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Prologue 

The aim of these lectures is to present the physics of the spontaneously broken gauge 

theories of the weak and electromagnetic interactions at a level suitable for non 

specialists. Thus, in general, I shall try to emphasize more the conceptual rather 

than the technical side of the subject - although, inevitably, some technical material 

will have to be included. For those readers interested in a more detailed exposition 

of electroweak interactions, there exist both recent conference reviews /1/ as well 

as summer school lectures /2/ /3/, which cover this topic in more depth. 

The first part of these lectures is devoted to developing the concepts necessary for 

understanding how the electroweak gauge theories are built. I discuss, in particular, 

how global symmetries are realized in nature and how one can make a globally symmetric 

theory locally symmetric, by introducing gauge fields. The consequence of spontaneous 

symmetry breakdown for the spectrum of excitations and its role in mass generation 

are also emphasized here. All these ideas are illustrated in the context of simple 

models. 

Having developed all the necessary tools, in the second part of these lectures I con­

struct the SU(Z) x U(1) model for electroweak interactions of Glashow, Salam and 

Weinberg /4/. After describing the structure of interactions of the model, I discuss 

some aspects of the phenomenology of neutral current experiments. Both purely leptonic 

as well a~ deep inelastic experiments are considered. A brief discussion of parity 

violation effects in atoms is also included. As a final topic in this section, some 

properties of theW and Z bosons, discovered recently at the CERN collider, are ex­

amined. 

The last part of these lectures is devoted to the open problems of the Glashow Salam 

Weinberg theory. These problems are centered in the symmetry breaking sector of the 

model, in which the symmetry breakdown is trigg~red by the vacuum expectation value 

of an elementary scalar field. Some of the theoretical ideas proposed to replace this 

elementary Higgs mechanism by something more dynamical are discussed, along with the 

difficulties that they encounter. Both the Technicolor scheme of dynamical symmetry 

breakdown, as well as the idea that quarks and leptons themselves may have some 

structure, are briefly touched upon. 

I. Symmetries in Field Theory: their Realization and their Dynamics 

The natur31 language for elementary particle physics is that of quantum field theory. 

To each fundamental excitatio~ one assigns a corresponding quantum field. Symmetries 

of nature are incorporated by constructing Lagrangian densities, made up of these 
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* quantum fields, which are explicitly invariant under the given symmetry in question 

I shall consider specifically only continuous symmetries, which reflect particular 

transformation properties of the quantum fields of the theory under some group of 

transformations. Let me denote a 

space-time location and ol is an 

generic quantum field by?(. (x), where x is its 
~ 

(internal) index which runs over the possible com-

ponents of X . If a is one of the operations of the symmetry group G of transforma­

tions, and if the quantum fields 'X are members of an (irreducible) multiplet, then 
~ 

under this operation one has: 

X tlll 

" -... X' tx) 

" 
~ Ci( t .. ) 

·~ 
x,. (•) (I. 1) 

That is, under the group transformation the new components of Jr are linear combina­

tions of the old components. 

The matrices (j( (a), characterized by a, constitute a representation matrix of the 

group G. That is, if one performs the sequence of transformations 

' 1. ,,, 
• - ~tx)­

Q,. « a! 

which is equivalent to 

X'"' --+ " 
then one has 

o." 

(l Lo.'> 
~~ 

" X /x> 

" 

6( ( "') 
1'1 

.. 

.. 
X tx> 

" 

C{ lo.'') 
«y 

(I. 2) 

(I. 3) 

(1.4) 

In the Hilbert space of the quantum operators 

induced by a Unitary operator U (a). One has 

X (x) the transformation (I. 1) is 

" 

-· 11 (A) X '•' 1ft .. > .. 
" 

• "X h: \ = 
" 

(i( (~) 
"~ 

X,., 
~ 

(I. 5) 

The composition property (I.4) has its counterpart in terms of the unitary operators 

1LT . One easily sees that 

• More precisely, it is only necessary that the action be invariant. 
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u(4) Uc..:l,. ru..:•J (I. 6) 

Since continuous symmetry transformations are being considered, it suffices to study 
infinitesimal transformations. Finite transformations can always be built up from 

these infinitesimal transformations by repeated (infinite) compounding. A given group 

G is characterized by the number of parameters associated with these infinitesimal 

transformations and by the algebra obeyed by its generators. The generators Gi 

describe the infinitesimal form of the unitary operators V ( $4) . That is, 

writes for infinitesimal transformations 

u ( \ .. ) ' 1 • ~~. r;. . ' 

just 

one 

( 1. 7) 

The parameters ,a. can be taken to be real, without loss of generality. Thus the 
' generators Gi are Hermitian operators. The composition property (I .6) implies a group 

algebra (Lie algebra) for the generators: 

[ G ,. ·1 < i "',." G • ) ..,..) ~ I( 
(I. 8) 

The coefficients c .. ,, ~ , which can be chosen to be totally antisymmetric in i, j 

and k, are called the structure constants of the group. 

