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Abstract. The paper is devoted to the generalization of the Vinberg theory of homoge-
neous convex cones. Such a cone is described as the set of “positive definite matrices”
in the Vinberg commutative algebra Hn of Hermitian T-matrices. These algebras are a
generalization of Euclidean Jordan algebras and consist of n×n matrices A = (aij), where
aii ∈ R, the entry aij for i < j belongs to some Euclidean vector space (Vij , g) and aji =
a∗ij = g(aij , ·) ∈ V ∗ij belongs to the dual space V ∗ij . The multiplication of T-Hermitian
matrices is defined by a system of “isometric” bilinear maps Vij × Vjk → Vij , i < j < k,
such that |aij · ajk| = |aij | · |ajk|, alm ∈ Vlm. For n = 2, the Hermitian T-algebra H2 =
H2(V ) is determined by a Euclidean vector space V and is isomorphic to a Euclidean
Jordan algebra called the spin factor algebra and the associated homogeneous convex cone
is the Lorentz cone of timelike future directed vectors in the Minkowski vector space R1,1⊕
V . A special Vinberg Hermitian T-algebra is a rank 3 matrix algebra H3(V, S) associated
to a Clifford Cl(V )-module S together with an “admissible” Euclidean metric gS .

We generalize the construction of rank 2 Vinberg algebras H2(V ) and special Vinberg
algebras H3(V, S) to the pseudo-Euclidean case, when V is a pseudo-Euclidean vector
space and S = S0⊕S1 is a Z2-graded Clifford Cl(V )-module with an admissible pseudo-
Euclidean metric. The associated cone V is a homogeneous, but not convex cone in
Hm, m = 2, 3. We calculate the characteristic function of Koszul–Vinberg for this cone
and write down the associated cubic polynomial. We extend Baez’ quantum-mechanical
interpretation of the Vinberg cone V2 ⊂ H2(V ) to the special rank 3 case.
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1. Introduction

Sixty years ago E. B. Vinberg developed a theory of homogeneous convex cones
[30], [31]. He proved that any selfdual homogeneous convex cone is the cone of
positive elements a ∈ J of a Euclidean Jordan algebra J . An invertible element a
is called positive if it admits a square root b, such that a = b2.

We recall that Jordan algebras were defined by P. Jordan in 1933 in a paper [22]
devoted to the axiomatization of quantum mechanics as a notion which formalized
the notion of an algebra of observables. A year later, Euclidean (or formally
real) Jordan algebras were classified by the great physicists P. Jordan, J. von
Neumann and E. Wigner [23] . They proved that any such algebra is a direct sum
of simple algebras. All simple Euclidean Jordan algebras are exhausted by the spin
factor algebras J2(V̂ ) (associated with Euclidean spaces V , cf. Section 3.1) and the
algebras of rank n Hermitian matrices Hn(K) over division algebras K = R,C,H
or O (for n = 3). Later Vinberg reduced the classification of homogeneous convex
cones to the description of “compact rank n left symmetric normal algebras”
(clans). He developed a theory of clans and showed that they can be described in
the framework of rank n matrix T-algebras Mn (Vinberg T-algebras). He proved
that any homogeneous convex cone is the cone Vn ⊂ Hn of positively defined
matrices in the commutative algebra Hn ⊂ Mn of Hermitian matrices with the
Jordan multiplication X ◦ Y = 1

2 (XY + Y X). The T-algebras Hn of Hermitian
matrices constitute a natural generalization of Euclidean Jordan algebras. In parti-
cular, the rank 2 Hermitian T-algebras are isomorphic to the (Euclidean) “spinor
factor” Jordan algebras and the associated cone is the Lorentz cone.

This theory has many applications to different parts of physics (quantum physics
[6], [7], supergravity [20], [19], [29], quantum field theory and renormalization
[26], [12]), special Kähler and quaternionic Kähler geometry [1], [3], [13], [14],
harmonic analysis [16], information geometry [4], [8], Souriau thermodynamics on
Lie groups [8], statistics [4], [17], convex optimization [11], combinatorics [12],
numerical integration of differential equations [21], etc.

A Vinberg rank n matrix T-algebra Mn consists of n × n matrices X = (xij)
where xii ∈ R and off-diagonal elements xij belong to different Euclidean vector
spaces Vij such that the space Vji = V ∗ij is dual to Vij . To define multiplication of
matrices, Vinberg postulated the existence of some “isometric” bilinear maps

Vij ⊗ Vjk → Vik, xij ⊗ yjk 7→ xij · yjk

such that
|xij · yjk| = |xij | · |yjk|

and some additional axioms hold.
The problem of classification of isometric maps ϕ : U ⊗ V → W between

Euclidean vector spaces is an important, but very complicated, open problem. It
was solved only in the case of spaces of the same dimension by A. Hurwitz (in his
theory of division algebras, 1898) and in the case when dim V = dimW by M. F.
Atiyah, R. Bott and A. S. Shapiro (theory of Clifford modules, 1964). The first
case corresponds to Euclidean Jordan algebras and selfdual homogeneous convex
cones (in particular, rank two Vinberg cones). The second case corresponds to rank
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three special Vinberg T-algebras and special Vinberg cones. Practically, only these
two classes of Vinberg cones are used in physics and other applications.

The main aim of our paper is to generalize the construction of Vinberg cones
of rank 2 and special Vinberg cones of rank 3 to the indefinite setting. More
precisely, a rank 2 Vinberg T-algebra of dimension 2n+2 is defined by a Euclidean
n-dimensional vector space V and the associated Hermitian Vinberg algebra is
identified with the n+ 2 dimensional Minkowski vector space which has the struc-
ture of a spin factor Jordan algebra. Similarly, a rank 3 special Vinberg algebra
M3(V, S) is defined by a Euclidean vector space (V, gV ) and a Clifford Cl(V )-
module S with admissible Euclidean metric gS . Admissibility means here that the
operator µv : s 7→ v · s of Clifford multiplication by a unit vector is orthogonal.

We generalize these constructions to the indefinite case, where V is a pseudo-
Euclidean vector space and S = S0 ⊕ S1 is a Z2-graded Clifford Cl(V )-module
with admissible pseudo-Euclidean metric gS . In particular, we define corresponding
algebras M2(V ) and M3(V, S) and show that they satisfy Vinberg’s axioms of a
T-algebra with the exception of the positivity axiom, see Proposition 3. With such
indefinite rank 2 or special rank 3 algebras M2(V ) or M3(V, S) we associate an
open homogeneous, but not convex cone V in the associated commutative algebra
Hk, k = 2, 3, of Hermitian matrices, see Theorem 1 and Theorem 2. As in the
positive definite case, the solvable group of upper triangular matrices acts simply
transitively in the cone V. We describe the system of inequalities, which defines
V and calculate the characteristic Koszul–Vinberg function ϕ (the density of the
invariant measure) which plays an important role in applications, see Theorem 3

For example, it defines a canonical Hessian Riemannian metric (the Hessian of
logϕ). In information geometry, Vinberg cones are identified with an important
class of manifolds of probability distributions (so-called “exponential family”) and
the canonical metric with the Fisher metric. In Souriau thermodynamics, the
Legendre transform of logϕ is interpreted as an entropy [8]. In convex optimization,
the function ϕ is used as a barrier function, which allows us to apply the Newton
methods for the determination of the minimum of the given function.

We calculate also the cubic polynomial h, associated with the characteristic
function. The characteristic hypersurface {h = 1} ⊂ V defines a projective special
real manifold, which is the Riemannian scalar manifold of a supergravity theory in
five Lorentzian space-time dimensions (when the metrics gV , gS are Euclidean). It
is known that such manifolds give rise to projective special Kähler and quaternionic
Kähler manifolds by dimensional reduction of the underlying supersymmetric field
theories [29]. In fact, the reduction of the space-time dimension of the theory
(from 5 to 4 and further down to 3) implies an increase in the number scalar fields,
and the geometry of the corresponding higher dimensional scalar field space is
eventually special Kähler or quaternionic Kähler by supersymmetry. In particular,
homogeneous cones with cubic potential h are related to homogeneous special
Kähler and quaternionic Kähler manifolds [29]. More generally, examples of com-
plete quaternionic Kähler manifolds with small cohomogeneity can be obtained in
this way, see [15] for the first such examples of cohomogeneity one.

The cubic polynomial is not only the exponential of the Hesse potential of the
projective special real manifold but is also related to various potentials governing
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the corresponding special Kähler geometry and to the entropy of black holes, see,
e.g., [10], [27], [25].

