = ∓Xi.

Conversely, the above family of complex structures exhausts all complex structures on each of the Lie
algebras gi.

We next determine all complex structures on gh = R ⊕ h2m+1 in the same vein as in the previous
cases. gh is a nilpotent Lie algebra with a standard basis β = {T,Xi, Yj , Z | i, j = 1, . . . ,m} for which
non-zero Lie brackets are given by

[Xi, Yi] = Z, i = 1, 2, ...,m.

Let ghC = C ⊕ h2m+1,C be the complexification of gh, where h2m+1,C is the complex Heisenberg Lie
algebra. We have a basis {T, U, Vi,Wj | i, j = 1, . . . ,m} for ghC, where T is a generator of the center C
of ghC, and

U = −
√
−1Z, Vi =

1

2
(Xi −

√
−1Yi), Wj = −

1

2
(Xj +

√
−1Yj).

The non-zero Lie brackets are given by

[Vi,Wi] =
1

2
U, i = 1, 2, ...,m;

and the conjugation with respect to g is given by

T = T, U = −U, Vi = −Wi, Wj = −Vj .

Let a =< T >C be the center of ghC and b = h2m+1,C =< U, Vi,Wj | i, j = 1, . . . ,m >C the subalgebra
of ghC generated by U, Vi,Wj ; that is, we have

ghC = a⊕ b.

Let π be the projection π : ghC → b and c the image of h by π, then c is a subalgebra of b which satisfies

b = c+ c,

and dim c ∩ c = 1. We can set a basis η of h as η = {P +Q,Ri} (P ∈ a \ {0}, Q,Ri ∈ b, i = 1, 2, ...,m)
such that Q ∈ c ∩ c, and γ = {Q,Ri} is a basis of c:

h =< P +Q,Ri >C, c =< Q,Ri >C, b =< Q,Ri, Rj >C .

Furthermore, since Q ∈ c ∩ c we can also assume Q + Q = 0 so that Q is of the form aU +
∑

i biVi +∑
j bjWj (a ∈ R, bi ∈ C). Since we have [b, b] =< U >C, we can set [Q,Ri] = αiU, [Rj , Rk] =

βj,kU (αi, βj,k ∈ C) and thus [Q,Ri] = ᾱiU, [R̄j, R̄k] = −β̄j,kU . It follows that [c, c] = [c, c], and thus
it is a subspace of c ∩ c =< Q >C. In particular, we get [Q,Ri] = σiQ, [Rj , Rk] = τj,kQ (σi, τj,k ∈ C).
Since [Rj , Rk], [Q,Ri] ∈ [h, h] while Q /∈ h, we must have σi = 0, τj,k = 0 for all i, j, k. Hence we have

[Q,Ri] = [Rj , Rk] = 0 for all i, j, k; and thus [c, c] = [c, c] = 0. In particular, Q is in the center of b, i.e.
Q = aU (a 6= 0) and bi = 0. Therefore, we have < U >C= [b, b] = [c, c] =< Q >C. We can also assume
(without loss of generality) the following:

a = 1, [Ri, Ri] =
1

2
εiQ, [Ri, Rj ] = 0 (i 6= j),
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where Rk ∈ < Vi,Wj >C and εi = ±1.
For b =< Q,Ri, Rj >C we define an automorphism φ on b by

φ(U) = Q,

φ(Vi) = Ri, φ(Wi) = −Ri for εi = −1,
φ(Vi) = Ri, φ(Wi) = −Ri for εi = 1,

which extends to an automorphism φ̂ on ghC preserving the conjugation. We have thus shown the
following.

Proposition 2 The Lie algebra gh = R⊕h2m+1 admits a family of complex structures J = J(δ; ε1,ε2,...,εm), δ =

c+
√
−1 d ∈ C (c 6= 0), εi = ±1, defined by

J(T − dZ) = cZ, J(cZ) = −(T − dZ), JXi = εiYi, JYi = −εiXi.

Conversely, the above family of complex structures exhausts all complex structures on gh.

Remark 1 In Proposition 2, the complex structure J with J(T − dZ) = cZ, JXi = εiY and that with
J(T − dZ) = −cZ, JXi = −εiYi are conjugate, and biholomorphic (with the opposite orientations if m
is even).

2 Vaisman structures on gl(2,R), u(2) and gh2m+2

Definition 2 An almost Hermitian structure on a Lie algebra g is a pair (〈·, ·〉, J) consisting of a scalar
product 〈·, ·〉 and a skew-symmetric complex structure J ∈ so(g). The triple (g, 〈·, ·〉, J) is called an almost
Hermitian Lie algebra. The almost Hermitian structure is called integrable (in which case the adjective
almost is dropped) if the Nijenhuis tensor NJ (1) vanishes, that is, NJ(X,Y ) = 0 for all X,Y ∈ g.