For infinitesimal transformations, the representation matrices 

also be close to the identity. One :nay write 

(X. (So. ) will 

(!( ('o.) 
~~~ 

~ ~ 
·~ 

.. ' ~ .. , ( ~. )0:,. (I. 9) 

It is not hard to show that the matrices gi furnish a representation for the genera­

tors Gi and thus obey the same algebra as (1.8). This can be demonstrated as follows. 

For an infinitesimal transformation, using (I .5) one has: 

[ I - ; '~: G; 11! (>) ( 

• 
whence it follows that 

c G- r .. ,J = . ' " 

~ ... ' ~Q.~ <;~ ] 

-('di) ~(xl 
"~ ' 

':. 'J! t)(. I 
~ 

+ ...... (•;l j( C,.\ 
• 6 tt'l' p 

(L10) 
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This equation embodies succinctly how the quantum fields "){.-; transform under the 

group, and will be of much use lai:er. Using (1.10) in the Jacobi identity 

c c;,,cc4 ,:J~"1 J • (1f~JG-.-,Gil] + (. Gi, ( 11:,.., G-,1] " o 

one readily checks that it is necessary that the matrices gi obey .the algebra 

c gi ,gj 1 ;: i '\jk8k (I. 11) 

which is the desired result. 

Let me imagine a theory, built out of the quantum fields~- , which is invariant 

under the transformations of the group G. What are the implications of this state-

ment? The invariance of the theory means that the quantum action does not change if 
• either in terms of the)( t< or 1!'"' fields. Since the action the theory is expressed 

is just the space time integral of the Lagrangian density '(!/{"X ':) 1( ) , the 
#( J /" " 

statement of invariance of the theory under G is simply that 

w : ~a~. 'J. lx., ·'• 11:,\ .. ~ a•. i( ( ~~ . •,.. ;:~ l (I. 12) 

The stationarity of the action under G implies the existence of conserved currents 

J~ This is easily seen by looking at the case in which the fields X 1 
are infini-

' ~ tesimally different from~-. One has then 

o~ 'w, ~ ~- .. f 

::\~··{[ ~!i 

~ "· 

~ 
~¥~ 

- :;,, .. 

~1(" .. ~ !( 

~- 11 •' " 
a •,.x.,} 

( ~ )1 a, .. ),. [ ~ ')' .. ] } 
., "r 1:" ) ~r x., . 

The first term above vanishes by virtue of the Euler-Lagrange equations of motion. 

The second term can be rewritten using 

'?!, • 'X~ -1{ .. .. ~<I; l~J .. p ~I' 

" 

0 .. 5 w .. ~ cl4l( ~<I; ) -[ 
~:t 

,. ··~1!.._ t {1;)«\>'Xi' J 

Since the parameters Sa. are independent, it follows that the currents 

' 

-r.",~, ~ 
• 

~~ 

;) ';); ")!./" 
-': (~;) 'X '"' . "~ , 

are conserved 

r .. t J. ,., : 0 
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(I.13) 

(I.14) 

The generators Gi of the transformation can be identified as the space integrals of 

the time components of these currents 

G. • 
,. ~ o'• j; I>\ ~ ~~. [ ~ ~ 

~\oXc 
tt~·>.(>~ .. ] (I.lS) 

Because the currents are conserved, the generators Gi are time independent and thus 

they are constants of the motion. If H is the Hamiltonian of the theory, then 

( H G.1 . ' 0 (1.16) 

This last statement may be a more familiar way to express the invariance of the 

theory under the transformations of the group G. 

It is easy to check 

quantity )'t. 
that the Gi constructed in (I-15) are indeed the generators. The 

is just the canonical momentum, conjugate to the field ): 

") ")~l:,.:. 

1i' ·~) -
" 

~~ 

~ ~O:kiiC,.()I) 

Consider then the commutator of G. with a field X: tw.> ' '( . 
( G;' ~\t~>] ~ ~11 • ( rr •• ~, t(~,\ .. ~1/>', -x,t~, J 

" 
(I. 17) 

Because G. is time independent, it is possible to set x0 
= y0 in the above and thus 

' - * evaluate the commutator using the canonical equal time commutation relations 

* For fermionic fields these have to be replaced by anti-commutation relations, but 

the result still obtains 



(Jr ,., ')I ·~>1 
" J ,. xo~~· 

c lf~l'l I 'Tl'p (~) 1X'•l' 

" J. r3 - -a ~~-<tl ~"p 

~ ( 1(,.,.,) x, ·~> 1 . " 0 
" ... ~ ... 

6 

(I. 18) 

The result is just Eq. (1.10). In the same way, one can show that the G.'s obey the 
) 

Lie algebra (1.8), which establishes the identification, 

Up to now in my discussion of symmetries I focussed on the transformations of the 

quantum fields x_ ,..,., Eq. (1.5), for instance, informs me that under a trans-

formation of G these fields mix in a well defined way, It is natural to suppose that 

the single particle states associated with the fields 

analogous way. Let me denote these states by \ p j dt} 

tum of the state and p
2 

= - m
2

, since these states are 

Xtt (¥.) will transform in an 

• 
, where p ~ is the 4-momen­

supposed to describe particles 

of a given mass. These states can be constructed, by the well known LSZ procedure 

/5/, by applying Xc on the vacuum state of the theory. Corresponding to Eq. (I, 5) 

one expects that under a group rotation one has 

_, 
V tc.) I p; ~ '> ... 6( '•>lp;fl) 

-~ 
(I. 19) 

This equation can be used to deduce that all the states of the multiplet I p ~ t() 
have the same mass. Let \ P J t£ )n.1i denote the state corresponding to .:.-momentum 

p~. c .... 
is just 

0) Then, by definition, the action of the Hamiltonian on this state 
' 

Hlr> .<') 
r-e..d : .... lr;•), ••• 

" 
(I. 20) 

However, if the theory is invariant under G, the Hamiltonian commutes with all the 

generators (c.f. Eq. (1.16)) and hence also with \J-l(a): 

[H,u- 1(al] • 0 

Consider applying this commutator on the rest states If ~) ' ' ) (C.n: 

0 

Since 

: t 1-1 v·',,,J I r; • > , " ( 1-1 u·;.) -v·;., H) I r; ~ )_ ,1 J re.s •-

" ()."~ '•l ( ,.,_ - """ l I p; 11 >«,, 

{J. l<) is arbitrary it follows that 
op ""I':'"'• 
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I have shown that if G is a symmetry of the theory, and if Eq. (1.19) applies, then 

particles associated with fields that transform irreducibly under G have the same 

mass. This is known as a Wigner-Weyl realization of the symmetry. There are many 

examples in nature of symmetries <Jhich are realized in a Wigner \~eyl way. Perhaps 

one of the best known is the (approximate) SU(2) symmetry of strong interactions, 

which leads to the (near) equality in the masses of the charged and neutral pions 

and of the neutron and proton. 

There is, however, another way in which symmetries can be realized in nature, called 

the Nambu-Goldstone realization. In this case G is still an invariance of the theory, 

so that Eq. (1.16) applies. However, Eq. (1.19) ceases to be valid because the ground 

state- vacuum state- is not invariant under G. Eq. (1.19) follows directly from 

the transformation property (1.5), provided that the vacuum state is G invariant. 

That is 

U(a) l a) "' \ o) or Gila) =o 

' The one particle state \ p ~ .t) is given by the LSZ formula 

If~"-): 
I;_;~ lfo-:to ! CrCl 

( ~l. 
lp )C ......., 

~ ) ~ 
- 0 'X ,., I o > 

~ 

(1.21) 

(I. 22) 

If (1.21) holds, then the application afU(a)-l on lPJ' ti) is easily seen to 

give (1.19): 

_, 
V '"> If j ") : I p, 

(:.,.;t '1("-t ~ OQ 

' 

ir-< 
• l 

' 
-~. u··t .. ) y(}() 

~ 
\o) 

This is written for the case of a Bose field. Similar arguments hoLd for a Fermion 

field 
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~ !l, 
,·p. - _, 

; ~ J,. '· 'U l') X hC> 1J lo.) lo'> 
\i_:~ x•.,. to. ' 

~ 

l ~~ . ._'r• .... 
(;( 14) "/.I'M I•> ~ 

J,. '· t; ..... t- ¥'--~- ' «~ 

.. a .. ~,,) 1 p; ~> 

However, if the vacuum is not left invariant by the transformations of G, the second 

line above no longer follows. 

If 

11<•> lo) -jo to) (I. 23) 

the vacuum state is not 1,mique. It is degenerate. Under these circumstances it no 

longer follows that the symmetry implies multiplets of particles of the same mass. 

Rather, what happens is that there appear in the theory massless excitations, the so 

called Goldstone bosons. To see how this ensues, let me consider again the fields 

1,1( and take the vacuum expectation value of Eq. (1.10): 

<•I c c,, ")(•'" 1 I•> ~ -(,;\.,~ <•IXpt-.1•) 
(I. 24) 

If one is in the Wigner-Weyl case, Eq. (I.21) applies and it follows that the vacuum 

expectation value of the fields 1-jl vanishes 

(o\ 'll, <~> lo) " 0 Wigner-Weyl (I. 25) 

If 1t~ carries spin or parity, this is an expected result which follows independent-

ly of the internal symmetry group, just by demanding that the vacuum state be a 

Lorentz scalar and not violate parity. For a scalar field, however, the Lorentz pro­

perties do not force Eq. (I.25) to hold. 

Imagine, therefore, that one is dealing with scalar fields. If the symmetry is real­

ized in a Nambu-Goldstone way, the generators ~i no longer annihilate the vacuum 

and there is at least one field for which 

< o \ Jlp I>J I o) 'f 0 Nambu-Goldstone (1.26) 

Recalling the definition of the generators, Eq. (1.15), one may rewrite Eq. (I.24) 

"' 

~ 
) 0 • 

-(~,\ <ol11 ,,lo), !. <•I T.,., 't '"' - lG I>) -r. <•do) Jt ~ 4 • 4 ~ ~ • J 

It proves convenient to insert a complete set of states I "ffo ') in the LHS of this 

equation and use translational invariance: 

-:r: '::S) ~ 
-·~'1 

~ 
• J. (o) 

' 

;!!~ 
e (I. 27) 

where pf is the generator of space time translations. It follows that 

L~$ • Z \J.1 ~f<•l T;'t"J>I .. )("Il,.tx)lo) 

"' 
(oiX~•.-1,..) <., 11:'~' lo~} 

r l { ; I ~ _; P• ~ } 
.... ~ J~~ (."" (c.l'!~'o>~"-)<""l"){c"do)- e. (oll:tl<.l\....,)(..,.\!

0
t .. )l9) 

'"""' ' 1(. ~ I 

• l l•• l rJ ~ 
• <t .. ) .. i e-· p;'j• (ol T~ t'"') \ .. ) ( ""\ }( tX) (o) 

' . 
tiP:~· , 7 

~ e (QI "l',c::{~) 14-) < td r,. IQ) I o) 1 

(I. 28) 

By assumption this expression does not vanish. Furthermore since the RHS does not 

depend on y 0 the LHS must also be independent of y0
• This can only happen if in the 

theory there exist one particle states l""') which have zero mass, and only these 

states contribute in the sum. These zero mass states are the Goldstone bosons /6/. 

It is not difficult to convince ·oneself that for each generator 

annihilate the vacuum there exists a Goldstone boson. After all 

G. that does not 

' the action of the 

"broken" generators Gi on the vacuum must give some state and these are the Goldstone 

bosons. Let me write the Goldstone boson states as l p;j ), where p2 "'0. Then it 

follows that the matrix element of the currents associated with the broken generators 

between the vacuum and these states are non vanishing: 

(ol -rr•~> \tji) ~; ti ~;; f~ (1.29) 

where the fj are some non vanishing constants. Using the fact that for a one particle 

state 
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.. 5 ~~ 
l"~<~>,~r-' 

(I. 30) f 

and Eq. (1.29), the constants fi are identified essentially in terms of the non 
vanishing expectation value of ~ 

; (':,i )"'P <•I Jtr ,,do) • f f f; <t; <I Y.e·> lo) .. ( (o\ >;, ,., lr; •>} 
(I. 31) 

where pt" -t 0 is understood. 

The Nambu-Goldstone realization of a symmetry, because it is so much less familiar, 
ought to be exemplified in a simple context. For these purposes consider the follow­
ing Lagrangian density describing the interaction of a complex scalar field~ , with 
itself 

~. - ~~~\., ~'+ .. , - '>. ( q,',,,~,.,- f)' (I.JZ) 

Clearly this theory is invariant under a U(l) phase transformation 

4>·~· .... <!>'•» 
-., 

<.' c\>£xJ 

~ ... l);) ..... 
;...+' _.-. + 
T tlii:J -:r. e f ~~) 

(I.33) 

The conserved current J ~ associated with this symmetry can be constructed from the 
general formula (I-13) and is simply 

.~ . )!{ + ; u~rf)<Jt -(-~".Plt~] + (il + + :.5 + (-llf : 
~,, + • )~4>+' 

I 
(!.34) 

The generator 

G ... ( ~l. 1't}l.> " I ~ cllx ( (~·+*,, )+<~•- (?·~,,.,) +' w] 
(I .35) 

has the commutation relations 

( cr, ~"<> l ~ - ~'" 
((;., cl+t»] ••~+L~) 
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(1.36) 

In a classical sense one may think of the second term in the Lagrangian (1.34) as a 
potential 

v ( ~t, q.) • >. (q,t~- f) L 
(I. 37) 

Clearly, for the positivity of the theory one must demand that A) 0. The physics 
is considerably different depending on the sign of the parameter f. If f < 0 the 
potential has a unique minimum at + = 0 and the theory is realh;ed in a Wigner-\~eyl 
way, leading to a degenerate multiplet of massive states. If f > 0, on the other hand, 
the potential has an infinity of minima given by the condition that <P"~ "'" f. The 
theory is realized in a Nambu-Goldstone way and there is both a massive and a mass­
less state in the theory. The latter state is the Goldstone boson, expected from 
general principles. 

For f ( 0, because the minimum of the potential is at~= 0, it is sensible to ex­
pand the potential about this value and consider the quadratic terms as mass terms. 

'J(.jt+, t) < '>.f' -•>1 cl>t~ +}. (f~<}l' 

This identifies 

t 

""'' 
l 

" ,.. .~ • - l ·~ ) 0 
(1.38) 

One has a degenerate multiplet of two (charge-conjugate) particles, which are inter­
acting via the ).l~t" + ) \. term. 

If f ') 0, on the other hand, an expansion about +"' 0 makes no sense. The potential 
has a local maximum there and is unstable. The only sensible place to expand the 
potential is about its minimum point which occurs at ~ ~ If .e, i (5I with 6 
arbitrary. In fact if f > 0 in no way can the quadratic term in \1 ( ·~ cp) be 
interpreted as a mass squared term, since it is negative. Quantum mechanically the 
non zero value of + at the potential minimum implies that ~ has a non vanishing 
vacuum expectation value 

<o\ ~c-.lo) =ff 
.e 

t 
(!.39) 
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The phase e is in fact irrelevant and can be rotated away. It is a reflection of 

the non uniqueness of the vacuum state of the theory. Since under a U(l) transforma­

tion 

v-'t., >\>tx) lJ (ol.) ~ 
,., ... 

(. "'t'l'x l (1.40} 

it is clear that the expectation of + between the states 1Jt ... d) l 0) is purely 

real: 

-· <ol U c-6) cp~"> '(J(-8ljo) " J1 (1.41) 

Obviously 1Jt·8} l o) is just as good a vacuum state as I•). 

Without loss of generality one can therefore write t as 

q,,~, • Jf ... ')( (~) (I. 42) 

and look for quadratic tenns in an expansion of V about X 0. One finds 

v~ >t lx-.1e:•>• ... ·~Jf x•x <x•"~:•l -t >- clx.>' 
(1.43) 

If one introduces two real fields 1t'+, related by a canonical transformation to')( 
+ -

and X. : 

x.' • .l.(-x+"X) 
,fi j 

1t 

it is clear from (I-43) that "X. has a mass 

1. 
IM+ ~ L&)-t > "' 

'- i (1<•-z) 
(1.44) 

"" 
(1.45) 

but 1(_ is massless. Even though the Lagrangian is U(1) symmetric, this symmetry 

is not reflected in the spectrum of the theory. There is, however, a Goldstone ex­

citation. 

The identification of X.. as the Goldstone excitation follows also directly from 

the commutation relations it has with the generator G. Using (1.36) one has 

(. Go' "- 1 ~ ( r.~ .. x. \ (1.46) 
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Whence, taking vacuum expectation values, one obtains 

( o I C G, X_ 1 I o) ,_ i r.:f (1.47) 

Clearly this equation singles out X .. as the Goldstone boson field. Neglecting non­

linearities one expects therefore 

<ol X_.,, I p) : 1 (1.48) 

with \p) being the Goldstone boson state. Eq. (1.47) then gives, in this same 

approximation 

<ol T~ I•> If> L( r.;: ) r r- (I .49) 

which identifies the "decay constant" f. of Eq. (1.29) as J2'f. This same result also 
~ 

follows directly by rewriting the current 1~'" of Eq. (I.34) in tenns of';(_., and~. 

One finds 

~r t ... \ "a ~ ';lr 1( tiC-) -t> ~0-'\11 \i..,.ur te.r......_$ (I. 50) 

which implies (1.49). 

To summarize, there are two ways in which symmetries ( (H,U) ~ 0) in nature can be 

realized. If the vacuum state is unique ( "U \o")-.:. lo) ) then we have a Wigner­

Weyl realization with degenerate particle multiplets. If, on the other hand, the 

vacuum state is not unique ( Ulo') f. IO) ) we have a ~ambu-Goldstone realization 

with a number of massless excitations, one for each of the generators of the group 

which does not annihilate the vacuum. In this latter case, one often refers to the 

phenomena as a spontaneous symmetry breakdown because, although the symmetry exists, 

it is not reflected in the spectrum of states. 

In all the preceding discussion I have implicitly only talked about global symmetry 

transformations. That is, the parameters of the transformations were assumed to be 

independent of space-time. These global transformations, as exemplified by Eq. (1.1), 

transform fields at different space time points in the same way. One may well ask 

what happens if the group parameters are space time dependent. In this case, in 

general, the fields at x would be rotated by a different 9mount than those at another 

space-time point x'. Transformations where this happens are called local, to distinguish 

them from the global transformations of Sq. (1.1). Under a local transformation one 

hao 
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'X ·~\ 
" 

...... 
Q,.(M.) 

l' CY.l 
& 

~ 6? ('\<>u) X 1X> 

"'' ~ 

It is quite clear that even though one might have constructed an action 

w. p•. /1(111><1 )1(<•>) .e J/'« 

(I. 51) 

which is invariant under a certain set of global transformations, this action will 
fail to be invariant under local transformations. The Lagrangian density through its 
kinetic terms depends on ')t '):::CI(. and these quantities transform differently under 
local transformations than under global ones. One has 

)t 1(, (<> ___, 
Q.lx.) 

• "t X< IX) " j t' 
( ex. (<«.,) r. 1~1) 

"~ I' 

tK [._,.,) ,,. ~t 'X~ lxl + ( ~ 6( ( lltx))) 'X (x) 
t ol.p.. I' 

(I. 52) 

The presence of the second term above destroys the local invariance of jt'. If one 
wants the action really to be locally invariant, one must add to~ additional 
fields (gauge fields) which will serve to cancel these extra terms. Thus one sees 
that Lagrangian densities that are locally invariant must necessarily contain more 
degrees of freedom. 

I want to illustrate this point with a simple, but very helpful, example. Consider a 
free Dirac field, whose Lagrangian density is 

't~ '/It~) (y" l>.- .... ) of<xl • (I. 53) 

Clearly :t, is invariant under the U(1) transformation 

I 't< 'Pt)) -t + ("X) .. ~~ 1h)(J (I .54) 

and the associated conserved current is easily seen to be 

'J' ~I~) "' if(~\ '(t + (~) 
(I. 55) 

If t1 = tltY.) , however, the Lagrangian ceases to be invariant since 

~ "'IJ<) --; ~/'ft.) ~ 

:.JIX.) 
e ~t '1'••1 ~ 

,'Jw 
()t olc.l) e '{it~J 

(I. 56) 

It is quite simple to enlarge the Lagrangian (!.53) so that it is invariant also under 
local U(1) transformations. For that purpose all one needs to do is to introduce a 
field A (x) and postulate that under local U(1) transformations: ,. 

1 icltxl,l. t IX) , If()<.) ...: -( "f"l);) 

it transforms as 

Pot<)<.) _, ' A '"' ~ r At,., .. J.. j CJiiC><.1 
e t 

(!.57) 

(I. 58) 

where e is a parameter, which will eventually play the role of a coupling constant. 
Clearly the combination 

)) tL t>l 
I' T 

( ~~ - ; e 1\ IX\) 1~~~ 
t (I .59) 

transforms under local transformations without any inhomogeneous terms. That is 

lltt••l 
I,(,' - ]) ... '"") " 

: e''oiCX) l:>f''l'tx) 

So b._ ~/X) transforms under local transformations precisely as I ----
forms under global transformations. Hence the Lagrangian density 

~~ *"' tyr 1 1:> .,. ... ) ~ 1>1 
c t 

'r- 'f(•J 

: - f (1<1 t 'I'~ ..,,. ...... ) ~jo,., + t f '"' '(/' f '~' A/x 1 

is obviously invariant under local U(l) transformations. 

(1.60) 

trans-

(1.61) 

The Lagrangian (I.61), identifying the gauge field A I' with the electromagnetic poten­
tial, describes the interaction of a Dirac particle with electromagnetism. What is 
missing in Eq. (!.61) is the term 



:t 
1(: .... 

~ -l 
4 

F'" f 
r• 

which describes the kinetic energy of the photon field A . The field strength . ~ 

f~'f' £'11.) ~ ~l' 1\"t~., - ~" Pl nq 
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(1.62) 

(I .63) 

because it involves a curl is invariant under the transformation (1.58). Hence the 

total Lagrangian 

J: ~·~) ('tt~ l>t ~ ... )'f-1~) 1 Fl-~.,.,\ f. l'X.) 

- '"' " (1.64) 

is completely locally U(1) invariant. 

Two comments are in order. First, I note again that the requirement of local invariance 

has necessitated an enlargement of the original globally invariant theory. The compen­

sating gauge field introduced thereby has fixed interactions with the original Dirac 

field. This is a marvelous result: demanding local invariance fixes the interactions. 

Second, one should note that the local invariance actually forbids a mass for the AI" 

field. A mass term 

J,._,.,H - t .,.~ A r,,, l+r'~' 

actually breaks the local U(1) transformation (I. 58). Furthermore, the form of the 

kinetic energy terms for the gauge field - expressed in terms of ft., - is also 

fixed by the demand of local U( 1) symmetry. 

The above simple example demonstrates how easy it is to make a theory which is globally 

invariant under a symmetry also locally invariant. Of course, in the example, the 

symmetry was a simple Abelian U(1) symmetry. The same procedure, however, also applies 

for non Abelian groups - groups whose structure constants are non vanishing. I want 

to describe here the steps one must follow to construct from a globally invariant 

Lagrangian, under some group G, a locally invariant Lagrangian. 

Consider a Lagrangian density ~ lllot ' 'l ~ 11,() composed of fields 'X I(. and 

their derivatives Jt )!I( . Suppose that the fields 'X.,c: transform irreducibly under 

a group of continuous transformations G and that ~ is globally G invariant. Under 

the global G transformations therefore one has: 

~' 

17 

1,. ·~\ - 'X 1 
()(.) ..,._ ex (.4') t: tx I ... "' "'r- I' 
I 

G<,,. £<.\ ~, ?C~ '"' ?,. Y" '~' _.., } "X f-)&)"::.. 

"'- ~ (1.65) 

J' (ll•,'r 1!.._) -;:" iJ. (X: ."r'X:) " £(X,, ~,>U 

Clearly, if one could construct a covariant derivative for the fields )(It' , bz- ~..<.. 

which under local transformations transforms precisely as "Jt Xoc: does under global 

transformations, then the job will be done. To get a locally invariant Lagrangian one 

needs just to replace throughout ~t' J.oi. ~ b/' "XoL . In addition, of course, one 

must provide appropriate locally invariant field strengths for the gauge fields needed 

ro construct rhe covariant derivatives De xot 

The covariant derivatives under local transformations are required to obey 

h 'i, ,,, ---+ 
t l4t'<1.) 

J I 

]) X '" ~ •" " 
IX"'"I .. I.x)) l>, tp ,~, (I.66) 

In analogy to what was done in the U(1) example let us introduce a gauge field A~(x) 
' for each of the parameters of the group G. Since the gauge fields are supposed to 

compensate_ for the local variations, it is clear that one wants to have a gauge field 