John Baez [6] gave a nice quantum mechanical interpretation of the rank 2
Vinberg cones in the case when V = K is a division algebra. We extend this
interpretation to all rank 2 and special rank 3 Vinberg cones by showing that the
elements of the Vinberg cones can be considered as symmetric endomorphisms
satisfying a certain positivity condition, see Proposition 4 and Theorem 3, part i).

The section of a Vinberg cone by an affine hyperplane is a domain, and not
necessarily homogeneous. However, Vinberg proved that any homogeneous convex
domain can be realized as a codimension 1 section of a classical (i.e., convex)
Vinberg cone. A codimension 1 section through the origin, defines a cone. In the
last section, we consider the problem of the description of such sections which are
homogeneous cones or have small cohomogeneity.

In the definite case, the homogeneous examples associated with Vinberg cones or
codimension one sections thereof include the homogeneous cones over the homo-
geneous projective special real manifolds classified in [29], which are related to
the homogeneous quaternionic Kähler manifolds described in [1], [13] as solvable
Lie groups with left-invariant quaternionic Kähler structure, see Remarks 5–7
and Example 1. The inhomogeneous examples include complete convex cones of
cohomogeneity one, such as the cones over the complete projective special real
manifolds of cohomogeneity one found in [15], see Example 1.

In the indefinite case, we obtain further examples of cones of small cohomo-
geneity, which are no longer convex and correspond to indefinite quaternionic
Kähler manifolds of small cohomogeneity, including homogeneous examples, cf.
Theorem 2, Proposition 11, Proposition 8, Remark 6 and Remark 8.

Acknowledgements. This work was partially supported by grant no. 18-00496S
of the Czech Science Foundation and by the German Science Foundation (DFG)
under Germany’s Excellence Strategy–EXC 2121 “Quantum Universe”–390833306.

2. T-algebras of rank 3 associated with metric Clifford modules

Let (V, gV ) be a pseudo-Euclidean vector space and S = S0 + S1 a Z2-graded
module over the Clifford algebra Cl(V ) endowed with an admissible pseudo-Eucli-
dean scalar product gS . Recall [2] that a pseudo-Euclidean metric gS in S is called
admissible if it has a type τ ∈ {±1}, that is, if the Clifford multiplication

µv : S → S, s 7→ µvs,

is either gS-symmetric for all v ∈ V (τ = 1) or gS-skew-symmetric (τ = −1). We
will also assume that gS is even, that is gS(S0, S1) = 0.

We will follow the convention in which the Clifford relation is

µ2
v = −gV (v, v)IdS , v ∈ V. (1)

We call (S, gS) a Z2-graded metric Clifford module. The description of such pairs
(S, gS) is given in [2].
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For all i, j ∈ {1, 2, 3} we define vector spaces Aij as follows:

Aii = R, A12 = V, A21 = V ∗, A23 = S0, A32 = S∗0 , A13 = S1, A31 = S∗1 .

We denote by

∗ : V → V ∗, v 7→ v∗ = gV v := gV (v, ·),
∗ : Si → S∗i , s 7→ s∗ = gSs ∈ (S⊥i )ann ∼= S∗i

the natural isomorphisms, where (S⊥i )ann ⊂ S∗ is canonically identified with
S∗i . Definining ∗ : R → R as the identity, this defines a system of isomorphisms
∗ : Aij → Aji such that ∗2 = Id. We will refer to ∗ as the conjugation (map) and
to a∗ as the conjugate of a.

Proposition 1. Define bilinear maps

Aij ×Ajk → Aik (2)

as follows.

(1) If i = j or j = k, the product (2) is defined by scalar multiplication and if
i = k 6= j, the product is defined by the natural pairing.

(2) The product

A12 ×A23 = V × S0 → A13 = S1, (v, s) 7→ v · s := µvs,

is defined by Clifford multiplication.
(3) The product

A23 ×A31 = S0 × S∗1 → A21 = V ∗ (3)

is defined by

(s0 · s∗1)(v) = (s0 · s∗1) · v = s∗1 · (v · s0) = s∗1(v · s0),

and
A31 ×A12 = S∗1 × V → A32 = S∗0 (4)

by
(s∗1 · v)(s0) = (s∗1 · v) · s0 = s∗1 · (v · s0) = s∗1(v · s0),

where v ∈ V , s0 ∈ S0 and s∗1 ∈ S∗1 .
(4) The remaining products are defined by:

s∗0 ·v∗ := (v ·s0)∗ ∈ S∗1 , s1 ·s∗0 := (s0 ·s∗1)∗ ∈ V, v∗ ·s1 := (s∗1 ·v)∗ ∈ S0, (5)

where v ∈ V , s0 ∈ S0, s1 ∈ S1 and v∗ ∈ V ∗, s∗0 ∈ S∗0 , s∗1 ∈ S∗1 are their
conjugates.

Then
(aijajk)∗ = a∗jka

∗
ij (6)

for all aij ∈ Aij , ajk ∈ Ajk.
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Proof. When two of the indices i, j, k coincide, the claim is trivially satisfied.
Otherwise (i, j, k) is a permutation of (1, 2, 3). For an even permutation, (6) follows
directly from (5). The case of an odd permutation follows by applying the conjuga-
tion map to (6). �

For future use we state the following lemma.

Lemma 1. For all v ∈ V , si ∈ Si we have:

gS(s0, v
∗ · s1) = gS(v · s0, s1)

and, hence, v∗ · s1 = τµvs1, where τ is the type of gS.

Proof. We put t0 := (s∗1 · v)∗ ∈ S0. Then

gS(s0, v
∗ · s1) = gS(s0, t0) = t∗0 · s0 = (s∗1 · v) · s0

(4)
= gS(s1, v · s0). �

We denote by

A =
3⊕

i,j=1

Aij = R3 ⊕W ⊕W ∗, W := V ⊕ S,

the space of matrices A = (aij)i,j=1,2,3 with aij ∈ Aij .

Definition 1. For any A ∈ A we define the conjugate matrix A∗ ∈ A by its
matrix elements (A∗)ij = a∗ji. We can express this relation as A∗ = (a∗ji)ij . A
matrix A ∈ A is called Hermitian if A∗ = A.

Proposition 2. The bilinear maps (2) defined above induce a unital product on
the space A such that (AB)∗ = B∗A∗ for all A,B ∈ A.

Proof. The product C = AB = (cij) is defined by cij =
∑
aikbkj . So (C∗)ji =

c∗ij =
∑
b∗kja

∗
ik = (B∗A∗)ji. This proves that C∗ = B∗A∗. The unit matrix 1 =

(δij) is a neutral element. �

Proposition 3. The algebra A = A(V, S) associated with the Clifford module
(S, gS) with metric satisfies Vinberg’s axioms of a T-algebra with the exception of
the positivity axiom, which holds if and only if the metrics gV and gS are positive
definite, and the axiom 4, which holds if and only if the type of gS is τ = −1. More
precisely, A is a generalized T-algebra of rank 3, as defined after the proof of this
proposition.

Proof. We recall and check the five axioms [30]:
1) Aii ∼= R holds.
2) aij · a∗ij > 0 for all aij ∈ Aij \ {0} (positivity axiom) holds if and only if the

metrics are positive definite. This is clear, since v · v∗ = v∗ · v = gV (v, v) for all
v ∈ A12 = V and s · s∗ = s∗ · s = gS(s, s) for all s ∈ A23 ∪ A13 = S0 ∪ S1.

3) aij · (bjk · ck`) = (aij · bjk) · ck` for all aij ∈ Aij , bjk ∈ Ajk, ck` ∈ Ak`, if i 6= k
and j 6= ` (associativity axiom). It is clear that the axiom holds if i = j or j = k
or k = `. So we are left with the six permutations (i, j, k) of (1, 2, 3) and ` = i. We
check these cases.
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Case (i, j, k) = (1, 2, 3):

(v · s0) · s∗1 = s∗1 · (v · s0)
(3)
= (s0 · s∗1) · v = v · (s0 · s∗1), v ∈ V, si ∈ Si.

Case (i, j, k) = (2, 3, 1). Using the previous equation we calculate

(s0 · s∗1) · v = s∗1 · (v · s0)
(4)
= (s∗1 · v) · s0 = s0 · (s∗1 · v).

