A
\:‘

u,_?”“i?ﬂﬁv ;‘szv ,,>

'DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

TUDESY 85-053
June 1985

GAUGE THEORIES, SPONTANEOUS SYMMETRY BREAKING

AND ELECTROWEAK INTERACTIONS

by

R.0. Peccei

Deutaches Efekironen-Synchrnofron DESY, Hamburg

TSSN 0418-9833

NOTKESTRASSE 85 - 2 HAMBURG 52



DESY behalt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesemn Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
_case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX,
send them to the fallowing address { if possible by air mail ) :

DESY
Bibliothek
MNotkestrasse 8b
2 Hamburg 52
Germany




R - . e -

DESY 85-053
June 1985

[SSH 0418-9833

GAUGE THECRIES, SPONTANEQUS SYMMETRY BREAKLNG AND ELECTROWEAK INTERACTIONS

R.D. Paccel

DESY, Hamburg, Federal Republic of Germany

Lectures given at the Advanced Course in Theoretical Physics {Quarks and Leptcns),
Univ, of Stellenbosch, Rep. of South Afrieca, Jan. 21 tc Feb. 1, 1985. To be published

by Springer Verlag in the Lecture Notes in Physies Series.

Prologue

The aim of these lectures is to present the physics of the spontanacusly broken gauge
theories of the weak and electromagnetic interactions at a lewvel suitable for non
specialists. Thus, in general, I shall try to emphasize more the conceptual rather
than the technical side of the subject - although, inevitably, some technical material
will have to be included, For those readers interested in a more detailed exposition
of electroweak interactions, there exist both recent conference reviews /1/ as well

as summer school lectures /2/ /3/, which cover this topic in more depth.

The first part of these lectures is devoted to developing the concepts necessary for
understanding how the electroweazk pauge theories are built. T discuss, in particular,
how global symmetries are realized in nature and how one can make a globally symmetric
theory locally symmetric, by introducing gauge fields. The consequence of spontaneous
symmetry breakdown for the spectrum of excitations and its role in mass generatiom

are also emphasized here, all these ideas are illustrated in the context of simple

models.

Having developed all the necessary tools, in the second part of these lectures I con-
struct the SU{2) x U(!) model for electroweak interactions of Glashow, Salam and
Weinberg /4/. After describing the structure of interactions of the model, I discuss
some aspects of the phenomenclogy of neutral current experiments. Both putely leptonic
as well as deep inelastic experiments are considered. A brief discussion of parity
violation effects in atoms is also included. As a final topiec in this section, some
propercies of the W and Z bosons, discovered recently at the CERN collider, are ex-

amined.

The last part of these lectures is devoted to the open problems cof the Glashow Salan
Weinberg theory. These problems are centered in the symmetry breaking sector of the
model, in which the symmetry breakdowm is triggéred by the vacuum expectation value
of an elementary scalar field. Some of the theoretical ideas proposed to replace this
elementary Higgs mechanism by something more dynamical are discussed, along with the
difficulties that they encounter. Both the Technicolor scheme of dynamical symmetry
breakdown, as well as the idea that quarks and leptons themselves may have some

structure, are briefly touched upon.

I. Symezries_in Field Theory: their Realization and their Dynamics

The natural language for elementary particle physics is that of quantum field theory.
To each fundamental excitation one assigns a corresponding quantum field. Symmetries

of nature are incorporated by constructing Lagrangian densities, made up of these
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quantum fields, which are explicitly invariant under the given symmetry in question

I shall consider specifically only continucus symmecries, which reflect particular
transformation properties of the quantum fields of the theory under some group of
transformations. Let me denote a gemeric quantum field by % (x), where x is its
space~time location and o is an (internal) index which runs over the possible com—
penents of X . 1f 2 is one of the operations of the symmetry group G of transforma-
tions, and if the quantum fields 1<“ are members of an {irreducible) muitipler, then

under this operation one has:

A ot — ‘Xxu) = R 1> ¥ (r.n
d @

ix)
K &

That is, under the group transformation the new components of :E are linear combina-

tions of the old components.

The matrices 62 (a), characterized by a, constitute a representation matrix of the

group G. That is, if one performs the sequence of transformations

’ "
'X‘lx) —_— X ) > X xs
a, [3 &! « (1.22

which is equivalent to

K — X: (x)

“w
a,

(I.3)

then cne has

(1.4}

R R (ay = R ota)
By oy

“p

In the Hilbert space of the quantum operators x (x) the transformation (I.1)} is
o

induced by a Unitary operator Ly(a). One has

-t ]
Vi ¥ oo Uty = X v = R ey X <) (1.5}
< “ “p 2

The compesition property {I.4) has its counterpart in terms of the unitary operators

1} . One easily sees that

& . v . -
More precisely, it 1s only necessarv thar the actionm be invariant.

Utay Uea’y = Uta®) (1.6

Since continuous symmetry transformations are being considered, it suffices to study
infinitesimal transformations., Finite transformations can always be built up from
these infinitesimal transformations by repeated (infinite) compounding. A given group
G is characterized by the number of pavameters associated with these infinitesimal
transformations and by the algebra obeyed by its generators. The generators Gi just
describe the infinitesimal form of the unitary operators Visa) . That is, one

writes for infinitesimal transformations
Utta): 1 » 84,6, (.

The parameters Sai can be taken to be real, without loss of generality. Thus the
EEeNerators Gi are Hermitian operators. The composition property {(I.6) implies a group

algebra (Lie algebra) for the generators:
L6 6.1 (e (1.8)
'}GJ-] IJK GK

The coefficients € Lj “ - which can be chosen to be totally antisymmetric in i, j

and k, are called the structure constants of the group,

Tor infinitesimal transformations, the representation matrices a, (Sq ) will

alse be close te the identity. One mav write

® ga) = § L. Sa-(%‘,yxp

oy Kp v (1.9}

It is not hard to show that the matrices = furnish a representation for the genera-
tors Gi and thus obey the same algebra as (I.8). This can be demonstrated as follows.

For an infinitesimal trazasformation, using (I.3)} one has:

(I -JSQ:G;]y(n[ Y ;SQ;G':] = ¥y 4 “Sg_(%.) ¥
« « Y

whence it follows that

[G—;Jl’*m] : - ("éng Ip“’ (1-10)



This equation embodies succinctly how the quantum fields 1f“ transform uader the

group, and will be of much use later. Using (I.10} in che Jacobi identity

C6:,Ce x1] + \fY,J(G.-,GSJ] « L6, (% ¢11=0

one readily checks that it is necessary that the matrices 8 obey .the algebra
Cepoed=ica, (I.11)
which is the desired result.

Let me imagine a thecry, built out of the quantum fields x¢ , which is invariant
uader cthe transformations of the group G. What ave the implicatiens of this state—
ment? The invariance of the theory means that the quantum action does not change if
the theory is expressed either in terms of the ]f“ or X ; fields. Since the action
is just the space time integral of the Lagrangian density é( (jg“:%’x; ) ., the

statement of invariance of the theory under G is simply that

wWe {an X ae) « (avs g0, 5 1) -

The stationarity of the action uynder ¢ implies the existence of conserved currents
J{f This is easily seen by locking at the case in which the fields Ji{ are infini-

tesimally different from'ﬂ.d . One has then

0= §W. So\“x 3 Y o+ 3K Sg“x“}
¥, ';‘;rx‘
= (3 { Wy (22 Vs o0 3% sx
S « [ %, (33‘.’(4_) « r[)—;r—’-t‘ o

The first term above vanishes by virtue of the Buler-Lagrange equations of moticn.

The second term can be rewritten using

§X v X, =% < iS4, (3,)

<p xl‘

T O I LYY

3%y

Since the parameters s a, are independent, it follows that the currents

T oo = ig_ L (j.) Q(’u) (1.13)
' PI ST “p
L

are conserved

{1,14)
) T-rCr-\ = 0
oo

The generators Gi of the transformation can be identified as the space integrals of

the time components of these currents

G, = S&‘x 'I: tx) = Sé’x [:\22
o Ky

o-f=

g ] e

Because the currents are conserved, the generatars Gi are time independent and thus

they are constants of the moricn. If H is the Hamiltonian of the theory, then
[re.]-=0 (1.16)
4 i

This last statement way be a more familiar way to express the invariance of the

theory under the transformations of the group G.

It is easy to check that the Gi constructed in (I-15) are indeed the generatots. The

quantity 2 ‘i is just the canonical momentum, conjugate to the field k( :
2 ¥,
Y Z
Tl'd th = = (1.173
LR MY

Consider then the commutator of Gi with a field )(f la)

LG, ‘ x,“ﬁ’] - gh, {\T‘m\ JE(%;\“‘KFMJ Xy ‘3’]

. . . o, x s a a .
Because Gi is time independent, it is possible to set x° =y in the above and thus

- : . - . . &
evaluate the commutator using the canonical equal time commutation relations

For fermionic fields these have to be replaced by anti-commutation relations, but

the result still obtains
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X%y (1.18)

., = [: U, rxt, I} “q)] 2 O

J(_-.s-a

\_ TT¢ Ry ; TTP fﬁ) ] L 9

The resulr is just Eq. {I.10). In the same way, one can show that the Gi's obey the

Lie algebra {I.8), which establishes the identificarion.

Up to mow in my discussion of symmetries I focussed on the transformations of the
quantum fields X_. €x) . Eq. (1.5), for instance, informs me that uader a trans—
formation of G these fields mix in a well defined way. It is natural to suppose that
the single particle states associated with the fields X.‘ fx) will transform in en
analegous way. Let me denote these states by ‘PJ &) , vhere pp iz the 4-momen-—
tum of the state and p2 = - mi, since these states are supposed to describe particles
of a given mass. These states can be constructed, by the well known L$Z procedure
/5/, by applying X‘ on the vacuum state of the theory. Corresponding to Eg. (I.5)

one expects that under a group rotation one has

U-lti) lP) Yy = a“pfe) l?)p) (1.19)

This equation can be used to deduce that all the states of the multiplet lPJ' <
have the same mass. Let | P, 'f-)"__‘t denote the state corresponding to j-momentum

pPr. (m\* "3 } . Then, by definition, the action o¢f the Hamiltonian on this state
is just

le;-‘)ﬂ_‘ R R (1.20)

t regk

However, if the theory is invariant under G, the Hamiltonian commutes with all the

generaters (c.f. Eq. (I1.16)) and hence also with U_i(a):
Cur'@] =0

Consider applying this commutator on the rest states lP ) i)rtl :
3]

© = [u, ulw] o2 = ( WU - Ve H ) L5 ad.

- &

rest

ap @ (Mg -mip 8>

Since a €¢) is arbitrary it follows that MA[‘ =

wp o

I have shown that if G is a symmetry of the theory, and if Eq. (I.19) applies, then
particles associated with fields that transform irreducibly under G have the same

mass. This is knewn as a Wigner-wWeyl realization of the symmetry. There are many

examples in nature of symmetries which are realized in a Wigner Weyl way. Perhaps
one of the best known is the (approximate) SU(2) symmetry of strong interactions,
which leads to the (near) equality in the masses of the charped and neutral pions

and of the neutron and proton.

There 1s, however, another way in which symmetries can be realized in nature, called

the Nambu-Goldstome realizaticn. In this case G is still an invariance of the theory,

so that Eq. (I.16) applies. However, Eq. (1.19) ceases to be valid because the ground
state - vacuum state - is not invariant under G. Eq. (I.19) follows directly Erom
the transformation property (I.5), provided that the vacuum state is G invariant.