Definition 3 A Hermitian Lie algebra (g, 〈·, ·〉, J) is called Kähler if its fundamental 2-form ω = 〈·, J ·〉
is closed. It is called locally conformally Kähler (shortly lcK) if

dω = ω ∧ θ

for some closed 1-form θ ∈ g∗ (called the Lee form). An lcK Lie algebra is called Vaisman if ∇θ = 0 holds,
where ∇ ∈ g∗⊗ so(g) denotes the Levi-Civita connection. Allowing possibly indefinite scalar products, we
also consider the notion of locally conformally pseudo-Kähler Lie algebras. Again they are called Vaisman
if ∇θ = 0 holds.

Note that lcK (respectively, Vaisman) Lie algebras (g, 〈·, ·〉, J) correspond to Lie groups G with left-
invariant lcK (respectively, Vaisman) structure. The correspondence is one-to-one if we restrict to simply
connected Lie groups.

Definition 4 A contact metric structure on a Lie algebra g of dimension 2n+1 is a quadruple (φ, η, 〈·, ·〉, J̃)
consisting of a contact structure φ ∈ g∗, φ∧(dφ)n 6= 0, η ∈ g (called the Reeb field), i(η)φ = 1, i(η)dφ = 0,

a (1, 1)-tensor J̃ , J̃2 = −I + φ ⊗ η and a scalar product 〈·, ·〉, 〈X,Y 〉 = φ(X)φ(Y ) + dφ(J̃X, Y ) for all
X,Y ∈ g.
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Definition 5 A Sasaki structure on a Lie algebra g is a contact metric structure (φ, η, 〈·, ·〉, J̃) satisfying
〈[η,X ], Y 〉+ 〈X, [η, Y ]〉 = 0 for all X,Y ∈ g (Killing field), and the integrability of J = J̃ |D on D = kerφ
(CR-structure).

Note that for any simply connected Sasaki Lie group G, its Kähler cone C(G) is defined as C(G) =

R+×G with the Kähler form Ω = rdr ∧φ+ r2

2 dφ, where a compatible complex structure Ĵ is defined by

Ĵη = 1
r
∂r, Ĵ∂r = (−r) η and Ĵ |D = J . For any Sasaki Lie group G with contact form φ, we can define

an lcK form ω = 2
r2
Ω = 2

r
dr ∧ φ + dφ; or taking t = −2 log r, ω = −dt ∧ φ + dφ on R × G, which is of

Vaisman type. We can define a family of complex structures Ĵ compatible with ω by

Ĵ(∂t − dη) = cη, Ĵ(cη) = −(∂t − dη), Ĵ |D = J,

where c, d ∈ R (c 6= 0)). In other words, we can express Ĵ as

Ĵ∂t =

(
−d
c

)
∂t +

(
c2 + d2

c

)
η, Ĵη =

(
−1

c

)
∂t +

(
d

c

)
η, Ĵ |D = J.

Conversely, any simply connected Vaisman Lie group is of the form R×G with lcK structure as above,
where G is a simply connected Sasaki Lie group.

We already know that the only reductive Lie algebras which admit lcK structures are R ⊕ sl(2,R)
and R ⊕ su(2) ([1], [7]). For g1 = R ⊕ sl(2,R), take a basis {X1, Y1, Z1} for sl(2,R) with Lie brackets
defined as in (2) and T as a generator of the center R of g1. Let t, x1, y1, z1, be the Maurer-Cartan forms
corresponding to T,X1, Y1, Z1 respectively; then we have

dt = 0, dx1 = y1 ∧ z1, dy1 = z1 ∧ x1, dz1 = y1 ∧ x1

and an lcK structure ω1 = z1 ∧ t + y1 ∧ x1 compatible with an integrable complex structure J1 on g1
defined by

J1X1 = Y1, J1Y1 = −X1, J1T = Z1, J1Z1 = −T.

For g2 = R ⊕ su(2), take a basis {X2, Y2, Z2} for su(2) with Lie brackets defined as in (3) and T
as a generator of the center R of g2. Let t, x2, y2, z2, be the Maurer-Cartan forms corresponding to
T,X2, Y2, Z2 respectively; then we have

dt = 0, dx2 = y2 ∧ z2, dy2 = z2 ∧ x2, dz2 = x2 ∧ y2

and an lcK structure ω2 = z2 ∧ t + x2 ∧ y2 compatible with an integrable complex structure J2 on g2
defined by

J2Y2 = X2, J2X2 = −Y2, J2T = Z2, J2Z2 = −T.