for each variation. If the fields }(I( transform under the group G as 

( <;; 11.~ '"' J • - (~i l, X& c"' ) ~ r 

then the U(1) example suggests writing for the covarian~ derivative: 

1:>,, -v.J ()<.) :. ( .. , ~-~ ~ L~,· \~. Ar; c"'] /(il c"' 
(I.67) 

where g is some coupling constant. 

For Eq. (1.66) to be satisfied the A~(x) fields must respond appropriately under the 

' local transformations. Let me compute the transformed covariant derivative I )I' 
1>, " I 
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o I 

'0 ~ t" lxl ~ 
I 't x,,.. - '6 1P,~ 

I ,_1 
A.t)(.)ot.e~} 
/'' p 

• ?, (IX Lo.<••l X m] 
I .,.. ~ 

_;q ~~ .. > ~· .'J<l CR (.,.,.,)X tx) 
Q ·~ t• ,.y t 

" (j( (•l>l) (?t Jl ,., ) 
"~ p 

't (?, G<: t ..... ) 1 '•> 
. ' "" p 

' "'t , i l A~. ·~l G( to.<") x. ~>l .• «~ '. ~' • 

Clearly this will equal the desired result only if 

l ~- \~ 1\~ .. (~) ' t. 
+ 

az ,(._ .. ,)(~.). ar· ( .. l.,)l A 
tt~ Q o'l Y(l 1,_ 

l. (~ (R (c.tx>)) 

·~ t "s 
CR ;~ t .. ,.,) 

lxJ 

(I.68) 

It is 

There 

easy to check that this formula agrees with Eq. (1.58) in the Abelian case. 
~ i& • . . . . '-"' ":. t. J ~;."' ~ , and the coupl1ng constant LS e. In prlncLple, however, 

Eq. (1.68) appears very troublesome. The transformation property for the gauge 
fields A'/'i seems to depend on how the fields X.c transform under the group. If 
true this would be disastrous, for if one had two different fields in the theory 
transforming according to different irreducible representations of G, then one would 
have to introduce two kinds of compensating gauge fields! Fortunately, the dependence 
of the transformation (1.68) on the way l:J transforms is illusory. 

To demonstrate this important point I will consider infinitesimal transformations, 
where the matrices~ have the decomposition (I.9): 

CR t ~ "'"' ) ,_ S .. .tp c:<.p ; Sa.,.,.>(,,)•~ 

Let me then rewrite Eq. (1.68) for these transformations, using an obvious matrix 
notation: 

~. 
~I . 
t. 

, ( .. i ~ .. ~~i 1 'l• [.-; .1>~" 'h 1 At, 
.. J.. ( ~, ( ... 

"3 
s4i 1i l 1 C , - ""'·-a~ 1 
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: ~' ~r; ... b .. ~ r~i,~· 1 A~', + l (,,0. )• ... 0 l(&o.l'J 
~ ' ' d' 

However, the matrices gi obey the algebra of the group (cf Eq. (I.11)) 

[... • ·1 • 
t ~ ) >~' • ; Cji"")"- ~-, C;J"~< 

Hence one sees that in fact the transformation of A' ~ is independent of the matrices 
' gi. One finds explicitly 

A' '" ~ t>< 
(\ (>) 
t~ 

+ ~·~ ,,, C;~" At,'" .. ~ ?t (So..._ ... ) (I.69) 

For global transformations, where \o.IC. is independent of x, the transformation 
(1.69) can be written in the standard form one would expect for a quantum field, 
namely: 

A~ .. "') ~ A~._ ,., . ' ~ .. i t ~ .\ . A ·'"' ,l K1 f" I (I. 70) 

" Here the matrices gj can be expressed in terms of the structure constants of the 

group: 

l~~ )""'~ :. -i cii-< ~ -1 cjiiC; (I. 71) 

and play the role of the generators of the infinitesimal transformation. That this 
identification is correct can be checked, by using the Jacobi identity. It is not 
hard to see in this way that the &' i matrices also obey the group Lie algebra. 

The above discussion shows that the gauge fields A~(x) introduced in the covariant 
' derivative (I.67) transform in a specific way under the group G of transformations. 

If the group has n parameters then the gauge fields transform under the nxn dimen­
sional representation of the group, whose generators can be expressed in terms of the 
structure constants by Eq. (1.71). This representation is known as the adjoint and 
obviously has nothing necessarily to do with how the fields '}'transform. The gauge 

• 

- ' 
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fields needed to make the Lagrangian locally invariant under G depend purely on G 

and not on what fields enter in ~. Indeed, since the representation matrices for 

the AI'. are connected to the structure constants of G, one begins to see how funda-

' mental a rOle the gauge fields play. 

Having made ~'locally invariant under G transformations by introducing the gauge 

fields A~ .• through the covariant derivatives, it remains to endow these fields with 

' kinetic energy terms, Clearly one needs the analog of F ~"'" for this non Abelian 

example. The naive choice 

F': ~ '"Jr.p..~ -•"Ar 
is easily seen not to do, since under local G transformations it does not transform 

homogeneously. It is not difficult to show, however, that 

-t 'il c,-•"- {>.·~ ~. • • 
r •• -

I • 
'lt(l" 

' 
-~'N • 

(I. 72) 

transforms, under local transforrr.ations, according to the adjoint representation 

with no additional terms. 

To check this contention, it is convenient to define matrices F~'c~) and A I" U<l obtained 

by contracting F;~)Cl and A ~(,..)with the generator matrices g.*: . ' ' 
t"" t'! I""' F ()(.>~ "(,~ r( t)() J A~,., £ ~· f\~,,..) (I. 73) 

It is easy to check that (1.72) implies that 

f'""' ~q/- ,~(II" -'c [1~~", P<"J (I. 74) 

Consider what happens to this object under a local transformation. Making use of Eq. 

(I .68) one has: 

• 

f~"--'9 
Q. L .. , 

FIr--~ 

" 'l" A'"- ':l" A't -

In principle any generator matrices gi will do 

' I 

; ~ '[ (1•', 1\.] 

(e .... ~. ) 
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F'f"" .. •'[IRA"'~-·. ~ b'<ii.)~-·J- :>"(tRA'O<-'., Lb~"cR\ot- 1 ] 

" 

'4 ., 
- •, C<RA~<ll.-·. ~ t•taniK-'1 [<X. A" <R-' .. "" t)•_oo Ill.-' J 

•t 1 d 

... ., [6< ~'R''-r -~ (~·&)4<-') [6l.A'~-·. ,_ I~'IS!ICX'' J 
q ·~ '~ 

!R F'(R'' + .1. Cl'>"lli.H~•<R-'J -()r6(\C'l"IR:'l] 

·~ 

- l '[ ( ~l"(j() G2. _, b•<R) 61. _, b"IR) ~-· C~'6\l6<-'] 

·~ 

-t ( t ,e (I( l A" IX _, + (R f\" (~' ll<-') - (~ •IR) A r 0< _,.,. IR A'" ( ~"6t _,) J 

____ .... 

- t l ••6\. )A" 61. -• .. !R A,. CiC(.,"IR \ 6?.- ~ ~ A"oC' ()' <l?JIR _,_ (~ill.lllpi!<-'J 

All the terms above except for the first can be seen to cancel using that 

~.-·(-:>"I~) 61.-' ~ - l )" IR-') 

So indeed; 

ft",,)--+ 
Q.l'l!.) 

',. r nq " (Rc~,.,o) ~· F £KI 

_, 
~ (4l:n) 

(I. 75) 

(I. 76) 

This transformation is precisely that expected for an object that transforms accord­

ing to the adjoint representation (compare Eq. (I.68)), It follows that for in­

finitesimal transformations then 

,. 
F '" ~ 

__, 
~"''"l 

I 

F"" 
K on ~ 

~­f l'l'l 
~ 

~ ~G.-(',q c.,l~ 

' 
•" F '><-> 
' 

(I. 77) 
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Clearly therefore the term F ."'"'F. is a group invariant, due to the antisyllliiletry 
l 1 {" v 

of the structure constants. 

To summarize: the Lagrangian density if l ")(~, ~l" ~ .. ) assumed to be invariant under 
some global transformation G can be made locally invariant by introducing appropriate 
gauge fields. The locally invariant Lagrangian, including the contribution of the 
gauge fields, reads 

:t 
loc.-..\ 

< 't ( -x.' l>,.. 11 .. ) - .L Ft~ f 4 • ~ ,.., (I. 78) 

and is totally fixed, knowing)/ global" A number of points should be commented upon: 

(1) The pure gauge field Lagrangian in (1.78) is already a nonlinear field theory, 
because F{" contains terms quadratic in the gauge fields A'"i· For the Abelian case, 
where the structure functions vanish these nonlinear terms are absent. 

(2) 

go' 

Because the A~ transforms nontrivially under G, as far as global transformations 
' the symmetry currents of the theory now also get contributions from the gauge 

fields. That is 

-r• < ~';j 1. ~·).~'XI' + ~;;t . ' ~'r"'~ ~>tl\j 
J. '"·\ A,~ . lv~.-p~. ~ (I. 79) 

(3) No mass terms for the gauge fields are allowed if one wants to preserve the local 
symmetry. 

For the case of global symmetries the symmetry could be realized either in a Wigner­
Weyl way or in a Nambu-Goldstone way, depending on whether the vacuum state of the 
theory was invariant under the symmetry or not. It is obviously very interesting to 
investigate what happens in each case, when the global symmetry is made local. In 
the Wigner-Weyl case, nothing much happens. Besides the various degenerate multiplets 
of the global symmetry, one now has also a degenerate zero mass multiplet of gauge 
field excitations. In the Nambu-Goldstone case, however, some remarkable things happen. 
When the global symmetry is gauged, the Goldstone bosons associated with the broken 
generators disappear and the corresponding gauge fields acquire a mass. This is the 
celebrated Higgs mechanism /7/. 

To explore this phenomena it is useful to return to the simple example of the Abelian 
model of Eq. (1.32) and try to make the global symmetry local. Recall the Lagrangian 
wa, 
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;/~ ~, oi ~' <~> - .,. < ~+ <~> - n' 
where f ( 0 corresponded to the Wigner Weyl case and f) 0 corresponded to the Nambu­
Goldstone case. To make this Lagrangian locally invariant one just needs to replace 
the divergence ?/" ~ 

. . 
by the covariant divergence 

1>, f ~ ( \ -; 'd At H 

and introduce a kinetic energy term for the gauge field. The Lagrangian 

'J. - (b, q, / (!:/ "-) -). left~- f\ '-- J. F •• F 
I 'f f.t f"" 

is obviously invariant under the local transformations: 

~(X) --'11 ' <\>IX} 

I 
At'"' .... ~r'"\~ 

~ 
""('It) q. f);) 

A,l't.) T .I. ';>t ottX} 

~ 

(1.80) 

(I. 81) 

(1.82) 

If f (0, so that the global symmetry is Wigner-l~eyl realized, the above Lagrangian is 
suitable for computation. It describes the interaction of a degenerate multiplet of 
scalar fields f and cp+ with themselves and with the massless gauge field A,... 
Because the fields q, are scalar, and the kinetic energy is therefore quadratic in 
the divergence of~ , the interactions with the gauge fields contain both a linear 
term 

t'' 
~· 

~ "j At( i l>'~'l f-

as well as a "sea-gull" term 

'J. l'\ 

i ... \ < - 1' At At ~+ 4 

t>t<t) ~+ l ~ ';) At ' ' 

This latter term's presence is dictated by gauge invariance. 

(I. 83) 

(1.84) 

If, on the other hand, the parameter f) 0 one must reparametrize the theory in terms 

* I use the coupling constant g here to emphasize that the field A~ need not have 
anything to do with the photon fiel·. 



24 

of fields which have vanishing expectation value. This reparametrization (cf Eq. 

(I.42)) is such that one is computing quantum oscillations around the minimum of the 

potential V( ~)4). Thus one has 

4-"' ~ "' f + terms involving quantum fields 

This necessary shift implies that the seagull term (1.84) gives rise to a mass for 

the Ar field 

:t .,..,h • - 1'~ A~ A 
~ 

' ._,,a 
~ - ~ ,..~ " "r (1.85) 

Now if the gauge field acquires a mass, it follows that it cannot be purely trans­

verse (like the photon) but must also have a longitudinal component. This extra degree 

of freedom must come from somewhere. It is not difficult to show that it arises from 

the disappearance of the Goldstone excitation that would ordinarily result from the 

spontaneous breakdown of the U(1) symmetry. 

To check 

field ~ 

this assertion, in the case of f)O, it is convenient to reparametrize the 

' not as in Eq. (I.42) but to choose an exponential parametrization 

<\>t~) ' .!.. c r.r ... (><» ] ,., 
'~<<>/r.f 

~ 
(1.86) 

Here fCx) and \ (x) are real fields and the Goldstone excitations are connected with 

the "phase" field j (x). Indeed, the potential 

v ( ,., ") ~ ')._ ( q,• ~ - { ) t. 

is clearly independent of J so that, in the absence of the gauge interactions, one 

would identify it with the zero mass Goldstone excitation . Using Eq. (1.86) the 

potential becomes 

v " \ (: e~ ' >li'i ~ l ' 

so that the field f' has a mass 

""~ ' .. ·q 
(1.87) 

" The physics of the theory is independent of what parametrization one chooses. 

Different choices are akin to different gauge choices 
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which was the val·1e obtained previously for the massive scalar field in the theory. 

It is easy to check that the field ~ (x) enters in the covariant derivative Dt' cp 
in a rather trivial way. One has 

ht .\> ~ ()I"_;~ 1\ )<!> ~ (-.t -·~At) .L Cf."f+~] e' l/[Lf 
h. 

•1/r.t 1 
~ .!:.._ [~d- ;(f~r.fl~(~r+...!.. )ll} 
~ d~ 

(I.88) 

The factor in front in Eq. (1.88) obviously will not appear in the Lagrangian (I.8l) 

since one has l):t q, )+ (}>~ ~) . Furthermore, the quantity in the curly bracket in 

Eq. (1.88) is just a gauge transformed field (cf. Eq. (1.82)) with ct ~ 1/.Jrf 
fixing the gauge so that everything is expressed in terms of a new gauge field 

By 
I 

tt~ (\ t ... ..L ? ~ 
~ li:'f t 

(1.89) 

one sees -that the Goldstone field ~- disappears entirely from the theory. 

If the U(1) global syuunetry is spontaneously broken (f)O) the Lagrangian (I.81) can 

be rewritten entirely in terms of a massive vector field B 1~ and a massive real field 

~ . The resulting Lagrangian 

'j, 

where 

-! .,_ ~r ~ ~t ~ ' ' i --~ ~ 

f ( l7t f ... ~ {'. )'6~ &t 

"""e , 4 q ) 

l ! f<" f 
~ t• 

L 
-~ .... . ~ 

- \ ( t f ~ .. r,:r ~ ~ ) 

..._'~ • &~'f 

!!.' ~~-

(1.90) 

shows no explicit traces of the original U(1) syuunetry, except that certain of the 
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parameters in the interactions have particular interrelations. 

Let me close this section by discussing the two versions of the model (Wigner-Weyl 
(f ( O) and Nambu Goldstone (f) O)) in terms of the degrees of freedom present in the 
theory. In the Wigner Weyl case, one has in the theory a complex scalar field f 
(2 degrees of freedom) plus a massless gauge field (again 2 degrees of freedom, 
corresponding to the two transverse polarizations). In the Nambu Goldstone case, 
there is in the theory a real scalar field r ( 1 degree of freedom) plus a massive 
spin one field B I' (3 degrees of freedom), Clearly both versions of the theory have 
the same total number of degrees of freedom. However, the spectrum of excitations 
is totally different. 

II. The SU(2) x U(1) Model of the Electroweak Interactions 

At first sight weak and electromagnetic interactions seem to have little in common. 
Electromagnetic interactions are responsible for the binding of atoms. Weak inter­
actions, on the other hand, cause rather long lived nuclear disintegrations, like 
neutron beta decay. However, there are at least two phenomenological similarities 
that hint at the unification of these forces: 

(1) In both weak and electromagnetic interactions, currents are involved. In the 
electromagnetic case the interaction 

:t.~ ~ • Ar,,.> ·~ -rr '"> (II.1) 

gives rise to long range forces between charged particles. Charged particles, accord­
ing to (II. 1), interact due to the exchange of a photon. The 1/q

2 
propagator for the 

photon is what is responsible for the 1/r potential between charged particles. For 
the weak interactions, which are responsible for the neutron instability, it has been 
known for a long time that they can be described by an effective current-current theory 

't 
F.c-.~ ' G, 

;r. 
' J (~) T CX) • -r 

(II.2) 

Here GF is the Fermi constant, which has dimension of (mass)-
2

. If one imagined that 
the contact nature of the above interaction was due to the exchange of a very heavy 
"weak-boson", then the resemblance between weak and electromagnetic processes would 
be greater. At a deeper level the weak (charged current) interactions could be 
written as in (II.l) by introducing charged massive spin one fields w: and w' 
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~wc .. 'o(. • ~ l -r/ ()1.) W .. f"\ '1" -:r_t,'tt.) wt r b) ) {II .3) 

Eq. (II.1) would 'reemerge in the limit in which any momentum dependence in theW­
propagators was neglected in comparison to the mass and one would identify: 

G, 
v;, 

~· i : 1-1\, 
(II .4) 

(2) The charged currents that enter in weak decays are not unrelated to the electro­
magnetic current, at least as far as the strongly interacting particles are concerned. 
This interrelation was discovered a long time ago /8/. The vector piece of the weak 
currents J!' is identical to the 1 : i2 component of the strong isospin current. In 
turn, the lsovector piece of the electromagnetic current is nothing but the 3rd com­
ponent of the strong isospin current. This connection between weak and electromagnetic 
properties at the phenomenological level leads one to predict subtle weak effects 
like weak magnetism /8/ -entirely in terms of known electromagnetic properties. 

Although the above remarks make it attractive to try to unify weak and electromagnetic 
interactions, they are by no means compelling. The dominant reason for attempting an 
unification is theoretical. While pure QED is a renormalizable theory, the Fermi 
theory of the weak interactions is not. The contact interaction in (II.3) gives rises 
to incurable divergences in higher order in perturbation theory. These divergences 
are not ameliorated if the Fermi interaction (!!.2) is replaced by interactions 
mediated by a heavy vector boson (cf Eq. II.3). The propagator for such a spin one 
boson as q ... H is as badly behaved, as if it did not exist: 

t. to l ~ 
r• ' 

"'-tv + ,t 9v / 'j ~ 

'l'., M' -, ..... 0 (I) (II .5) 

Thus it is not possible to just add "by hand" an interaction like (II.3) to the electro­
magnetic interactions and hope to obtain a renormalizable interaction. If, however, 
Eq. (II.3) were to arise as the result of making a global symmetry local - so that w: are gauge fields - then it is possible to obtain a renormalizable theory. In 
these circumstances, as first shown by 't Hoeft /9/, the mass of the vector bosons 
arises because of a spontaneous breakdown, but the gauge structure effectively 
allows one to calculate with propagators which vanish as 1/q

2 
for large momenta. 
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If one wants to construct models of the weak interactions based on a symmetry group 

G, whose currents must at least include J~and J~, one in general finds that G also 

contains a P(l) symmetry, which can be associated with electromagnetism. When the 

theory em spontaneously breaks down, only this U(1) symmetry survives with its 

massless photon. At the broken s·~age, however, ther~mis always some mixing of the 

photon with some of the weak bosons of G. Hence renormalizability forces one to think 

directly of unified weak and electromagnetic interactions. 

The simplest unified model of electroweak interactions which contains J ~", J f.- and J I' 
+ - em 

clearly would be based on the group 0(3) /10/. However, the discovery of weak neutral 

currents /11/ argues for a 4 parameter group, The suggestion of Glashow, Salam and 

Weinberg /4/, made well before the discovery of the neutral currents, was that electro­

weak interactions could be described if the symmetry of the theory was SU(2) x U(l). 

This suggestion has been phenomenologically extremely successful. In this section, I 

would like therefore to detail the structure of the GSW model and examine some of its 

predictions in the light of experiment. 

The GSW model was built to reproduce the known structure of the charged current weak 

interactions. It predicted then particular neutral current interactions, whose ex­

perimental verification provided a direct test of the model. From a long series of 

experiments in the 1950's and 1960's one knew that the weak currents in Eq. (II.2) 

had a (V-A) form. That is, that only the left-handed fermionic fields appear to par­

ticipate. For instance, J~was known to contain a neutrino-electron term 

.... ~ ~ '(r-lj-Y_s·>~-:. l '~"e.~.'Yr--el. 

where the projections \.f"' l'l 
' 

4'. ' lt•·'<s>'/1 • 

are just 

j '1-1'- • 'i l•+"fr\'f 

No terms containing the right-handed fields, however, enter in 

(II .6) 

J". 

To detail the structure of the GSW model one has to specify how the matter degrees 

of freedom transform under the SU(2) x U(1) group. The fundamental matter entities 

presently known are the quarks and leptons, which appear in a repetitive generation 

pattern. Each generation of quarks and leptons has the same SU(2) x U(1) quantum 

numbers. To date we know of the existence of thr.ee generations: the electron family 

(e, .... ; d, u); the muon family ,.. ~ ,.r J s, c ); and the~ -lepton family 

( "I:) .., .. > b, t ). Each of the leptons is accompanied by its own neutrino and a 

pair of quarks. The quarks in the pair actually are comprised each of three states, 

since each quark carries a color index i, i = 1,2,3. The strong interactions of quarks, 

\ --
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which binds them into hadrons, have to do with their color properties, The weak inter­

actions act on their flavor properties; u,d,s, etc. 

I will detail now the properties of the electron family under SU(2) x U(1) - the }' 

and "( families having identical quantum numbers. In view of the preceding. dis­

cussion, it is clear that only the left projections of these fields ~arry SU(2) 

quantum numbers and that (~e' e)L and (u, d)L are doublets under SU(2). Further­

more, since SU(2) x U( 1);) U( 1) em the electromagnetic charge Q 'muse be the sum of the 

U(1) generator Y and the diagonal SU(2) generator t
3

: 

Q = T3 + y (II. 7) 

Hence the U(1) properties of the fields in the electron family follow from their 

charge. These considerations lead to the following table 

Table I: SU(2) x U(l) properties of the states in the electron family 

states t~L u,. cl. (~ct ett .. .. 
SU(2) 2 

U(l) 1/6 2/3 -1/3 -1/2 -1 0 

The right handed neutrino is usually not included as a real excitation. It is a total 

singlet under SU(2) x U(1). 

Knowing the transformation properties of the quarks and leptons under SU(2) x U(1), 

one may use the results of the previous section to write down immediately a Lagrangian. 

for the theory that is locally SU(2) x U(l) invariant, by replacing in the kinetic 

energy terms for the quarks and leptons all derivatives by SU(2) x U(1) covariant 

derivates. Let w!"i = 1,2,3 and yt' be the gaug~ fields corresponding to the SU(2) 

' and U(1) symmetries. Then, from Table I, it follows that the covariant derivatives 

for the quarks and leptons are 

~t (~). ~ r~t 1' ~ y, - '1 
' 

~· w~' J • (n 
. ' 

( t.~\-. ) 
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l>t u._ ' ( ~t - ; ~' f '(~ ] u._ 

bt a,_ ~ t ~r ... ; ~' t Yt 1 ~ ... 

l>t ( :· ), • C )r + ; ~' ~ Yt - • n• Wr, ] ( ;• ), 
(II.8) 

l>r ~ t • t ~r <- i '1.' Yr 1 e. 

Here g and g' are the SU(2) and U(l) coupling constants and the matrices 1/2 ~i -

with T i the Pauli matrices - are those appropriate for fields that transform as 
SU(2) doublets: 