Case (i, j, k) = (3, 1, 2) is (4) and the remaining cases are obtained by conjugation.
4) If j lies between i and k, then a∗ij · (aij · bjk) = (a∗ij ·aij) · bjk for all aij ∈ Aij ,

bjk ∈ Ajk. The axiom is trivially satisfied if some of the indices coincide. So we
are left with the case (i, j, k) = (1, 2, 3), which amounts to the equation

v∗ · (v · s) = (v∗ · v) · s = gV (v, v)s, v ∈ V, s ∈ S0.

The left-hand side coincides with τ(µv)
2s, in virtue of Lemma 1. So the axiom

holds if and only if τ = −1, cf. (1).
5) There exist positive numbers ni such that niaij · b∗ij = njbij · a∗ij for all

aij , bij ∈ Aij . This axiom holds with ni = 1 due to the symmetry of the metrics.
�

Note that we could restate Proposition 3 by saying that every Clifford module
with metric defines a generalized T-algebra of rank 3, if we define such an algebra
by the axioms 1), 3), 5), replacing 2) by the condition that aij · a∗ij is a non-
degenerate quadratic form on Aij and replacing a∗ij · (aij · bjk) = (a∗ij · aij) · bjk by
a∗ij · (aij · bjk) = −τ(a∗ij · aij) · bjk in axiom 4.

Definition 2. A generalized T-algebra A of rank 3 for which τ = −1 (i.e., for
which the T-algebra axiom 4 holds) will be called a (possibly indefinite) T-algebra
of rank 3. The T -algebra A of rank 3 will be called a special T-algebra if either
dimA13 = dimA23 or if dimA12 = 0.

With this definition the special T-algebras are precisely the algebras A(V, S)
defined above.

2.1. The solvable group G(W ) and its action on the space of Hermitian
matrices Herm(W )

The set G = G(W ) of upper triangular matrices A ∈ A of the form

A =

a11 a12 a13

0 a22 a23

0 0 a33

 (7)

with positive diagonal elements aii > 0 is a solvable connected and simply connec-
ted Lie group.

We denote by g = g(W ) its Lie algebra. It consists of matrices of the form (7)
with arbitrary diagonal elements aii ∈ R.
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Let us denote by Herm(W ) ⊂ A the space of Hermitian matrices

X =

X11 X12 X13

X∗12 X22 X23

X∗13 X∗23 X33

 =

 x1 X3 X2

X∗3 x2 X1

X∗2 X∗1 x3

 ,

where X3 = X12 ∈ V, X1 = X23 ∈ S0, X2 = X13 ∈ S1 and xi = Xii ∈ R, and
define a map

g(W )×Herm(W )→ Herm(W ),

(A,X) 7→ TAX := AX +XA∗
. (8)

Remark 1. Note that with At := exp(tA) ∈ G(W ), A ∈ g(W ) we have

TAX =
d

dt

∣∣∣∣
t=0

((AtX)A∗t +At(XA
∗
t )) . (9)

Remark 2. Note that the expression differentiated on the right-hand side of (9)
is Hermitian in virtue of Proposition 2. It cannot be simplified, since A is not
associative. The obstruction to (AX)A∗ = A(XA∗) for A ∈ G(W ) is precisely
that (v · s0) · s̃∗0 ∈ V does in general not coincide with v · (s0 · s̃∗0) = gS(s0, s̃0)v,
v ∈ V , s0, s̃0 ∈ S0. In fact, from Proposition 1 we obtain for all u ∈ V :

gV ((v · s0) · s̃∗0, u) = (s̃0 · (v · s0)∗)(u) = (v · s0)∗(u · s̃0)

= gS(v · s0, u · s̃0) = τgS(µuµvs0, ·s̃0)

= −τgV (u, v)gS(s0, s̃0) + τgS([u, v] · s0, s̃0).

So under the assumption that S0 6= 0, we see that equality (v · s0) · s̃∗0 = v · (s0 · s̃∗0)
holds for all v, s0, s̃0 if and only if τ = −1 and dimV ≤ 1.

From the above calculation one can easily deduce that if S0 6= 0, then there
exist elements A = 1 + v+ s0 ∈ G(W ) and X = s̃0 + s̃∗0 ∈ Herm(W ), where v ∈ V
and s0, s̃0 ∈ S0, such that (AX)A∗ 6= A(XA∗), unless τ = −1 and dimV ≤ 1.

Theorem 1. Let A be a T-algebra of rank 3 associated with a graded Cl(V ) module
S and an admissible scalar product gS of type τ = −1. Then the formula (8) defines
a representation of the Lie algebra g(W ) on the space Herm(W ).

Proof (of Theorem 1). The calculation in Remark 2 implies the following lemma,
since any admissible bilinear form is spin(V )-invariant.

Lemma 2. Let A be a generalized T-algebra of rank 3 associated with a graded
Cl(V ) module S and an admissible scalar product gS of type τ . Then the following
identity holds

(v · s0) · s̃∗0 + (v · s̃0) · s∗0 = −2τv · (s0 · s̃∗0),

for all v ∈ V , s0, s̃0 ∈ S0.

Using Proposition 1, Proposition 2 and Lemma 2 with τ = −1 one can check
that TAX := AX +XA∗ defines a representation of g = LieG on Herm(W ). The
lemma is used to check that [TA, TB ] = T[A,B] when A ∈ A12 = V , B ∈ A23 = S0.
The other cases are straightforward. �
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Corollary 1. The formula

exp(tA) ·X : = exp(tTA)X = X + TAX + 1
2T

2
AX + · · ·

= X +AX +XA∗

+ 1
2 (A(AX) +A(XA∗) + (AX)A∗ + (XA∗)A∗) + · · · ,

where A ∈ g(W ), X ∈ Herm(W ) defines a representation of the group G(W ) on
Herm(W ).

2.2. The space of Hermitian matrices Herm(W ) as a space of symmetric
endomorphisms of W

We decompose W = V ⊕ S as

W = W1 ⊕W2 ⊕W3, where W1 = S1, W2 = S0 and W3 = V.

Then

A = A(W ) =

A =

x1 X3 X2

Y ∗3 x2 X1

Y ∗2 Y ∗1 x3

 ∣∣∣∣∣∣ xi ∈ R, Xi, Yi ∈Wi

 . (10)

The multiplications Aij ×Ajk include the following maps among the Wi and their
dual spaces

W3 ×W1 →W2, W2 ×W ∗1 →W3, W1 ×W ∗2 →W ∗3 ,

W ∗3 ×W2 →W1, W ∗2 ×W3 →W ∗1 , W
∗
1 ×W ∗3 →W ∗2 .

Therefore identifying Wi and W ∗i with the help of the scalar product gW = gV ⊕gS
on W = V ⊕ S = ⊕i=1Wi we obtain multiplications

Wi ×Wj →Wk (11)

for all permutations (i, j, k) of {1, 2, 3}. Note that one needs to distinguish the
Vinberg multiplication W3 ×W2 = A12 ×A13 = V × S1 → A23 = W1 = S0 from
the Clifford multiplication. They are related by

v · s1 := v∗ · s1 = τµvs1

for all v ∈ V , s1 ∈ S1, whereas v · s0 = µvs0 when s0 ∈ S0.
We define a bilinear map

A(W )×W →W, (A,w) 7→ Aw,

by

Aw :=

x1w1 +X3 · w2 +X2 · w3

Y ∗3 · w1 + x2w2 +X1 · w3

Y ∗2 · w1 + Y ∗1 · w2 + x3w3

 =

x1w1 +X3 · w2 +X2 · w3

Y3 · w1 + x2w2 +X1 · w3

Y2 · w1 + Y1 · w2 + x3w3

 ,

where wi ∈Wi and w = w1 + w2 + w3 ∈W and A is as in (10).
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Proposition 4. The endomorphism MA = (w 7→ Aw) ∈ End(W ) associated with
an element A ∈ A(W ) is gW -symmetric if and only if A ∈ Herm(W ), that is if
and only if Xi = Yi when A is expressed as in (10).

Proof. Since MA is obviously symmetric, when A is diagonal, we can assume that
x1 = x2 = x3. In virtue of Lemma 1, the restriction of gW (A·, ·) to W1 ⊕W2 = S
is symmetric if and only X3 = Y3. Moreover, we can assume that X3 = Y3 = 0,
since MA is gW -symmetric if X1 = Y1 = 0, X2 = Y2 = 0 and X3 = Y3. Next we
evaluate gW (A·, ·) on w,w′ ∈W2 ⊕W3:

gW (Aw,w′) = gW (X1 · w3, w
′
2) + gW (Y1 · w2, w

′
3)

= (X∗1 · w∗3)(w′2) + (Y1 · w∗2)(w′3)

(5),(3)
= gS(w3 ·X1, w

′
2) + gS(w′3 · Y1, w2)

= τ(gS(X1, µw3
· w′2) + gS(Y1, µw′3 · w2)).