That 1is
U(a)lo) = lo) or Gi [0) =0 {r.21)

%
The one particle state lP) % is given by the LSZ formula

. ¥R -

\P) L3 [d": ‘GLP L 5q:p 7( tu) \O>

i ¥°5toa .
(1.22)

If (1.21) holds, then the application of U(a)_.‘ on lP) ® » is easily seen to
give {T.19):

\.f‘( -

U‘:q)lrjod) z ‘Al,‘ e Ve U-l(u X en ‘O)
«

Lt %%y *on

-

*

This is written for the case of a Bose field. Similar arguments hold for a Fermion

field
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However, if the vacuum is not left invariant by the transformations of G, the second

line above no longer follows.

If

Uearloy $ 103

(1.23)

the vacuum state is not wnique. It is degenerate, Under these circumstances it no
longer follows that the symmetry implies multiplets of particles of the same mass.
Rather, what happens is that thera appear in the theory massless excitations, the so
called Goldstone bosons. To see how this ensues, let me consider again the fields

x‘ and take the vacuum expectation value of Eq. (1.10):

(1.24)
<°l r G.‘)T‘,CMT le; < -(1‘I‘dp <oixph&)l°>
If one is in the Wigner-Weyl case, Eq. (1.21) applies and it follows that the vacuum
expectation value of the fields XP vanishes
{ol y’ txy leh) = @ Wigner-Weyl {1.25)
If YF carries spin or parity, this is an expected result which follows independent-—
ly of the internal symmetry group, just by demanding that the vacuum state be a
Lorentz scalar and not violate parity. For a scalar field, however, the Lorentz pro-—

perties de not force Eq. (I.23) to held.

Imagine, therefore, that one is dealing with scalar fields. If the symmetry is real-
ized in a Nambu—-Goldstone way, the generators Gi no longer annihilate the vacuum

and there is at least one field for which

Nambu-Goldstone (1.26)

<o\1r,fn|o> + o

Recalling the definition of the generators, Eq. (I.15), one may rewrite Eq. (I.24)

as

-6:), Gol¥yeto) = (Fy Cal T Lo - K00 T g o)

1t proves convenient to insert a complete set of states |[#%y in the LHS of this

equation and use translacional invariance:
- l‘ E ° I:B (1.27)
T: Yy = ¢ 1 Tl.ta) e J

where P is the generator of space time translations. It follows chact

bas s 2 1 feel T s md emi Liniey - <°\x¢mm><mt7‘f’,3.m}
M

‘?..‘i . B Y
- E SA33 i e <ol T.“fh)\‘h) <'\l'¥‘(xl o) - ¢ b{alx”‘) [&}(\\I?f-)le)}
a

313 RSE )
- 2 (zn? S(h) 2 e ~ (clr?h)\‘*‘) <‘hl¥*(x){o>

P yo ’
- e <ol Yyra 14> ¢ L T mw}
(1.28)

By assumption this expression does not vanish. Furthermcre since the RHS does not
depend on yo the LHS must alsc be independent of yo. This can only happen if in the
theory there exist one particle stactes |m?% which have zero mass, and only these

states contribute in the sum. These zero mass states are the Goldstone bosons /6/.

It is not difficult to convince coneself that for each generater Gi that does not
annihilare the vacuum there exists a Goldstone hoson. Aftaer all the action of the
"broken" generators Gi ot the vacuum must give some state and these are the Geldstone
bosons. Let me write the Goldstone boson states as | p;j ), where p2 = 0, Then it
follows that the matrix element of the currents associated with the broken generators
between the vacuum and these states are non vanishing:

{olT{(a\[PJj)-:.ns-j s\\ P" - (1.29)

whera the fj are some non vanishing constants. Using the fact that for a one particle

state
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and Eq. (1,29), the constants f, are identified essentially in terms of the non

vanishing expectation value of X

. -
‘{ﬁi)‘(p <°lypfﬂ|°)’-£{‘g; (r)';lg;_.)lo)-r{ (\:\1’,"’)”; “)} Lany
- I.31

I3

where p' =3y © is understood.

The Nawbu-Goldstone realization of a symmetry, because it is so much less familiar,
cught to be exemplified in a simple context. For these purposes consider the follow-

ing Lagrangian density describing the interaction of a complex scalar field b , with

itself

Z = -3 c}+¢s) ey -\ ( Cb'.métx) - £ )L (1.32}

Clearly this theory is invariant uynder a U{1) phase transformation

B bl 'Y bex

. (1.33)
+ / T 4
Vo s 00 = 7 4

The conserved current J¥ associared with this symmetry can be constructed from the

general formula (I-13) and is simply

T Lw e 32 siog L rele -t

. + é
34 wé
(I.34)
The generator
+
G- {d?, T < ¢ S,\ix [(3"#‘»)4:»}-@'*‘»)#‘&]
(1.35)

has the commutation relations

11

L6 4ol -deo (1.36)
f G, 4+¢¥\] -+ 4>*Lx)

In a classical sense one may think of the second term in the Lagrangian (I1.34) as a

potential

Vit éy = X (44 -) (r.37)

Clearly, for the positivity of the theory one must demand that )\ » 0. The physics

is considerably different depending on the sign of the parameter £f. If £ ¢ O the
potential has a unique minimum at * = 0 and the theory is realized in a Wigner-Weyl
way, leading to a degenerate multiplet of massive states. If f » 0, on the other hand,
the potential has an infinity of minima given by the condition that ¢*¢ = f. The
theory is realized in a Nambu-Goldstone way and there is both a massive and a mass-—
less state in the theory. The latter state is the Goldstone boson, expected from

general prineiples.

For f ¢ 0, because tie minimum of the potential is at {) =0, it is sensible to ex-

pand the potential about this value and consider the quadratic terms as mass terms.

VGY, &) « N -2k 4Td + 2 (T30

This identifies

t
m"+ = h#‘ = ‘1\4 7 © (1.38)

One has a degenerate multiplet of two {charge-conjugate) particles, which are intec-—

acting via the * L¢+¢ \l term.

If £ 0, on the other hand, an expansion about += 0 makes no sense. The potential
has a local maximum there and is unstable, The only sensible place to expand the
potential is about its minimum point which occurs at ¢ = J?, F ] g , with @&
arbitrary. In fact if £3 0 in no way can the quadratic term in \'J l@t é) be
interpreted as a mass squared term, since it is negative. Quantum mechanically the
non zero value of * at the potential minimum implies that 4 has a non vanishing

vacuum expectation value

1 8
ol emLay - E e ‘ (1.39)
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The phase € is in fact irrelevant and can be rotated away. It is a reflection of
the non uniqueness of the vacuum state of the theory. Since under a U(1) transforma-
tion
-1 Ve
Uty ool ) = ¢ duo

(1.40)

it is clear that the expectation of é between the states J{-@}| ©%  is purely
real:

-t
ol Ut-0) oo Ut-erloy =« T¢ (w.an
Obviously Ul'a) |0> is just as good a vacuum state as |9>.
Without loss of generality one can therefore write ¢ as

®oo s Y P (1.42)

and lock for quadratic terms In an expansion of V aboutx = 0., One finds

Ve 36 (x+x) ™+ ond X x txexty + 3 ()
; (L.43)

1f on:i introduces two real fields ®+ , related by a canonical transformation to X
and X :

4
X, - L {x+ %) M. & (‘Z+‘I
+ o J r ) (1.48)
it is clear from (I.43) that «‘, has a mass
T
m, = LAY >0 (1.45)

but x_ is massless. Even though the Lagrangian is U(1) symmetric, this symmetry
is not reflected in the spectrum of the theory, There is, however, a Goldstoae ex-

citatien.

The identification of X _ as the Galdstone excitation follews also directly from

the commutation relations it has with the generator G. Using (I.36) one has

6% 3= ¢ (g +x (1.46)
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Whence, taking vacuum expectation values, one obtains

o\ €6, 2 1oy = ¢ Io¢ .47

Clearly this equation singles out x as the Goldstone boson field. Neglecting non-—

linearities one expects therefore

LoV Y tw>ipy = 1 (1.48)

with |p» being the Goldstone boson state, £q. (I.47) then gives, in this same

approximation

. r
<ol Th e lt5 = l('r;-F) P (1.49)

which identifies the "decay constant' fi of Eq. (1.29) as JZE. This same result also
follows directly by rewriting the current TP of Eq. (1.34) in terms of x‘. andy__.

One finds
TV o M o 4 mow limear terws (1.50)
which implies (I.49).

To summafize, there are two wavs in which symmetries ( Cy,07 = 0) in nature can be
reaiized. If the vacuum state is unique ( 1} 1oy = 18% ) then we have a Wigner-—
Wevl realization with degenerate particie multiplets. If, on the other hand, the
vacuum state is not unique ( Wieh #, 1¢) } we have a Nambu-Goldstone realization
with a number of mwassless excitations, one for each of the generators of the group
which does not annihilate the vacuum. In this latter case, one often refers to the
phenomena as a spontaneous symmetty breakdown because, although the symmetry exists,

it is not reflected in the spectrum of states.

In all the preceding discussion I have implicitly only talked about global symmetry
transformations, That is, the parameters of the transformaticns were assumed to be
independent of space-time. These global transformations, as exemplified by Eq. (r.1),
transform fields at different space time points in the same way. One may well ask
what happens if the group parameters are space time dependent. In this case, in

general, the fields at x would be rotated by a different gmount than these at another

space-time point x'. Transformations where this happens are called leocal, to distinguish

them from the global transformations of Eq. (I.1}. Under a local transformation cne

has
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i (I.51)
’k‘ (%) =——> ‘.k‘ )y = ng\ t‘ltlu) XP tx) A

Q)

It is quite clear that even though one might have constructed an action
’ au txy X )
We (4% g (g o0, 5% 00)

which is invariant under a certain set of giobal transformations, this action will
fail to be invariant under local transformations. The Lagrangian density through its
kinetic terms depends on 3‘. 'x“ and these quantities transform differentiy under

local transformations than under global ones. One has

L]
% X, to :—) R x xow ?r‘ (&;(am) X,‘M)
*)

= Q N lata) Qr'xp xy -+ (‘3(L @“éitn)) XP&)

o

(1.52)
The presence of the second term above destroys the local invariance of .‘f If one
wants the action really to be locally invariant, one must add to x additienal
fields {gauge fields) which will serve to cancel these extra terms. Thus ome Sees
that Lagrangian densities that are tocally iavariant must necessarily coantain more

degrees of freedom.

I want to illustrate this peint with a simple, but very helpful, example. Cousider a

free Dirac field, whose Lagrangian density is

;(,_ - Yo (Y"tﬁf-»*)*‘“‘) (1.53)
Clearly Q is invariant under the U(1) transformation
' ,
T A T (1.54)

and the associated conserved current is easily seen to be

Tl = Yoo gt ¢ 0 {1.5%)

15

If ¥ = '(lx) , however, the Lagrangian ceases to be invariant since

o i Yo (1.56)
m?, Yy ¢ hr‘ d)e P

’(}\qu) — %l{w‘:v) ]

It is quite simple to enlarge the Lagrangian (I.53) so that it is invariant also under

local U(1) transformations. For that purpose all cne needs to do is to introduce a

field Ar(x) and postulate that under local U(!) transformactions:

volexy 4”“

]
o 5 ¢ < e (1.57)
it transforms as
'
< £
P‘rlm - A‘»"“ < A(L ey : Fwom {1.58)

where e is a parameter, which will eventually play the role of a coupling constant,

Clearly the combination

b‘y\[fnn T (% -e ﬁ(\_tx\\ Yy (1.59)

transforms under local transformations without any ichomogeneous terms. That is
[ red €x)
b‘» V) — Dr— ¥ %} = ¢ b‘uq’b‘l (1.60)

So b‘L \PIX) transforms under local transformations precisely as T, ‘P(l) trans-

forms under global transformations. Hence the Lagrangian density

4

't

- ¥ (yt LD + )b
(R 4 (1.61)

- ¥ Ly, «mY Y + ¢ oo ¥ oo Apm

is obviously invariant under lecal U(!) transformations.