We know ([1], [8]) that any lcK structure is of the form

ωi,ψ = ψ ∧ t+ dψ,

which is compatible with the above complex structure Ji on gi, where ψ = ax+ by + cz with a, b, c ∈ R.

We see that the bilinear form 〈U, V 〉i,ψ = ωi,ψ(JiU, V ) is represented, w.r.t. the basis {T,Xi, Yi, Zi},
by the matrix

7



A1 =




c b −a 0
b c 0 a
−a 0 c b
0 a b c


 , A2 =




c b −a 0
−b c 0 −a
a 0 c −b
0 a b c


 .

Since 〈·, ·〉i,ψ must be symmetric and positive definite, we must have a = b = 0 for g2.

For g1, the characteristic polynomial of A1 is given by

ΦA1
(u) = {(u− c)2 − (a2 + b2)}2,

and has only positive roots if and only if c > 0, c2 > a2 + b2. The Lee form is θ = t and the Lee field is

ξ =
1

D
(cT − bX + aY ),

with D = c2 − a2 − b2. We have also
〈ξ, ξ〉1,ψ =

c

D
.

We can see that 〈[ξ, U ], V 〉1,ψ + 〈U, [ξ, V ]〉1,ψ 6≡ 0 unless a = b = 0. In fact for U = V = Z1,

〈[ξ, Z1], Z1〉1,ψ + 〈Z1, [ξ, Z1]〉1,ψ = 2〈[ξ, Z1], Z1〉1,ψ = − 2

D
(a2 + b2) = 0

if and only if a = b = 0. Conversely for the case a = b = 0, it is easy to check that

〈[ξ, U ], V 〉1,ψ + 〈U, [ξ, V ]〉1,ψ ≡ 0

for all U, V . Therefore we have shown the following.

Proposition 3 (i) For J1 and ω1,ψ defined above, 〈·, ·〉1,ψ defines a (positive definite) lcK metric on
gl(2,R) if and only if c > 0, c2 > a2 + b2. It is of Vaisman type if and only if c > 0, a = b = 0; and
it is of non-Vaisman type if and only if c > 0, c2 > a2 + b2 > 0.

(ii) For J2 and ω2,ψ defined above, 〈·, ·〉2,ψ defines a (positive definite) lcK metric on u(2) if and only
if c > 0, a = b = 0; and thus it is always of Vaisman type.

Remark 2 We can see that the Vaisman structure ω1 = z1 ∧ t+ y1 ∧ x1 is compatible with the complex
structures: J1X1 = Y1, J1(T − dZ1) = cZ1; and the Vaisman structure ω2 = z2 ∧ t+ x2 ∧ y2 is compatible
with the complex structures: J2Y2 = X2, J2(T−dZ2) = cZ2. Hence, all complex structures on gl(2,R), u(2)
admit their compatible Vaisman structures, up to conjugation (see Remark 1).

For the case of gh2m+2, which is a nilpotent Lie algebra with a standard basis β = {T,Xi, Yi, Z} for
which non-zero Lie brackets are given by

[Xi, Yi] = Z, i = 1, 2, ...,m,

We have the canonical Vaisman structure ω = z∧ t + ∑m
i=1 yi∧xi, which is compatible with the complex

structure J = J(δ; ε1,ε2,...,εm), δ = c+
√
−1 d ∈ C (c 6= 0), εi = ±1, defined by

J(T − dZ) = cZ, J(cZ) = −(T − dZ), JXi = εiYi, JYi = −εiXi,

if and only if εi = 1, i = 1, 2, ...,m.

8



As in the previous cases, any lcK structure is of the form

ωψ = ψ ∧ t+ dψ,

where ψ =
∑m

i=1 aixi +
∑m

j=1 bjyj + c0z with ai, bj , c0 ∈ R. By the compatibility with one of the above
complex structures J , 〈·, ·〉ψ = ω(J ·, ·) must be symmetric and positive definite. Hence ai = bi = 0, i =
1, ...,m, cc0 > 0 and c0εi > 0.

Proposition 4 For J and ωψ defined above, 〈·, ·〉ψ defines a (positive definite) lcK metric on gh2m+2 if
and only if cc0 > 0 and ai = bi = 0, sgn(c0)εi = 1 for i = 1, 2, ..,m; and it is always of Vaisman type.
More generally, 〈·, ·〉ψ is a locally conformally pseudo-Kähler metric if and only if c0 6= 0 and ai = bi = 0
for i = 1, 2, ..,m; again it is of Vaisman type.