This shows that the restriction of gW (A·, ·) to W2⊕W3 is symmetric if and only if
X1 = Y1. Moreover, we see that MA is gW -symmetric if X2 = Y2 = 0, X3 = Y3 = 0
and X1 = Y1. Thus we can assume that X1 = Y1 = 0. Finally we evaluate gW (A·, ·)
on w,w′ ∈W1 ⊕W3:

gW (Aw,w′) = gS(X2 · w3, w
′
1) + gV (Y2 · w1, w

′
3)

= (X∗2 · w3)(w′1) + gV (Y2 · w∗1 , w′3)

(4),(5),(3)
= gS(X2, w3 · w′1) + gS(Y2, w

′
3 · w1).

As above, this shows that the restriction of gW (A·, ·) to W1 ⊕W3 is symmetric if
and only if X2 = Y2. Moreover, we see that MA is gW -symmetric if and only if
Xi = Yi for all i. �

3. Rank 2 indefinite Vinberg-Jordan algebra and Vinberg cone

3.1. Rank 2 indefinite Vinberg-Jordan algebra

Let (V, g = gV ) be an n-dimensional pseudo-Euclidean vector space of signature
(p, q). We denote by ∗ : V → V ∗, v 7→ v∗ := gv = g(v, ·) the metric isomorphism.
The space

M2 = M2(V ) =

{
X =

(
X11 X12

X21 X22

) ∣∣∣∣ X11, X22 ∈ R, X12 ∈ V,X21 ∈ V ∗
}

with the matrix multiplication is a non-associative algebra, called the T-matrix
algebra of rank 2. The determinant detX = X11X22−〈X21, X12〉 is a non-multipli-
cative function : detXY 6= detX · detY in general. The subspace

W = H2(V ) =

{
X =

(
x1 v
v∗ x2

)
=

(
t+ x0 v
v∗ t− x0

)}
⊂ M2(V )

of Hermitian matrices is closed under the Jordan multiplication X ◦Y := 1
2 (XY +

Y ∗X∗). The minus determinant is a quadratic form given by
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g(X,X) := − detX = −x1x2 + |v|2 = −t2 + x2
0 + |v|2 = 1

2 tr(X̃X),

where |v|2 := g(v, v). Here X̃ = X − tr(X)Id is the trace inversion, defined by
Schray [28]. It changes the sign of the time coordinate t. We denote by g(X,Y )
the associated pseudo-Riemannian metric of signature (p+ 1, q + 1), given by

g(X,Y ) = 1
2 tr(X̃Y ) = 1

2 tr(XỸ ).

If V Euclidean n-space then (W = H2(V ), g) is the Minkowski space of dimension
n+ 2.

Proposition 5. The algebra (H2(V ), ◦) is a Jordan algebra isomorphic to the
pseudo-Euclidean spin factor algebra

J2(V̂ ) = R1 + V̂

associated with the pseudo-Euclidean vector space V̂ := R
⊥
⊕ V of signature (p +

1, q), with unit 1 and multiplication

(t, û) ◦ (s, v̂) = (ts+ g(û, v̂), tv̂ + sû) ∈ J2(V̂ ), (12)

where s, t ∈ R, û = (x0, u), v̂ = (y0, v) ∈ V̂ = R⊕ V . The Jordan algebra J2(V̂ ) is

simple if V 6= {0}. Otherwise, J2(V̂ ) = J2({0}) ∼= R ⊕ R is a sum of two simple
algebras.

Proof. The isomorphism is given by

H2(V ) 3 X =

(
t+ x0 v
v∗ t− x0

)
7→ t1 + (x0, v) ∈ J2(V̂ ).

From the formula (12) it is straighforward to check the Jordan identity

X(X2Y ) = X2(XY )

for all X,Y ∈ J2(V̂ ). Next assume that J2(V̂ ) = A⊕B is a direct sum of algebras.
Then we can assume without loss of generality that A contains an element of the
form X = 1 + û. Using the formula (12), we see that {Y ∈ J2(V̂ ) | XY = 0} ⊃ B
is non-zero if and only if g(û, û) = 1. In that case,

{Y ∈ J2(V̂ ) | XY = 0} = R(1− û)

is one-dimensional. This shows that either B = {0} or A and B are both one-
dimensional. The latter can only happen if V = {0}. �
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3.2. Rank 2 Vinberg cones

The rank two Vinberg cone V2(V ) of the algebra W = H2(V ) is the (connected,
but in general not convex) cone of formally positive definite matrices

V2(V ) = {X ∈W | x2 > 0, detX > 0}.

In the Euclidean case, it coincides with

{X ∈W | x1 > 0, x2 > 0, detX > 0} = {X = (t, x0, v) | t > 0, g(X,X) < 0},

that is with the Lorentz cone of future directed timelike vectors of the Minkowski
space W .

The set

G = G2(V ) =

{
A =

(
a1 a12

0 a2

)
∈ M2

∣∣∣∣ a1 > 0, a2 > 0, a12 ∈ V
}

of upper triangular matrices is a connected simply connected group. It acts in the
vector space M2 by

A : X 7→ A ·X = AXA∗, (13)

where

A∗ =

(
a1 0
a∗12 a2

)
is the conjugated lower triangular matrix. This action preserves the space H2 of
Hermitian matrices. Note that (AX)A∗ = A(XA∗), which is no longer true in the
rank 3 case, cf. Remark 2.

Lemma 3. The triangular group G acts simply transitively on the cone V2(V ).

Proof. Note first that (AB)C = A(BC) if A and B are lower triangular. By
conjugation, the same is true if B and C are upper triangular. Furthermore,
Proposition 2 implies that (AB)∗ = B∗A∗ for all A,B ∈ M2(V ), using the natural
inclusion M2(V ) ⊂ M3(V ⊕ S) (e.g., with S = 0). These properties easily imply
that (13) is a group representation.

We have

A · Id = AA∗ =

(
a2

1 + |a12|2 a2a12

a2a
∗
12 a2

2

)
=

(
x1 v
v∗ x2

)
= X ∈ V2,

and, for all X ∈ V2, the system of equations

x1 = a2
1 + |a12|2, x2 = a2

2, v = a2a12

has unique solution

a2 =
√
x2 > 0, a12 =

1
√
x2
v, a1 = x−1

2 (x1x2 − |v|2) = x−1
2 detX > 0. �
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3.3. The action of Cl(V̂ ,−g) on a graded Cl(V )-module

Let S = S0 ⊕ S1 be a graded module over the (graded) Clifford algebra Cl(V ) =
Clp,q = Cl(V )0 + Cl(V )1.

We denote by
µ : V ⊗ S → S, (v, s) 7→ µvs ∈ S

the Clifford multiplication, which is odd. We consider elements s = s0 + s1 ∈ S =
S0 ⊕ S1 as column vectors s = (s1, s0)t. Then we may define the product of a
matrix X ∈W = H2(V ) with a spin vector s =

(
s1
s0

)
by

γXs = X · s =

(
x1 v
v∗ x2

)(
s1

s0

)
=

(
x1s1 + µvs0

−µvs1 + x2s0

)
. (14)

Recall that the restriction of the metric g(X,X) = − detX to the traceless

subspace H2(V )0 = V̂ = R⊕ V has signature (p+ 1, q).

Proposition 6. For X ∈ H2(V )0 = V̂ , we have

γ2
X = g(X,X)Id .

Hence, X 7→ γX defines on S the structure of a Cl(V̂ ,−g)-module.

Proof. Using the Clifford relation (1) and the product (14), we calculate

X · (X · s) =

(
(x2

1 + |v|2)s1 + (x1 + x2)µvs0

(x2
2 + |v|2)s0 − (x1 + x2)µvs1

)
= (x2

0 + |v|2)s,

where we have used that x1 = −x2 = x0. �

Remark 3. Note that operators γX , X ∈ V̂ , are symmetric with respect to any
admissible scalar product gS on S of type τ = −1, as follows from the results of
Section 2.2. Restricting the representation of Cl(V̂ ,−g) on S to the even subalgebra

Cl(V̂ ,−g)0, we can compare it to the representation of Cl(V )0 = Cl(V, gV )0 on S.
The two representations are related by the canonical isomorphism Cl(V, gV )0 ∼=
Cl(V,−gV )0 ⊂ Cl(V̂ ,−g)0 induced by the map v 7→ iv.