The Lagrangian (I1.61), identifying the gauge field AP with the electromagnetic poten—
tial, describes the interaction of a Dirae particle with electromagnetism. What is

missing in Eq. (I.61) is the term
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)
Y & eV - (1.62)

which describes the kinetic energy of the photon field Af" . The field strength

F 00 = oM A% = 3ATeo (1.63)

because it involves a curl is Invariant under the transformacion (I.58). Hence the

total Lagrangian

- s
,,'2’ z - Yoy (‘f“ﬁb( N L Z ‘:;Fc‘“\ F&le)

(I.64)

is completely locally U(1) invariant.

Two comments are in order. First, I note again that the requirement of local invariance
has necessitated an enlargement of the original globally invariant theory. The compen-—
sating gauge field introduced thereby has fixed interactions with the original Birac
field, This is & marvelous result: demanding local invariance Eixes the interactions.
Second, one should note that the local invariance actually forbids a mass for the A

field. A mass term

=
o - 1w Al oo
Mensy + & s

actually breaks the local U(1)} transformatien (I.58). Furthermore, the form of the
kinetic energy terms for the gauge field - expressed in rerms of F('v - is also

fixed by the demand of local U(1) symmetry.

The above simple example demonstrates how easy it is tec make a theory which is glebally
invariant under a symmetry also locally invariant. Of course, in the example, the
symmetry was a simple Abelian U(1) symmetry. The same procedure, however, also applies
for non Abelian groups -~ groups whose structure constants are non vanishing. I want

to describe here the steps one must follow to construct from a gleobally invariant

Lagrangian, under some group G, & locally invariant Lagrangian.

Consider a Lagrangian density w lY‘ ) -"t' '!,L') composed of fields x,.-_ and
their derivatives )t !i . Suppese that the fields ¥, transform irreducibly under
a group of continuous transformarions G and that i is globally G invariant. Under

the global G transformations therefore one has:

17
/
- (X tx )
fg“(x)-—? X, 00 QP PR '}’Px
4
ot‘yi by — ’3{‘1“ o) = Q“hﬂﬁ.l 3‘,, ¥Ptx\
& (1.63)

of (% %) ;\—bo‘((x,fprx_;) = o (2, 9%.)

Clearly, if one could construct a covariant derivative for the fields Yd » Di" Y‘ R

which under local transformations transforms precisely as Df xa( does under global

transformations, then the job will be done, To get a locally invariant Lagrangian one
needs just to replace throughout 3(_ Yy > ‘D?’ M . In addition, of course, one
must provide appropriate locally invariant field strengths for the gauge fields needed

to construct the covariant derivatives D‘A x“

The covariant derivacives under local transformations are required to obey
L]
D X twy = R tavsy P, %, (1.66)
bl" YJ (2} m— e e ¢ &p )
Givy

In analeogy to what was done in the U(1) example let us introduce a gauge field Af(x)
for each of the parameters of the group G. Sinece the pauge fields are suppesed to
compensate for the local wvariations, it is clear that one wants to have a gauge field

for each variacion. If the fields xi transform under the group G as

[G;) X, o0 1- -(3( ]J’ '){P(x;

then the U(1) example suggests writing for the covariant’ derivative:

: . (L.67)
Do oo = U9 8 - g gy A 0 1%

where g is some coupling constant,

For Bq. (1.66) to be satisfied the AiP(x) fields must respond appropriately under the

: . . . i
local transformations. Let me compute the transformed covariant derivative D: 7“ :
{
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.D;, 1':0:) B 9{‘ x;u.) - {a ca'{)‘b p‘;”.tx.\ 'k;tx)

x ‘J‘\[@.‘éun)xpznj _;? 4; )“_Pli

¢
g aﬁ sarm) X’ x)

= a“blf-rx)) (3? IP““) + (7{ adb(””) ’XP t¥)

- 3‘3(1;1"‘# F\:,,‘. tx) Qﬂ\’t“n) Xy o0

Clearly this will equal the desired result only if

(%;) Hl iy o= [' m"stqrx;) (%"_351 @;}‘ (dux)\-] A(‘; {x)

i M

62.'1
+ %h*@\“smm) gp L) r e
It is easy to gheck that this formula agrees with Eq. (I.58) in the abalian case.
There cx = e;d.) 9= 4, and the coupling constant is e. In principle, however,
Eq. (I.68) appears very troublesome. The transformation property for the gauge
fields A'ri seems to depend cn how the fields X‘ transform under the group. If
true this would be disastrous, for if one had two different fields in the theory
transforming according to different irreducible representations of G, then one would
have to introduce two kinds of compensating gauge fields! Fortunately, the dependence

of the transformation {I.68) on the way 1(; transforms is illusory,

Te demonstrate this important point I will consider infinitesimal transformations,

where the matrices 6{ have the decomposition (I,9):
Y = N .
@‘P (Jamy < Sdp + i sq‘-tx)(_?o)“b

Let me then rewrite Eq. (I.68) For these transformations, using an obvious matrix

notation:
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Gobeo = Daribeq1q Li-idaad Ay

* i-l;b["j.(l-risc.i%s)][l- ‘PSQR%.‘]

. ‘ .
T L LY Cag,ar TA, +% (va;)q, + 0((54)).
However, the matrices gy obey the algebra of the group {cf Eq. (I.11))

R T P TS

Hence one sees that in fact the transformation of A' 2 is independent of the matrices

8;- Cne finds explicitly

]
P(Htx\ = l’\ﬂm € S*\-\m Ciyx P‘g-c“" + L 'Dr[Sq*cn) (1.69)

For global transformations, whare ‘;O-K is independent of x, the transformation
(1.69) can be written in the standard form one would expect for a quantum field,

namely:

1 Ld
ey = i ) . N XY
At"‘ ¥) At'* t S&l (QJ\‘“ P‘."l (.70
Here the matrices §} can be expressed in terms of the structure constants of the

group?
~ . .
(%.‘),‘-‘ =t hiiw = e Gy (.71)

and play the role of the generators of the infinitesimal transformation. That this
identification is ecorrect can be checked, by using the Jacobi identity. It is not

hard to see in this way that the E; matrices also obey the group Lie algebra.

The above discussion shows that the gauge fields A:(x) introduced in the covariant
derivative (I.67) transform in a specific way under the group G of transformations.
Lf the group has n parameters then the gauge fields transform under the nxn dimen-
sional representation of the group, whose generators can be expressed in terms of the
structure constants by Eq. (I.71). This representation is known as the adjoint and

obvicusly has nothing necessarily to do with how the fields ‘Y transform. The gauge
. L]
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fields needed to make the Lagrangian lecally invariant under G depend purely on G
and not on what fields enter in =£ . Indeed, since the representation matrices for
the Ari are connected to the structure comstants of G, one begins to see how funda-

wental a réle the gauge fields play.

Having made :{ "locally invariant under G transformations by introducing the gauge
fields Ari, through the covariant derivacives, it remaing to endow these fields with
kinetic energy terms., Clearly ome needs the analog of F Y for this non Abelian

example. The naive choice
[ v
FOo < OFAT YAl

is easily seen not to do, since under local G transformations it does not transform

homogeneously. It is not difficult co show, however, that

[ ad FavY Al 9
P "' = '3 hl. '§ Ah -« 3 cl“‘* A: A: (1.723

cransforms, under local transtformations, according to the adjecint representation

with no additicnal terms.

; v .
To check this ceontention, it is convenient to define matrices F'}x)and At exyobtained

. v . R *
by contracting Ff(x,and AT inpwith the generator matvices g,
L3 (3

AT 'Y F:Nuﬂ ; Ay = 3‘H:‘.”_) (1.73)

It is easy to check that (I.72) implies that
E™ = 3 AY - YAt ~i4 C RPJ AY ] (1.74)

Consider what happens to this object under a local transformation. Making use of Eq.
(I.68) one has:

] ’ L
A S W LA PR S\
G lw)

(c.mt.)

In principle any generator matrices g; will do
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B/ L W IRAYR w1 G RR'] - Y [RAR™ 4 £ '&yR™)
ﬁ? ‘3.
-53 [RAR }‘3 OIRIRM] [ RAR ™ + + La‘{&s@x"']
[} L3

-~ "3 CRAR . 1 ('DV(R\@—'] [(Rh"@"+ L (WRIR™ )
I-a lb
= REFVR™ + 1 TOYRIOIR™ -6FRYO¥R™]
‘3
1 T OMRIRTRIRT - BYRYRT(FRIR™']
"4

t{GIRIAY R RRYOTRY - B'R) ATR™ - R AT (R ]

- [ORAR™ RATRPVRIR S RA'R™ (rRIR ™ YRR

All the terms above except for the first can be seen te caneel using that

R RY &' = = (YR™) (1.7%)

S0 indeed:

b v -l
Fr‘tx)_’ F %y = @f&rx)) FP(X\ Q {atnd
a.tx)
(I.76)

This transformation is precisely that expected for an object that transforms accord-
ing to the adjoint representation (compare Eq. (I.68)). It feollows that for in-

finitegsimal transformations then -

i
b o & e
F tny —> P& = P 4 Seex Cisw E fx)
¥ $a L % d ¢
*) (1.77)
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v . s .
Clearly therefore the term,FiP F, is a group invariant, due to the antisymmetry

1‘u\(
of the structure censtants.

To summarize: the Lagrangian density :! (1ﬁd, 331¢¢ y assumed to be invariant under
some global transformation G can be made locally invariant by intreducing appropriate
gauge fields. The locally invariant Lagrangian, including the contribution of the

gauge fields, reads

o‘i « & ('Xd) b ¥) - -':— Fr;‘ F;.w (1.78)

loca)

and is totally fixed, knowing ;(glubal' A number of points should be commented upon:

(1) The pure gauge field Lagrangian in (I.78) is already a nonlinear field thaeory,
because F;'V containg terms quadratic in the gauge fields A'l. For the Abelian case,

where the structure functions vanish these nonlinear terms are absent.

(2) Because the A: transforms nontrivially under G, as far as global transformations
go, the symmetry currents of the theory now alse get contributicns from the gauge

fields. That is

Lo _ 3 e
T e 2 {—(ﬂ.)mfkﬁ. =4 (ﬁc)w A, (1.79)
1L, LR

(3) No mass terms for the gauge fields are allowed if one wants to preserve the local

symmetry.

For the case of global symmetries the symmetry could be realized either in a Wigner—
Weyl way or in a Nambu-Goldstone way, depending on whether the vacuum state of the
theory was invariant under the symmetry or not. It is obviously very interesting to
investigate what happens in each case, when the global symmetry is made local. In

the Wigner-Weyl case, nothing much happens. Besides the various degenerate multiplets
of the global symmetry, one now has alsc a degenerate zero mass multipiet of gauge
field excitations. In the Nambu-Goldstone case, however, some remarkable things happen.
When the global symmetry is gauged, the Goldstone bosons associated with the broken
generators disappear and the corresponding gauge fields acquire 3 mass. This is the

celebrated Higgs mechanism /7/.