Proof. It remains to check the Vaisman property. A straightforward calculation shows that the Lee field,
the metric dual of the Lee form ψ, is of the form αT +βZ with αd+β = 0 and that this implies ∇ψ = 0.

3 Modifications of Hermitian Lie algebras

In this section we review and discuss in some detail modification in the category of Hermitian and Sasaki
Lie algebras.

Given a Lie group G with LieG = g, there is a one-to-one correspondence between (almost) Hermitian
structures on g and left-invariant (almost) Hermitian structures on G. We denote by so(g) (respectively,
u(g)) the orthogonal (respectively, unitary) Lie algebra of (g, 〈·, ·〉, J); and by Deru(g) the subalgebra of
gl(g) consisting of skew-Hermitian derivations of g:

Deru(g) := Der(g) ∩ u(g),

where Der (g) is the derivation algebra of g.

Definition 6 A modification of an almost Hermitian Lie algebra (g, 〈·, ·〉, J) is a Lie algebra homomor-
phism

φ : g→ Deru(g)

such that

(i) φ([g, g]) = 0 and

(ii) φ(Imφ(g)) = 0, where Imφ(g) := φ(g)g = {AX | A ∈ φ(g), X ∈ g} denotes the image of the linear
Lie subalgebra φ(g) ⊂ Deru(g).

Proposition 5 Given a modification φ of an almost Hermitian Lie algebra (g, 〈·, ·〉, J), we define Lie
bracket [·, ·]φ on g by

[X,Y ]φ := [X,Y ] + φ(X)Y − φ(Y )X.

Denoting the resulting Lie algebra by gφ, we obtain a new almost Hermitian Lie algebra (gφ, 〈·, ·〉, J).
Then (gφ, 〈·, ·〉, J) is integrable if and only if (g, 〈·, ·〉, J) is.

9



Proof. Using φ([g, g]) = φ(Im φ(g)) = 0 and the abbreviation φX = φ(X), we compute

[[X,Y ]φ, Z]φ = [[X,Y ] + φXY − φYX,Z]φ
= [[X,Y ] + φXY − φYX,Z]− φZ([X,Y ] + φXY − φYX)

= [[X,Y ] + φXY − φYX,Z]− [φZX,Y ]− [X,φZY ]− φZφXY + φZφYX.

So
∑

cyclic

[[X,Y ]φ, Z]φ =
∑

cyclic

(−φZφXY + φZφYX) =
∑

cyclic

(−φXφY Z + φY φXZ)

= −
∑

cyclic

φ[X,Y ]Z = 0.

Using that [φ(g), J ] = 0, one can easily check that the Nijenhuis tensor Nφ
J of J with respect to the

modified Lie bracket [·, ·]φ coincides with NJ .

Proposition 6 Let (gφ, 〈·, ·〉, J) be a modification of a Hermitian Lie algebra (g, 〈·, ·〉, J). Then (gφ, 〈·, ·〉, J)
Kähler (respectively, lcK) if and only if (g, 〈·, ·〉, J) is Kähler (respectively, lcK).

Proof. The Levi-Civita connection ∇φ of (gφ, 〈·, ·〉) is given related to the Levi-Civita connection ∇
of g by

∇φ = ∇+ φ. (4)

In fact, first ∇φ is metric since ∇ is metric and φ ∈ g∗ ⊗ so(g). Second, the torsion T φ of ∇φ is related
to the torsion T of ∇ by

T φ(X,Y ) = ∇φXY −∇
φ
YX − [X,Y ]φ = T (X,Y ) + (φXY − φYX)− (φXY − φYX)

= T (X,Y ) = 0.

Next, since φ takes values in the unitary Lie algebra u(g) = {A ∈ so(g) | [A, J ] = 0} it follows from (4)
that

∇φJ = ∇J and ∇φω = ∇ω.
As a consequence, dφω = dω, where dφ denotes the (Chevalley-Eilenberg) differential in the Lie algebra
gφ. This proves that ω is closed (respectively, conformally closed) in gφ if and only if it is in g.

Proposition 7 A modification (gφ, 〈·, ·〉, J) of a Vaisman Lie algebra (g, 〈·, ·〉, J) (of dimension ≥ 4) with
Lee form θ is Vaisman if and only if θ(Im φ(g)) = 0.

Proof. By Proposition 6 we know that (gφ, 〈·, ·〉, J) is lcK. It is Vaisman if and only if ∇φθ = 0. Since
∇θ = 0, the latter condition amounts to θ ◦ φX = 0 for all X ∈ g, which is equivalent to θ(Im φ(g)) = 0.