3.4. The case when V = K is a division algebra and the Baez quantum-
mechanical interpretation

Following J. C. Baez and J. Huerta [6], [7] we consider the case when the Euclidean
vector space V = K ∈ {R,C,H,O} is a division algebra. Then we may identify
H2(K) with the space of Hermitian forms in the right K-module K2 and the Jordan
multiplication X ◦Y = 1

2 (XY +Y X) defines on H2(K) the structure of a Euclidean
Jordan algebra with the Euclidean norm

|X| =
√
〈X,X〉 =

√
tr X2 = (x2

1 + x2
2 + 2|v|2).

John Baez gave the following quantum-mechanical interpretation of the cone V2(K)
⊂ H2(K).
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The irreducible graded Cl(K)-module S = S0 ⊕ S1 (considered as a real Eucli-
dean vector space) is identified with K2 = K ⊕ K, where K2 is considered as the
right module of the division algebra K, cf. Table 3.4 below. Then the Jordan algebra
H2(K) is identified with the algebra of Hermitian operators in the right K-module
S = K⊕K. Baez identified them with the algebra of quantum (mixed) states of the
quantum system. The “positive” states ρ, that is states which belong to the cone
V2(K) and normalized by the condition tr ρ = 1, are considered as positive (on
V2(K)) linear functionals ρ(X) = 〈ρ,X〉 = tr ρX (since the cone is selfdual). Such
functionals ρ are identified with observables and the value 〈ρ〉X := ρ(X) = 〈ρ,X〉
is considered as an expectation value of the observable in the state X.

We have a natural generalization of this interpretation to any special Vinberg
Hermitian algebra H3(V, S) = Herm(W ), W = V ⊕ S, cf. Section 2.2 for the
notation. According to Section 2.2, this algebra is identified with a space {MA |
A ∈ Herm(W )} ∼= Herm(W ) of symmetric operators acting on W . This space is
not closed under the Jordan multiplication 1

2 (MAMB +MBMA) in the space of all
gW -symmetric endomorphisms, but it is closed under the Vinberg multiplication
1
2 (AB+BA). Following Baez, we may consider elements of Herm(W ) as states and
elements of the dual Vinberg cone V3(W )∗ ⊂ Herm(W )∗, which are by definition
the linear functionals positive on W , as quantum observables of the theory.

Table 1. Division algebras K ∼= Rn, n = 1, 2, 4, 8, the Clifford algebra Cl(K) = Cln,0,

even Clifford algebra Cl0n,0, graded Clifford module S = S0 ⊕ S1 = K2 and its

decomposition K ⊕ K as a module of Cl0n,0, the spin group Spin(n) and the number
n(1,−1) = n(σ, τ)|σ=1,τ=−1 of independent admissible symmetric (σ = +1) bilinear

forms on S = K2 of type τ = −1. Similar tables can be given for other dimensions and
signatures of V .

n K Cln,0 Cl0n,0 S = S0 ⊕ S1 Spin(n) n(1,−1)

1 R C R C = R⊕ R {Id} 1
2 C H C H = C⊕ C U(1) 1
4 H H(2) H H2 = H⊕H SU(2)× SU(2) 1
8 O R(16) R(8) R16 = R8 ⊕ R8 Spin(8) 1

4. Rank 3 Vinberg algebras and cones

4.1. Special Vinberg (rank 3) matrix algebras and special Vinberg cones

As in Section 2, let (S, gS) be a graded Cl(V )-module with an even admissible
metric of type τ = −1. We denote by M3 = A(V, S) the vector space of matrices

X =

X11 X12 X13

X21 X22 X23

X31 X32 X33

 ,

where Xii ∈ R, X12 ∈ V,X21 ∈ V ∗, X13 ∈ S1, X31 ∈ S∗1 , X23 ∈ S0, X32 ∈ S∗0 . We
fix the involutions

∗ : V → V ∗, v 7→ v∗ = gv and ∗ : S → S∗, s→ s∗ = gSs
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and denote by H3 = Herm(W ) ⊂ A(V, S) the subspace of Hermitian matrices of
the form

X =

X11 X12 X13

X∗12 X22 X23

X∗13 X∗23 X33

 =

 x1 X3 X2

X∗3 x2 X1

X∗2 X∗1 x3

 ,

where X3 = X12 ∈ V, X1 = X23 ∈ S0, X2 = X13 ∈ S1 and X∗ij := (Xij)
∗ denotes

the element conjugated to Xij .

4.2. The group G(V, S) of upper triangular matrices and its action in
the space of Hermitian matrices

Denote by G = G(V, S) ⊂ M3 the set of upper triangular matrices of the form

A =

a11 a12 a13

0 a22 a23

0 0 a33

 =

α1 a12 a13

0 α2 a23

0 0 α3

 , (15)

where α1, α2, α3 > 0. It is a connected simply connected solvable Lie group with
respect to matrix multiplication.

The group G acts on the space M3 of matrices by left-multiplication

(A,X) 7→ LAX = AX, (AX)ij =
∑
k

aikXkj .

It also acts by right-multiplication with the conjugate matrix:

(A,X) 7→ RA∗X = XA∗, (XA∗)ij :=
∑
k

Xika
∗
jk,

where (A∗)ij = a∗ji is the conjugate lower triangular matrix. However LA does not
commute with RA∗ in general, as shown in Remark 2. So we cannot simply define
a representation by LA ◦RA∗ or by RA∗ ◦LA ( 6= LA ◦RA∗ in general). Nevertheless
TAX = AX + XA∗ defines a representation of the Lie algebra g = LieG on
the space of Hermitian matrices, see Theorem 1. We consider the representation
(A,X) 7→ A ·X of G on Hermitian matrices which is generated by it.

Lemma 4. For all A ∈ G we have A · Id = AA∗.

Proof. It suffices to write A = expB, B ∈ g, and to compute

A · Id = (expB) · Id = (expTB)Id = (expB) · (expB∗) = (expB) · (expB)∗. �

The following theorem extends the work of Vinberg [30], who considered the
positive definite case.

Theorem 2. The orbit V = G · Id = {AA∗, A ∈ G} of the identity matrix is a
homogeneous cone with the simply transitive action of G. If gV and gS are Eucli-
dean metrics, then the cone is convex.

Definition 3. The cone V is called the special Vinberg cone (or cone of positively
defined matrices) associated to the Clifford module (S, gS).
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Proof. Following Vinberg, we associate to a matrix X = (Xij) ∈ M3 the matrix
X(2) ∈ M2, given by

X(2) =

(
X

(2)
11 X

(2)
12

X
(2)
21 X

(2)
22

)
=

(
X33X11 −X13 ·X31 X33X12 −X13 ·X32

X33X21 −X23 ·X31 X33X22 −X23 ·X32

)
.

In particular, for an upper triangular matrix A,

A(2) = α3

(
α1 a12

0 α2

)
.

Similarly for the lower triangular matrix A∗ conjugate to A, the matrix (A∗)(2) =

(A(2))∗ = α3

(
α1 0
a∗12 α2

)
. Following Vinberg, consider the real-valued homogeneous

polynomials of degree 1,2, and 4 , given by

p3(X) = X33,

p2(X) = X
(2)
22 = X33X22 − |X23|2,

p1(X) = detX(2) = X
(2)
11 X

(2)
33 − |X

(2)
12 |2

= (X33X11 − |X13|2)(X33X22 − |X23|2)

− (X33X12 −X13X32)(X33X21 −X23X31).

Here |X23|2 = gS(X23, X23), |X13|2 = gS(X13, X13), and |X12|2 = gV (X12, X12).

Lemma 5. If X = AA∗ ∈ V, A ∈ G, then

X(2) = A(2)(A(2))∗ = α2
3

(
α2

1 + |a12|2 α2a12

α2a
∗
12 α2

2

)
(16)

and
p3(X) = α2

3, p2(X) = α2
2α

2
3, p1(X) = (detA(2))2 = α2

1α
2
2α

4
3.