c ' "' ' ,l. J < ' ' ' l E-; pl. {~ 
(II. 9) 

For one generation of quarks and leptons, the Lagrangian of the GSW model is thus 

t-' • Gsw tu JJ, y 1 ~ l>t (~\ 

(~t) ytlb 
' ' t ( :· )l 

v yt.~-'b u 
A. L (' it. 

e~ ..,r , b 
L t 

.!. w'.' w. "t L • f" 'rl 
~-.L y Y,. 

" 
In the above, the field strengths w!'" and yt'"' are given by 

' 
wt•. "lw' - )• w~ + ~ 6 ~_l K wt 'N' ' - • • ~ ~ 

yr• ... •' y.- ~· y I" 

.. j .. Y't ~ ol~ 

e .. 

(II.10) 

(II. 11) 
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Note that the Lagrangian (11.10) includes no mass terms for the fermion fields. Mass 

terms involve a Left-Right transition: 

:!.,..._., ~ ""~"' = _..,. l.j:, '1-,., .. *'-"'·) (1!.12) 

However, as Table I shows, IJ1. and ~ for the quarks and leptons transform respec­

tively as doublets and singlets of SU(2). Hence the symmetry forbids adding these 

terms. As I will show later, masses can be generated when SU(2) x U(l) is spontaneous­

ly broken down. 

From the Lagrangian (II. 10) one can read out explicit interaction terms of the gauge 

fields with the fermionic currents. One has 

:t;~t ' ~· -r; t -t4 -s' vJ. 
Q ~ • /' 

(II.13) 

where J"' and Jf'. are the "weak" U( 1) and SU(2) currents of the fermions: 
y ' 

:r~ 

-r' y < 

( ;; J l 
' 

i~" !.i 
• en_ 

1 <o & ) 
' c 

y" (~). 

-1 l-i"' c: )~ '(''(~') • ~ " 

I note that in the model, since 

-rt < <' .. :r" ...... l '( 

.. 
+ 

-

'~ i) -<' t; - ' -

t 
s 

' 

tJ ..... r- v .. . ~ 

e {( e . ~ 

( :· !, 

- l J f''J 3 ~ ~ 

(II. 14) 

(II.15) 

the phenomenological observation that the vector piece of the weak charged currents 

and the isovector piece of Jt' are related, is built in already. em 

It is convenient to rewrite (11.13) in terms of physical fields. Clearly if the model 

is to reproduce the weak interactions, the symmetry SU(2) x U(t) must suffer a spon­

taneous breakdown. As I showed in the preceding section, in this circumstance the 

gauge fields get a mass. The exchange of massive gauge fields can then reproduce the 

short range weak interactions. Of course, since the photon field must remain mass-

less, the breakdown of SU(2) x 

Then, of the four gauge fields 

U(1) cannot 

wr and yl' 

' 

be complete. One expects SU(2) x U(1) -l U(1). 

,three will acquire a mass and one will em 
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remain massless. The photon field will in general be a linear combination of the two 

neutral gauge bosons w/' and Y,.. , with the orthogonal combination being associated 

with a massive excitation - the Z
0 

boson. It has become convenient to parametrize these 

linear combinations in terms of an angle - the Weinberg angle SW . One has: 

W/ • t • .s e ~"" 
" 

+ s....e.., II" 

y" • - •~e.., 2:r + t..o~o. 9 w A" 

It is also useful to rewrite wr and wf in terms of fields of definite charge 

w/ • .L 
r. 

t 
( 1/J, + 1/J~' ) 

In terms of the physical fields Z~, Ar, W+rthe interaction (II.13) becomes 

:L.t ~ 

~ 

J.. 'd 
<ll 

C W " J + . -,. w r J ] 
- t 1-

l , . 1 ~ r , ~' l 
(~ £..os 8'«.,; ~ .s:-.ew ~3 - ~ t~A..I'w ""e.,. I ~r 

~ ~ ~'to>~ •' 1 

"' '"" 
(~',.,e -,,:.e.., )T' t A 

"' 0 ~ 1 I' 

In the above, the charged current J: are defined in terms of J/' and J/ as 

. ' ... t ) .. -r: z ( :r 1-, 

(11.16) 

(II.17) 

(II. 18) 

(II. 19) 

where the factor of 2 is introduced so that the currents J~are precisely those that 

appear in the Fermi theory, Eq. (II.2). Furthermore, I hav~ eliminated throughout 

the weak U( 1) current J~ in favor of the electromagnetic current and of J~, by using 

Eq. (II.15). This rewriting has an important conSequence. Namely, if A~ is to be the 

photon field, then its interaction can only be with J~-', with coupling strength e. 
-- em 

That is (II.18), as far as the photon part goes, must reduce to (II.1). This informs 

one that: 
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.ll.~~'co~ew .:.~~:.....ew (II. 20) 

Using this information and 

·'e. " s~n lov y1elds for cl;..,.~ 

eliminating g and g' in Eq. (11.18) in favor of e and 

of the GSW model the expression: 

Ct:~> 

+ 

...!.... ( w/ '-r 
d! ~~ .... &~~.~ 

S-- 2 t-

'l. eo sew SV.. Sw 

JN• 
1-

+ w_' r, e) 

where the neutral current JNC is given by r 

'jv 
N< 

: 2. [ -r" 
l 

c.,} a T. I' 1 
"' ·~ 

(II .21) 

(II, 22) 

I note that the parameter~. given in Eq. (II.3), is identified here as 

'3 e 
(II.23) 

2. r1- s~ y. 8'w 

Whence, the comparison with the Fermi theory for the charged currents, Eq. (II.4), 

identifies the Fermi constant GF as 

G, ... •• 
8 Ml.~ s-'"" 1 9w 

(II.24) 

Knowing the Weinberg angle, the above gives direct information on the mass of the 

heavy weak boson which is supposed to mediated the charged current weak interactions. . . . 'e ,, . As I shall show, low energy neutral current exper~ments g~ve s~n W ~ 1~ • Uslng 

this value in Eq. (II.24), along with the experimental value for the Fermi constant 
-s -2 1. I GF".:: 10 GeV and J.:: e;l.4ri ~ 1 1'$1, yields for Mw a mass of around 80 GeV, This 

prediction has been spectacularly confirmed at the CERN collider, by discovering a 

particle of this mass with the experimental characteristics of the~~ /12/. I will 

return later on in these lectures to discuss these matters in more detail. 
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If the weak charged bosons have a mass of around 80 GeV, one can well understand why 
the Fermi theory was such a good approximation, In typical weak interaction experi­
ments, the momentum transfer q

2 is very much smaller than M 2 . Thus the exchange of w 
W-bosons can be well approximated by the contact interaction of Eq. (11.2). This is 
shown graphically in Fig. 1 

~ 
;( 

J-
q2,..M2 w 

"'Y 
~ 

Fig. 1: Recovery of the Fermi theory from W exchange, for q2<< ~12 
w 

Neutral current interactions, involving Z-boson exchange, ought also therefore to 
lead to an effective current-current theory for momentum transfers q2 (( M~. Using 
Eq. (11.21), one predicts for this -effective theory an interaction Lagrangian: 

;j t4e.,t~ ... \ 
Fe.f-: • ~ f~s~: .. to~Bw] 

< 

• 

"" 
1'1':,. 

'TI' r' 
N< 

Using in the above equation the identification (II.24) gives 

'i r<..\,~1 
Fe.~-~ 

: 

The ratio 

f 

~- [ ' l "'"' Vi Cos'aw M~ 

' 
l 

t'lw 

l ' 
t'l ~ "'' 9w 

1"< T r • G T"~' r' 
I" NC. .! f f' HC. 

"' 

(II.25) 

(IL26) 

(II. 27) 

gives, therefore, the relative strength of neutral to charged current weak processes, 
at low momentum transfers, in the GSW model. 

*The factor of 1/2 in (II.25) comes from doing 2nd order perturbation theory. This 
factor is cancelled for charged current interactions because there are two terms: 
w~"' J + w t J .... 

+ -r - +, 
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To summarize, the weak interactions in the Glashow-Salam-Weinberg model, for 
2<< 2 2 b . . f q Mw, M

2
, can e wrttten 10 a current-current orm: 

l'N'tc>\C. : Go, 
.r,: 

[ 1~ 1-r .. p -r' 
I "'' 

j; 1 (II. 28) 

The charged currents·, by construction, agree with experiment. Neutral weak interactions 

test the model, since the only free parameters are f and the Weinberg angle Bw -
which enters in the definition of J~ of Eq. (11.22). All neutral current experiments· 
(some of which I will discuss here) can be fitted with a common value of 
sin

2 
QUJ ~ 1/4 and of r~ 1, thereby providing strong support for the validity of 

the GSW model. Furthermore, given f and sin28w one can determine the mass of the 
Z~ from Eq. (II.27). The discovery at the CERN Collider /13/, soon after that of the 
W-, of a neutral heavy particle of mass around 90 GeV, in agreement with the value 
predicted by the GSW model, provided a further confirmation of the model. 

Before I discuss in more detail some of the neutral current experiments used to test 
the GSW model and to extract f and sin2 PJw , and discuss the properties of the W 
and Z bosons found at the collider, I want to comment on the meaning of f ":r 1. Rough­
ly speaking this parameter measures the ratio of the W and Z masses and, therefore, 
it is connected to the mass generating mechanism of the GSN model. The masses of the 
weak bosons arise because the local SU(2) x U(1) symmetry is broken down 
The mechanism employed in the model to cause this breakdown is precisely 

to U(1) 
em 

that which 
I discussed in detail in the last section. One introduces scalar fields, which trans­
form nontrivially under SU(2) x U(l), into the theory and assumes that their self 
interactions lead them to acquire a non zero vacuum expectation value, which causes 
the breakdown. 

Since the SU(2) group must be broken down, it is necessary that the scalar field intro­
duced into the theory carry SU{Z) quantum numbers. The simplest useful possibility, 
thus, is that this field be an SU(2) doublet. Since it must also carry U(1) quantum 
numbers, one must- at the minimum- introduce a complex doublet. Consider 

~ ~ ( ::) (II. 29) 

where ~0 and +• are complex fields. ! therefore has U(1) charge Y""- 1/2. If one 
assumes that i has self interactions given by the potential (cf. Eq. 1.37) 

v~ >(2+! .,_' )l 
"' 

(II.30) 
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it is clear that SU(2) x U(1) will be broken down. The choice of the vacuum expecta-

tion value: 

<~>~ (~") 
guarantees that SU(2) x U( 1) is broken down to U( 1) ,. * 

(1!.31) 

Because { carries SU(2) x U(1) properties, to maintain the SU(2) x U(l) local 

symmetry, the ~ piece of the GSW Lagrangian must involve the covariant derivative: 

Dr <£ ~ [ l r • . ~, Y. - , ~ :_.· w?: J 1 
-;: t l-

One has 

J' ~-~ ~ 
'-S"' 

- l !>r ~ l t- ( D~ ~ l - V ( I•/ t l 

The seagull piece in the first term above will 

fields, when the field £ is replaced by its 

generate masses for the W t' and 
+ 

expectation value. With 2- an 

(11.32) 

(II. 33) 

z~ 

SU(2) 

doublet, it turns out that theW and Z masses are such thatf = 1. Hence the experi­

mental determination of r~ 1 gives information on the symmetry breakdown. In this 

sense, it is satisfying that the simplest possibility seems to be favored. 

Let me demonstrate this assertion. The masses of the gauge fields arise from the 

seagull tenn 

'J 
..... $) 

- [ ( , "tj "',. .. . ~ 

However, 

-+ 
-i r'') < p 1 c ( ~ ... 

T.. w . 
..! ("4 
• 

-1/~) l 

*For one scalar doublet one can always define ~~1) as that U(t) that is left un­

broken. The choice (II.31) is dictated by the definition (II.?); any other choice 

would do, but it would change the definition of Q 

'I~•W!-'IJ' Y' ~ 
l-' !' 

\ 

! '11/- 1' y y 
• • 
'l. w" - -"· 
1 zt 

2. (o$ 8w 
= 

.:1. w!' 
.... ,. ... 

':l w~ 
Jf p ] 

~ w:/ -~· yf 
1. ... 

..! 
oft 

w: 
_1. [•.! e~-<.•\.1 

Z. toJ O~,o.~ 
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l'- A' l 
where the second line follows by using Eq. (11.16) and the identification (11.20). 

Since (!;) has only an upper component, it follows inunediately that 

:J ~ 

"M• ~.lo 

so that 

t'.\ .. ~ 

' ~-~. 0 

(Vl' w'w • ·r 

.!. t1•l' 
" 

(, <l' 
~.tCosl~ 

1 ( :.'c~~owr ;t; ~""?: t 
• 

(II. 34) 

:. M\v 
(II.35) 

e~ste~ 

This proves the contention that f = 1, with this simple doublet breaking. One can 

show that if the breaking of SU(2) x U(l) is done by a scalar field carrying SU(2) 

quantum number I, with a component carrying r
3 

with non zero vacuum expectation value, 

< ~ tl ;rJ l) +., then /14/: 

f ~ 
t l I-!J .. r (II.36) 

.1.:!' 
J 

Obviously, from this formula, if I = 1
3 

~ 1/2 as was assumed, then f = 1. 

The parameter v which enters in the potential (11.30) -Higgs potential - sets the 
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entirely by the value of the Fermi constant. Using Eqs, (II.20), (II.24) and (II.35), 
it follows that 

" ~ (f' '· ) -y, '"" 250 GeV (11.37) 

Questions concerning the origin and the dynamics associated with this scale will be 
addressed in the last part of these lectures. It is time now to look at experiment. 

The presence of neutral current weak interactions can be detected in purely leptonic 
experiments. These experiments are somewhat easier to analyze theoretically, because 
one does not have to worry about strong interaction effects. The GSW model is written 
at the level of leptons and quarks and if one considers experiments involving hadrons 
one has to be able to translate the quark level predictions into hadronic predictions. 
This step is obviously unnecessary for purely leptonic processes. Unfortunately 
neutrino interactions off electrons are a factor of me/M, where M is the proton mass, 
weaker. Hence these purely leptonic experiments suffer from a lack of statistics. 

The process v;.e~'1.e , ·and its companion involving antineutrinos 
V,_ e -7 q .-e , tests precisely the additional neutral current piece in the 

weak interaction effective Lagrangian (II.28). I have written the 
in Eq. (II.14) for one family of quarks and leptons, but they can 

currents J ~and 
' be trivially ex-

tended to the case of more than one family of states. Because these currents only 
• connect fields within the same generation , obviously the process "f. ~ - ~ e 

J" 
y 

cannot be caused by a charged current weak interaction, There is no current involving 
~ and an electron which can cause this transition. The neutral current, 

h . f hi"NC. has bot a l'j. - v,. and an e-e p~ece and there ore t e JNC J /" term lll Eq. 
can cause V,. e scattering. Since for an electron one has 

("'r;.) eLl-.- " '- [ -r~ t 'J~' l ' s..,. Gw ~ el(.t..r,-o"' 

• 

~ 2 [ iL Y'(·i) e, s .... 2 aw (-1) i y"e 1 

-,o Q:['l't•-YsJQ +'l~c •• .,.,lQ~']e 
L 

however, 

(II. 28) 

I will show latet that no intragenerational mixing is caused by the SU(2) x U(1) 
breakdown, essentially because the neutrinos are massless, for the leptonic sector. 

where 

<::)L :S~,~oot.c!'w-.1 
• 

while for a neutrino one has 

' 

( T=, IV , ~ [ T" 
3 -

~ 

~ 2. [ ·v,.,. 

&_(1. • • s ...... dw 

<~'~ T~ J 
w t."'" v r 

-r' 1 "~-· l < 

~ ~[i:' ... .,t,,_.,,lV,. 1 

the effective Lagrangian for V, e and 1 e scattering is simply 
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(II .38) 

* 

::t._ 'i;~ " G, 
.r,. r [ - ' Vy "'( ll-l"c) v;1[e('~r''-"l6\. +'trt'"'"\<.li.le] 

{II. 39) 

It is straightforward to compute 

and VI'(.. --::1> V'!' e processes 

the scattering cross section for the v;, t -t "j. ~ 
from {11.39), The relevant kinematics for these 

reactions is shown in Fig. 2 

~ 
p p 
• 

vj..l vj..l 

Fig. 2: Kinematics for ot,.- e scattering 

It proves convenient to define the scalar invariant 

y ~ 
p • q (II.40) 

Thus y in the laboratory frame, where the incident electron is at rest, is a measure 
of the outgoing electron's energy to that of the incident neutrino 

' Remember that there are two cross terms, that is why no factor of 1/2 appears in 
(II.39) 
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E' 

YLab --~ 
' 

In the CM frame, on the other hand, y is a measure of the angle by which the electron 

is scattered, as shown in Fig. 3. 

~
' 

p- M 

' 

Fig. 3: Kinematics in the CM system 

One has, neglecting the electron mass, 

YcM = {<1 - cos61CM) 

An elementary calculation gives for 42" 
off electrons .1'1. 

for neutrino and antineutrino scattering 

(~ ,.,~- ' ' L 

(o-1l
1 J z G, ""'• •• F [ cSI' + Q~ d~ - L. 

'IT 

(II.41) 

c!o- t•- . ' "~ t'' l .:/ ' '1 
2 G "'' ... .., ( '- '1) J 

J - " L 

1 1f' 

The structure of these formulas is actually rather easy to understand. The inter­

action which causes the scattering, given in Eq. (II.39), is a vector interaction 
• which conserves the handedness (or helicity ) of the fields. For neutrino scatter-

ing off electrons one 

left handed electrons 

electrons ( .... Q~). For antineutrinos, since the helicity reverses, the right-left 

scattering is proportional to Q 2 while the right-right scattering is proportional L . 

has two contributions: the left handed neutrinos scatter off 

( ... Q~) or the left-handed neutrinos scatter off right handed 

to QR
2

• I show this pictorially in Fig. 4 for both the cases of LL (or RR) and LR 

scattering in the CM of the neutrino electron system . 

• The helicity is just the projection of the spin along the dir8ction of motion 

~CM 
~ 

(a) (b) 

4=,~CM 
~ 

Fig. 4: Scattering of LL (a) and LR (b) fermions in the CM system with vector 

interact ions 
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For LL or RR scattering the initial state has J 0 and so ( 
J.,.. \ 

one expects that J:ii. :eM 

be isotropic. But since cos 6CM is simply related toy one sees that this implies 

(do-) -
r.; L.L. ( ::t~ - i (II.42) 

For LR scattering, on the other hand, it is clear that a configuration where the 

final particles are emitted backwards is forbidden since it corresponds toCJ = 2. 

Thus ( <!r) ~ (1+ 
6.n, en 

c,.; a )" 
'"' 

which implies 

( d.-\ 
J1 1, .. 

- ( &\ 
- ~1 ; "l - (o-jl' 

(II.43) 

Because the electron mass enters in Eq. (II.41), the cross sections are very small-
-42 2 -

typically of order 10 E_ (GeV) em • Nevertheless, both Yf e and '1- e. processes 

have been measured at CERN and Brookhaven recently, with about 100 events in each 

experiment - which is high statistics in this difficult field! Because both ~ .f 

and;;, -t. are measured their ratio can be deteil!lined, which gets rid of the p para­

meter (and of various systematic errors). Integrating Eqs, _(II .41) over y and taking 

the ratio gives 



R , O"',..r • 

a-~r <.. 
' 

l L 
0 Q,L + <a~ 

' ·' l. 3 <51~.~ .... " 
3-11 sw.t9w +14~.,.1tat>J 

t -lt s.u."~ T 1' s"""'*a,., 

which is a pure function of the Weinberg angle. 

The CHARM experiment at CERN /15/ gives for the ratio 

R + 0.65 
1.37_0.44 (CHARM) 

which implies a value of the Weinberg angle: 

. 2 
s1n flw + + 0.215 - 0.032 - 0.013 (CHA&'1) 
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(II .44) 

(II.45) 

(II .46) 

where the first error above is statistical and the second systematic. The BNL ex-

perimental results, obtained very recently /16/, are in complete agreement with the 
CHARM results. They report a value of the ratio 

R 
+ 0.40 + 

1.38- 0.31 - 0.17 (BNL) 

which gives a value for sin
2 e..., from their analysis, of 

. '· Sln v(J 
+ + 

0.209- 0.029 - 0.013 (BNL) 

(II.47) 

(II.48) 

The absolute values of these cross sections can then be used to infer a value for p 
I quote below the results given for the cross section slope with neutrino energy 
by both experiments 

<r,. • I E..,. 
" 

= (1.90 ::!: 0,40 ::!: 0.40) x lo-42 cm2/GeV (CHARM) 

<r,, .I E... = (1.60: 0.29: 0.26) x 10-42 cm2/GeV (BNL) 

a-~re /f.~ 
+ + -42 2 = (1.50 - 0.30 - 0.40) x 10 em /GeV (CHARM) 

cry: t. 1 E.v 
= (1.16::!: 0.20: 0.14) x lo-42 cm2/GeV (BNL) 

' (II .49) 

The CHARM collaboration extracts from their absolute cross section measurements a 
value for f 
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~ 
+ + 1.09-0.09-0.11 (II. SO) 

which is consistent with the prediction r = 1 from doublet synmetry breaking. the 

BNL collaboration gives no value for f , from their analysis. A cursory glance at 

Eq. (II.49) would suggest that if such an analysis were performed, the central.value 
for ~ from the Brookhaven data would just be slightly below one. 

A second, purely leptonic test, of the GSW neutral current interaction is afforded 
+ - • by the process e e-+ f' r- , measured at DESY and at SLAC. In QED this process occurs 

to lowest order in tl by one photon exchange. In the GSW model there is an additional 
contribution due to Z

0 
exchange, as shown in Fig. 5 

')v(-
e- ~· 

e• ~-

+ z· 
e- ~· 

Fig. 5: Electromagnetic and weak contributions to e+e-.-; /'tf-

For energies much below the Z0 mass, the second term in this figure can be approxi­
mated by the contact interaction of Eq. (II. 28). One can readily estimate how important 
is the neutral current contribution relative to the purely electromagnetic term. One 
has for the ratio of the amplitudes 

,... .,., ... 'o( 

·~ ... 
N G, 

.. ·;,• 
-~ 1 ( r L) lo 9 I.J'c.'lf 

(II. 51) 

Since for the experiments at DESY and SLAC, typically q
2

- 0(10
3 

GeV
2
), the inter­

ference between the electromagnetic and thi weak amplitudes should give rise to 
effects of the order of 10 %. 

To measure this interference effect experimentally, one studies the asymmetry between 

the number of f'- produced in the direction of the incoming electron in the CM system 
and those produced against this direction. If lcld"' /AJt )CM is the differential cross 
section for e+ e-- ,..•,. • in the CM system, then this forward-backward 
asymmetry is defined by 

A f-~ 
J' .\,.,a,,. ( ~) - ( >.,...,., ( o!t"J 

0 6oJt. CM -~ tAoo CiLA CW 

o- ( e.•,-...., r-.. , .. -) 
(II. 52) 
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' In the absence of the neutral current interaction this asymmetry vanishes Hence 

k tests directly the presence of the 2° coupling. Unfortunately, as I will show, 
~-B 

it does not provide any information on sin2 B~ , although its magnitude provides in-

formation on r· 
I will quote the result of the calculation and then describe qualitatively why it 

has this structure. In the GSW model one finds 

fl ~-~ • - ( s G~ s 

~11'/i:" 
r j <a'~~ (II. 53) 

Here s = - q
2 

is the square of the total energy in the CM system and gA is an axial 

coupling constant, to be defined below. In the GSW model gA = 1/2, so that the 

asymmetry is 

P..,_ 6 ~G,' -''".si."' 
f~-· 

-$ ,..,. s(C.v'l r' 

To understand this result, let me write down the effective neutral current Lagrangian 

relevant for this case 

;r"' 
··~ 

~ z.c, ~ 
~ 

(0: ( 't' 'I~ • -(" 'fs '}A l d ( j:" ( ~· "lv ~ 'It tJ. 'i '"\ /" ] 

(II. 54) 

The coupling constants g and gA can be gotten directly from the structure of J? 
v K 

and one has 

'h ,. Ill._ t d!, 

'l ~ • o. .. - "• 

:. .t s...: $ .... 

.!. 
• 

-~ • (II. 55) 

The amplitude obtained from (II.-54) is to be added to the purely electromagnetic 

amplitude and the absolute square gives the desired cross section. The claim is that 

only the cross term between the weak and the em_amplitude gives the asymmetry. 

* This is only strictly correct to O(tX). There are 0(1( 
3

) contributions to ~-B 
which come from higher order QED processes 
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It is easy to check that the purely electromagnetic contribution is symmetric in 

cos e . The fact that one has a vector interaction means that the scattering will 