4 Unimodular Sasaki and Vaisman Lie algebras

Let us denote by tq ∼= Rq the Cartan subalgebra tq ⊂ u(q) consisting of purely imaginary diagonal
matrices. Given a linear map

ψ : R2p+1 → tq,

we can define a meta-abelian Lie algebra m := R2p+1⋉ψC
q by considering R2p+1 as an abelian subalgebra

acting on the abelian ideal Cq by ψ. We decompose R2p+1 = RZ0 ⊕ Cp and consider the standard
symplectic form ω on V = Cp ⊕ Cq = Cm = R2m, m = p+ q.

10



Lemma 1 The pull back of ω via the projection m→ V, λZ0 + v 7→ v (λ ∈ R, v ∈ V ), defines a 2-cocycle
ωm in m.

Proof. We check that
∑
cyclic ωm([X,Y ], Z) = 0 for all X,Y, Z ∈ m. This is obviously satisfied if all

three vectors belong to the abelian subalgebra RZ0⊕Cp or to the abelian ideal Cq. If X1, X2 ∈ RZ0⊕Cp

and Y ∈ Cq then
∑

cyclic

ωm([X1, X2], Y ) = ωm(ψ(X2)Y,X1)− ωm(ψ(X1)Y,X2) = 0,

since Cp and Cq are ω-orthogonal. Similarly, taking X ∈ RZ0 ⊕ Cp and Y1, Y2 ∈ Cq we obtain

∑

cyclic

ωm([X,Y1], Y2) = ωm(ψ(X)Y1, Y2)− ωm(ψ(X)Y2, Y1) = 0,

since ψ(X) ∈ u(q) ⊂ sp(R2q).

Next we consider the one-dimensional central extension

0→ RZ1 → gh(ψ)→ m→ 0

of m by the cocycle ωm. Explicitly, this means that the Lie bracket of gh(ψ) is related to the Lie bracket
[·, ·]m of m by

[X,Y ] = [X,X ]m + ωm(X,Y )Z1, X, Y ∈ m,

and [Z1,m] = 0. Note that gh(ψ) is a solvable Lie algebra, which is at most of 3-step type.

Theorem 1 Let g be a unimodular Lie algebra (of dimension ≥ 4) which admits a Vaisman structure.
Then g is isomorphic to one of the following.

(i) g = u(2) = R⊕ su(2),

(ii) g = gl(2,R) = R⊕ sl(2,R), or

(iii) a solvable unimodular Lie algebra gh(ψ) associated with a linear map ψ : R2p+1 → Rq as described
above.

Proof. By [2, Theorem 2.1] g is a modification of one of the following Lie algebras endowed with a
Vaisman structure: u(2), gl(2,R), or gh = R⊕h2m+1. We claim that in the first two cases any modification
gφ of g is isomorphic to g. This follows from the next lemma. To state it we first need to define the
notion of a modification for Riemannian (rather than almost Hermitian) Lie algebras.

Definition 7 A Riemannian Lie algebra (g, 〈·, ·〉) is a Lie algebra endowed with a scalar product. A
modification of (g, 〈·, ·〉) is a Lie algebra homomorphism

φ : g→ Derso(g) = Der(g) ∩ so(g)

such that φ([g, g]) = 0 and φ(Im φ(g)) = 0.

As before, a modification φ of a Riemannian Lie algebra (g, 〈·, ·〉) gives rise to a new Riemannian Lie
algebra (gφ, 〈·, ·〉). The Lie algebra gφ as well as the Riemannian Lie algebra (gφ, 〈·, ·〉) will be again
called a modification of (g, 〈·, ·〉).
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Lemma 2 Let g = R ⊕ s, s = [g, g], be a reductive Lie algebra with one-dimensional center and 〈·, ·〉 a
scalar product on g. Then any modification gφ of (g, 〈·, ·〉) is isomorphic to g.

Proof. Let Z be a generator of the center of g. Any modification φ : g → Derso(g) is completely
determined by φ(Z) ∈ Derso(g), since φ([g, g]) = φ(s) = 0. Since the center is invariant under any
derivation and is one-dimensional, any skew-symmetric derivation necessarily acts trivially on the center.
This proves that Derso(g) consists of inner derivations, that is φ(Z) = adX0

for some element X0 ∈ s.
The modified Lie bracket is therefore given by

[X + λZ, Y + µZ]φ = [X,Y ] + λ adX0
Y − µ adX0

X, X, Y ∈ s, λ, µ ∈ R.

One can easily check that the map

X + λZ 7→ X + λZ + λX0 (X ∈ s, λ ∈ R)

defines an isomorphism gφ ∼= g.