Proof. For A given by (15), the Hermitian matrix X = AA∗ is given by

X = AA∗ =

α2
1 + |a12|2 + |a13|2 α2a12 + a13a

∗
23 α3a13

α2a
∗
12 + a23a

∗
13 α2

2 + |a23|2 α3a23

α3a
∗
13 α3a

∗
23 α2

3

 , (17)

where αi := aii ∈ R. From this one can directly check the claimed formulas. �

Using the lemma, one can easily check the following proposition, which implies
Theorem 2. �

Proposition 7. There is a natural 1-1 correspondence between elements A ∈ G
and the points X ∈ V of the Vinberg cone. More precisely, for X = AA∗ ∈ H, the
following formulas hold

α2
3 = p3(X), α2

2 =
p2(X)

p3(X)
, α2

1 =
p1(X)

p2(X)p3(X)
,
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a13 =
X13√
p3(X)

, a23 =
X23√
p3(X)

,

a12 =
X

(2)
12√

p2(X)p3(X)
=

√
p3(X)√
p2(X)

X12 −
1√

p2(X)p3(X)
X13 ·X∗23.

4.3. Vinberg–Koszul characteristic function and invariant metric in
special Vinberg cones

We may consider H = H3 = Herm(W ) = R3 ⊕ W , W = V ⊕ S, as a pseudo-
Euclidean vector space with the metric given by the sum of the Euclidean metric
on R3 and the metric gW = gV ⊕ gS on W . As shown in Section 2.1, the group
G = G(V, S) = G(W ) acts as a linear group on H. Since the group G is a product
of the diagonal subgroup D = {diag(α1, α2, α3)} and a unipotent subgroup G′, the
determinant detH A of an element A ∈ G, considered as a linear transformation
of the vector space H depends only on the diagonal part Λ = diag(α1, α2, α3) of
A which acts on a matrix X by

Λ ·X =

 α2
1x1 α1α2X3 α1α3X2

α1α2X
∗
3 α2

2x2 α2α3X1

α1α3X
∗
2 α2α3X

∗
1 α2

3x3

 ,

where we are using the notation xi := Xii, X1 := X23, X2 := X13 and X3 := X12.
Let dimV = n, dimS0 = dimS1 = N . Then we get:

Lemma 6.
detHA = α2+n+N

1 α2+n+N
2 α2+2N

3 .

Remark 4. Recall that in the case n = 0, the dimensions N0 = dimS0 and N1 =
dimS1 do not necessarily coincide. In that case we obtain the equality detH A =

α2+N1
1 α2+N0

2 α2+N0+N1
3 . For simplicity, we assume n > 0 in the following.

The Vinberg–Koszul characteristic function of the cone V is defined as

χ(X) = (detHA)−1 where X = AA∗.

The functions α2
1, α

2
2, α

2
3 can be written as

α2
3 = p3(X) = x3,

α2
2 =

p2(X)

p3(X)
=
x2x3 − |X1|2

x3
,

α2
1 =

p1(X)

p2(X)p3(X)
,

(18)

where the polynomials pi were defined in Section 4.2 and we recall that

p1(X) = (x1x3 − |X2|2)(x2x3 − |X1|2)− (x3X3 −X2 ·X∗1 )(x3X
∗
3 −X1 ·X∗2 ).

By opening the brackets, using the associativity axiom (see Proposition 3), we
compute
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p1(X) = x3(x1x2x3 − x1|X1|2 − x2|X2|2 − x3|X3|2)

+ (|X1|2 · |X2|2 − (X2 ·X∗1 ) · (X1 ·X∗2 ))

+ x3[(X2 ·X∗1 )X∗3 +X3 · (X1 ·X∗2 )]

= x3[x1x2x3 − x1|X1|2 − x2|X2|2 − x3|X3|2

+ (X2 ·X∗1 )X∗3 +X3 · (X1 ·X∗2 )︸ ︷︷ ︸
=2(X2·X∗1 )·X∗3

].

Definition 4. The cubic polynomial h(X) = p1(X)/p3(X) = (α1α2α3)2 is called
the cubic potential of the cone V and the hypersurface V1 = {h(X) = 1} ⊂ V is
called the canonical (or determinant) hypersurface of the cone.

Theorem 3.
i) The Vinberg cone V is described in terms of the Vinberg polynomials by the

inequalities pi(X) > 0, i = 1, 2, 3, or, equivalently, in terms of the cubic potential
h(X) by the three inequalities

h(x) = x1x2x3 − x1|X1|2 − x2|X2|2 − x3|X3|2 + 2(X2 ·X∗1 ) ·X∗3 > 0,

x2x3 − |X1|2 > 0 and x3 > 0.

ii) The connected component of the level set {X ∈ Herm(W ) | h(X) = 1} which
contains the identity matrix coincides with the canonival hypersurface V1 = {X ∈
V | h(X) = 1} of the cone and V = R>0 · V1.

iii) The characteristic function is given by

χ−1(X) = α2+n+N
1 α2+n+N

2 α2+2N
3 = h(X)1+(n+N)/2p3(X)(N−n)/2.

Proof. The assertion ii) holds, since V is connected and the function h is homo-
geneous. The fact that the inequalities listed in i) hold on V follows from (18).
To prove the opposite inclusion it suffices to check that the set defined by the
inequalities is connected. Equivalently, it suffices to show that the hypersurface

H := {X ∈ Herm(W ) | h(X) = 1, x3 > 0, x2x3 − |X1|2 > 0}

is connected and thus coincides with V1. The connectedness follows from the fact
that the hypersurface H can be parametrized as the graph of a function over the
connected open subset of R2 ⊕W = {(x2, x3, X1, X2, X3)} defined by the inequa-
lities x3 > 0, x2x3 − |X1|2 > 0:

x1 =
1 + x2|X2|2 + x3|X3|3 − 2(X2 ·X∗1 ) ·X∗3

x2x3 − |X1|2
.

Finally, using Lemma 6 and Definition 4, we calculate

χ−1(X) = detHA = (α1α2α3)2+n+NαN−n3 = h(X)(2+n+N)/2x
(N−n)/2
3 . �
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Proposition 8.
i) The cone V is naturally a homogeneous pseudo-Riemannian G-manifold with

the metric gV := − 1
3 log ∂2h, where ∂2h denotes the Hessian of h.

ii) The restriction gH of the metric gV to the hypersurface H = V1 = {h =
1} ⊂ V defines on H the structure of a homogeneous pseudo-Riemannian G1-
manifold, where G1 = {α1α2α3 = 1} ⊂ G is the subgroup acting by unimodular
transformations on the vector space Herm(W ). The metric gH can be equivalently
defined by restriction of − 1

3∂h to H without taking the logarithm.
iii) If the scalar product gW = gV ⊕ gS is positive definite, the metrics gV

and gH are complete Riemannian metrics, the domain V is convex and the cubic
hypersurface H is strictly convex.

Proof. i), iii) First we note that gV is G-invariant, as it is invariant under any
linear transformation of Herm(W ) preserving the cone V ⊂ Herm(W ). It is also
nondegenerate, which follows from a simple calculation of the Hessian at the
point (x1, x2, x3, X1, X2, X3) = (1, 1, 1, 0, 0, 0). The same calculation shows that
the metric gV is positive definite if gW is. This implies the strict convexity of H
and the convexity of V.

Part ii) follows easily from i), using the homogeneity of h. �

Remark 5. It follows from our discussion that the homogeneous projective special
real manifolds classified in [29, 14] are precisely the homogeneous manifolds of the
form (H, gH) arising in the above manner from special Vinberg cones of rank 3 and
Vinberg cones of rank 2. They are of interest in high energy theoretical physics
as they are exactly the homogeneous scalar manifolds of supergravity coupled to
vector multiplets in five space-time dimensions.

Remark 6. Under the supergravity r-map the above homogeneous projective spe-
cial real manifolds give rise to homogeneous projective special Kähler manifolds,
which in turn give rise to homogeneous quaternionic Kähler manifolds (of negative
scalar curvature) under the supergravity c-map, see [29]. The homogeneous quater-
nionic Kähler manifolds are discussed more in detail in the Remark 7 below.

The r-map and the c-map are constructions which originate in the dimensional
reduction of supergravity theories from 5 to 4 and from 4 to 3 space-time dimen-
sions d, respectively. The reduction of the space-time dimension is accompanied by
an increase of dimension of the corresponding scalar manifold, which is projective
special real (d = 5), projective special Kähler (d = 4) or quaternionic Kähler
(d = 3).