To explore this phenemena it is useful to return to the simple example of the Abelian
model of Eq. (I.32) and try to make the global symmetry local, Recall the Lagrangian

wasg
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e 5 g - (§e-9)

where f { O corresponded to the Wigner Weyl case and £ ¥ O corresponded to the Nambu-

Goldstone case. To make this Lagrangian locally invariant one just needs to replace
. . vk
the divergence 1%, # by the covariant divergence :

Db = (3 '?Ar)é (1.80)

and intreduce a kinetic energy term for the gauge field. The Lagrangian

o =0, &) (D) =) (dHd-f\ - LES g w.an
r 4

e

is obvicusly invariant under the local transformations:

& xy — 4?‘!*3 = t““') d oo

(1.82)

er - A;'x\ = l-‘-‘uw * % Vp

If £{0, so that the global symmetry is Wigner-Weyl realized, the above Lagrangian is
suitable for computation. It describes the interaction of a degenerate multiplet of
scalar fields # and ¢+ with themselves and with the massless gauge field AP'
Because the fields ¢ are scalar, and the kinetic energy is therefore quadratic in
the divergence cf(b , the interactions with the gauge fields centain bath a linear

term

Vg

o) ) + - + r
d YT %ﬂrt‘h”’!*’ LA 9 ArT (1.83)
as well as a "sea-gull" term

- D 5 A A, ¢+¢ (1.84)

T

This latter term's presence is dictated by gauge invariance.

If, on the other hand, the parameter f % 0 one must reparametrize the theory in terms

* . .
I use the coupling constant g here to emphasize that the field A* need not have

anything to do with the photon fiel.
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of fields which have vanishing expectation value. This reparametrization (cf Eq.

(L.42)) is such that one is computing quantum oscillationms around the minimum of the
. +

potential V{ 1>‘4). Thus one has

+ .
zta 4 = f + terms involving quantum fields

This necessary shift implies that the seagull term (1.84) gives rise to a mass for
the AT field

- & ¥ - oad (1.85)
au\--.u * 1‘; RP‘}' "Jimﬁ hﬂf' '

Now if the gauge field acquires a mass, it fellows that it cannot be purely tvans-

verse (like the photon) but must alsc have a longitudinal component. This extra degree

of freedom must come from somewhere. It is not difficult to show that it arises from
the disappearance of the Goldstone excitation that would ordimarily result frem the

spontanecus breakdown of the U(!) symmetry.

To check this asserticm, in the case of £» 0, it is convenient to reparametrize Lhe

*
field @ not as in Eq. (I.42) but to choose an exponential parametrization

T
ix)/m (1.86)

‘tﬂx): N EF? -\*fﬂ.x)] rl
Vi

Here e(x) and i{x) are real fields and the Goldstone excitations are connected with
the ''phase' field (x). Indeed, the potential

el P
~

Vigh#)= N(ed-9¢)

is clearly independent of § so that, in the absence of the gauge interactions, one
would identify it with the gero mass Goldstone excitation . Using Bq. (I.86) the

potential becomes
LN
- 1
V =\ (te + N f’)
so that the field f has a mass

Wy < g (x.e7)

" The physics of the theory is independent of what parametrization one chooses.

Different choices are akin to different gauge choices
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which was the valuie obtzined previously for the massive scalar field in the theory.

It is easy to check that the field § {x) enters in the covariant derivative D.f"' :b

in a3 rather triwvial way. One has

hf&h‘ p-iq RS = (5 -iqh,) J-‘TUTf—Jr(’] e'hi/ﬁ;"

‘3 /0

= e - iterrg{p, « ;';1_:05}]

(1.88)

The factor in front in £q. (I1.88) cbviously will wot appear in the Lagrangian (1.81)
since one has L)f‘d:ﬁ" (b(. b) . Furthermere, the quantity in the curly bracket in
Eq. (1.88) is just a gauge transformed field {cf. Eq. {(I.82}) with & = E/E; . By

fixing the gauge so that everything is expressed in terms of a new gauge field
- LI} (1.89)
‘gt\. = H r + & 2

one sees that the Goldstone field E' disappears entirely from the theory.

If the U{1)} global symmetry is spontaneously broken (f 3 0) the Lagranglan (I.81) can
be rewritten entirely in terms of a massive vector field Bi“‘ and a massive real field

e . The resulting Lagrangian

S T

i
T

i o L [ 4

-9 Urprg e ) BTR -N (Lot « Ree?)
{1.90)

where * ’

m;qué j &#""jbf

shows no explicit traces of the original U(1) symmecry, except that certain of the



26

parameters in the interactions have particular interrelations.

Let me close this section by discussing the two versions of the model (Wigner—Weyl
(£ £0) and Nambu Goldstone {f »0}) in terms of the degrees of freedom present in the
theory. In the Wigner Weyl case, one has in the theory a complex scalar field ¢

(2 degrees of freedom) plus a massless gauge field (again 2 degrees of freedom,
corresponding to the two transverse polarizations). In the Hambu Goldstone case,
there is in the theory a real scalar field P {1 degree of freedom) plus a massive
spin one field Br (3 degrees of freedom). Clearly both versions of the theory have
the same total number of degrees of freedom, However, the spectrum of excitations

is totally different.

II. The SU(2) x U{1) Model of the Electroweak Interactions

At first sight weak and electromagnetic interactions seem to have little in common.
Electromagnetic interactions are responsible for the binding of atoms. Weak inter-
actions, on the other hand, cause rather long lived nuclear disintegratiens, like
neutron beta decay. However, there are at least two phencmenological similarities

that hint at the unification of these forces:

(1} In both weak and electromagnetic interactions, currents are involved. In the

electromagnetic case the interaction

&
°7¢ = € Arﬁn ) bcx) (I1. 1)

- - fod
gives rise to long range forces between charged particles. Charged particles, accord-
ing to (II.1), interact due to the exchange of a photon. The i/q2 prepagator for the
photon is what is responsible for the l/r potential between charged particles. For
the weak interactions, which are vesponsible for the neutron instabilicy, it has been

known for a long time that they can be described by an effective current—current theory

IT.2
v 6 T T ar.2)
. L] (xy 4,
Facamt —-— ¥ v
T

KHere GF is the Fermi constant, which has dimension of (mass)_z. If one imagined that
the contact nature of the above interaction was due to the exchange of a very heavy
"weak-boson", then the resemblance between weak and electromagnetic processes would
be greater. At a deeper level the weak (charged current) interactioms eculd be

written as in (II.1) by introducing charged massive spin one fields w;‘ and wj :
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~ 4 '
;anu . & (T’ xy W.,r,h\ + Tl W”. b ) {11.3)

Eq. (II.1) would reemerge in the limit in which any momentum depeandence in the W-

Propagators was neglected in comparison to the mass and one would identify:

_G_p- - i (I1.4)
RO My,

(2} The charged currents that enter in weak decays are not unrelated to the electro-
magretic current, at least as far as the strongly interacting particles are concerned.
This interrelation was discovered a long time ago /8/. The vector piece of the weak
currents Jf‘is identical to the 1 : i2 ccmponent of the strong isospin current. In
turn, the isovector piece of the electromagnetic current is nothiog but the 3rd com—
ponent of the strong isospin current. This connection between weak and electromagnetic
properties at the phenomenological level leads ons to predict subtle weak effects -

like weak magnetism /8/ - entirely in terms of known electromagnetic preoperties.

Although the above remarks make it attractive to try to unify weak and electromagnetic
interactions, they are by ne means compelling., The dominant reason for attempting an
unification is theoretical. While pure QED is a2 renormalizable theory, the Fermi
theory of the weak interactions is not. The contact ivteraction in {IIL.3) gives rises
to incurable divergences in higher order in perturbation thecry. These divergences

are not ameliorated if the Fermi interaction (IT.2) is replaced by interactions
mediated by a heavy vector boson {of Eq. II.3). The propagator for such a spin one

boson as q — 64 is as badly behaved, as if it did not exist:

Qr‘ tq) = Moy + Qv /q" — 00 (I1.5)
‘1t + Fﬂl q-, on

Thus it is not possible to just add "by hand" ap interaction like (II.3) to the electro-
magnetic interactions and hope to obtain a renormalizable interaction. If, however,

Eq. (II.3) were to arise as the resulr of making a global symmetry local - so that
W:'are gauge fields - then it is possible to obrain a renormalizable theory. In

these circumstances, as first shown by 't Hooft /9/, the mass of the vector bosons
arises because of a spontaneous breakdown, but the gauge structure effectively

allows one to calculate with propagators which wvanish ag ‘\/q2 for large momenta.
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Tf one wants to construct models of the weak interactions based on a symmeltry group
G, whose currents must at least include J‘rand Jr, one in general finds that G also
contains a U(!) symmetry, which can be associated with electromagnetism. When the
theory en spontaneously breaks down, only this U(1) symmerry survives with its
massless photon., At the broken s®Tage, however, ther& is always some mixing of the
photon with some of the weak bosons of G. Hence renormalizability forces ome to think

directly of unified weak and electromagnetic interactions,

M

The simplest unified model of electroweak interactions which contains J:: J and J:;
clearly would be based on the group 0(3) /10/. However, the discovery of weak neutrral
currents /11/ argues for a 4 parameter group. The suggestion of Glashow, Salam and
Weinberg /4/, made well before the discovery of the neutral currents, was that electro—
weak interactions could be described if the symmetry of the theory was SE{2) = U{1).
This suggestion has been phenomenologically extremely successful. In this section, I

would like therefore to detail the structure of the GSW model and examine scme of its

predictions in the light of experiment.

The GSW model was built to reproduce the known structure of the charged current weak
interactions. It predicted then particular neutral current interactions, whose ex-—
perimental verificarion provided a direct test of the model. From a long series of
experiments in the 1950's and 1960's one knew that the weak currents in Eq. (I1.2)
had a (V-A} form. That is, that only the left-handed fermionic fields appear to par-—
ticipate. For instance, J:'was known to contain a neutrino-electron term

T -\-f! Tr L-wr€ = 2 Yoo vF e,

where the projections LPL) r  are just

Y- L LY ' ; =t L+ (11.6)

No terms containing the right-handed fields, however, enter in Jf-.

To derail the structure of the GSW model one has to specify how the matter degrees
of freedom transform under the SU{2) x U(1) group. The fundamental matrer entities
presently known are the quarks and leptons, which appear in a repetitive generatiom
pattern. Each generation of quarks and leptons has the same SU(2) x U(1) quantum
numbars. To date we know of the existence of three generations: the electron family
(e, vy ; d, u); the muon family ( p, e 38, ¢ }; and the T -lepcon family

( T,ve 5 b, t Y. Each of the leptons is accompanied by its own neutrino and a
pair of guarks. The quarks in the pair actually are comprised each of three states,

since each quark carries a color index i, i = 1,2,3. The strong interactions of guarks,
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which binds them into hadrons, have to do with their color properties. The weak Inter-—

actions act on their flavor properties; u,d,s, etec.

I will detail now the properties of the electron family under SU(2) x U(1) - the p
and T families having identical quantum numbers. In view of the preceding. dis-
cussion, it is clear that only the left projections of these fields :zarry S5U(2)
quantum numbars and that (V;, e)L and (u, d)L are doublets under SU(2). Further-—
more, since SU(2) x U{1)D U(1)em the electromagnetic charge Q must be the sum of the
U(1) generator Y and the diagonal SU(2) generator T3:

Q=1Ty Y (11.7)

Hence the U(1) properties of the fields in the electron family foliow from their

charge. These considerations lead to the following table

Table T: SU(2) x U(!) properties of the states in the electron family

v Ve
staces (d)t Vg dl‘l (e’ )L En V&

sU(2) 2 1 1 2 1 1

u() 1/6 2/3 -1/3  =tf2 -t o)

The right handed neutrino is usually not included as a real excitation. It is a total
singlet under SU(2) x U{1).