Next we will describe all possible modifications of the Vaisman Lie algebra gh = R⊕ h2m+1. We have
seen in Section 2 that (up to an automorphism of gh) the Vaisman structure (〈·, ·〉, J) is given by the
canonical Hermitian structure on V = Cm = R2m which is extended to gh = RZ0 + RZ1 + V as follows,
where Z1 denotes a generator of the center of h2m+1 = RZ1 + V such that [X,Y ] = ω(X,Y )Z1 for all
X,Y ∈ V and Z0 denotes a generator of the R-factor in gh = R ⊕ h2m+1. The scalar product of V
is extended such that Z0, Z1 are orthonormal and perpendicular to V . The complex structure of V is
extended such that JZ0 = Z1. The Lee form θ is then given by θ = 〈Z0, ·〉. We denote this Vaisman
structure by (〈·, ·〉, J).

Using the invariance of the center and the derived ideal under any derivation, it is easy to see that
Deru(gh) = u(m) with the natural action on V = Cm ⊂ gh. Let φ : gh→ u(m) be a modification of the
Vaisman Lie algebra (gh, 〈·, ·〉, J). Note that due to φ(gh) ⊂ u(m) ⊂ ker θ, (ghφ, 〈·, ·〉, J) is again a Vaisman
Lie algebra in virtue of Proposition 7. Since φ([gh, gh]) = 0, φ factorizes through the abelian quotient Lie
algebra gh/RZ1

∼= RZ0⊕V . In particular, φ(gh) ⊂ u(m) is abelian and we can assume (up to conjugation
in u(m)) that φ takes values in the standard Cartan subalgebra tn ⊂ u(m). We denote by φ̄ : RZ0⊕V → tm

the induced homomorphism. Since φ(gh) is a subalgebra of u(gh), we can decompose V = V0 ⊕ V1 as
an orthogonal sum of J-invariant subspaces, where V0 = kerφ(gh) := {v ∈ V | φ(gh)v = 0} = Cp and
V1 = Imφ(gh) = Cq. This implies that φ : gh → tq ⊂ u(V1) = u(q). Next the condition φ(Im φ(gh))
implies that φ̄ vanishes on V1 and, hence, can be considered as a linear map ψ : RZ0 ⊕ V0 → tq. Now
one can check that the modification ghφ coincides with the Lie algebra gh(ψ) described above. Note that
gh(ψ) is a unimodular solvable Lie algebra since modifications preserve unimodularity.

Corollary 1 Let h be a unimodular Lie algebra which admits a Sasaki structure. Then g is isomorphic
to one of the following.

(i) h = su(2),

(ii) h = sl(2,R), or

(iii) a solvable unimodular Lie algebra h2m+1(ϕ) associated with a linear map ϕ : R2p → Rq as described
above.
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5 Biholomorphism types of gl(2,R), u(2) and gh2m+2

In this section, we determine the biholomorphism type of each simply connected unimodular Lie group
listed in the main theorem; namely we show that R× S̃L(2,R), R× SU(2), and GH2m+2 = R×H2m+1

with its modification GH2m+2(ψ) are biholomorphic to H×C, C2\{0}, and Cm+1 respectively. Note that
this result is concerned with all invariant complex structures on these Lie groups we have determined in
Section 1, which is independent of the existence of Vaisman structures on them. It turned out as seen in
Section 2 that all these complex structures admit compatible Vaisman structures.

For the case of R× S̃L(2,R), we first consider a diffeomorphism Φ:

Φ : GL+(2,R) −→ H× C
∗

defined by

g =

(
a b
c d

)
−→ (

(
ac+ bd

c2 + d2

)
+
√
−1

(
D

c2 + d2

)
, d+

√
−1 c ),

where D = det g = ad− bc > 0. Note that by the Iwasawa decomposition g can be expressed uniquely as

g =
√
D

(
1 x
0 1

)( √
y 0

0
√
y−1

)(
cos θ − sin θ
sin θ cos θ

)
,

where

x =

(
ac+ bd

c2 + d2

)
, y =

(
D

c2 + d2

)
, e

√
−1 θ =

d+
√
−1 c√

c2 + d2
.

If we consider the canonical action of GL+(2,R) on H, then we have g ·
√
−1 = x +

√
−1y with the

isotropy subgroup R+×SO(2) at
√
−1. We see that Φ defines a biholomorphism between GL+(2,R) and

H× C∗. In fact, recall that for g1 = R⊕ sl(2,R), we have a basis {T,X1, Y1, Z1} of g1 as

T =
1

2

(
1 0
0 1

)
, X1 =

1

2

(
0 1
1 0

)
, Y1 =

1

2

(
1 0
0 −1

)
, Z1 =

1

2

(
0 −1
1 0

)
.