CM 

occur only between left handed electrons and right-handed positrons or viceversa, 

producing r• t"" 
in Fig. 6. 

pairs also in these two configurations. This is shown pictorially 

--=--f!_ 
iJ.-

~ 
e- ~e· 

,~ 

(a) 

iJ.-

~ e• 
e- r-

iJ.+ 

(c) 

(b) 

;tl/iJ.­
~­~ 
~: 

;/iJ.-

e-~ 

~
e• 

. 

iJ. 

(d) 

e• 

Fig. 6: Possible configurations in e + e- ~ t-+- t- scattering due to vector inter­

actions 

If EfCM is the angle between the outgoing ~ and the incoming electron, then 

considerations analogous to those presented for "f t scattering give 

.lo- " .,. (~ \ I 
( .. , ~ - t, • to~~u.) 

O.JI. c;l.n. (II. 56) 

~ (~) J..,£ ''" \ 
' ,. ... ( I- eo'- 6c,.,. \ 

.t.A 1M 

For unpolarized scattering and not measuring final state polarizations one just sums 

over (a) - (d), Hence 

(~-!")e .. 
I 

"'"'(11' (,..)~ .. ) ~ c.-c..se \\,. 
·~ - \ 

(l~Co>6) 
<M 

(II. 57) 
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which establishes the contention that ~-B needs to arise from the weak-electro­
magnetic interference. 

The differential cross section arising from the interference can be infered by using 
the diagrams of Fig. 6 and the form of/j :~f of Eq. (II.54). The point is that Ys 
for a left-handed particle is (-1), but it is (+!) for a right-handed particle. Thus 
terms in the electromagnetic-weak interference proportional to gA contribute with a 
(-1) in each of the diagrams (a) - (d) whenever one has a left-handed electron or 
muon, but (+1) otherwise. I give below the relevant signs of the four diagrams for 
the four possible interference terms. The first &v,A below corresponds to the elec­
trons, the second to the muons: 

"v"v (a) + (b) + (c) + (d)- 2 (1 + cos 2 1) ) 
CM 

"v gA - (a) + (b) (c) + (d) = 0 

(II. 58) 
&A &v (,) (b) + (c) + (d) .: 0 

gA gA (a) - (b) - (c) + (d) - 4 cos$ CM 

1 f 1 2 2 . . . h" Cleary, there ore, on y the &v and the gA terms contrtbute and 1t lS only t 1s 
latter term that gives the asymmetry. The sign of the asymmetry given in Eq. (II.53) 
is negative because it involves also the photon propagator 1/q

2
, and q

2 =- s (0, So 
all the qualitative features of Eq. (II.53) are understood. 

The forward-backward asymmetry has been measured at SLAC and at DESY showing 
agreement with the value expected from the GS\4 modeL Because ~-B invotves 

good 
2 

g A, the 
asymmetry gives no direct information on the \~einberg angle but its magnitude con­
strains~. I give below the asymmetry for the process e+e-~ t~(· obtained at DESY 
at two (average) energies: G = 34 .5 GeV and r, = 41.6 GeV /17/. These results are 
themselves averages of the asymmetries obtained by all the four running experiments 
(five in the case of the lower energy asymmetry) 

AF-B(e+e-_.t+t·) + 
-10.8-1.1% {$. 34.5 GeV 

~-B(e+e-..,l"-r,..~ ) -14.7:3.1% .r. 41.6 GeV 

(II. 59) 

The predictions from Eq. (II.53) taking f = 1 are respectively- 8.1 % and 11.7 %, 
which are somewhat below the values of Eq. (II. 59). In fact, however, the effect of 
a finite Z0 mass is not totally negligible here. Including a Z0 propagator effect 
changes s in Eq. (II.53) by 

·~ 

2 
•M z --,­
s-M Z 
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(II.60) 

+ Taking the experimental value for MZ /13/, MZ = 93.2- 1.5 GeV,the substitution of 
Eq. (11.60) increases the predictions for AF-B at the two energies in questions by 
14 % and 20 %, respectively, Hence, the values to compare (11.59) with are, for r ~ 

AF-B (GS\4) 9.4 % " 34.5 GeV 

AF-B(GSW) - 14.5 % .r, 41.6 GeV 

(II .61) 

These are in excellent agreement and speak for the validity of the model and for the 
simple choice l = 1. 

The most precise values for sin2& and P come from deep inelastic scattering of 
' w ' neutrinos . In these experiments one scatters neutrinos off a nuclear target and 

sums over all possible final states. The scattering process can occur, in the GSW 
model, either mediated by W-exchange (Charged Current or CC process) or mediated 
by Z-exchange (Neutral Current or NC process). This is shown pictorially in Fig. 7 

~
~-

+ 

X 
N 

(CCJ 

~ 
2x N X 

( NCJ 
Fig. 7: CC and NC deep inelastic scattering of neutrinos 

By comparing the ratio of the charged current processes to the neutral current pro­
cesses one can obtain information on ~ and sin

2 
6.., . Doing this both for neutrino 

and antineutrino scattering then fixes these parameters, much in the same way that 
this happened in the case of scattering off electrons. However, here the relevant 

*A very precise value for sin
2 91.1 comes also from polarized electron deuteron deep 

inelastic scattering /18/ 
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mass parameter is the nucleon mass and not the electron mass, and so one is dealing 

with much bigger cross sections. As a result both sin
2 &(o,J and \ are determined 

more accurately than in neutrino-electron scattering. 

The advantage of considering an inclusive process - that is a process w~ere one sums 

over all possible hadronic final states - is that one can avoid most of the theoreti­

cal issues connected with how quarks bind among each other to become hadrons. The ex­

citation of the initial hadronic state N by the virtual W or Z
0 

of Fig. 7 must pro­

ceed through the coupling of the W or Z0 to one of the quarks in N. The scattered 

quark then recombines with the spectator constituents of the initial hadronic state 

to form the final state X. I illustrate this process in Fig, 8 

~X 
N 

~}x 
Fig. 8: Decomposition of the vertex N(W/Z

0
)X 

To the extent that one is summing over all possible final states X, it is clearly 

irrelevant how the scattered quark combines with the spectators to make a particular 

final state. Hence the deep inelastic scattering cross section should be given by 

the convolution of the probability of finding a quark with a certain fraction of the 

initial hadron momentum, with the cross section for the scattering of this quark by 

the initial neutrino or antineutrino. This is the parton model of Feynman /19/ and 

of Bjorken and Paschos /20/. I shall not elaborate further on this topic since it is 

covered by the lectures of Close and Brodsky in this school. For my purposes here, 

all that is relevant is that the deep inelastic processes are proportional to the 

corresponding quark scattering processes. 

To simplify my discussion, I shall suppose that the only important constituents of 

nucleons are the "valence" quarks. That is, a proton is made up of 2 u quarks and a 

d quark and the neutron is made up of 2 d and a u quark. All "sea" contributions of 

virtual q-q pairs in this approximation are neglected. Let fu(x) and fd(x) be the 

probabilities of finding a u quark or a d quark in a proton, carrying a momentum 

fraction x of the initial proton momentum. Then; by isospin symmetry, fd(x) and 

f (x) are the respective probabilities of finding a u quark or a d quark in the 
u 

neutron. Charged current deep inelastic scattering of neutrinos acts only on the 

d quarks, through the reaction II} "t c( - ,.- T .., . For antineutrinos the charged 

current scattering involves only u quarks: ~t ... ~.~_,_.,..,.A , Neutral current 

J 
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scattering, since it is charge diagonal, will involve scattering of both the u and 

d valence quarks. Hence in general, even knowing how to calculate the scattering at 

the quark level is not enough to interrelate the CC and NC processes, since different 

combinations of probability functions enter. For isoscalar targets, however, every­

thing simplifies ve~y nicely. 

An isoscalar target- like 12c- is made up of an equal number of protons and neutrons. 

Hence scattering off isoscalar targets is like scattering from an average of a proton 

and a neutron: N = 1/2(p+n). Consider then the CC process V't" No.~(- )I( 

parton model it is given by the convolution (denoted by €} below): 

acr t•,-< "'r"x) ' .. ' .L t 1'.,. ~ +. ) ® dcr ( 't ~ .. r·v) 
• 

In the 

(II.62a) 

since fd is the probability of finding a d quark in a proton but fu is the probabi­

lity of finding ad quark in a neutron. Similarly, for antineutrino scattering one 

ha< 

ao;;,t;ir""'r~x\ ~ ~ l~ ... ~~~ ® t:lo- I~ v-~o•.t \ 

(II .62b) 

For neutral current scattering, on the other hand, one has 

ctcrH, I "r ~.., "t ") ~ t (f •• ~ ... )®[J .. c1.t ... ::~' • cl<rl~· .. ~·>] 

~ .... /;;.H ~ )() ' i tf.~f!\ €) (·cl .. t~.A .. ~~\ .. d,l~v->~vl] 

(II.63) 

Clearly therefore - in the valence approximation - the ratio of CC to NC deep in­

elastic scattering off isoscalar targets can be computed entirely from a knowledge 

of the elementary quark- vr or quark- ? processes. 

The effective Lagrangian for NC scattering of neutrinos or antineutrinos off quarks 

in the GSW model has the same form as (II .39), except that the coupling constants 

QL and QR are replaced by those appropriate to the quarks in question: 
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:l'' 
~ff " ~ e cr 'f'l··~s>"(]. (Cj ('f,(o•'(J)Q~ +'l'tl, .... ,, Q:)~ 1 

,.~ 

(II.64) 

Here q "'l u,d} and the coupling constants Qi, Qi which follow from the structure of 
the neutral current of the GSW model are: 

u . 2 QR "' - 2/3 Sln .,.., u . 2c!!.. Q
1 

= - 2/3 Sln + 1/2 

(II.65) 
Qd "' 1/3 sin 2 9 

R W 
Qd 

L 
1/3 sin

2
9c., - 1/2 

The charged current effective Lagrangian, of course, is just that of the Fermi 
theory: 

ec 

~•H" c. 
.r, 

t [ "1 -<'•··•.r> r 1· [ J fr ,, • .,. ... ,v 1 

.. ( ;:- -(rt,.f.r> "t J. C v Y(- t•·Yr>.\ 1 } 
(II .66) 

The differential cross sections tl.tr/cl~ that one must calculate to compute the 
ratios of NC and CC processes have precisely the same structure as Eq. (II.41) for "r t and .7t e scattering. For CC processes, however, there are no right-handed 
couplings, the left-handed co~plings are unity and e= 1: 

q" 
R 

Qd 
R 

0; q" 
L 

Qd 
L 

Let me define the ratios 

•• 
1( ~ 

• 
a tv,.,...,. "f.._. l 

(Tc.c{o/tN_.t-)C,) 

I; 

' 

~ 

I 

lo J; 
' J ~~ 

0 

cc 

cJ,.NCI 'I ..... "j.X) - t ,).~ 

~ ... <e''f ~ .. ~-- .. J 
tG 

(II .67) 

(II.68a) 
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and 

11.-., • 

He _ _ 

(1" tvrN" ... '1- 'A.\ 

o-<• <vt" ... t" ~) (II. 68b) 

Then it is easy to see that 

~., ~ ~' { (Q~)·. (<!<~. \ l • .). [ (I<", •• (dl~ >'1} 3 .. .. 

'R; • 3e 1 {~vI'' " 
(<)· .. ± [ l«!~l'-· ('-~\ 1 ]} 

which, using Eqs. (11.65), can be rewritten in terms of the Weinberg angle as 

~ e" [ . . 
Lo .r· 'e 1 v < l - s~"'" e..., • - ,.._ !."' • q 

(II .69) 

t; ~ e' [ 
. . 

• 0 1:~' & 1 .1. - ~\"""' ~""' ~ 

~ ~ w 

The ratios R,,. and R;. have been very accurately determined by the CHAR..'1 and the CDHS 
experiments at CEa~. The results of these two collaborations are in very good agree­
ment with each other, as the values below·show /21/ /22/: 

R~ = 0.300 : 0.007 (CDHS) 

+ R
11 

= 0.320 - 0.010 (CHARM) 

+ R;,- = 0,357 - 0.015 (CDHS) 

+ R;, = 0.377 - 0.020 (CHARM) 

Using the fonuula (II.69) and taking f = 1 and 

R = 0.31 and Ry. = 0.39, which fits very nicely 

(II. 70) 

a value of sin
2

c9t.ol: 0.23 gives 

with Eq. (II.70). To actually extract ~ 2 
the best value for f and sin &w one needs to correct the theoretical formula 
(II.69) for the contribution of the quark sea and other small effects. This has been 
done in the analysis of their data by the CHARM and CDHS collaborations. The value 
of sin

2 a..., one obtains depends on whethe.r (" is kept fixed at 1 or not. For 
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instance, the CHARM collaboration /21/ gives for{'= 1 a value 

sin
2 6w = 0.220:!: 0.014 (II. 71) 

If \ is also varied the best fits are 

(' = 1.027 :!: 0.023 
. 2 6 + (CHARM) 

Slll lool = 0.247 - 0.038 

e = 0.996 : o.a26 
(CDHS) . 2 & = 0,221 :! 0.030 "n 

(II. 72) 

"' 
I should remark that the values of e and sin

2 ftw extracted from neutrino-electron 

scattering are in total agreement with the above. This remark is non trivial, since 

a priori different vertices are tested in these two experiments. In the GSW model, 

of course, they are related and the nice agreement found in these two different 

experiments is a further confirmation of the model. 

Because the neutral current interactions in the GSW model are parity violating, they 

give rise to small parity violation effects in atoms. These effects have been studied 

experimentally in the last 7-8 years and, after an initial period of confusion, have 

now been definitely established. I want to make a few remarks on this subject because 

it illustrates so nicely the unity of physics. These atomic parity violating experi­

ments deal with transitions in the electron volt energy range. Yet, because they are 

looking for effects of the parity violating neutral current, they are testing physics 

at the Fermi scale of 0(100 GeV)l 

The parity violating interaction between electrons and quarks (hence nucleons) will 

induce small admixtures of opposite parity components into the atomic levels. The 

presence of these opposite parity admixtures can then be detected by studying tran­

sitions induced by using incident polarized light and measuring an asymmetry in the 

photon absorption cross section when the polarization is flipped. This parity vio­

lating asymmetry, nominally, should again be of the order* GFq
2 ~ 10-4 q

2 
(GeV2). 

really too small ~ to measure. In 

, which predicts an asymmetry: A""'\o- 14 . 

If this were the case, then the effect is 
. . 2 L atOml.C physl.CS q ,.,. _L A. c-~ ,() 

<r'"}o.\-.. _ 

*The asymmetry in e+e-~ ~t-('. which I discuss·ed before was 
2 2 

GFq /e 

not parity violating, 

is really an estimate . . . 1 2 . s:t.nce l.t :t.nvo ved gA • However, the est:t.mate there of 

of the magnitude of the interference. 
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Fortunately this estimate turns out to be a bit too crude and there are methods to 

enhance this number considerably, by studying parity violating transitions in heavy 

atoms /23/. Effectively, in the case of heavy atoms, an extra enhancement of z
3

-

where Z is the number of protons-in the atom- arises. For Bismuth, for instance 

where Z = 81, this is a substantial enhancement and asymmetries of the order A-10-S 

are to be expected. 

I want to derive the parity violating Hamiltonian applicable in atomic physics from 

the fundamental neutral current interaction of Eq. (II.28). For parity violations I 

need to focus on the terms in l :;f which involve a vector vertex at the quark level 

and an axial vector vertex at the electron level, and vice versa. A simple calculation 

gives 

l_'H 
N 

~ .r;:c;:•d ~· ~,,Y_,-t\:. ';)~ lvyY<>l ~ ~: tJy•.A>] 

+ ":>~ ~ <r~ [~~ lv'<'"f5 v) .. 'tlJ~d:,..•y,J.\} j 
(II. 73) 

Here the couplings gA and &v are those given in Eq. (II.55). Further 

v (Q~ ~ Q,: 1. - '-! :.~"'" 1 s(,J ~. ~ ~ 

• 5 

i~ a a . I f) 
~ IQ.jl.-t"QL ' -l ~ !_ So A.o N 

L l 

~> 
&..v v 

(II. 74) 

1'---&.L..:. - l 
' 

~ ~ . ~a -Ill l " - fl.- L 
0 

' 

Since the nucleus in an atom is essentially static, the quark currents that enter 

in (IL73) can be considerably simplified by making a non relativistic reduction. 

For that purpose the Dirac representation of the y' -matrices is convenient: 
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~0;.. c :. ) J 
--{ (_~ 

-; 
cr ) 

0 ' 
..,, ' C'o) 

Retaining only the upper conponents, since the lower components are down by v/c, 
means that for the vector piece of the quark current only the -(

0 
term survives, 

~ ~ while for the axial piece only the y 'fs .- (]' term remains. In this non relati-

vistic limit thus, the first term in Eq. (11.73) is proportional to the sum of the 
u and d quark number densities in the nucleus (guufu + gddtd), while the second term v v 
is proportional to the nuclear spin. For heavy nuclei, obviously the first term 
dominates since the contributions add coherently. In the spin term there will be sub­
stantial cancellations and so I shall neglect it from now on. 

The dominant quark contribution, proportional 

for the electrons which is proportional to ~ 

charge" of the nucleus: 

Qw 
u d 

gVNU + gvNd 

to guutu + gdd-td, acts as static 
3 v v 

~ (:t)-, Here Qw just measures the 

source 

"weak 

(II. 75) 

where Nu and Nd are the number of u and d quarks, respectively, in the nucleus. In a 
valence approximation, these numbers are simply related to the number of protons, Z, 
and neutrons, N, in the nucleus: 

Thus 

N =2Z+~ 
u Nd 

Q = (2gu + gd)Z 
w v v 

+ (2gd + gu)N 
v v 

2N + Z (II.76) 

( 1/2 - 2 . 'e s~n w )Z-1/2N (II.77) 

Since the \4einberg angle experimentally is near sin
2 ew: 1/4, one sees that 

Qw ~- 1/2 N. Thus for heavy nuclei~ is large, being essentially proportional to 
the number of neutrons in the nucleus. 

It remains to compute the contribution of electrons to the parity violating Hamiltonian. 
The survivingterminEq. (II.73) involves e "'(0'(" s e. I will again consider this 
contribution in the non relativistic limit. In the Dirac representation ~o~r 
connects the upper and lower components of the electron wavefunction. Since this wave­
function in the non relativistic limit is given by 

NO. 
( 

X 
~ ~ 

C'_!<- xJ ~ 
(II. 78) 

"""'· 
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it is clear that the electron contribution to the parity violating potential is just 

a-. r ~ 
... £ 

* Putting all the pieces together, one sees that the GSW model predicts 

a parity violating potential: 

1-\!'J • G, 
,.-,_ ~ 'l.., a- ·f~ o> ~ tl' (X ) 

(II.79) 

.... 
A few comments are in order on this result: 

(1) Obviously this potential is parity violating, since it is proportional to the - ~ pseudoscalar interaction cr. f e . Thus it will have non zero matrix elements only 
between atomic states of opposite parity. Furthermore, it is short range because of 
the ~ 3

(i), so it will measure essentially the electron wavefunctions at the origin. 

(2) For heavy atoms one can understand qualitatively where the z3 enhancement factor, 
mentioned earlier, comes from. A factor of Z comes from Q'W':'- 1/2 N (which is 
roughly Z). A second factor of Z 

<r,.')-M..t..Dt 2. in an atom. 

comes from the electron's momentum, since 

The final factor of Z arises from the ) 3 (~) factor, 
which tells one that the parity violating matrix element is proportional to the 
electron wavefunction at the origin. This factor can be shown to vary as Z also for 
heavy atoms. 

(3) Parity violating experiments in principle can serve to give yet another determina-
. f . 2. [lOll 0 Slll C'I.J and e , since these quantities enter in Eq. (II.79). However, since 

the feasible experiments are done in heavy atoms, there is considerable theoretical 
atomic physics to be done before one can extract the relevant particle physics in­
formation from the data. 

To date three kind of different atomic parity violation experiments have been per­
formed: optical rotation in Bismuth atoms /24/, circular dichroism in Thallium vapor 
/25/, parity violating polarization in Cesium atoms /26/. I shall not go into the 
precise details of what is measured, as that would take me too far afield. I summa-
rize, however, the present status 

. p . '• t~cal numbers use \. = 1, Sln ~ 

* 

of theory and experiments in Table II. The theore­

= 1/4, but the atomic uncertainties seem to 

This contribution comes with a (-) sign since what emerges from (II.73) is really 
C:'( "( €. . However, going from :/ to the Hamiltonian this sign is again changed. 

0 ' 



dominate the theoretical spread - especially for Bismuth. 

Table II: Summary of Parity Violating Experiments 

1) Optical Rotation in Bismuth (R x 108) 

Experiment /24/ Theory: '). = 648 rom ). "' 876 mm 

Oxford ).., 648 mm 

Novosibirsk } = 648 mm 

Moscow 

Seattle 

) "' 648 !llll1 

} = 876 rom 

+ 
9.3- 1.5 

- 20.2! 2.7 

7.8! 1.3 

- 10.4 ! 1. 7 

2) Circular Dichroism in Thallium (A x 103) 

Experiment /25/ 

Berkeley - 1.73! 0.26! 0.07 

3) Electronic Polarization in Cs 

Experiment /26/ 

Paris - 1.56! 0.17:0.12 

Ref. 27 

Ref. 28 

Ref. 29 

Ref. 30 

Theory /31/ 
+ 

- 17 

- 18.8 

- 13 

- 11. 1 

- 1.31-0.26 

Theory /32/ 

- 1.61 ! 0.07 ! 0.20 

- 13 

8 

- 11 

8.3 
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Although both experimental and theoretical uncertainties are too big to get a good 

determination of f and sin2 &W , is is clear that the GSW model predicts effects 

of the order of those observed, in these very difficult experiments. 

I have left for last, rather fittingly, a discussion of the properties of theW and 

Z bosons. Their recent discovery at the CERN collider /12/ /13/ is the crowning 

glory of the GSW model. The data at the moment is still quite limited- less than 

100 W events, reconstructed through their decays into e "'(or I' "J. ; less than 20 Z0 

events, reconstructed through their e+e- or ,...-r_ decay modes. Nevertheless, it 

seems to be in very good agreement with the prediction of 

however, a much more detailed study of the properties of 

the fheory. Obviously, 
- 0 the W and the Z is 

warranted, as any small departure from what is predicted by the GSW model may signify 

new physics. Hopefully more information will become available soon as the new data 

taken in Fall 1984 at the CERN collider is analyzed. 

The production of the W and Z0 in pp collisions can be computed by applying the 

same patton model ideas I discussed for the case of deep inelastic scattering. In 

this case the W or z0 get produced by "fusing" a quark from the proton with an anti­

quark from the antiproton, as indicated schematically in Fig. 9 

57 

p 

w,z 
p 

Fig. 9: Production of W/Z0 by q-q fusion 

The cross section for the process pp -+W/Z X therefore can be computed by convolut­

ing the distribution functions for finding the quark (antiquark) in the proton 

(antiproton) with the elementary cross section qq _, W/Z. One may use deep inelastic 

scattering information to determine the quark distribution functions in the proton. 

By charge symmetry the antiquark distributions in the antiproton are the same as 

those of quarks in protons. Therefore one has a direct prediction for the expected 

cross sections. 

I illustrate the above discussion by considering specifically the production of W-

in pp collisions. In the valence approximation I am considering, theW- gets produced 