Knowing the transformation properties of the quarks and leptons under SU(2) x U(1),

one may use the results of the previous section to write down immediately a Lagrangian
for the theory that is locally 8U(2) x U({1} invariant, by replacing in the kinetic
energy terms for the quarks and leptons all derivatives by SU{2) x U(Q1) covariant
derivates., Let W;'i = 1,2,3 and Y¥ be the gauge fields corresponding te the SU(2)

and U{1) symmetries. Then, from Table I, it follows that the covariant derivatives

for the quarks and leptons are

v () B ey w1 (3

b

( tamt )
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b‘\ Ay = t‘r*ca.j‘Yx‘]A“'
Ve
b e)L
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{I1.8)

"

Uyev e Y -igw W ] (:c)u

o

Ly + 'Y e

Here g and g' are the SU(2Z) and U(I) coupling constants and the matrices 1/2 %1 -
with T, the Pauli matrices - are those appropriate for fields thar transform as
SU(2) doublets:

. T e (1£.9)
cit‘)tt')]- lel“ {t\g
For one generation of quarks and leptons, the Lagrangian of the CSW model is thus

o?'{-%- wdy, vty (3) RN S dyr
Gsw AN A A ""Ytadﬂ

- (o) vy (:e) =& yTLD, g
L

[ v
-1 WM - LY
h : sev 4 ypv (1T.10)

In the above, the field strengths Wikv and ¥ F are given by
L Cg? v ok v
\
w. < 3 W‘- -') W‘- +a€c_.:u W:W

- {Iz.11)
Y™

1]

My - Ayt
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Note that the Lagrangian (I1.10) includes no mass terms for the fermion fields. Mass

terms invelve a Left-Right transition:

£

Meass -m PP oa o o + Yo ) (LL.12)

However, as Table I shows, QL and 9% for the quarks and leptens transform respec—
tively as doublets and singlets of SU{2). Hence the symmetry forbids adding these
terms. As I will show later, masses can be genarated when SU(2) x U(!) is spontaneous—

ly broken down.

Frow the Lagraagian (II.10) one can read out explicit interaction terms of the gauge

fields with the fermionic currents. One has

ef’-ml‘. : %' T; x -f%‘s": W‘f (II.13)

L :
whare Jy_and Jri are the "weak™ U(1) and SU(2) currents of the fermions:

viu ("e)
L5 ® g|_

- T > ~ T Y
- é,ludlﬁb~( [:)L - § UEY Y _ic{zf(ajﬂ

EN
t
(IT.14)
I note that in the model, since
e SN o4 + 7 (II.15)
S 3 Y

the phencmenological observation that the vector piece of the weak charged currents

and the isovector piece of J’;m are related, is built in already.

It is convenient to rewrite (II.13) in terms of physical fields. Clearly if the model

is to reproduce the weak interactiens, the symmetry SU(2) x U{1) must suffer a spon—
tanecus breakdowm. As I showed in the preceding section, in this circumstance the

gauge fields get a mass. The exchange of massive gauge fields can then reproduce the
shert range weak interactions, Of course, since the photon field must remain mass-—

less, the breakdown of SU(2) x U{1) cannot be complete. Cne expects SU(2) x UC1) = U(1).

Then, of the four gauge fields W[ and Y¥ , three will acquire a mass and cne will emn
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remain massless. The photon field will in general be a linear combination of the two
neutral gauge bosons WSP and Y* , with the orthogonal combination being asscciated

. . . : 0 . ;
with a massive excitation - the Z7 boscn. It has become convenient to parametrize these

linear combinations in terms of an angle - the Weinberg angle Gw . One has:

> F I
w3 LATE- 2 + su.aw A (11.16)

Yr = _su,.Sw 2“‘ —+ Los ew ﬁf

It is alsc useful to rewrite Wrand W{ in terms of fields of definite charge

Fo_ . » (I1.17)
¥ E_(M+"MJJ.)
P

In terms of the physical fields Zr, A, W+rthe interaction (11.13) becomes

r
v?}uk = ‘l‘:‘% Ew: -'T:}-"" W, Irr]
FRE)

[ r \
¥ i (4 cos g + %Suueu‘)'ls -4 ;waw'a'ghl{z‘b

' t ! ; h
¥ { glee, Tt (asy, g0 )T TR
(11.18)

In the above, the charged current J_:bar:e defined ie terms of Jl‘.‘ and er as

[ [ [
T, = 2 (17 ¢ ) (11.19)

where the factor of 2 i{s introduced so that the currents J:'are precisely those chat
appeatr in the Farmi theory, Bq. (II.2). Furthermore, T have eliminated throughout
the weak U{1) current J; in favor of the electremagnetic current and of J:';, by using
Eq. (I1.15}. This rewriring has an important conéequence. Namely, if & is to be the
photon field, then its interaction can only be with Je}:n’ with coupling strength e.
That is (I11.18), as far as the photon part goes, must reduce to {I1.1), This informs

one that:
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383 fa'ﬂoseu 2 % L 9 (11.20)

Using this information and eliminating g and g' in Eq. (I1.!8) in favor of e and

.2 . P
sin Gw yields for D?;'A.lr of the GSW model the sxpression:

v o (wrz, + W T
i s &,
Ne
v & ar TP

2050y S8,

(rr.2mn
NC .
where the neutral current J’ is given by
v ¥ k4 * ]
TNC - 2 [ 'J'a - W' g, Te«. - ana
T note tﬁat the parameter E, given in Eq. (II.3), is idencified here as
3.
(11.23)

L 5wy

Whence, the comparison with the Fermi theory for the charged currents, Eq. (I1.4),

identifies the Fermi constant GF as

G, et
\ "

Enowing the Weinberg angle, the above gives direct information on the mass of the

(I1.24)

heavy weak boson which is supposed to mediated the charged current weak interactions.
As T shall show, low energy neutral current experiments give sin2 a“ 2 '/;1 . Using
this value in Bq. (IT1.24}, along with the experimental walue for the Fermi constant
GF“:. 1045 GeV‘2 and o = GL/H,.? ~ l/lﬂ, vields for M a mass of around 80 GeV. This
prediction has been spectacularly confirmed at the CERN collider, by discovering a
particle of this mass with the experimental characteristics of the W /12/. I will

return later on in these lectures to discuss these matters in more detail.
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Ef the weak charged bosons have a mass of around 80 GeV, one can well understand why
the Fermi theory was such a good approximation. In typical weak interactian experi-
ments, the momentum transfer q° is very much smaller than sz. Thus the exchange of
W-bosons can be well approximated by the contact interaction of Eq. (II.2}. This is

shown graphically in Fig. 1

Js

qgiw

A

2 2
q »Mw 3.
J-

Fig. 1: Recovery of the Fermi theory from W exchange, for q2<( }[i

Neutral current interactiens, involving Z-boson exchange, ought alsc therefore to
. 2 ;
lead to an effective current—current theory for momentum transfers qZ“ Mz. Using

Eq. {I1.21), one predicts for this effective theory an interaction Lagrangian:

T
< t T
- 1 [ ] T,» N¢ (11.25)

Fetm 2 la 5‘.‘.9“ tas 8y HE‘

He, Feel

®
Using in the above equatien the identification {II.24) gives

HNeotial
z - G, M TN‘ 7" -6

Fesme - — P T f r NE
0oL et My %

The ratio

.
. M
¢ = " - (11.27)
M} ot 9W

gives, therefore, the relative strength of neutral to charged current weak processes,

at low momentum transfers, in the GSW model.

* - - . >
The factor of 1/2 in (I1.25) comes from doing 2nd order perturbation theory. This
factor is cancelled for charged current interactions because there are twe terms:

.V
wf J_r + Wt Tope
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To summarize, the weak interactions in the Glashow-Salam-Weinberg model, for

2 2 . .
q 4 M ;, can be written in a current-current form:

4

Weok

¢ [ 77T, vl TE] @

(1Y »

=

The charged currents, by construction, agree with experiment. Neutral weak interactions
test the model, since the only free parameters are fa and the Weinberg angle eu -
which enters in the definition of J;C of Eq. (IL.22). All neutral current experiments’
(some of which I will discuss here) can be fitted with a common value of

sin2 Qg ¥ 1/4 and of f‘: #, thereby providing strong support for the validity of

the GSW model. Furthermore, given @ and sinzew one can determine the mass of the

Z(: from Eq. (II.27). The discovery at the CERN Collider /13/, soen after that of the
W, of & neutral heavy particle of mass around 90 GeV, in agreement with the value

predicted by the GSW model, provided a further confirmation of the model.

Before I discuss in more detail some of the neutral current experiments used to test
the GSW model and to extract ? and sinze,, , and discuss the properties of the W

and Z bosons found at the cellider, I want to comment on the meaning of f % 1. Rough~
ly speaking this parameter measures the ratio of the W and Z masses and, therefore,

it is connected to the mass generaring mechanism of the GSW model. The masses of the
weak bosons arise because the lecal SU(2) x U(1) symmetry is broken down to U(l)em.
The mechanisw employed in the model to cause this breakdown is precisely that which

I digcussed in detail in the last section. One intreduces scalar fields, which trans-
form nontrivially under SU(2) x U(1), into the theory and assumes that their self
interactions lead them to acquire a non zerc vacuum expectation value, which causes

the breakdown.

Since the SU(Z) group must be broken downm, it is necessary that the scalar field iantro-
duced into the theory carry SU{2) quantum numbers. The simplest useful possibility,
thus, is that this field be an $U(2)} doublet. Since it must aiso carry U{1) quantum

numbers, one must - at the minimum -~ intreduce a complex doublet. Consider

*)o

§ = N {11.29)

where 4)° and 1;' are complex fields. § therefore has U(1) charge Y = - 1/2. If one
assumes that § has self interactions given by the potential (cf. Eq. I.37)

Vay(8's -

t Y‘ (I1.30)

P =<



36

it is eclear that SU(2) x U{1) will be broken down. The choice of the vacuum expecta-

tion value:
L v
(= | =
[s] (II.31)
&
guarantees that SU{2) = U(1} is broken down to U(l)em .

Because § carries SU(2) x U(1) properties, to maintain the SU(Z) x U(1) local

symmetry, the @ piece of the GSW Lagrangian must involve the covarilant derivative:

L R A L
One has

L0 -8 (g vEE) -

The seagull piece in the first term above will generate masses for the W:‘and z ¥
fields, when the field § is replaced by its expectation walue. With §_ an SU(2}
deublet, it turns out that the W and 2 masses are such thatf) = 1. Hence the experi-
mental determination of e‘: 1 gives information on the symmetry breakdown. In this

sense, it is satisfying that the simplest possibility seems to be favored.

Let me demonstrate this assertion. The masses of the gauge fields arise from the

geagull term
j LW F T * ] )
Mgy = - [ (1% W -?—;Y )<§>1 [(az%w” -?IYP)]

However,

For one scalar doublet one can always define grgl) as that U{1) that is left un-
broken., The choice (I1.31} is dictated by the definition (IT.7); any other choice

would do, but it would change the definition of Q
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r 2
t Moar
2w ) [Sua-%s-’]i-ﬁ
- vy - ¥ W
Zfb}aw
where the second line follows by using Eq. {II1.16) and the identification (IL.20Q).