The composition of the r- and the c-map is known as the q-map. It is a
construction which associates a quaternionic Kähler manifold with every projective
special real manifold. It can be also applied to the indefinite homogeneous cubic
hypersurfaces associated with the indefinite homogeneous cones included in Theo-
rem 3, cf. Proposition 8. The corresponding homogeneous indefinite quaternionic
Kähler manifolds include symmetric spaces as well as non-symmetric examples.

Remark 7. Let V be a Euclidean vector space of dimension k ≥ 0. By choosing a
Z2-graded Cl(V )-module S = S0 ⊕ S1, we obtain homogeneous projective special
real manifolds as convex connected components of the level sets of the cubic
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polynomials described above. These correspond under the q-map to homogeneous
quaternionic Kähler manifolds [29], namely to the Alekseevsky spaces of rank
4, which are the spaces W(p, q), V(`, k) and V(p, q; `) [1, 13]. More precisely,
taking k = 0, S is determined by two numbers p = dimS0 and q = dimS1.
The corresponding spaces are the W(p, q). For k 6≡ 0 (mod 8) there is a unique
irreducible Z2-graded Cl(V )-module and an arbitrary module is determined by
its multiplicity `. The corresponding spaces are the V(`, k). Finally, for k ≡ 0
(mod 8) there are two non-equivalent irreducible Z2-graded Cl(V )-modules and an
arbitrary module S is determined by the multiplicities p and q of those modules
as submodules of S. These yield the spaces V(p, q; `).

Apart from the rank 4 Alekseevsky spaces there are Alekseevsky spaces of rank
1, 2, and 3. The rank 3 spaces (denoted T (p) in [13], cf. Example 1 below) can be
also obtained from the q-map [29] as well as the rank 2 space G2(2)/SO(4). The
latter corresponds to the case when the projective special real manifold is reduced
to a point. The remaining Alekseevsky spaces are the quaternionic hyperbolic
spaces and the Hermitian symmetric spaces SU(m, 2)/S(U(m)×U(2)).

4.4. The triangular Lie algebra g(V, S) = LieG(V, S) and its subalgebras

The results of this section will be used for the study of group actions on subcones
in Section 5.

The Lie algebra g(V, S) of the group G(V, S) has the gradation

g(V, S) = g0 + g1 + g2 + g3 = {diag(α1, α2, α3) | αi ∈ R}+ V23 + V12 + V13,

where g0 is the diagonal subalgebra and Vij = Aij , A = A(V, S). The group
G(V, S) is a direct product G(V, S) = (R>0 · Id )×G1(V, S) of the center and the
normal subgroup G1(V, S) = {detA = 1} which acts by unimodular transforma-
tions. The Lie algebra g1(V, S) of G1(V, S) is given by

g1(V, S) = d + n = d + V23 + V12 + V13

where d = g0 ∩ g1(V, S) is the 2-dimensional Cartan subalgebra and n is the
nilradical.

We will say that a subalgebra l ⊂ g1(V, S) has rank r = 0, 1, 2 if the intersection
dl = d ∩ l has dimension r and l = dl + l ∩ n. Next we describe subalgebras of

g1(V, S) of rank 1 and 2.
Let Uij ⊂ Vij (i < j) and d′ ⊂ d be subspaces such that U12 · U23 ⊂ U13. Then

l = g(d′, U12, U23, U13) := d′ + U12 + U23 + U13

is a subalgebra of g1(V, S). We call the subalgebra l a standard subalgebra of
g1(V, S) of rank r and the subalgebra k := R · Id ⊕ l a standard subalgebra of
rank r + 1 of the triangular Lie algebra g(V, S). The corresponding subgroups
L ⊂ G1(V, S) and K ⊂ G(V, S) are called standard.

Proposition 9. Let k = Rd + n′ be a rank 1 subalgebra of g1(V, S), where d =
diag(λ, µ,−(λ+µ)). Then either it is a standard subalgebra or one of the subalgeb-
ras described below.
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i) Up to scaling, d = diag(1, 0,−1). Then the adjoint diagonal action of add on
n = V12 + V23 + V13 is given by add = diag(1, 1, 2) and the associated rank one
subalgebra l of g1 has the form

l = Rd+ Uϕ12 + U23 + U13

where Uij ⊂ Vij, U
ϕ
12 = {u + ϕ(u) | u ∈ U12} and ϕ : U12 → V23 is a linear map.

The condition that l is a subalgebra reads as

[Uϕ12, U
ϕ
12] ⊂ U13, [U12, U23] = U12 · U23 ⊂ U13.

ii) d = diag(2,−1,−1) and add = diag(3, 0, 3). Then the associated subalgebra
has the form

l = Rd+ Uϕ12 + U13 + U23

where Uij ⊂ Vij such that U12 · U23 ⊂ U13 and Uϕ12 = {u + ϕ(u) | u ∈ U12} is the
subalgebra U12 twisted by a linear map ϕ : U12 → V13.

iii) d = diag(1, 1,−2) and add = diag(0, 3, 3).
Then

l = Rd+ U12 + Uϕ23 + U13, Uij ⊂ Vij ,

where Uϕ23 is the subalgebra U23 twisted by a linear map ϕ : U23 → V13 and U12 ·
U23 ⊂ U13.

Proof. A non-standard subalgebra which contains the element d = diag(λ, µ,−(λ+
µ)) exists only if two of the add eigenvalues λ−µ, 2µ+λ, 2λ+µ of of the eigenspaces
V12, V23, V13 coincide. There are three such cases. Analyzing them, we prove the
proposition. �

Corollary 2. Any rank 2 subalgebra l ⊂ g1(V, S) is standard.

5. Sections of special Vinberg cones

5.1. Sections of Vinberg cones and special geometries of small
cohomogeneity

The intersection VΠ = V ∩ Π of a Vinberg cone V = V(V, S) with a subspace
Π ⊂ H = Herm(W ), W = V ⊕ S, which contains a point X ∈ V is an open cone
in H, convex if V is convex.

Definition 5.
i) The cone VΠ = V ∩ Π is called a (conical) section or shortly a subcone of

the Vinberg cone V. If Π is a hyperplane it is called a codimension 1 section or
codimension 1 subcone, respectively.

ii) We say that a subcone VΠ has rank r ≤ 3 if it is invariant under an r-
dimensional subgroup of the diagonal group D = {diag(α1, α2, α3) | αi > 0}.

We are interested in (open) subcones VΠ of small cohomogeneity k, that is
cones for which the group of (linear) automorphisms acts with cohomogeneity k.
We recall that the cohomogeneity of a group of transformations is the minimal
codimension of an orbit.
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Example 1. Let V = {0}, S = S0⊕S1 = Rp⊕{0} and consider the corresponding
homogeneous projective special real manifold defined as

H := {h = 1, x2 > 0, x3 > 0} ⊂ R3 ⊕ S = R3+p,

where h = x2(x1x3 − |Y |2), xi ∈ R, Y ∈ Rp. Note that Y = X13 = X2 in the
notation of Section 4.3. Next we consider a hyperplane Π = Πλ ⊂ R3+p defined
by an equation x2 = λ, where λ = λ(x1, x3, Y ) is a non-zero linear function in the
variables x1, x3 and Y . Then

Hλ := H ∩Π ⊂ Π

is a complete projective special real manifold, which was considered in [15, Thm.
2]. Since the map (x1, x3, Y ) : Π → R2+p is a linear chart for Π, we see that the
quadratic form x1x3 − |Y |2 restricts to a scalar product of signature (1, 1 + p) on
Π. The cubic polynomial h|Π = λ(x1x3−|Y |2) is reducible with a light-like, space-
like or time-like factor λ. This corresponds respectively to the cases b), c), and d)
of [15, Thm. 2], up to a linear transformation. The automorphism group of Hλ,
that is the group of linear transformations of Π which preserves the hypersurface
Hλ ⊂ Π, acts transitively on Hλ when λ is light-like and with cohomogeneity
one otherwise. Under the q-map one obtains the rank three Alekseevsky spaces
T (p) in the first case and two series of complete quaternionic Kähler manifolds on
which a certain group of isometries acts with cohomogeneity one [15, Cor. 28]. If
λ is time-like, then it is shown in [15, Thm. 3] that the full isometry group of the
resulting complete quaternionic Kähler manifolds has no open orbit and is thus
also of cohomogeneity one.

We continue to consider the special Vinberg algebra of 3 × 3 matrices A =
M3(V, S) associated with a Cl(V )-module S and the Vinberg cone V(V, S) ⊂
Herm(W ) ⊂ A of (formally) positive definite Hermitian matrices, cf. Theorem
3. Any rank 3 subcone is defined by subspaces U12 ⊂ V12 = V , U23 ⊂ V23 = S0

and U13 ⊂ V13 = S1. We denote such a subcone by

V(U12, U23, U13) = {X ∈ V(V, S) | Xij ∈ Uij , i < j}.