by fusing ad quark in the proton with a;:;_ in the antiproton. If f (J') is the frac­

tion of the initial proton (antiproton) momentum carried by the d(;:i.) quark, then 

the cross section for W- production implied by the diagram in Fig. 9 is just 

O"lrf~ w-,q ~ ! J1 a~' ~~ 'i \ ~u Lj'l .1. a-l.ITV-tW-) 
3 

(II. 80) 

The factor of 1/3 above follows since for theW- to be produced the d and u quarks 

must have the same color and the probability of that is 1/3. A simple calculation. 

using for :f.. the expression given in Eq. (II.21) for the GSW model, yields 
mt 

cr ( ~ • u 1 ,.,- ) < IT •' HH'•- 11:,.) 

Lt. s:.! "~ 

, i.r.<::f'"''-.. ~<U'•-"'~) 
(11.81) 

Here .(s is the total energy of the pp system in the CM and the «i -function above 

informs one that the W can onl-y be produced if the squared mass of the virtual q-q 
. 2 . . . 

system ~s MW· Therefore one ftnds for the productton cross sectton the formula 



(j trf ... w'><) ~ r.:« 
r c. ("~ .. ) 

1 

I 
~~ 
' 

Jj ~(~) u 
l 

...,,.., ) 
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(II .82) 

An analogous formula, involving now fd 0 fd and f
0 

Q £
0

, applies for Z
0 

produc­

tion. 

Note that the result in Eq. (II.82) is just a function 

creases, contrary to the naive expectation one may get 

of ~~ 
by Is 

As the energy in­

looking at this 

equation, the production cross section increases since the integral gets more contri­

butions nearer to :1:ero, I show in Fig. 10 predictions for the production cross section 

for Wand Z bosons, calculated sometime ago by Paige /33/. These curves underestimate 

the actual production cross section by perhaps a factor of 1.5, which is certainly 

within the experimental and theoretical errors. 

;­
E 
u 

b 

1032 

1034 

2 5 10 20 
-&'12 ,. 15/m 

Fig. 10: W and Z production, from Ref. 33 
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The branching fractions of the W and Z0 
into various channels is straightforward to 

compute from the Lagrangian (II.21): 

.7.,..> t .2:~'1,....,.. t 
• I)_ •. t 1 ~ [ W/ :f., .... • 

t.!i. s~·~&w t..(•'"'ws.:""'o,)w 

Let me consider first W decays. The currents J: just involve pairwise each of the two 

members of the fermion doublets in the theory.-If one neglects the masses of the 
* -quarks and leptons relative to the W , then the branching fraction of W decays into 

Q ~ is simply 

~c .. -..... ") 
' 

> 
r(w· .... -..;) 

r tw·..., o-Il\ 
'"'- "" 

9 .• o;. 
.. ~ [, .. lJ 

(11.83) 

In the above ng ~ 3 is the number of generations of quarks and leptons known and I 

have used that for each lepton pair there are three pairs of quarks, since quarks 

carry the additional color index. I will show in the next section that because of the 

SU(2) x U(1) symmetry breakdown, quarks of different generations mix with each other. 

However, because this mixing is caused by a unitary matrix the result (II.83) still 

applies. A very straightforward calculation gives for the actual rate 

r (w-... e. '• ~ 
G~ ..{., ~ Z.tQ 1-1 .. " (II.84) 

'r.: 1i 

where the numerical value follows by using for !-\; a value of 83 GeV. Hence from 

(II.83) we expect the total width of theW to be around 3 GeV. Using the result 

(II.83) and the calculation of Paige /33/ for the production rate (see Fig. 10): 

(f" tw•>..,. (f" tw') "' ,. 

one expects 

0'· ~ {wt..,,,) ~ 

* 

-JJ .... c 
c-

O·H .. L 

" 4 .. ~ 
(II .85) 

(II.86) 

This is reasonable except for the case of the top quark, whose mass is in the 

range of 40 GeV 
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The value quoted for this branching fraction by the UAl and UA2 collaborations is 

/34/ 

~. &("'t-t<.V') 

rr. Rll~~o~t.-c <~') 

(0.53 ! 0.08 ! 0.09) nb 

(0.53 + 0.10! 0.10) nb 

(UAl) 
(II.87) 

(UA2) 

which is slightly higher than (II.86). 

For Z
0 

decays one can proceed analogously. However, because of the structure of the 

neutral current there will be a difference in the branching fraction of the Z0 to 

different fermion pairs, Since 

~~, l. I 1' 
\.. l - .; .. ' ~ :S' ) 

w ·-

it is easy to see that the effective coupling of the Z0 to the various fermions is 

given by (I write this for one generation, for brevity) 

~, 

.t,...\ , ! _e ~ ve t t '(r -; V,.'(r 1 "t .-ec'j.,Yr+t.v,r,1e 
t. &..J, 9-w)~"' a""' 

... v ( 'l: 'ft ~ ~: .,., ... ,lv + J c.t, '(,.~!'It y!J.\ ~ 

(II. 88) 

The various couplings g in Eq. (11.88) ~re detailed in Eqs. (11.55} and (11.79). In 

the partial rates the contributions of the vector and axial couplings contribute 

equally and there is no vector-axial interference term. This is because one can com­

pute the decay of the Z0 into states of given handedness, and obviously each of these 

two configurations will not interfere. The projections into given handedness confi-

gurations 

portional 

finds 

in (11.88) involve the couplings: 
2 2 0 -

to (Sv + gA). The rate Z _, ve "c:. 
(gV! gA). Whence the total rate is pro­

is easily scaled from Eq. (II.84). One 

r t ~·... "• 7. ) ~ l ~ 
~ c (!,\' dil']' c... "'• (II.89) 

'r\. (\ 11.r~ " 

The relative branching ratios into the other channels can be read off from Eq. (II.88) 

and the formulas for the coupling constants in terms of the Weinberg angle. One finds, 

remembering the factor of 3 for color for the quarks, 

r l1o.,. .;:;( "c "') rce0 
... ~.~\ 

~ ' ... [I- 4<-a.,l .. :l{t 

r a· ... ;; v l 

1- 8 c..1~ l"+ 
i ... 
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rc.· ... ~J.I .. 

·J: .J~(I-~J..-.1 t)l.+l ~ 
J (II.90) 

Using for the Z
0 

mass M
2
o: 94 GeV, Eq. (!!.89) gives a partial width of Z

0
-. ~"( 

of about 180 MeV. Using Eq. (II.90), extended to three generations and taking 

account of some kinematical suppression for the decay Z0 ~ tt', gives a total Z0 

width of about 3 GeV - quite similar to that of the W. Since sin2 ~ ~ .t. , the .. ... 
width t' (Z

0 
-t e +e-)"= 90 MeV. Thus the branching fraction of Z0 into lepton pairs is 

smaller than the corresponding branching ratio for theW's (Eq. 11.83): 

B(Z0 
_., e+e-) ~ 3% (II. 91) 

This result coupled with a somewhat smaller production cross section, as shown in 

Fig. 10, explains why the number of W's detected experimentally is much above that 

of the Z
0 's. 

The (V-A) nature of the coupling of the W to fermions predicts a correlation between 

the dir~ction of the electrons (positrons} coming from W- (W+) decay and that of the 

proton (antiproton). Preferentially, electrons will be produced in the direction of 

the proton, positrons along that of the antiproton. This feature can be easily under­

stood by focusing on the handedness of the particles involved in the process. COn­

sider, for instance a W- being produced in the· CM system of pp by the fusion of a d 

and a ~. Because of the (V-A) interaction the collision occurs only if the d is left 

handed, as shown in Fig. lla 

p 

4= 
-o--

d u p 
-w-

Fig. 11a: Production of W in pp collision 

and the W- is produced in a particular helicity state. Since the W- decays into a 

left handed e~, the direction of thee- is correlated to that of the proton, as shown 

in Fig. llb 
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---== -·-Ve e-
<=W-

Fig. 11b: Decay correlation in W decay 

In the rest frame of the W , the e angular distribution with respect to the direc­

tion of the proton beam should have a maximum for collinearly produced electrons 

and vanish in the backward direction. This is just the familiar (1 + cos9 )
2 

distri-
. "' bution which I discussed before, The situation is precisely the same as that de-

picted in Fig. 6(a). I show in Fig. 12 the angular distribution for the electron 

emission angle in the rest frame of the W-, determined by the UA1 collaboration /35/. 

As can be seen the data fits very well the (1 + cos9 ) 2 distribution. This is , .. 
positive evidence that the heavy particle seen in these experiments really has some-

thing to do with the mediator of the parity violating weak interactions. 

* <D 
~ 
0 
u ., -z ., 

3 

2 

Jc-

0-

or-

0 
-1 

I 

-
UA 1 

I 
Acceptance corrected / 

{1 +cos 9*) 2 
I 

~-f--

-rt 
/ 

/ 

/ 
/ 

I 
/ 

I 

0 

case* 

Fig. 12: Electron angular distribution in W decay, from Ref. 35. 
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The masses of the W and Z measured at the CERN collider by the UA1 and UA2 collabora­
tions are: (These are averages of the results of the two experiments) /36/ 

+ 
~ , 82.2 - 1 , 8 GeV 

(II.92) 
' + ~ "'93.2- 1.5 GeV 

The GSW model predicts (see Eqs. 11.24 and 11.27) 

I-\ >I \ Tio( l"' 
~lr...~s; ... 'e,..J 

": ~?.~~ G<V -
~.·A.~""' 

(II.93) 

P~. ~ 1-\w -Je Co>8w 

Taking sin
2 a\11.1 0.23 and f 1 gives 

'\, 77.8 GeV 

(11.94) 

Mz 88.7 GeV 

These numbers are in fairly good agreement with the experimental results (1!.92), 

but perhaps a little on the low side. In fact, this is not totally unexpected. The 

results given in Eq. (11.93) are computed without worrying about possible radiative 

corrections. Because the GSW model is a renormalizable theory, radiative effects are 

computable and in general change the lowest order predictions by corrections of 

O(fi.). For the case of the relations in Eq. (II .93), however, it turns out that the 

change, although of 0( .t), is numerically big. Roughly speaking, this is because all 

the parameters that enter in Eq. (II.93} for theW and Z masses ( ,(, GF, s,:.,.. 1~ and 

~ ) are determined at very low energy scales. The radiative corrections to Eq. (11.93) 

contain logarithmic terms of 0 {' ev_ ~1.""' /('\"') where (q'") is this typical 

mass scale. 

I quote below the predicted values for theW and Z
0 

masses in the GSW model, including 

radiative corrections /37/: 

+ 
~(Theory) ~ 83 - 2.5 GeV 

(II. 95) 

MZ(Theory) 
+ 

93.8 - 2.5 GeV 
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These values are in very good agreement with the collider results. The rather large 

error in the theoretical numbers is mostly a reflection of the experimental error 

. . . . 2a 
1n determ1n1ng stn ~~ . ' z""' ' 2A + . fl . An error 1n stn 17w , }.::.. s1n ""V =- 0.006 1s ·re ected 

in a 1 GeV uncertainty in Mw· Indeed, the value of the W mass found at the collider 

provides, at the moment, the most accurate determination of sin
2

() 

" 
III. Structural and Open Problems of the GSW Model 

Undoubtedly, as the discussion of the previous section showed, the GSW model is 

phenomenologically very successful. There are, however, parts of the model which 

are unsatisfactory. The part of the model which is really tested experimentally con­

cerns the fermion-gauge sector, given by the interaction Lagrangian of Eq. (II.21). 

What is untested and, as I shall discuss, in some ways theoretically troubling is 

the whole symmetry breaking sector of the theory. To be sure, the idea that 

SU(2) x U(1) ~ U(1)em has received dramatic confirmation at the collider, with 

the discovery of theW and Z with the predicted properties. However, there is no 

evidence yet for a scalar field - the Higgs field - which is supposed to be associated 

with the breakdown. 

Recall that in the GSW model, to trigger the breakdown of SU(2) x U(1) ~ U(l)em' it 

was necessary to add scalar fields with an appropriate self interaction. To reproduce 

the experimentally successful prediction that f = 1, .these scalar fields had to be 

doublets under SU(2), and the simplest possibility is thus to add just one complex 

doublet '¥ . The potential 

v ~ ). l !+ ~ - '!'L) 't. 
L 

(III. 1) 

forces !, to have a non zero vacuum expectation value 

< i) " ( ~ ") (III.2) 

and leads to the breakdown SU(2) x U(1) ~ U(1) . Of the four real fields in~ , em ): 
three are really absorbed to give the longitudinal degrees of freedom of the W and 

the Z- necessary for massive spin 1 particles. There remains, however, one excita­

tion left over, which will be associated with a 'massive spin zero state - the Higgs 

boson. 

The irrelevant fields in f. are those that would correspond to Goldstone excitations, 

if the SU(2) x U(l) symmetry had not been gauged. They may be eliminated from the 
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theory by adopting the same kind of exponential parametrization for ~ as that dis­

cussed in Section I, in connection with the U(t) model (cf. Eq. (1.86)). Let me 

write 

f(-.) ~ ~ 

:C.1C~C.)/v ( 1i l~: ~·~·l) (III.3) 

... 
Obviously all dependence on the three fields ~ (x) disappear in V. Furthermore, one 

~ 

can show that i also can be eliminated from the covariant-derivative term in 

:t:;~ of Eq. (11.33) -basically by picking a definite gauge for theW~ fields, 

essentially in the same way as it was done in Sect. I. After this gauge choice, the 

Lagrangian for the scalar field will only contain W . A simple calculation gives 

~ ~-~ 
c;,.,. ' t ')tloi )J-'14 -'>-tv' .... +!~'")\.. 

' 

-1 'I' lv~ \.{ )\.. wr w 
, •t 

.1 ({• ~·'1 lv~M Jl...ct ~ 
d t ' 

(III.4) 

where of. course the coupling constants g and g' are related to ~ 

Eq. (II. 20). 

. l 
and sm 0\oJ by 

From (III.4) certain properties of the Higgs field H can be immediately read off. 

The quadratic term in the field H in Eq. (11I.4) identifies the mass of Has 

.... 
• 

... 
:. 'l. ). "' (IlLS) 

Although one knows the magnitude of v- the Fermi scale - since it sets the scale of 

the weak interactions (cf Eq; 11.37): 

v= ( Ji GF)- 1 / 2~ 250 GeV, (III .6) 

the mass of the Higgs field is arbitrary since it is proportional to the coupling 

constant) , of which one has no information yet. Putting it the other way around, 

once His discovered (if it exists!), then Eq. (III.S) wi.fl give a measure of the 

scalar field self coupling 

There are both trilinear and quadrilinear Couplings of the field H to theW and Z 
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bosons. I give below the trilinear couplings, which can be directly read off 

Eq. (III.4), These couplings, I note, are proportional to the mass of the gauge 

bosons: 

't~u - ... M,?:~~(H . - (III. 7) _}; .... 1. &., 

l I< \IIW ~ - e fA w'w " .. . -,. 
s~ ... ~w 

If the mass of the Higgs boson is lighter than that of theW or Z then these particles 
can decay into a Higgs plus a lepton pair, by virtue of the couplings given in (III.7). 
These processes occur through the graphs shown in Fig. 13, where the virtual W or Z 

then transmut_e ~he~s.elves into lepton pairs. 

v~ 

w- w- e- z· e-

H H 
Fig. 13: Decays of a W or Z

0 
into a Higgs boson plus a lepton pair. 

The actual magnitude of these decays is very small, however. Bjorken /38/ estimates 
that for a 20 GeV Higgs boson 

rc~.._, '"'~'r- l 
'!: 8 X 10-4 

(IlLS) 

rtP-r"rl 

Since the branching ratio of the Z
0 

into /".pairs is only 3 %, one sees that the 

detection of the Higgs boson at the collider, as a byproduct of W or Z decay, is 

essentially hopeless. Furthermore, since ~ is arbitrary it could also well be that 

the Higgs boson mass is above that of the gauge bosons. Clearly, the Higgs boson 

appears rather elusive! 

The introduction of the doublet field :f in the GSW model, which precipitates the 

spontaneous breakdown of SU(2) x U(1) into U(l)em' has a further utility. It can be 

67 

used to generate masses for the quarks and leptons! Recall that explicit mass terms 
for the fundamental fermionic fields were forbidden in the GSW model, since the left 

and right handed fields transform differently under SU(Z) x U(1), However, couplings 

between ~ and two fermion fields can be built, which are SU(Z) x U(1) invariant. 

When ~ acquires a vacuum expectation value, these couplings are the source of the 

mass terms for the fermions. 

Let me illustrate this for the specific case of the u-quark. The Yukawa interaction 

l 
'f,.Yo.w .. 

_ \. l ( d \ c ( ~= ) vll • "ll ( <f: •• ) ( ~ \ ~ 
L 

(III .9) 

is obviously SU(2) invariant. It is U(1) invariant also, since Yu = 2/3, Yf = -1/2, 
Y = 1/6. Clearly, when one reparametrizes ~ as in Eq. (III.~) and absorbs the 

(u) _, -
d L unphysical Goldstone fields ~ in a redefinition of the (u) doublet * 

d L 

Ul .. 
L 

.. ~ .., 
-.;.1/v 

l ~) L 
= (~) 

l 
(III. 10) 

the Yukawa Lagrangian contains a mass for the u quark: 

) 
'tv~-. 

< h [ Vt. VA. of" ;;._ V(.. 1 { '1/ -t ~ ,, 
(III.11) 

~ - ...... II V """" u u H. • • 

where 

~"'-:... 
l, v 

''- (III.12) 

' To simplify the notation, I use the same symbols for the redefined fields in Eq. 

(III .10) 
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The u quark mass is proportional to the Fermi scale and arises only because SU(2)xU(1) 

is broken down spontaneously. Because the Yukawa coupling his unknown, Eq. (111.12) 

is not a prediction for the quark mass. Rather, the quark mass parametrizes the Yuka­

wa coupling. This is an analogous situation to what happened for the Higgs field. Note 

that the Higgs field through the ~ukawa interaction now couples to the u quarks, with 

a coupling which is proportional to the mass of the u quark. 

One can generalize this analysis so as to give masses to all quarks and leptons in 

the GSW model. Beside i , which has Y=>-1/2 one also needs another doublet that has 

Y = + 1/2. This can be constructed from 

conjugate field i£ defined by 

ip itself. One can check that the charge-

~ 'E',t ... -=- v;o~) (III.13) 

is an SU(2) doublet and has Y = 1/2. Just as (~) gave mass to the u quark,({.') 

will give mass to the lower members of the fermion doublets. It is clear, however, 

that none of the fermion masses will be predicted since they will all depend on un­

known Yukawa couplings- the analog of Eq. (III.12), 

Although the fermion mass generating mechanism I outlined is full of arbitrariness, 

and as I shall discuss shortly is one of the mysteries to be solved, it does make 

an interesting structural prediction. Namely, that as a result of the SU(2) x U(1) 

breakdown, the currents ~f which couple to the W bosons are ~ generation diago­

nal for the quarks. The neutral currents, however, remain diagonal. To understand 

this point I need a small amount of notation. Let 

tQ.;.-. 5 W ; (;) i t:L---l ~ L I. l.. [ ) L;L • ~ (~· l; CJtj(~ ),? ··-} 

U· • s v . e. . ~ •.... 1 
~a.. \ ,.., ,..) ... j { ) 

J..;IL • ~ J.~j J._j ,,._ ... } 

.R. • I.,_ 
•L 1 l'l-j Til; ... , 

(III.14) 

(I will not introduce any right-handed neutrino fields, since neutrinos are massless*). 

* Even if neutrinos had a small mass, it is so much smaller than that of the charged 

fermions that it can be neglected for the purposes of this discussion. 
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Then the most general SU(2) x U(l) invariant coupling one can write involving these_ 

fields is 

:t ~l"- \.!- id ~ - . . ~- ~ v . ._ - .· <Q ;, ,,._ 
'{ ... K.c.~ ... o J •I,. <I I' 

e - ~ J 
\..-J L;" ~ i ._ ~ l.e.} 

(III.15) 

The coupling constants h~, with f =C. u,d, .i!do not need to be generation diagonal. 
~J { ~--

The spontaneous breakdown of SU(2) x U(l) will generate mass matrices for the fer-

mions. These matrices will only connect fields of the same charge, but otherwise they 

are arbitrary, since the couplings in (III.15) are. It is easy to convince ones!!lf 

that for each charged fermion species: 

~ 1'\- • • l 

~ 
.1. l- " 'l 

"' 
(III.16) 

Obviously, if the matrices Mf are not diagonal one must make a basis change to deal 

with states which are diagonal in mass. This basis change will in general cause mix­

ing among generations in the fermionic currents of the GSW model. It is easy to check 

that only the quark charged currents are affected by this mixing. To prove this asser­

tion let me organize all the charged fermions of a given type f, f =lu,d, e.}. into 

column vectors 1'~ and 4' ~- For instance: 

f ' ( :~) " ~. 

The matrices Mf can always be diagonalized by hi-unitary transformations 

(U~)ti"\~U~: I'\; 
.:l:c.1 

where Ui = U_: if Mf is Hermitean. This diagonalization is ll!ffected by making a basis 

change in.the fermion fields 

l.j>L~ ... u+ 
c 

orf 
' / 

+ t~ ~ .. } 'f~ 
~ /l (III.l7) 
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This transformation will not affect the neutral currents since these are charge dia­
gonal and utu ~ t. For the charged currents, on the other hand.one has two different 
unitary matrices entering and there will be a non zero generation mixing. 

Consider, for·instance, 

the basis chaflge 

:rt . In terms of the compact notation I am using, before 

where 

"l"' ~ ( t" ~ y< td 
L 

.. t~ 'lt.f• 
l • 1 

J.' -r.- 't• ("'· ) . After the basis change j~ becomes: 
~C:Io 

-r_t • 2. [ 4 ~ 'It (u~ tlv: ) li'~ + 
~vyt(u•).t.<] 

L (. TL (III .18) 

Hence there is a general 

generations and a matrix 

. . . - ( ")t( d) . m1x1ng matr1x C ~ U U between the quarks of d1fferent ,f L L l u
1 

in the lepton sector. The effect of u
1

, however, is 
illusory. Since the neutrinos are massless, any linear combination of neutrino 

gets 
fields is still a neutrino field. The redefinition (/!~,..'"--* u: lj.. ~ 
rid of the matrix u[ in Eq. (III.t8) and defines the phvsical ~ field as that which 
is coupled in the weak current to the charged lepton .,( . 

- -There is physics, however, in the matrix c. For n generations of quarks C is a uni-
tary n x n matrix, which is characterized by n(~- 1 ) teal angles an n(~+ 1 ) phases. 
Not all these phases are physical since one can rotate (2n-1) of the phases away by 
redefinition of the quarks fields o/~ and '/' d, still retaining the mass matrices Mu 
and Md diagonal*. Let me call C the matrix ~btained from C after these redefinitions. 
Then C ha~ n(n;l) real angles and 1/2(n-1)(n-2) phases. The matrix C is called the 
Cabibbo-Kobayashi-Maskawa matrix. For the case of three generations of quarks, it is 
characterized by three angles S

1
, ~z and 8

3 
and a phase C0 • These parameters can be 

measured experimentally by looking at charged current weak interaction processes in­
volving the quarks of the 2nd and 3rd generation. The presence of a non zero phase 
t allows for the violation of CP in the GSW model. 

Introducing Yukawa couplings in the GSW model allows for mass generation for the 
fermions and predicts that in the quark sector there should be mixing in the charged 

' 2n-l not 2n since an overall phase has no meaning. 
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currents. Although this is observed, as the Cabibbo Kobayashi Maskawa matrix is non 
trivial experimentally, one is left in a rather unsatisfactory situation. All the 