They are pushed forward by Φ to the vector fields, which are expressed in the local coordinates (x +√
−1 y, re

√
−1 θ), y > 0, r =

√
c2 + d2 > 0 of H× C∗, as

X ′
1 = y cos 2θ

∂

∂x
− y sin 2θ ∂

∂y
+

1

2
cos 2θ

∂

∂θ
+
r

2
sin 2θ

∂

∂r
,

Y ′
1 = y sin 2θ

∂

∂x
+ y cos 2θ

∂

∂y
+

1

2
sin 2θ

∂

∂θ
− r

2
cos 2θ

∂

∂r
,

Z ′
1 =

1

2

∂

∂θ
, T ′ =

r

2

∂

∂r
,

respectively. For the canonical complex structure J on H× C∗ defined by

J
∂

∂x
=

∂

∂y
, J (r

∂

∂r
) =

∂

∂θ
,

we have the compatibility
JX ′

1 = Y ′
1 , JT

′ = Z ′
1;

and thus Φ defines a biholomorphic map. Then it induces a biholomorphic map Φ̄ between their universal
coverings (R× S̃L(2,R), J̄) and H× C, where J̄ is the induced integrable complex structure from J .
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We now consider a biholomorphic map Φδ from (R × SL(2,R), J) to H × C∗, where J(T − lZ1) =
kZ1, JX1 = Y1 for δ = k +

√
−1l, k 6= 0.

We consider
Φδ : R× SL(2,R) −→ H× C

∗

defined by

g = (t,

(
a b
c d

)
) −→ (

(
ac+ bd

c2 + d2

)
+
√
−1

(
D

c2 + d2

)
, eδ t (d+

√
−1 c)),

where δ = k +
√
−1 l. Then X ′

1 and Y ′
1 are the same as before, whereas Z ′

1 and T ′ are changed to the
following.

Z ′
1 =

1

2

∂

∂θ
, T ′ = k

r

2

∂

∂r
+ l

1

2

∂

∂θ
.

Clearly we have
JX ′

1 = Y ′
1 , J(T

′ − lZ ′
1) = kZ ′

1,

and thus Φδ defines a biholomorphic map.

For the case of R× SU(2), we consider a canonical diffeomorphism Φδ:

Φδ : R× SU(2) −→ C
2\{0}

defined
(t, z1, z2) −→ (eδ tz1, e

δ tz2),

where δ = k +
√
−1 l and SU(2) is identified with

S3 = {(z1, z2) ∈ C
2 | |z1|2 + |z2|2 = 1}

by the correspondence (
z1 −z2
z2 z1

)
←→ (z1, z2).

Then Φδ induces a biholomorphism between R × SU(2) with Jδ and C
2\{0}. In fact, recall that for

g2 := R⊕ su(2), we set a basis {X2, Y2, Z2} of su(2) as

X2 =
1

2

(
0 −1
1 0

)
, Y2 =

1

2

(
0

√
−1√

−1 0

)
, Z2 =

1

2

( √
−1 0
0 −

√
−1

)
,

and T as a generator of the center R . They are pushed forward by Φδ to the vector fields given as

X ′
2 =

1

2
(−z̄2

∂

∂z1
+ z̄1

∂

∂z2
), Y ′

2 =

√
−1
2

(−z̄2
∂

∂z1
+ z̄1

∂

∂z2
),

Z ′
2 =

√
−1
2

( z1
∂

∂z1
+ z2

∂

∂z2
− z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2
), T ′ =

δ

2
( z1

∂

∂z1
+ z2

∂

∂z2
) +

δ̄

2
( z̄1

∂

∂z̄1
+ z̄2

∂

∂z̄2
),

respectively. Then we have
JX ′

2 = Y ′
2 , J(T

′ − lZ ′
2) = kZ ′

2,

and thus Φδ defines a biholomorphic map.
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We now consider the case of GH2m+2 = R × H2m+1. Let h2m+1 be the Heisenberg Lie algebra of
dimension 2m+1 and H2m+1 be the corresponding Lie group. gh2m+2 = R⊕h2m+1 has a canonical basis
{Xi, Yj , Z, T } for which non-zero Lie brackets are defined by

[Xi, Yi] = Z,

where i = 1, ...,m; and the complex structure J = Jδ, δ = k + l
√
−1, defined by

JXi = εiYi, JYi = −εiXi, J(T − lZ) = kZ, J(kZ) = −(T − lZ),

where εi = ±1, i = 1, ...,m.