Since <§7 has only an upper compenent, it follows immediately thatc

s s " F — t
o0y (II.34)
so that ~
M‘lh A (?q)t
q
N 2 2 (I1.35)
My = L qvy = My '

1
L Cos' @y, EastOy,

This proves the contention that f’ = 1, with this simple doublet breaking. One can
show that if the bresking of 5U(2) = U(1) is done by a scalar field carrying SU(2}

quantum number I, with a component carrying I

{% (1,39 4 0 » thea [14/:

with non zero vacuum expectation value,

3

1
(: - IL-I3 + 7T (11.36)

1 .
J’IS

Obviously, from this formula, 1if I = IE = 1/2 as was assumed, then (‘5 =1,

The parameter v which enters in the potential {IL.30) - Higgs porential - sets the
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entirvely by the value of the Fermi constant. Using Eqs. (II.20), (II.24} and (II.35},
it follows that

-
ve (RGE. D " 250 Gev (I11.37)

Questions concerning the origin and the dynamics associated with this scale will be

addressed in the last part of these lectures. It is time now to look at experiment.

The presence of neutral current weak interactions can be detected in purely leptonic
experiments. These experiments are somewhat easier to analyze theoratically, because
one does not have to worry about strong interaction effects. The GSW model is writren

at the level of leptons and quarks and if one considers experiments involving hadrons

one has to be able to translate the quark level predictions into hadrenic predictions.

This step is obviously unnecessary for purely leptonic processes. Unfortunately
neutrine interactions off electrons are a factor of me/M, where M is the proton mass,

weaker. Hence these purely leptonic experiments suffer from a lack of statistics.

The process V;, e o b; 4 , and its companicn involving antineutrinos
F,,e - \;f < » tests precisely the additional neutral current piece in the

weak interaction effective Lagrangian (IZ.28). T have written the currents J:and J;,'
in Eq. (IL.14) for one family of quarks and leptons, but they can be trivially ex—
tended to the case of more than one family of states. Because these currents only
connect fields within the same generation *, obviously the process v.e— e

cannet be caused by a charged current weak interaction. There is no current involving

¥y, and an electron which can cause this transition. The neutral current, however,
. + .
has both a \1, - \f{, and an e-e piece and therefore the J\:c JNC term in Eq. (II.28)
2

can cause \? e scattering. Since for an electron one has

]

(T':" )C'lr.ekrw z C T“; - S‘MLG“ I'r‘:“" -1 eleckrow

=2 EE,_Y"{-H e - s..fam (-n e yre ]

e [Y"(:-‘r.;) Q:. + ¥ v Q, Te

*
I will show later that no intragenerational mixing is caused by the SU(2) x U{1)}

breakdown, essentially because the neutrinos are massless, for the leptonic sector.
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where
W (I1.38)

while for a neutrino cne has

»
(THC )V?’

u

ew

1[ T;- .19, 7! ]r

tlee v v ]

L]

.:':[\-’;,1((1-75)\7_ ]

- } X A *
the effective Lagrangian for \(r e and V,/ e scattering is simply

Tge = & LA uve g 1801w § v yptrg ) e]
Ve {I1.39)

It is straightforward to compute the scattering cross section for the \?e—; v, e
and Fr{ —_ \;P e processes from (I1.39). The relevant kinematice for these

reactions is shown in Fig. 2

Fig. 2: Kinematics for »fr- e scattering

It proves convenient to define the scalar invariant

y 2P oB (I1.40)
P.q

Thus y in the laboratory frame, where the incident electron is at rest, is a measure

of the outgoing electron's energy to that of the incident neutrine

* -
Remember that there are two cross terms, that is why no factor of /2 appears in

(I1.39)
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E'

= _ 8
YLab T E
'

In the CM frame, on the other hand, y is a measure of the angle by which the electron

is scattered, as shown in Fig. 3.

p
P q
.

Fig. 3: Kinematics in the CHM system
One has, neglecting the electron mass,

2ty 2
Yo = U cos@CM)

An elementary calculation gives for ddﬁ. for nentrino and arntineutrino scattering

off electrons

de % *° * t ¢
EARNTEL Y R
T
_ (I1.4
2
PR Y SR
3 < B Y r L =
4 m

The structure of these formulas is actually vather sasy to understand. The inter-—
action which causes the scattering, given in Eq. (IL.39}, is a vector interaction
which conserves the handedness (or helicity *) of the fields. For neutrinoc scatter—
ing off electrons one has two contributions: the left handed neutrinos scatter off
left handed electrons (‘\-Q Y or the left-handed neutrines secatter off right handed
electrons (~Q ). For antineutrinos, since the helicity veverses, the right-left
scatterm.g is proportlonal to Q 2 while the rig}!t—right scactering is propertional
to Q . I show this pictorially in Fig. 4 for both the cases of LL {or RR) and LR

scattering in the CM of the neutrino electren system.

The helicity is just the preojection of the spin along the direction of motion

41

‘/éCM <= /\GCM
/ /

Fig. 4: Scactering of LL (a) and LR {b) fermioms in the CM system with vector

interactions

. L do
For LL or RR scattering the initial state has J = 0 and sc one expects that d_'L?CH
o is simply related to y one sees that this implies

Ty

d :
(JT:_\“: (E)RR ~ 1 (IT.42)

For LR scattering, on the other hand, it is eclear that a configuration where the

be isotropic. But since cos @

final particles are emitted backwards is forbiddem since it corresponds to &J = 2.

Thus { do= ~ {1+ €238 )z which implies
in, ) [

[ &) ..(do'\ ~ ey

J”l '

(11.43)

Because the electron mass enters in Eq. (II1.41), the ¢ross sections are very small -

typically of order 10_[’2 E (Gev) cmz. Nevertheless, both VF € and \;;', & processes

have been measured at CERN and Brookhaven recently, with about 100 events in each

experiment — which is high statistics in this difficult field! Because both ¥ ¢

F para-
meter {and of various systematic etrrors). Integrating Eqs. {(II.4!) over y and taking
the ratio gives

and v, & are measured their ratio can be determined, which gers rid of the
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L i 2
R - G;I:e . 38, + dp | 3-11s5w by +|(,s.,..".9mr

- 3 2 D
‘TV,,L 30.'.‘4- L =g su.qu-q-lsSu-l'Sw
(I1.44}
which is a pure function of the Weinberg angle.
The CHARM experiment at CERN /15/ gives for the ratio
_ + 0.85
R =1.37 _ 0. 44 {CHARM) (I1.45)
which implies a value of the Weinberg anglet
s 2 + +
sin Qw = 0.215 - 0,032 - 0.013 (CHARM) (I1.46)

where the first error above is statistical and the second systematic. The BNL ex—
perimenzal results, obtained very recently /16/, are in complete agreement with the

CHARM results. They report a value of the ratio
0.17 (BNL) {I1.47)
which gives a value for sinzeu , from their analysis, of

.2 + +
sin @, = 0.209 ~ 0.029 ~ 0.013 (B¥L) (IT.48)

The absolute values of these cross sections can then be used to infer a value for P .
I quote below the results given for the cross section slope with neutrino energy

by both experiments

0'.','_,_ /B, =130 26.40 2 0.50) = 1072 cnlcev (GHARM)

Tel 6 = 1602029 20.26) x 107 enPrcev (a1

Ty [ =50 20.30 T0.00) x 107 /ey (cramw)
= (1.16 2 0.20 2 0.14) ¥ 107%? cn’/cev (BNL)

[0 { Ev
v (IL.49)

The CHABM collaboration extracts Erom their absclute cross section measurements a

value for P
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g =109 Lo0.08 f o (1Z.50)

which is consistent with the prediction f = 1 Ifrom doublet symmetry breaking, The
BNL collaboration gives no value for f , from their analysis. A cursory glance at
Eq. (I1.4%) would suggest that if such an analysis were performed, the central.value

for e from the Brookhaven data would just be slightly below one.

A second, purely leptonic test, of the GSW neutral current interaction is afferded

+ - .
by the process e e —yp f-",b' » measured at DESY and at SLAC. In QED this process occurs
to lowest order in & by one photon exchange. In the GSW model there is an additional

: . [ : .
contribution due to Z° exchange, as shown in Fig. 5

¢t Ty et Ty

Y z°
e’ ut e Ve

R + - -
Fig. 3: Electromagnetic and weak contributions to ¢ e = ,l-*[-

For energies much below the z¢ mass, the second term in this figure can be approxi-
mated by the contact interaction of Eq. (II.7?8).0ne can readily estimate how important
is the neutral current contribution relative to the purely electromagnetic term. One

has for the ratio of the amplitudes

Tuu.\t ~ E"_ - ‘o-a, ‘iz (Gul‘)
TCu.. E."/q‘

(I1.51)

. 2 3 :
Since for the experiments at DESY and SLAC, typically q e Q(10 Gevz), the inter-
ference between the electromagnetic and the weak amplitudes should give rise to

effects of the order of 10 Z,

To measure this interference effect experimentally, cme studies the asymmetry between
the number of f-' produced in the direction of the incoming electron in the CM systenm
and those produced against this direction. If (‘“’/M)‘H is the differential cross

section for e & —y 7 in the M system, then this forward-backward

asymmetry is defined by

3 Aess, (80) - [ Ao, (30

A -
F-8 (II.52)

& (ete o r*‘\-‘ )
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; . . *
In the absence of the neutral current interaction this asymmetry vanishes . Hence
. o .
AF*B tests directly the presence of the Z~ coupling. Unfortunately, as I will show,
- : . . s 2 : . , .
it does not provide any information on sin qﬂ , although its magnitude provides In-

formation on e .

I will quore the result of the calculation and then describe qualitatively why it

has this structure. In the GSW model one finds

L
P&F_s 3 .-[36,.5 f] 9 (I1.53)

Y. & o

Here s = - q2 is the square of the total emergy in the CM system and g, is an axial
coupling ceonstant, to be defined below. In the GSW model g, = 1/2, so that the

asymmetry is

RF-G - - BG‘S ?‘;_?y[o" ‘(C‘V“ P
R A

To understand this resulr, let me write down the effective neutral curremt Lagrangian

relevant for this case

M
e ¢ 26 C [2(1*5"*-("(51’)c][';f’;.'av‘\’,-fr‘én‘l":‘
'
{11.54)
"

The coupling constants g and g, can be gorten directly from the structure of IJ
g v A we

and one has

- 1
%“ = GQ‘ t dQL =2 S eh; -

wi-

(IL.55)
Ga» G- & ‘J"

The amplitude obtained from (II.54} is to be added to the purely electromagnetic
amplitude and the absolute square gives the desired cross section. The claim is chat

only the cross term betwzen the weak and the em_amplitude gives the asymmetry.

*
This is only strictly correct to 0(# ). There are 0(« 3) contributions Co AF—B

which come from higher order QED processes
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It is easy to check that the purely electromagnetic contribution is symmetric in

cosecM.