quark and lepton masses are input parameters in the model, as are thE: angles &, 

&-, 
1 

6) and S . In principle, all these parameters are arbitrary, since they are 
related to the arbitrary Yukawa couplings of Eq. (Iii.15). In pract.ice, however, the 
pattern of the fermion masses is so bizarre, and the amount of mixing so "obviously" 
related to the mass pattern, that one is naturally led to ask what underlying physics 
determines all of this. To answer these questions one must go beyond the GSW model, 
since in the model, as it is presently formulated, any pattern of masses and mixing 
are allowed. This conundrum is not a theoretical inconsistency but a mystery, whose 
resolution will require new physics. A probably related mystery of the GSW model is 
the question of why are there generations of quarks and leptons, anyway? The number 
of families is, in principle, a free parameter in the model and there is no under­
standing of why there are (apparently) only three in nature. 

I would like to quantify these statements a bit by detailing some of the information 
one has on the fundamental fermions. As far as one knows, neutrinos are massless, 
although positive evidence for m..,, ~ 
data book /40/ gives the bounds: 

30 eV has recently been reported /39/. The particle 

I 
""""', ~ tC~ ~(.I/ ,.,....,...!. S: '-''e." I """? ~ Sao K..-V 

The charged leptons have the masses /40/: 

m 
e 

0.511 ~eV mr 105.66 ~leV mt: 1. 784 GeV 

(III. 19a) 

(III. 19b) 

The masses of the quarks are inferentially determined. For the light quarks using 
current algebra techniques and for the heavy quarks from the study of quarkonia /41/. 

+ -The top quark mass has very recently been established from W decay (W_,. t b) at the 
collider, by trying to reconstruct this decay process /42/. One finds 

m .. 5 MeV 
u -

md ~10 MeV 

me ~ 1 .5 GeV 

m ~ 200 MeV 
' 

m ":40 GeV 

' 
~ '!: 5 GeV 

(III.t9c) 

The elements of the Cabibbo Kobayashi Maskawa matrix are equally "random", although 
the randomness appears to be definitely correlated with the large mass splittings. 
Essentially the mixing becomes less and less as the quarks get more separate in mass 
and as they get heavier. For instance, from a comparison of ~ decay and nuclear fl 
decay, including radiative corrections, one infers a small departure from unity for 
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cud /43/ 

I Cud\= 0.9737 ~ 0.0025 (III.20a) 

A new careful study of hyperon and kaon decays yields /44/ 

J c 1 = o.zz1 !: o.ooz 
"' 

(III. 20b) 

From the shape of the lepton spectra in decays of B mesons /45/ and from new measure­

ments of their lifetimes /46/ one infers 

lcubl !o.oo5 (III. ZOe) 

and 

I c,b I 0.044 : 0.005 (Ill. 20d) 

It is hard to believe that all these numbers should be taken as free parameters. 

The introduction of the Yukawa couplings in Eq. (III.lS}mechanically makes it possible 

for masses and mixing to arise, once SU(2) x U(1) is broken down. It fails to explain, 

however, at the basic level why they really arise. I should note an incidental result, 

which may be of some phenomenological importance. If the fermion do get their mass 

from the Lagrangian (111.15), one has an immediate prediction of how the Higgs field 

H couples to fermions. Since, according to Eq. (111.3), the Higgs field H enters in 

f always in the combination (v+H), it is clear that the basis change which diagona­

lizes the fermion mass matrices (III.16) will also diagonalize the coupling of H to 

the fermions, Hence one predicts that H couples diagonally to fermions with a coupling 

proportional to the fermion mass: 

;;t k~f ' - "':.f h~ .. (III.21) 

where f is any of the fermions in the theory. According to this equation, therefore 

one expects the Higgs boson to decay to the heaviest pair of fermions kinematically 

allowed. Unfortunately Eq. (III.21) also suggests that direct production of the Higgs 

boson by fusion of light quarks in pp collisions., or directly in e + e- collisions, 

will be greatly hindered. 

The symmetry breakdown caused by the Higgs potential (111.1) gives masses to all the 

fundamental fields in the GSW model in terms of the scale v of the breakdown. Of 

' ,_ - -------- _._. ----' 
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course, in the fermion sector, since one knows the masses of the fermions, one pre­

fers instead to eliminate the unknown Yukawa couplings and replace them by mf/v' e.g. 

as done in Eq. {III.21) Nevertheless, if there were no symmetry breakdown, all par­

ticles would be massless in the theory. Since v is the only mass parameter in the 

model, it is certainly silly to ask what sets it~ scale to approximately 250 GeV. 

It has to be obviously an input parameter. However, if one imagines that the GSW 

model is not a complete theory, the question of the scale of v becomes meaningful. 

Wilson /46/ was one of the earliest to remark that a fixed value for v ": 250 GeV, is 

nat particularly natural, His arguments can be well understood by focusing on the 

Higgs mass and working in a theory with a cutoff. The cutoff represents the scale at 

which physics beyond the GSW model emerges. The value of the Higgs mass, given in 

Eq. (111.5), gets shifted by radiative corrections due to the interaction of the 

Higgs field with itself and with the other fields in the theory (gauge bosons and 

fermions). These radiative shifts are quadratically divergent and in a theory with­

out a physical cutoff have to be renonnalized away. That is, one has to imput the 

Higgs mass value as a parameter. Here, however, one wants to see what influence the 

underlying theory has and one ought to compare these effects to the lowest order 

value. The Higgs mass, including the radiative effects, is schematically: 

' 1M • 
":.1-)r."t.Td.,..t,.. (III. 22) 

where f\ is the cut off. Clearly if one wants the Higgs mass to be light with re­

spect to the cut off, one has to adjust the initial value carefully to effect a can­

cellation. Saying it another way, the theory is unstable under perturbations. There 

is no relation between the input and output parameters that one can control. 

To restore naturalness in the theory there are clearly two options, which in fact can. 

be read off from Eq. (III.22): 

Option (1): The cut off A could be so small that indeed the radiative corrections 

are small corrections. But this means that the cut off is really of the same size as 

the mass of the Higgs boson - or the Fermi scale. Clearly this can only happen if the 

Higgs boson is ~ elementary but composite! There is no elementary Higgs field, but 

some underlying strong interaction theory which in some way triggers the spontaneous 

breakdown of SU(2) x U(1), 

Option (2): There are extra interactions in the theory which force cancellations in 

the radiative corrections, so that these corrections are no longer quadratically 

dependent on 1\ but only dependent logarithmically on 1\ This means that the final 

value of ·m~ depends on the initial value. Obviously, unless there is some sy-mmetry 

reason it will be impossible _to obtain the desired cancellation. Naturalness is re­

stored because the corrections are protected by some symmetry. 
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Attempts to enlarge the GSW theory with the view of making the Higgs sector of the 
theory natural have been vigorously pursued in the last few years and there exists 
an ever expanding literature on the subject. Suggestions following the first option 
above go under the generic name of Technicolor /47/ and attempt to find a nonper­
turbative, strong coupling, scenario to understand the breakdown of SU(2) x U(1) 
dynamically. The followers of the second option, instead, introduce a Bose-Fermion 
symmetry- supersymmetry- to stabilize the GSW model perturbatively. As super­
symmetry is the subject of J. Ellis lectures in this school, I shall not discuss in 
any detail how it stabilizes the theory. Suffice it to say that given the complete 
symmetry between bosons and fermions, there is cancellation among the graphs because 
fermions obey the Pauli principle and introduce appropriate factors of. (-1). Rather, 
I shall discuss a bit here how Technicolor theories are supposed to work and tie this 
in with the even more speculative idea that the fundamental excitations of the GSW 
model are themselves composite. 

I begin my discussion of Technicolor - or dynamical symmetry breakdown - by consider­
ing a numerically unrealistic, but physically cogent, source for the masses of the 
Wand Z bosons, which has to do with the strong interactions of quarks. The quarks 
interact among themselves strongly through their color interactions. These inter­
actions are also governed by a gauge theory, based on the group SU(3}. This theory, 
Quantum Chromodynamics (QCD) is amply discussed in the lectures of Quigg and Brodsky 
at this school. So I shall only focus on the few properties of QCD which I need for 
my purposes here. QCD, in contrast to the electroweak theory, suffers no spontaneous 
breakdown. Because the gauge group is unbroken the theory confines. Thus, one does 
not see the elementary excitations of QCD, the quarks and the gauge bosons (gluons), 
in the spectrum but only their bound states, the hadrons. 

In the limit in which one neglects the masses of the quarks, QCD has a large global 
symmetry group. One can rotate all the left handed quark fields - of different 
flavors: u,d,s, ... -among themselves and all right-handed quark fields among them­
selves and the QCD Lagrangian remains the same. This is easy to see. The QCD Lagran­
gian is, neglecting quark masses 

:t ~ 

&c, 
2: "i~ (-rt l.b \'i~ 

' t ~1 .. .,.-t 
•• f. 

l. 't ._c-v 
' 

(III. 23) 

where Fat-' is the gluon field strength and OJ' is the appropriate SU(3) covariant 
derivative for the quarks. Since the interaction is vectorial, the kinetic energy 
term is just the sum of LL and RR contributions 

~ 
; 

c;f'ttt~'\~~ s: <\~ ..,--.... b ~f 
(. I ~ L T 

and this is obviously invariant under the SU(nf) 
L 

f ff' f' 
qL~ 0L qL 

<-~'\~Y'fbt~h 
1-

x SU(nf) transformations 
R 
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(III.24) 
f ff' f' 

qR ~ 0 R qR 

The dynamical scale A QCD' associated with the energy scale at which the binding of 
the quarks and gluons into hadrons happens, is of the order of several hundred MeV. 
On this scale, only the masses of the u and d quarks are negligible. So, as far as 
the strong interaction dynamics goes, only SU(Z)L x SU(2)R is a good (approximate) 
symmetry. For the heavier quarks, the neglect of their masses is a bad dynamical 
approximation, so the transformation in (II.24) is not even (approximately) an in-

' variance of the theory . Whenever there is a global symmetry, as I discussed in 
Section I, there is either a Wigner Weyl realization or 3 Nambu-Goldstone realiza­
tion, depending on whether there are degenerate multiplets or Goldstone bosons. The 
spectrum of hadrons one knows shows no multiplet structure corresponding to an 
SU(2)L x SU(2}R symmetry, but there is a clear (approximate) isospin symmetry. 
isospin symmetry corresponds to the diagonal subgroup of SU(2)L x SU(2)R. That 
one rotates u and d quarks into each other the same way for both left and right 
helicities. Furthermore the 1{ -mesons appear to be considerably lighter than any 
other hadronic excitations. This pattern suggests that the global SU(2)L x SU(2)R 
symmetry in QCD is broken down to SU(2)L+R" As a result of the breakdown 

Th• 

is, 

SU(Z}L x SU(2}R ~ SU(Z)L+R one expects to have three Goldstone bosons, associated 
with the generators of SU(Z)L-R' which do not annihilate the vacuum. These Goldstone 
bosons are the pions, which in reality acquire a small mass, since mu and md are not 
strictly zero. 

One may reasonably ask, what this nice piece of physics has to do with the W and Z
0 

masses? To answer this I must add one piece of dynamical information. The breakdown 
of SU(2)L x SU(2)R in QCD happens because the QCD vacuum allows the formation of 
SU(Z)L x SU(2)R variant condensates. Although the color singlet combinations 
~- (x)u. (x), d. (x)d. (x) (Here i is a color index i = 1,2,3) transform non trivially 1 1 1 1 

under SU(2)L x SU(Z)R they have a non zero vacuum expectation value 

" For the strange quark, s, the situation is marginal. 
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( ~(x)u{x)) (d(x)d(x)) F 0 (III.ZS) 

This is analogous to what happens in superconductivity. Although fermion number is a 

good symmetry of the theory, there exist COoper pairs in the BCS ground state­

which carry fermion number two. The dynamical condensates in (III.ZS) are the pre­

cise analogue of the Cooper pairs in a superconductor. The existence of these non• 

zero vacuum expectation values is what causes the breakdown of: 

SU(2)L x SU{Z)R _. SU(Z)L+R 

and the formation of the Goldstone pions. 

I am now ready to return to weak interactions. The condensates in (III.ZS) not only 

break the global SU{2)L x SU{2)R symmetry. If weak interactions are given by the 

GSW SU{2) x U{t) model, clearly the condensates in (III.25) will also cause a spon­

taneous breakdown of the local SU{2) x U(1) symmetry. Indeed ;:;:u and dd carry both 

SU{2) and U{l) quantum numbers, but not charge. Hence their condensates will break 

SU(2) x U{1) ~ U(1)em· The breakdown of a local symmetry alwa:(.s gives mass to the 

gauge fields coupled to the broken generators. Therefore theW- and the Z
0 

will get 

mass. Of course, since the condensates ( ;:;:u) and(. dd) are typically of the scale 

given by the strong interactions 0{ 1\.~CD), this mechanism provides a tiny W and Z 

mass. Furthermore, there is the further drawback that the "Goldstone" pions -which 

do exist in the real world! - would have to disappear to give the longitudinal degrees 

of freedom for the gauge bosons. 

Despite these obvious drawbacks, it is instructive to compute the expected W and Z 

masses from pure QCD effects, as Technicolor /47/ is just a scaled version of this 

analysis. In section I, I demonstrated the Higgs mechanism of mass generation at the 

Lagrangian level. The existence of a nontrivial vacuum expectation value <. ~ im­

plies that "seagull" term -1&. 41++ f'Jrt' AI generates a mass for the gauge field 

P. r ,.;tit~ t "Jl <.+~<:+'> Here there is no scalar fields coupled to the 

SU{2) x U(l) gauge fields and what gets vacuum expectation value are the composite 

operators ;:;:i(x}ui(x), di (x}di(x). How does one go about computing a mass? The key 

to the answer to this question are the Goldstone pions. The existence of these mass­

less particles causes a non trivial shift in the propagators of the gauge fields, 

which results in a mass term. 

Let's see this in detail. The propagator for a gauge field is proportional to 

This is familiar from QED, and just reflects the fact that the gauge field 

1 ,. 
q 

is massless. In the presence of interactions, the p~opagator structure changes. For 

instance, the vacuum polarization graphs shown in Fig. 14, changes the photon pro­

pagator in QED to - for q2 » m 
2 

e 

_~.· 

b ,,•> ... ~ "'" 
'1

1 c'- ~.f t.. 1'1-: 1 rr 

-o- + 

Fig. 14: Vacuum polarization graphs in QED 
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(III.26) 

+ 

The effect of interactions, as seen in Eq. (III.26), is to give an overall change in 

the denominator structure of the gauge propagator. However, gauge invariance, still 

demands that this denominator structure be proportional to q2 . In general, therefore, 

including interactions one expects for gauge propagators the replacement 

..... ,. ' q ( ( ... "II",,, l 1 
{III.27) 

This equation makes it clear how a gauge field can acquire a mass when there is spon­

taneous symmetry breaking. In these cases there are zero mass particles in the theory 

to which the gauge field can couple (through the currents of the theory) -

stone bosons. The contribution of fl (q2), because the Goldstone bosons have 

is proportional to~· and this gives a finite mass shift in Eq. (III.27). 
q 

the Gold-

zero mass, 

I want to compute 1T (q
2

) in QCD. Fo~ that purpose I need to know how do the weak.iso­

spin current J[ and the weak hypercharge current J~ couple to the Goldstone pions, 

According to Eq. (II.14), focusing only on the quark piece, one has 

~\ ~ (u 1i} 'ft<: (v\. ~ (iJ Ci 1 yr ,,. <r> -.:: (J \ 
' '-\:elL .. (III.28) 

:rr - J. (uc{l ..,r (vl -t !: 11',.,_ '(t """ -~ Ja..r•J,.. y -
' L A L l l 

~ f ;; y•'v -l d r<J. ... l ( ii rt ~ v. - ;r .,, Yr A ) 

" (l. • 
(III.29) 



The pions are the Goldstone bosons of the breakdown of SU(Z)L x SU(Z)R into 
SU(Z)L+R' Hence the matrix element of the broken SU(Z)L-R currents between the 
pions and the vacuum is non zero (cf. Eq. !.29): 

..( o\ (-r' ) . I 11". • r> ~ ; f r ~ S.-· ~ .. t , " J rr J 
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(III. 30) 

The (:r:_,.) ~ currents of QCD are easily computed. They are precisely identical 

with the purely axial vector piece of the weak SU(2) currents. That is for the QCD 
Lagrangian 

( :r: .}~ ( v JJ yr z:: (n, L . ' <,L ;::: 
. ' (III. )1) 

Hence 

(-s'' ) . 
' - ~ lv J> Y~Yt t; (~) L·l. ~ • (III.32) 

From these equations one can compute the matrix element of the weak currents between 

the vacuum and the appropriate one pion states: 

(ol :rt Iff·; •) ~ 
' ' ' 

<o\ -:rt 
y ' r.J; r > """ 

I note in particular that 

pions and the vacuum. 

-.r ... t 
~ Tl '1' 

(.Lf)•q .. a. 1t" I , J 

(III.33) 

; (-~ ~n) ~t 

rt 
y has no matrix element between the 

The masses of the W and Z bosons arise because the contribution of the vacuum pola­
rization tensor is singular due to the presence of the massless pions. I show this 
schematically in Fig. 15 

w 

Fig. 15: Origin of the 

pion 

I 
2 
q 

w 

terms in the vacuum polarization T\(q
2

) due to the one 

intermediate states 

79 

For the Z bosons, for example, according to Eq. (II.21), the relevant coupling is 

:~; .. ~ ~ ~ ~~t T"~ -- "' /" ' e i!>("l"-s;,.16-r) 
~(" w '*tJ 

z..e.se.,.s:""8'"" u .. , e.., .c...~ 

(III.34) 

For the graph of Fig. 15, the :C..r term does not contribute since this tenn has no 
coupling to the Goldstone pion, The ~ term, however, contributes a mass shift 

't 

(~-'~) 
Qc, 

• 
[ C.> e..,'"'~ 

c . t. +n r ~ ... [ L:::~ J 
(III. 35) 

• 
A similar calculation for the W bosons gives the same answer except for the cos Sly 
factor, since one has a coupling for i = 1,2 

.1 .... \ "< 

Thus 

(Jwl<..,) ~,, 

'o.l' 
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(III .36) 

(III.37) 

Remarkably, QCD predicts the same ratio for theW and Z masses as the GSW model with 
one Higgs doublet 

(1-1',.,). ,. 
:. 1. (III.38) 

(1-'Lz \.,~ c..}&., 

The actual value for these masses is, however, ridiculously small. The parameter f~ 
can be calculated from the lifetime of the pions, since the matrix element (III.33) 
is precisely that relevant for the two body pion decay fT.., tv , From this calcula­
tion one obtains 

t. ~ 95 MeV (III. 39) 
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Hence 

(t-'1...,) ., e -fn ""- )o 1-\.v (III.40) 

.6l'b a.,;""" &-w 

The Technicolor idea /47/ developed by Susskind and Weinberg, uses the dynamical 

ingredients of the above calculation to generate an "appropriate" breakdown of 

SU(2) x U(l). Eq. (11!.37) fails in obtaining the observed W ~ass because the para-

meter f\l is too small. Indeed f1\ has a scale characteristic of that of QCD: 

-i-,...._ /IQCD' To get the "right"\~ mass, one must replace in Eq. III.40 .f,. ... V 

Fermi scale (cf. Eq. (II.35). !he suggestion of Susskind and Weinberg is that 

exist an underlying QCD-like theory, Technicolor, which has a dynamical scale 

, the 

there 

/t TC ~ 1 TeV "" 103 GeV. If in such a theory a global SU(2)L x SU(2)R synmetry broke 

down to SU(2)L+R diagonal, the W and Z
0 could acquire mass by absorbing the "Techni­

pions" of that theory, precisely in the way this happened in the QCD case. The rele­

vant parameter f1T for the brea.kdown in the Technicolor theory is nothing else but 

the Fermi scale v. 

I should comment on the necessity of an SU(2)L x SU(2)R structure to. get the correct 

f parameter. This may appear as a miracle, and it is worthwhile to ask how this can 

be connected to the simple Higgs example I discussed in Sect. II. The reason one gets 

e = 1 in QCD and, by repeating this procedure, in Technicolor, has to do with the 

breakdown SU(2)L x SU(2)R _, SU(2)L+R' It is the remaining global symmetry that forces 

the parameter f 11" to be common to all three pion states in Eq. (III.JO). In turn this 

gives e = 1. All that the mixing of Y I'" and WJ/'" causes is the appearance of a cos 6"" 

between the scales of the Wand Z masses. Without any mixing, it is the residual 

SU(2)L+R symmetry that guarantees the equality of the f'l\" 'sand therefore of the 

masses of the gauge bosons. 

One can check that in the Higgs case, actually, this same phenomena happens. The 

point is that the potential 

'V ~ ). t i\£ '!I ) l. 

' 
has a larger symmetry than SU(2) x U(1). The field £' is a complex doublet, which 

I can write, if I wish, in terms of 4 real fields 

! "'- .!. 
;L 

( 
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h· 
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' 
(III.41) 

81 

It is obvious, therefore, that V is really 0(4) invariant. But 0{4) is isomorphic 

to SU(2) x SU(2), so really V has an SU(2) x SU(2) symmetry also. When f gets a 

vacuum expectation value ( i) + o , really this corresponds to giving one of 

the fields in (III. 41) a vacuum expectation value. Hence one breaks 0(4) ~ 0(3) . 

But 0(3) is really isomorphic to SU(2). Hence the spontaneous breakdown occurring 

in the Higgs case is also 

SU{2) x SU(2) _, SU(2) 

Therefore one sees why one should get the same results in the two cases. 

Technicolor is a very nice idea, since it replaces the imput parameter v of the Higgs 

potential by a much more dynamical scenario. Roughly speaking, the difference between 

the Technicolor theory and the GSW Higgs sector, is the difference there is between 

the BCS theory of superconductivity, where the Cooper pair condensate is a dynamical 

order parameter, and the Landau-Ginzburg effective theory, where the order parameter 

is again the expectation value of some scalar excitation. However, Technicolor suffers 