To simplify notation, we will not indicate the subspace Uij = Vij . For example, we
denote by V(U12) the subcone V(U12, V23, V13). Any rank 3 subcone of codimension
1 has the form V(Uij), where Uij is a hyperplane in Vij , (ij) = (12), (23) or (13).

The following proposition describes homogeneous rank 3 subcones of a Vinberg
special cone V = V(V, S).

Proposition 10. Let V=V(V, S) be a special Vinberg cone. A subcone V(U12,U23,
U13) is a homogeneous cone if U12 · U23 ⊂ U13 and U13 · U23 ⊂ U12, cf. equation
(11). In particular, the subcones of the form V(U12), V(U23) are homogeneous.

Proof. The inclusion U12 · U23 ⊂ U13 ensures that

G(U12, U23, U13) = {A ∈ G(V, S) | aij ∈ Uij , i < j}

is a (rank 3) subgroup of the triangular group. The inclusion U13 · U23 ⊂ U12

ensures that it acts simply transitively in V(U12, U23, U13). �
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This proposition reduces the description of the cohomogeneity of codimension 1
cones of rank 3 to the cones V(U13), where U13 is a hyperplane of the spinor space
V13 = S1.

We consider an example. Let (V, gV ) be a pseudo-Euclidean space of neutral
signature (m,m). We assume that m ≡ 0 or 3 (mod 4), such that S admits an
even admissible scalar product of type τ = −1. We fix a bi-isotropic decomposition
V = U ⊕U∗ and identify the (unique up to equivalence) irreducible Cl(V )-module
with S = ΛU . We choose the grading such that S0 = ΛoddU , S1 = ΛevU if m
is even and S0 = ΛevU , S1 = ΛoddU if m is odd. We consider the orthogonal
hyperplane

Π = 1⊥ = R3 ⊕ V ⊕
m−1∑
i=0

ΛiU ⊂ Herm(W ) = R3 ⊕ V ⊕ S = R3 ⊕ V ⊕ ΛU

of the pure spinor 1 ∈ ΛmU . Then S0 ⊂ Π and Π ∩ S1 is a hyperplane in S1. We
can define rank 3 subgroups G(U∗, S0,Π∩S1) and G(V,

∑m−2
i=0 ΛiU,Π∩S1), since

the condition U12 ·U23 ⊂ U13 of Proposition 10 is satisfied in both cases. However,
only the second group satisfies also the condition U13 · U23 ⊂ S1 · S0 ⊂ V = U12.
Therefore the cone V(V,

∑m−2
i=0 ΛiU,Π ∩ S1) admits the simply transitive group

G(V,
∑m−2
i=0 ΛiU,Π ∩ S1) of automorphisms. As a consequence, the latter group

acts with cohomogeneity ≤ m on the codimension 1 subcone V(Π) ⊂ V.

Question: Is it true that the above codimension 1 subcones have minimal cohomo-
geneity among codimension 1 subcones of rank 3?

Proposition 11. Let K ⊂ G(V, S) be the standard Lie group generated by a rank
3 standard Lie subalgebra k = d+U12 +U23 +U13. Then the orbit K · Id = {AA∗ |
A ∈ K} is a homogeneous subcone, that is a section VΠ = Π ∩ V(V, S) of the cone
V with transitive action of the group K.

Remark 8. In the setting of Proposition 11, let Π̃ be a subspace of H3 = Herm(W )
which contains Π as a hyperplane, then K acts with cohomogeneity one the subcone
Π̃ ∩ H3 ⊂ V. We consider cohomogeneity one subcones obtained in this way as
trivial.

Remark 9. Let K ⊂ G(V, S) be the subgroup associated to a subalgebra k =
R Id ⊕ l where l is a rank one subalgebra of g1(V, S) described in Proposition 9.
Then the orbit K · Id is a cone, but in general not an open cone in the vector
space span(K · Id ).

5.2. Sections of the symmetric cone of positive definite quaternionic
Hermitian matrices

As an example, we consider rank 3 sections V(U12, U23, U13) of the selfdual cone
V(H,H2) of quaternionic rank 3 Hermitian matrices. Here V = H, S = H2 and
hence Vij = H for all i < j in the notation of the previous section. We denote by
G(U12, U23, U13) ⊂ G = G(H,H,H) the subset defined by the condition that the
matrix elements aij (i < j) belong to the subspaces Uij ⊂ H.
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Proposition 12.
i) The subset G(U12, U23, U13) ⊂ G is a subgroup if and only if U12 ·U23 ⊂ U13.
ii) The subgroup G(V(U12, U23, U13)) of G which preserves the subcone

V(U12, U23, U13) ⊂ V acts (simply) transitively if and only if U13 · U23 ⊂ U12.

Proof. i) It suffices to check that G(U12, U23, U13) ⊂ G is closed under multiplica-
tion if and only if U12 ·U23 ⊂ U13, cf. the proof of Proposition 10, where one of the
two implications was already mentioned.

ii) Similarly, one checks that the group G(U12, U23, U13) preserves the cone
V(U12, U23, U13) if and only if U13 · U23 ⊂ U12 (again one of the implications
was already mentioned in Proposition 10). This follows from the calculation of
X = AA∗ for A ∈ G(U12, U23, U13):

X12 = α2a12 + a13a
∗
23, X23 = α3a23, X13 = α3a13.

From these formulas we also see that, under this assumption, G(U12, U23, U13) =
G(V(U12, U23, U13)). This proves ii). �

Note that up to conjugation, any hyperplane of H has the form

Hθ = span{cos θ1 + sin θk, i, j}.

In particular, H0 = span{1, j, k} contains complex fields span{1, sinϕi + cosϕj}.
We set H′0 = span{j, k}. Denote by C = span{1, i}. Then H′0 is a C-module and
H′0 ·H′0 = C. This implies:

Proposition 13.
i) The section V(C,H′0,H′0) is a homogeneous subcone.
ii) The section V(C,H′0,H0) is a cohomogeneity one subcone.
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ras and bilinear invariants of the spinor representation of Spin(p, q), Comm. Math.
Phys. 183 (1997), no. 3, 477–510.

[3] D. V. Alekseevsky, V. Cortés, Geometric construction of the r-map: from affine spe-
cial real to special Kähler manifolds, Commun. Math. Phys. 291 (2009), 579–590.

[4] Shin-ichi Amari, Information Geometry and its Applications, Applied Mathematical
Sciences, Vol. 194, Springer, Tokyo, 2016.

[5] S. A. Andersson, G. G. Wojnar, Wishart distributions on homogeneous cones, J.
Theor. Probab. 17 (2004), 781–818.

[6] J. C. Baez, Division algebras and quantum theory, Foundations of Physics 42
(2012), no. 7, 819–855.

400



SPECIAL VINBERG CONES

[7] J. C. Baez, J. Huerta, Division Algebras and Supersymmetry, Part I: Proc. Sym-
posia Pure Math. 81 (2010), 65–80; Part II: Adv. Theor. Math. Phys. 15 (2011),
no. 5, 1373–1410.

[8] F. Barbaresco, Geometric theory of heat from Souriau Lie groups to thermo-
dynamics and Koszul Hessian geometry: Applications, Information Geometry for
Exponential Families, Entropy 18 (2016), 1–72.

[9] F. Barbaresco, Jean-Louis Koszul and the elementary structures of information
geometry in: Geometric Structures of Information, Signals Commun. Technol.,
Springer, Cham, 2019, pp. 333–392.

[10] S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, SAM lectures on extremal black
holes in d = 4 extended supergravity, Proceedings of the INFN-Laboratori Nazionali
di Frascati, 2007, 1–30, arXiv:0905.3739v1 (2009).

[11] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization. Analysis,
Algorithms, and Engineering Applications, MPS/SIAM Series on Optimization,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathe-
matical Programming Society (MPS), Philadelphia, PA, 2001.

[12] P. Cartier, Vinberg algebras and combinatorics, IHES/M/09/34, 2009.

[13] V. Cortés, Alekseevskian spaces, Differential Geom. Appl. 6 (1996), no. 2, 129–168.

[14] V. Cortés, Homogeneous special geometry, Transform. Groups 1 (1996), no. 4, 337–
373.
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