The fact that one has a vector interaction means that the scattering will

occur only between left handed electrons and right~handed positrons or viceversa,

producing * %" npairs also in these two configurations. This is shown pictorially
r

in Fig. 6.

e 4:_//“- et
- -
4
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Fig. 6: Possible configurations in e e =» f* r scattering due to vecter inter-—

actions

it & is the angle between the outgoing r" and the incoming electron, then

oM

considerations analogous to those presented for VF @ scattering give

Ae (ay = d_?‘tal\

dx an

Ae 14y o e gen
aa

N

H
Ly 4 o3& )

(I1.56)

AN
= Cot O\

For unpolarized scattering and not measuring final state polarizations one just sums

over {a) - (d). Hence

J-c' ~ t - !
- + - ~ +
( - ) {ie s 8, ) (s cafe Y {lectes @& )

-

Can

(11.57)
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which establishes the contention that AF—B needs to arise from the weak-electro-—

magnetic interference,

The differential cross section arising from the interference can be infered by using
the diagrams of Fig. 6 and the form GEJ( zgf of Eq. (II.54). The point Is that Ys
for a left—handed particle is (1), but it is {+1} for a right-handed particle., Thus
terms in the electromagnetic-weak interference propartional to 8y contribucre with a
(1) in each of the diagrams (a) - (d) whenever one has a left-handed electron or
muon, but (+1) otherwise. I give below the relevant signs of the four diagrams for
the four possible interference terms. The First gV,A below corresponds te the elec-

trons, the second to the muons:

By gy ¢ (2 B) 2 (@) ¢ (w2 (1 v o’ )

gy gt @+ ) -+ (=0

(I1.58)
8y By mfa) - Y+ () + ()0
By By ¢ (a) = (b) - (c) + {d) ~ 4 COSGCM

Clearly, therefore, onily the gvz and the gAZ terms contribute and it is only this
latter term that gives the asymmetry. The sign of the agymmetry given in Eq. (II.53)
is negative because it involves alsc the photon propagator W/qz, and qz = - 540, S0

all the qualitative features of Eq. (I1.53) are understood.

The forward-backward asymmetry has been measured at SLAC and at DESY showing good
agreement with the value expected from the GSW wmodel. Because AF—B involves gi, the
asymmetry gives no direct informarion on the Weinberg angle but irs magnitude con-
sfrains P . I give below the asymmetry for the process e+e—-¢ f‘f. obtained at DESY
at two (average) energies: I35 = 34,5 Gev and V57 = 41.6 GeV /17/. These results are
themselves averages of the asymmetries obtained by all the four running experiments

(five in the case of the lower energy asymmetry)

apglelemptrTy =108 211z ¥ = 34.5 gev
A plee Ty = - a7 Lo g JE = 415 gev
(I1.59)
The predictions from Eq. (II.53) raking = 1 are respectively - 8.1 % and 11,7 %,

which are scmewhat below the values of Eq. (IL.59), In fact, however, the effect of
a finite 2° mass is not tetally negligible here. Including a z° preopagator effect

changes s in Eq. (II.53) by
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5 —-> ; (II.60)

Taking the experimental value for MZ /137, Mz =g1.2% 1.5 GeV the substitution of

Eq. (I1.60) increases the predictions for A at the twe energies in questicns by

F-B
14 % and 20 %, respectively, Hence, the values to compare (II.59) with are, fer

f=1

- 9.4 7 'r 34.5 GeV

Ap_g{CSW)

AF_B(GSW) - 14.5 % ¥y = 41,6 Gev

(i1.61)

These are in excellent agreement and speak for the validity of the model and for the

simple choice f = 1.

The most precise values for sin29u and r come from deep inelastic scattering of
neutrines *. In these experiments one scatters neutrinos off a nuclear target and
sums over all pessible final states. The scattering process can occur, in the G3W
model, either mediated by W-exchange (Charged Current or CC process) or mediated

by Z-exchange (Neutral Current or N process). This is shown pictorially in Fig. 7

'y Vi

Vi
w* Z°

N X N X

(CC) (NC)

Fig. 7: CC and NC deep inelastic scattering of neutrinos

By comparing the ratio of the charged current processes to the meutral current pro-—
P . .2 , . s

cesses one can cbtain information on e and sin bw . Doing this both for neutrine

and antineutrino scattering then fixes thase parameters, much in the same way that

this happened in the case of scattering off electrons. However, here the relevanct

. .2 .
A very precise value for sin q“ comes also from polarized electron deuterondeep

inelastic scattering /18/
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mass parameter is the nucleon mass and not the electron mass, and so one is dealing
. s . .2 .
with much bigger cross sections. As a result both sin 8  and C are deternmined

W

more accurately than in neutrino-electron scattering.

The advantage of considering an inclusive process - that is a process wQere one sums
over all possible hadronic final states - is that one can avoid most of the theoreti-
cal issues connected with how quarks bind among each other ro become hadrons. The ex-—
citation of che initial hadronic state ¥ by the virrual W or 2° of Fig., 7 must pro-—
ceed through the coupling of the W or z° to one of the quarks in N. The scattered
quark then recombines with the spectator constituents of the initial hadroniec stace

to form the final state X. I illustrate this process in Fig. 8

W,Z
W,Z

]

N - N

Fig. 6: Decomposition of the vertex ¥WZHX

To the extent that one is summing over all possible final stares X, it is clearly
irrelevant how the scattered quark combines with the spectators to make a particular
final state. Hence the deep ineilastic scactering eross section should be given by
the convolution of the probability of finding a quark with a certain fractien of the
initial hadron momentum, with the cross section for the scattering of this quark by
the initial neutrine or antineutrino. This is the parton model of Feynman /1%/ and
of Bjorken and Paschos /f20/. I shall not elaborate further on this topic since it is
coverad by the lectures of Close and Brodsky in this school. For my purposes here,
all that is relevant is that the deep inelastic processes are proportional to the

corresponding quark scattering processes.

To simplify my discussion, I shall suppose that the only impertant constituents of
nuclecns are the "valence" quarks. That is, a proton is made up of 2 u quarks and a

d quark and the neutron is made up of 2 d and a u quark. All "sea" contributions of
virtual q-q pairs in this approximation are neglected. Let Eu(x) and fd(x) be the
probabilities of finding a u quark or a d quark in a proton, carrying a momentum
fraction x of the initial proton momentum. Then, by isospin symmecrry, fd(x) and

Eu(x) are the respective probabilities of finding a u quark or a d quark in the
neutron. Charged current deep inelastic scatcerieg of neutrinos acts only on the

d quarks, through the reaction V;— +d = )-"f -’ . For antineutrinos the charged

current scattering involves only u quarks: \—r( Vv f-" + 4 . Neutral current
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scattering, since it is charge diagomal, will invelve scattering of both the u and

d valence quarks. Hence in general, even knowing how to calculate the scattering at

the quark level is not enough to interrelate the CC and NC processes, since different
combinarions of probability functions enter. For isoscalar targets, however, every-—
thing simplifies very nicely.

An isoscalar ctarget — like 12C - is made up of an equal number of protons and neuttens.
Hence scattering off isoscalar targets is like scattering from an average of a proton
and a neutren: N = 1/2{p+n). Consider then the CC process v’r N-—!{'—x . In the

parton medel it is given by the convolution {dencted by @& below):

AO;‘LVtN-er'x) « i Lf 45,V @D de (vd »p70)

(TI.62a)

since fd is the probability of finding a d quark in a proton but Eu is the probabi-

lity of finding a 4 quark in a neutron. Similarly, for antineutrino scattering one

has
Ad;tf\?rﬂ-af':\ * 4 U;v..hx & dg-(v; v ptd)
(11.62b)

For neutral current scattering, on the other hand, one has

doy, LvpN=gx) = L (fo+ SY® [ decga sy s 1 dotguayor]

aa_'“(;z'_,‘_"\}x) - t L$o+ FaN @[da‘fv;al-’?,l\ +Ad'(1,_u-§\?u)]
(I1.63)

Clearly therefore - in the valence approximation - the ratic of CC to NC deep in-
elastic scattering off isoscalar targets can be computed entirely from a knowledge
of the elementary quark- V? or quark- ﬁ; pProcesses.

The affective Lagrangian for NC scattering of neutrines or antineutrinos off quarks
in the 65W model has the same form as {I1.39), except that the coupling constants

QL and QR are replaced by those appropriate to the quarks in question:
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e
J'-?F ™ %-c D?' \"'c.--«g\‘f(] -E‘i ('fr(s-f,)Q:‘ #V‘Juﬂ?i Q:Jq]

(11.64)

Here q =iu,d} and the coupling constants QE, Q; which follow from the structure of

the neutral current of the GSW model are:

Q; = - 2/3 sinzeu Q: =-2/3 sinZQ‘ + 1/2

(I1.65)
d L 2 d . 2
QR = 1/3 sin QH ‘ QL = 1/3 sin 9'” - 1/2

The charged current effective Lagrangian, of course, is just that of the Fermi

theory:

ce - I
ege = % {[vtfr“"“f’]'[d'}"""wj
[%

+ EFfrt.-r:)“(]-CG‘f,hfr-‘?r>°\] } (1168

The differential cross sections J.f/db that one must calculate te compute the
ratios of NC and CC processes have precisely the same structure as Eq. (II.41} for
'l;, ¢ and \‘f; €  scattering. For CC processes, however, there areno right-handed

couplings, the left-handed cnhplings are unity and e: 1:

Q =Q,=0; Q =Q =1; f =1 cc (I1.87)

Let me define the ratios

' de™¢

Ne - (VM2 x)
R - O tViNs 4 x) - S°°\‘1 A‘j ¢ (3
L
]
Cr"h'tﬂ—: £ r) ,(o 4y g‘_’c‘tvrtw-u-'x)

(I1.68a)
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and
Ne -
R o IVPM.-’ + %Yy
v %
- (11.68b)
o (Tt )
Then it is easy to see that
1 L 4.1 |1 \J
Ry v € {l&‘:)+ (&) + j[(a‘;nfapl}
4 @ vt & .1
. v v 2L evat+ ¢ }
?v= 3C { (Qu\f (Q‘) *3 £ e, )7
which, using Eqs. (I1I.65), can be rewritten in terms of the Weinberg angle as
R v L e 2o g e
v‘.et‘.—Su..Bwri_ia_w:\
(I1.569)

- - CL L {: —-h.o-."aw + Lo _t.'a.."'e!“]
ﬁ

The ratios RV and R; have been very accurately determined by the CHARM and the CDHS
experiments at CERN. The rasults of these two collaborations are in very good agree-

ment with each other, as the values below show 1247 122/:

R, = 0.300 * 0.007 (cpus)
R‘, = 0.320 p G.010 (CHARM)
* (I1.70)
R—(: 0,357 - 0.015 {CDHS)
Ry, = 0.377  0.020 (CHARM)
Using the formula (II.69) and taking P =1 and a value of sinzauz 0.23 gives

Rv_ = 0,31 and R‘—’ = 0.39, which fits very nicely with Eq. (I1.70). To actually extract
the best value for e and sin2 Bu one needs to correct the theoretical formula
(I1.69) for the contribution of the quark sea and other small effects. This has been
dene in the analysis of their data by the CHARM and CDHS collaborations. The value

.2 . . :
of sin BH one obtains depends on whethgr r is kept fixed at 1 or not. Fer
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instance, the CHARM collaboration f21/ gives for P =1 a value
2 +
sin GN = 0.220 - C.014 (II.71}
If f is also varied the best fits are
@ =1.027 Z 0.023
sin® @, = 0.247 © 0.038 (CRARY)
. + (11.72)
€ =0.996 - 0.026
sin? ® =0.221 % 0.0% (coas)

tﬁD

I should remark that the values of e and sinzau‘ extracted from nevtrino-electron
scattering are in total agreement with the above. This remark is non trivial, since

a priecri different vertices are tested in these two experiments. In the GSW model,

of course, chey are related and the nice agreement found in these two different

experiments is a further confirmation of the model.

Because the neutral current interactions in the GSW model are parity viclating, they

give rise to small paricy violation effects in atoms, These effects have been studied
experimentally in the last 7-8 years and, afrer an initial peried of confusien, have

now been definitely established. T want to make a few remarks on this subject because
it illustrates so nicely the unity of physics. These atomic parity violating experi-

ments deal with transicions in the electron volt energy range. Yet, because they are

looking for effects of the parity violating neurral current, they are testing physics
at the Fermi scale of 0(100 GeV)!