from two severe drawbacks, one technical and one more aesthetic. The technical problem, 

which is unsurmountable at least in the simplest version of Technic9lor, is that 

there appears to be no way to generate fermion masses in this way. The more aesthetic 

objection is that to accomplish the breakdown of SU(2) x U(1) one has replaced one 

doUblet of scalar fields by a whole strong interaction field theory, whose only 

raison d'etre is to allow SU(2) x U(1) to break down! 

To be sure, ultimately experiment will decide what is correct. The simple Higgs poten­

tial predicts the existence of a single excitation - the Higgs boson H. In a Techni­

color theory, there is a plethora of Technihadrons, which are the analogue of hadrons 

for the Technicolor theory. In absence of better guidance, one would scale the Techni­

hadron spectrum from that of ordinary hadrons by ~he ratio 

l ~ 

T~ " 
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(III.42) 

Hence one predicts an extraordinarily rich phenomenology in the TeV energy scale. 

To pursue the Technicolor scenario at all, one has to find a way to generate masses 

for the quarks and leptons. In pure Technicolor this appears impossible. This theory 

is built in complete analogy to 2 flavor QCD. The two techniquarks Tu and Td have the 

same SU(2)_x U(1) properties as the u and d quarks, and the assumption is that the 

condensates (TuTu)"' (TdTd )form, breaking SU(2) x U(1) dynamically. This gives the 

Wand Z0 a mass, but does not. affect the ordinary fermions, since there is no 
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coupling of Techniquarks to ordinary quarks. To generates quark masses one needs to 

introduce some interaction between quarks and Techniquarks. Soon after the invention 

of Technicolor, the quark mass problem spawned the idea of Extended Technicolor 

(ETC) /43/ by which one Can generate fermion masses. 

In ETC theories one supposes that the Techniquarks and quarks are connected by {yet) 

another gauge interaction, which suffers a spontaneous breakdown at a scale 

,.\ETC')) /\TC' The exchange of these supermassive ETC gauge bosons gives an effective 

current@ current interaction between ordinary quarks and Techniquarks. Schematically 

one has: 

clef> 
.1. c 7 y' 6l l ci Yc T l 

A'.,,c.. 
(III.43) 

where Q and T are the quarks 

the Techniquarks are allowed 

and Techniquarks, respectively. It is clear that when 

to condense: ( Tt) ... (;'rc) 3 f 0, the effective inter-

action (III.43) will generate quark masses of the order of 

""a -
l 

AT< 

' 1\ E..Tt. 

(III .44) 

ETC theories run into a variety of very difficult problems, which have discouraged 

people - after a period of initial great enthusiasm- to pursue this line of attack 

to the mass problem. The most pressing difficulties have to do with the presence of 

unwanted interactions among ordinary fermions, induced by having introduced the 

additional ETC interaction /49/, In addition, to construct models which are at least 

semirealistic, it is necessary to have more than one doublet of Technifermions. In 

such theories, the global group is larger than SU(2)+x SU(2) and in the breakdown 

more than just three Technipions emerge. Since the W- and z
0 

can absorb only three 

Goldstone states, these models always have some pseudogoldstone excitations in the 
* t. . . spectrum • These states have masses of 0 (c:{i Arc) where rl i l.S one of coupl1.ng 

constant squared of the standard SU(3) x SU(2) x U(1) model, and some states are in 

definite conflict with known bounds /50/. 

* Pseudogoldstones since, after turning on the ordinary strong and electroweak inter-

actions, these states ga1n a small mass. 
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would like to end these lectures by discussing a line of speculations with which 

I am actively engaged. As I have mentioned earlier, a more (aesthetic) drawback of 

Technicolor is that one has invented a whole other strong interaction theory, whose 

sole purpose is really to provide condensates to break SU(2) x U{1). The idea that 

I want to air here is that, if one thinks of quarks and leptons as composite objects, 

i:hen the underlying theory whose bound states are the quarks and leptons may serve 

also at the same time as a Technicolor theory. The same dynamics which is responsible 

for producing the quarks and leptons as bound state is also able to form condensates 

which break SU(2) x U(1) ~ U(1)em' Furthermore, if quark and leptons are bound 

states, in principle their mass spectrum should be calculable. Hence this approach 

looks, potentially at least, very interesting. In practice, however, there are many 

difficulties, some of which I will try to explain here. 

Perhaps one of the principal stumbling blocks against the idea that quarks and leptons 

are composite is that all the experimental evidence one has points towards their 

elementarity! Naturally, this evidence is stronger for leptons, but one can also infer 

that quarks are "elementary" down to certain minimum sizes. The apparent elementarity 

of quarks and leptons implies that, if they are really composite, then their charac­

teristic size ( r) is smaller than that which can be reached with present experiments. 

It has become conventional, instead of discussing a size ( r) to put bounds on a 

so called, compositeness scale 1\ , with (1"")- 1//\c..· To the extent that one has 
' only evidence for elementarity, this means that 1'\c is much larger than the energies 

presently being explored. 

Let me be a bit more specific and discuss two bounds on A 
' 

(1) The anomalous magnetic moments of electrons and muons have been measured with in-

* credible accuracy. They have also been computed theoretically on the basis of QED 

- which assumes that the electrons and muons. are point like. Any discrepancy between 

theory and experiment can then be a signal of a finite size for these leptons. To 

date the possible discrepancy is only at an extremely low level, which could be well 

due to experimental uncertainty. One has /51/ 

So..< t[(ct-t.)-
- q t11 '-

-·· J.l )1. ·~ c , •. ,, 1~ 
' Q.E b { 

I·S' Ill ~~ ,.. 'i' r 

(III.45) 
* Small weak and strong interaction corrections are also included. 
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This discrepancy could be due to effects of substructure. If leptons had an intrinsic 

size one would expect an additional magnetic interaction, scaled by A c 

;,•f( 
:. • 

"· 
J. or- ~ ev 

(III .46) 

just as it happens, for instance, in nucleons. This effective interaction gives an 

extra contribution to ~- \.. and one predicts 

~Q, ":. "".e 

"< 
This equation sets a very high bound for A c 

/1 < (c..) ~ 

A, ft-) > 
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G.v 

(III.47) 

(III.48) 

If the compositeness scale of leptons (and therefore of quarks) is as high as that 

given in the above equation, it will be essentially impossible to establish this 

fact by direct experimentation. However, the bound in Eq. (III.48) may be an over 

estimate. The effective interaction in Eq. (III.46) connects again lR with f! L' 

since crt~ contains 2 "( -matrices and ~ l("t 
1 
'<s} m. 0 , One may argue that 

operators in which there is a R-L transition ought to vanish as the mass of the fields 

involved vanishes, I shall make this ·argument more precise below . If this is indeed 

the case, then the effective interaction in (III.46) ought to contain a further 

factor of ..,t./A,. That is, no anomalous interaction appears until whatever mechanism 

is responsible for getting mass is also turned on. If /52/ 

:e•f' 
el'""' 
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"· 
(~t) 
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is the effective residual interaction, instead o~ (III .46), then 

& "' "< (":.<)L 
"· 

(III.49) 

(III. SO) 

. ---

In this case the bounds on A c are substantially reduced 

"(ft.) l 

f..e'-l') .! 

28 GeV 

850 GeV 

35 

(III. 51) 

(2) One may also obtain bounds on A c by asking how well do cross sections for a 

given process, computed with elementary quarks and leptons, agree with experiment. 

Deviations could signal the presence of new~ interactions induced by composite­

ness. If the quarks and leptons have some nontrivial internal structure, then one 

necessarily has effective interactions among these fields scaled by the scale A c. In 

the limit as I\,_, caQ , these additional interactions vanish. Schematically, 

therefore, one expects additional interactions among the quarks and leptons of a 

generic structure as that given below. 

~ 
r .... \~ ' 

.. ; 
c. 

I Jill.~ 

"'· 
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~<H ~· 
' 

r. q.i *"" r. <r~ (III. 52) 

Here the f i are qu~rk or lepton fields; g!ff is an effective coupling constant, and 

the coefficients C .-t'll.t. are Clebsch Gordon coefficients of 0(1), which give the 

relative strength of the various "current-current"-interactions in (III.52), The 
·~ 

matrices Ia. , in general can span the whole set of possible interactions. Because 

the quarks and leptons are presumed to be bound states of a strongly interacting 

theory, the residual interactions in (III.52) are not "weak". Rather one expects 
2 

geffh,11..., 0( 1). 

Eichten, Lane and Peskin /53/ analyzed e+e- interactions with a view of determining 

~ this way. As they found no deviation from the behaviour of these scattering c . 
amplitudes from the predictions of the electroweak theory, they set a bound: 

" ') 7 50 - 1000 GeV 
c-

(III. 53) 

This bound is very comparable to Eq. (III.Sl). More recent reanalyses of the high 

precision PETRA data have moved this bound closer to 2 TeV, 

I should note that the scale 1\ c defined through the effec.tive interactions (III.46) 

or (111.49) and (III.52) is not precisely the same. However, since both these inter­

actions reflect the same phenomena - a non zero effective size for the leptons (and 

quarks) - the scale I\ c defined in these two equations ought to be approximately the 



86 

same. Eqs. (III. 51) and (III.53) give a minimum scale fo c!. 1 TeV. This scale can 

be much increased if one does not "protect" the interaction (III.46) by an additional 

mass factor, as is done in (III.49). Also, considerations of flavor changing pro­
cesses (like {" ~ t'() can give substantially larger bounds for" c. Each of these 

bounds, however, involves more assumptions than those discussed here. I shall be con­

servative (or is it, perhaps, radical?) and only bound /toe! 1 TeV. 

Even a "low" bound for A c, A c ~ 1 TeV, already signals that the dynamics of composite 
quarks and leptons is peculiar. This scale is certainly much bigger than that of the 

masses of the bound states 

Ac.. """""'",-.-e. (III. 54) 

Such a circumstance is novel in physics. It means that the bound states (quarks and 

leptons) have a size which is substantially smaller than their Compton's wavelength! 

<r> ,,. ..L 
II, 

« )., . 
' -' (III. 55) 

.v..,,, 

In atomic physics one is used to the fact that the sizes of atoms are substantially 

bigger than the relevant Compton wavelength. For instance in positronium 

<r-> .... _!,__ ... ,. bu' 

(r) 

~t "' l.. ..... 
>> 

Thu' 

)... 
positronium 

essentially because tf<< l . In the case of hadronic physics one has 

<r> ). 
hadrons hadrons 

(III. 56) 

(III.57) 

This equation is again easy to intuit. Hadronic physics -at least for hadrons made 

up of the light quarks - is determined entirely by the dynamical scale 

this is the only scale, it is clear that both <r) d and 
ba rons 

lated. Namely 1\adron".; "QCD; <,.). .... 
hadron -L and hence Eq. 

Ao.,. 

1\adrons 
(III. 57) 

II s · QCD' wee 

should be re­

follows 

If one is to consider the idea that quarks and leptons are composite seriously, one 

must construct a dynamics where Eq. (III.SS) hold. This causes substantial diffi­

culties if the dynamics of the underlying theory, which bounds the quarks and lep­

tons, is analogous to QCD. The existence of a unique dynamical scale always forces 

the bound states to have roughly this mass scale. The only way to avoid this con-
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elusion is to build in some protective symmetry which forces certain states to de­

couple from this scale and go to zero mass. In the case of QCD this actually happens 

-at least in the limit of zero mu and md masses, The pions, since they are Gold­

stone bosons actually are forced to zero mass- irrespective ofLhevalueof 1\Qco· 

Two suggestions have been put forth for producing (essentially) massless quarks and 

leptons in theories where these states are dynamical bound states: 

(1) Quarks and leptons are {approximately) massless on the scale of A c because the 

underlying theory - called in the literature a preen theory - has a protective 

chiral symmetry. This symmetry furthermore is not broken in the binding /54/. 

(2) Quarks and leptons are essentially massless because the underlying theory is 

supersymmetric and a global symmetry in this theory is spontaneously broken down 

/55/. Because there is a spontaneous breakdown there exist necessarily Goldstone 

bosons in the spectrum of the theory. Because of the supersymmetry these states 

are necessarily accompanied by fermionic excitations - which one then associates 

with the quarks and leptons. 

Two remarks are in order. Chirality protection- which is 't Hoeft /54/ mechanism­

is a non trivial dynamical assumption. Clearly if a chiral symmetry survives the 

binding process then fermions with non zero chirality cannot have mass. However, in 

QCD -which is a prototype for these kind of theories - chirality does not survive 

in the binding. That is, ~ QCD is SU(2)
1 

x SU(2)Rsymmetric. This is a chiral symme­

try, since I can rotate the right and left handed underlying fields independently. 

However, SU(2)
1 

x SU(2)R does not survive the binding process. Condensates form 

which break SU(2)
1 

x SU(2)R-t SU(2)L+R' which is no longer a chiral symmetry. In­

deed in QCD there are no massless fermions as bound states. The protons and neutrons 

are massive even in the limit of md, mu + 0, since the chiral symmetry is spontane­
ously broken. 

't Hoeft /54/ spells out precise conditions which are necessary in a theory to allow 

chirality to survive in the binding. These anomaly matching conditions of 't Hooft 

are somewhat technical and I shall not attempt to explain them in detail. Suffice it 
to say that if one wants an underlying chiral symmetry to be preserved in the bind­

ing then one must match the behaviour of certain Green's functions (scattering ampli­

tudes) computed at the underlying level with that computed at the bound state level. 

If one uses supersymmetry and spontaneous breakdown to get massless fermions in the 

theory /55/, then one can be sure that dynamically these states always ensue. Never­

theless, since eventually one wants to remove the "Goldstone" partners of the quarks 
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and leptons to some sufficiently heavy mass, so as not to be in conflict with e:<:peri~ 

ment (M! 20 GeV?), the supersymmetry must at some stage be broken. Once the super­

symmetry is broken, however, one must again appeal to some chirality to keep the 

bound states light. Models with both the supersymrnetric Goldstone mechanism and 

some chiral protection are therefore quite attractive /56/. 

Although many fundamental details are still missing, and many dynamical issues are 

unclear, I want to illustrate with a particular model these ideas. This model will 

tie together the ideas of composite quarks and leptons with Technicolor, thus 

illustrating the connection that I alluded to earlier. I will simplify some of the 

technical details of the discussion, which are not relevant here. For a more detailed 

exposition, see Ref. 57. The model has an underlying SU(2) x SU(2)' gauge structure 

and is supersymmetric. This SU(2) x SU(2)' is an unbroken symmetry and provides the 

strong binding for the theory just as in QCD. There are in the theory 6 fundamental 

doublets of SU(2), 6 fundamental doublets of SU(2)' and an object which is a doublet 

under both groups. Each of these doublets consists of a two component (left handed) 

fermion and its two supersymmetric scalar partners. The global symmetry of the model 

is thus SU(6) x SU' (6) x U( 1). 

The dynamics of the model is assumed 

* global symmetry. Since the object 

to be such that 

£ ..... X:~ 
•> ~ 

condensates form to break this 

, with )a and ';tb SU(2) doublet 

fields, is an SU(2) singlet, it is clear that the natural condensates 

(Ec..\ ~.' x'l'-) ~::; 
(III. 58) 

''~"-' 
' ' x• ~· ' • ' ' 

v' 

with 1 ,2 being "flavor" indices for the fundamental fields will lead to the break­

down of SU(6) _,sU(4) x SU(2) and SU(6)'-,~ SU(4)' x SU(2)'. If X._~ is the funda­

mental field which carries both SU(2) and SU(2)' quantum numbers, then the conden-

sate 

< ~ ~· x. -xc., x, ) :. • <' 
<.it'\. x:,.r.· ~\,. '> .... """" (III.59) 

will break the U(l) x SU(2) x SU(2')- SU(2) . ·. Hence as a result of these con­
d1ag 

• There are actually some checks that one can perform which indicate that the 

symmetry breakdown assumed is the one that likely happens 

densates the global symmetry of the original theory has broken down to 

SU(4) x SU(4)' x SU(2)diag' 

It is easy to check - by counting generators - that in the breakdown 

SU(6) x SU(6)' X U(1)..,.SU(4) x SU(4') x SU(2) , 
d1ag 
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(III.60) 

there ensue 17 + 17 + 4 = 38 Goldstone bosons. The supersymmetry forces these 

bosonic states to be accompanied by a number of fermionic partners (Quasi Gold­

stone fermions: QGF) and also some bosonic partners (Quasi Goldstone bosons: QGB) 

so that 

nG + nQGB ZnQGF (III.61) 

where nG, nQGB' nQGF is the number of the appropriate bound states. One can check in 

the model that for each of the three spontaneous breakdowns there ensue 9+9+4 ~ 22 

QGF and 1+1+4 = 6 QGB. 

These states are very simple to construct in terms of the fundamental fields. If l 

denote by lt-(')C) the fermionic (bosonic) component of the fundamental fields, then 

for example, the nine QGF which emerge from the breakdown SU(6)_. SU(4) x SU(2) trans­

form as 

<}~'\ '·~ ('1-;x~-'f;le~) p=l ,2 q~3 ,4 ,5 ,6 

4- '\. '·• ol. • ~ • 
1 ) 

( T , "X, - 'f, X, 
(III.62) 

It is clear that the fields J, are 4 doublets of SU(4) x SU(2). By assigning the T pq 
charge and color of the fundamental field appropriately, one can obtain precisely 

the 4 left-handed doublets of one generation of quarks and leptons: 

Y.,~ ... t l ~:t c~~\ l;; )L ( ~· ), } (III.63) 

The corresponding fields in the breakdown of the other SU(6) (SU(6)') give rise to 

the right handed fields - which are also organized in doublets of another SU(2) 

group. In this model there is a right handed neutrino and a few extra states, like 

'fin Eq. (III.62). 
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If one wants to introduce the gauged SU(2) x U(l) of the GSW model here this can be 
done. Because of the identification of (III.63), it is clear that one has to con­
sider the first ~ components of the fundamental fields as doublets under the 
SU(2) of GSI.;'. The condensate "c of Eq. (III.59} which forms in the theory breaks 
SU(2) x 0(1) down since it involves 'X

1 
and X 

2
, which are the fields that carry 

SU(2) quantum numbers.* In fact theW and Z bosons (and their supersymmetric partners) 
get their mass by absorbing three out of the four excitations which emerged as Gold­
stone fields and partner fields in the last stage breakdown 

0(1) x SU(Z) x SU(2)~ SU(Z)diag' Thus the underlying theory not only binds quarks 
and leptons as massless bound states but also provides condensates which can break 
SU(2) x U(1). The preen theory acts as technicolor. 

The idea that the spontaneous breakdown of SU(2) x U(l) may occur dynamically, in 
theories of composite quarks and leptons is extremely exciting. Since the breakdown 
of SU(2) x U( 1) must occur at a scale of """ 250 GeV, this tells one that the scale 
of compositeness cannot be arbitrarily far away. Indeed since one is producing both 
the binding and the breakdown by the same theory, there is an intimate relationship 
between /\c and v. Of course, A c must be somewhat bigger than v, so that the resi­
dual interactions of Eq. (III.S2) do not affect the success of the GSW theory, and 
f\c ~ 10 v appears to suffice phenomenologically. 

Unfortunately, to construct realistic models incorporating this idea has proven very 
tough. Two stumbling blocks have stood in the way: 

(1) Families of quarks and leptons have no simple dynamical realization. They can 
be put in somewhat mechanically, but then one does not really gain a correct under­
standing of their roles in the dynamics. 

(1) The problem of how to generate mass for the quarks and leptons remains. The under­
lying theory is constructed with protective symmetries to give massless quarks and 
leptons. How does one relax these protective symmetries? 

Both these issues are extremely complex and I do not know what really is the correct 
answer, especially with respect to families. I have a small hunch on the issue of 
mass generation, which I am pursuing, because I think it might not be a totally 

*These fields do not carry U(l) quantum numbers. But because ')
1

1 

1 
1t~" do carry 

U( 1) numbers, this symmetry is also broken by the condensate "'n: 
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unreasonable dynamics. The idea that I am trying to follow is that the residual 
interactions due to compositeness may themselves act as seeds for the masses of 
the quarks and leptons. That is, in the theory there are certain "irrelevant" con­
densates - corresponding to condensates of quarks field bilinears or lepton field 
bilinears - which one can ignore as a first approximation. These condensates are 
small on the scale of J...,., because they are condensates of objects which are them­
selves singlets under the gauge group. Including these condensates, however, can 
turn the residual interactions (III.S2) into mass terms for the quark and leptons. 
Time will tell whether this idea has any merit. 
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