We consider the bijective map Φδ : GH2m+2 = H2m+1 × R→ Cm+1 defined by

(



1 x z
0 Im yt

0 0 1


 , t

)
→ (x+

√
−1y, (2kt+ 1

2
(‖x‖2 + ‖y‖2)) +

√
−1 (2(lt+ z)− x · y)),

where x = (x1, x2, ..., xm), y = (y1, y2, ..., ym) ∈ Rm, x · y =
∑m

i=1 εi xiyi and ‖x‖2 = x · x.
The basis {Xi, Yj , Z, T } of gh2m+2 is given in the coordinates of H2m+1 × R as

Xi =
∂

∂xi
, Yj =

∂

∂yj
+ xj

∂

∂z
, Z =

∂

∂z
, T =

∂

∂t
;

and they are pushed forward by the map Φδ to

X ′
i =

∂

∂xi
+ xi

∂

∂t
− yi

∂

∂z
, Y ′

j =
∂

∂yj
+ yj

∂

∂t
+ xj

∂

∂z
, Z ′ = 2

∂

∂z
, T ′ = 2k

∂

∂t
+ 2l

∂

∂z
,

respectively. Then we have

JX ′
i = Y ′

i , J(T
′ − lZ ′) = kZ ′, i = 1, 2, ..,m,

and thus Φδ defines a biholomorphic map (cf. [6]).

We can express the group operation on GH2m+2 in the coordinates of Cm+1 as

(w, v) · (z, u) = (w + z, v + w̄ · z+ u),

where w = (w1, w2, · · · , wm), z = (z1, z2, · · · , zm) ∈ Cm and v, u ∈ C.

We finally consider the case of the modifications GH2m+2(ψ) of GH2m+2. Recall (see Section 3) that
gh(ψ) is expressed as the central extension of m, where m = R2p+1 ⋉ψ Cq with the action ψ : R2p+1 → t,
where t is the cartan subalgebra of u(q). Since t is abelian subalgebra of u(q), we can take a canonical
basis β = {Xi, Yj , Z0} of m for which non-zero Lie brackets is given by

[Xi, Xp+j ] = Yp+j , [Xi, Yp+j ] = −Xp+j ,

[Yi, Xp+j ] = Yp+j , [Yi, Yp+j ] = −Xp+j,

[Z0, Xp+j ] = Yp+j , [Z0, Yp+j ] = −Xp+j,
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where p+ q = 2m, i = 1, 2, ..., p, j = 1, 2, ..., q. Note that some of the adjoint actions adXi, adYj or adZ0

can be trivial; the case all of them are trivial corresponds the case m = R × Cm. Then gh2m+2(ψ) is a
central extension of m with the generator Z1 of R

0→ RZ1 → gh2m+2(ψ)→ m→ 0,

where the additional non-zero Lie brackets is given by

[Xi, Yi] = Z1, i = 1, 2, ...,m.

We can see that the complex structure J on gh2m+2:

JXi = Yi, JYj = −Xj, JZ0 = Z1, JZ1 = −Z0, i, j = 1, 2, ...,m.

is also integrable for gh2m+2(ψ).

Let GH2m+2(ψ) be the Lie group corresponding to gh2m+2(ψ), which is a central extension of R2p+1⋉

Cq:
1→ R→ GH2m+2(ψ)→ R

2p+1
⋉ C

q → 1.

where the group structure on R2p+1 ⋉ Cq is given by the action ψ : R2p+1 → Aut(Cq):

ψ(t̄i)((z1, z2, . . . , zq)) = (e
√
−1 ai

1
tiz1, e

√
−1 ai

2
tiz2, ..., e

√
−1 aiq tizq),

with t̄i = tiei (ei: the i-the unit vector in R2p+1), and aij ∈ R, i = 1, 2, ..., 2p+ 1. To be more precise its
group multiplication is given as

(t, w1, w2, ..., wq) · (s, z1, z2, ..., zq) = (t+ s, w1 + e
√
−1 a1·tz1, e

√
−1a2·tz2, ..., e

√
−1aq·tzq),

where t, s, aj ∈ R2p+1, j = 1, 2, ..., q. This group multiplication can be extended holomorphically to
GH2m+2(ψ), since the map λ defined on GH2m+2 in the coordinates Cm+1:

λ : (z1, z2, · · · , zm, u)→ (λ1z1, λ2z2, · · · , λmzm, u),

for |λi| = 1, i = 1, 2, ...,m, is an automorphism of GH2m+2(ψ). In particular, GH2m+2(ψ) is biholomor-
phic to Cm+1.
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