The parity violating interaction between electrons and quarks (hence nucleons) will
induce small admixctures of opposite parity components into the atomic levels. The
presence of these opposite parity admixtures can then be detected by studying tran-
sitions induced by using incident polarized light and measuring an asymmetry in the
photon abserption cross section when the pelarization is flipped. This parity vio-

* -
lating asymmetry, nominally, should again be of the order GFq2 ~ 10 4 q2 (GeVz).

If this were the case, then the effect is really too small 22 to measure. In
atomic physics qz ~ 1 ~ (.\. o )L . which predicts an asymmetry: A~10_M.
— e
L A .

* : + - . : . . :
The asymmetry in e e —» Prt‘ which T discussed before was not parity viclating,
; P 2 : 2 - .

since it involved By - However, the estimate there of GFq /ez is really an estimate

of the magnitude of the interference.
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Fortunately this estimate turns out to be a bit too crude and there are methods to
enhance this number considerably, by studying parity violating transitions in heavy
atems /23/. Effectively, in the case of heavy atoms, an extra enhancement of 23 -
where 7 is the number of protonsTin the atom - arises. For Bismuth, for instance
where Z = 81, this is a substancial enhancement and asymmetries of the order A:vIO-S

are to be expected.

I want to derive the parity violating Hamilronian applicable in atomic physics from
the fundamental neutral current interaction of Eq. (I1.28)., For parity violations I
need to fecus on the terms in 3 :gf which involve a vector vertex at the quark level
and an axial vector vertex at the electron level, and vice versa. A simple calculatien

gives

ekt
L,, = J:G,t’i an Tvrt] 9% Wyroy = gt Fyrh ]

+ Y2 e Ly LJY‘"-(Su)-«Cb‘LCI{"Yc‘“]

(I1.73)
Havre the couplings By and g, are those given in Eq. (IL.35), Further
"] v v
- . o1
%v < Qn_tal_ = .l.... b soale,
2 a a : -
= e =1 " 1
1. Qa_fQL.. z-f%:..\.e‘)‘m . )
(T1.74)
) e @ -eY . Lt
A r & v
d d
- i
1, & -2 - 1

Since the nucleus in an atom is essentially static, the quark currents that enter
in (II.73) can be considerably simplified by making a non relativistic reduction.

For that purpcse the Dirac representation of the ,’ -matrices is convenient:
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) o =z o & ot o U : . . L
“,o; (u -| ) ) o - (_3 ° > J T = ( ° ) it _1'5 _c'lear*that the electron contribution to the parity viclating potential is just
& le . Putting all the pieces together, one seas that the GSW model predicts
Retaining only the upper conpenents, since the lower components are down by v/c, :‘, a parity violating potential:
means that for the vector piece of the guark current only the ‘fo term survives,

- b d N * .
while for the axial piece only the v ¥g ~ ¢ term remains. In this non relati-

vistic limit thus, the first term in Eq. (II.73) is proportional to the sum of the H - GF Q E"‘ b (‘\’;(: N (1I.79)
‘Ta
u and 4 quark number densities in the nucleus (g:u+u + ggdi—d), while the second term iV E e w —
. . - A
is proporticnal to the nuclear spin, For heavy nuclei, obviously the first term €

dominates since the contributions add coherently. In the spin term there will be sub-

stantial cancellations and so I shall neglect it from now on.
A few comments are in order on this result:

. B . : u d R
The deminant quark contributionr, proportional to gvu"u + gvd‘*d, acts as statlc source

for the electrons which is proportiomal to Qw 33@)_' Here Qw just measures the "weak (1} Obvicusly this potential is parity viclating, since it is properticnal to the

End - .
charge" of the nucleus: pseudoscalar interaction O"-]’,_ . Thus it will have non zerc wmatrix elements only

between atomic states of opposite parity. Furthermore, it is short range because of

(I1.75) the 53(;), 50 it will measure essentially the electron wavefunctions at the origin.

. . 3
where ¥ and Nd are the number of u and d quarks, respectively, in the nucleus. In a (2) For heavy atoms one can understand qualitatively where the Z~ enhancement factor,
u

valence approximation, these numbers are simply related to the aumber of protons, Z, mentioned earlier, comes from. A factor of Z comes from Qw""'_ 1/2 N (which is
and neutrons, N, in the nucleus: roughly Z). A second factor of Z comes from the electron's momentum, since
Lpe 7t d 2 in an atom. The final factor of 7 arises from the °(x) facter,
Ny =2+ ; N =2+2 {II.76) which tells one that the parity violating matrix element is proporticnal to the
electron wavefunction at the origin. This factor can be shown fo vary as Z alsc for
Thus heavy atoms.
9, = (253 + ES)Z + (Zgi * 33):\1 = (1/2 - 2 sinzaw )y Z - /2N (I1.77}

(3) Parity violating experiments in principle can serve to give yet another determina-—

. 3 . 3 2 ticn of sin” & and C » since these guantities enter in Eq. (IL.79). However, since
Since the Weinberg angle experimentally is near sin t9u »~ 1/4, one sees that w

Qw “ - 1/2 N. Thus for heavy nuclei Qw is large, being essentially propertional to

the number of neutrons in the nucleus.

the feasible experiments are done in heavy atoms, there is considerable theoretical
atomic physics to be done before one can extract the relevant particle physics in-

formation from the data.

It remains to compute the contribution of electrons to the parity violating Hamiltonian. . . X . ! i .
e ] - W . i To date three kind of different atomic parity violation experiments have been per-
The surviving termin Eq. (II.73) involves € Y ¥y € . I will again consider this . . . X i . N . i
. i . ) ° formed: optical rotation in Bismuth atoms {24/, circular dichreism in Thallium vapor
contribution in the non relativistic limit. Ia the Dirac representarion ¥ Y i . . . . i A .
/25/, parity vielating polarization in Cesium atoms /26/. 1 shall not go intoe the
connects the upper and lower components of the electron wavefunction. Since this wave— s A .
. . . precise details of what is measured, as that would take me tco far afield. I summa-
function in the non relativistic limit is given by :
rize, however, the present status of theory and experiments in Table II. The thecre-

X tical numbers use e: 1, sJ'.n2 BH = 1/4, but the atomic uncertainties seem to
R ~ - =3
& rey (IT.78)
N Z:" This contribution comes with a {~) sign since what emerges from (IL.73) is really
8

E-(o.(‘ ¢ - However, going from ;( to the Hamiltonian this sign is again changed,
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dominate the theoretical spread — especially for Bismuth.

Table II: Summary of Parity Violating Experiments

1) Optical Rotation im Bismuth (R x 108)

Experiment f24/ Theory: A= 648 mm ) = 876 mm

Oxford L-648am - 9.3 % 1.5 Ref. 27 - 17 - 13

Novosibirsk }= 648 mm - 20.2 % 2.7 Ref. 28 - 18.8 - 8

Moscow Y648 - 7.8 1 1.3 Ref. 29 - 13 -1

Seattla  } =876 mm - 10.4 2 1.7 Ref. 30 - 1.1 - 8.3
2) Circular Dichroism ir Thallium (A x 103)

Experiment /25/ Theory /31/

Berkeley - 1,73 : 0.26 z 0.07 L t 0.26

3) Electronic Polarizatiom in Cs

Experiment /[26/ Theory /32/
Paris - 1.56 2 0.17 2 0.12 - 1.61 2007 Lo.20

Although both experimental and theoretical uncertainties are too big to ger a good
. : . 2 .. :
determination of e and sin sw , 1s is clear that the GSW model predicts effects

of the order of those observed, in these very difficult experiments,

I have left for last, rather fittingly, a discussion of the properties of the W and .
Z boscns. Their recent discovery at the CERN collider /12/ [13/ is the crowning
glory of the GSW model. The data at the moment is still quite limited - less than
100 W events, reconstructed through their decays into e v, 0T p A less than 20 z°
events, reconstructed through their e'e or r'}-" decay modes. Nevertheless, it
seems to be in very good agreement with the prediction of the Eheory. Obviously,
however, a much more detailed study of the properties of the W and the z° is
warranted, as any small departure from what is predicted by the GSW model may signify
new physics. Hopefully more i.nf-ormatinn will become available soon as the new data

taken in Fall 1984 at the CERN collider is analyzed.

The production of the W and z° in P!; collisions can be computed by applying the
same parton model ideas I discussed for the case of deep inelastic scattering. In
this case the W or Z° get produced by "fusing”" a quark from the proton with an anti-

quark from the antiproton, as indicated schematically in Fig. §
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W,z

p

Fig. 9: Production of I-i'/Z0 by q—a fusion

The cross section for the process pl-:\ —>» W/Z X therefore can be computed by convolut-—
ing the-distribution functions for finding the guark (antiquark) in the proton
(antiproten) with the elementary <ross section qa -~ W/Z. One may use deep inelastic
scattering information to determine the quark discribution functions in the proton.
By charge symmetry the antiquark distributions in the antiproton axe the same as
those of quarks in protons. Therefore one has a direct prediction for the expected

cross sections.

I illustrate the above discussion by considering specifically the production of i
in pl-n collisiecns. In the valence approkimtion I am ¢considering, the W gets preduced
by fusing a d quark in the proton with a u in the antiproten. If !‘-(j') is the frac-
tion of the initial proten (antiproton) moméntum carried by the d(a) quatrk, then

the cross section for W production implied by the diagram in Fig. 9 is just

a' --q - - ] 1 (J o wp
GE= Wy~ 95 45" § 08 4 Lo tdeTawr)
(I1.80)

The factor of 1/3 above follows since for the W te be produced the d and a quarks
must have the same color and the probability of that is 1/3. A simple calculation,

using for z i

nt the expression giver in Eq. (IT.21) for the GSW madel, yields

o ldroaw Y e met S 3fs SHy)
&J:JON

1 : 1
= { -
fRG M, Pit's m)
. (11.81)
Here J‘s i.-s the total energy of the pE system in the CM and the s—function above

informs one that the W can only be produced if the squared mass of the virtual q—a

. 2 . : .
system 1is MW Therefore cne finds for the production cross section the formula
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{I1.82)

An analogous formula, invelving now Ed @ fd and fu (¢3) t,» applies For z° produc-

tion.

Nete that the result in £q. (II.82) is just a function of M; » As the energy in-
/s

creases, contrary to the naive expectation one may get by looking at this
equation, the production cross section increases since the integral gets more contri-
butions nearer to zero. I showin Flg. 10 predictions for the production cross section
for W and Z bosons, calculated sometime ago by Paige /33/. These curves underestimate
the actual preduction cross section by perhaps a factor of 1.5, whigh is certainly

within the experimental and theoretical errors.

T TTITE
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Fig. 10: W and Z production, from Ref. 33
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The branching fractions of the W and Z~ into various channels is straightforward to

compute from the Lagrangian (II1.21):

¢ v
Jw’, : e [w‘,’:s’_r ST e 2T
Lﬁ.h}»BL] &‘5‘95,£~‘3u

Let me consider first W decays. The currents J:'just involve pairwise each of the two
members of the fermion doublets in the theory. If one neglects the masses of the
quarks and leptons relative to the W *. then the branching fraction of W decays into
is simply

¢ %

EB (‘l--o ¢

~<H
—

s

‘1{h114 c'\f ‘ - I 8.3 7%
Miw's el Mg L1 37

(11.83)

In the sbove ng = 3 is the number of generations of quarks and leptons known and I
have used that for each lepton pair there are three pairs of quarks, since quarks
carry the additional color index. I will show in the next section that because of the
SU(2} x U(1) symmetry breakdown, quarks of different generations mix with each other.
However, because this mixing Is caused by a unitary matrix the result (TT.83) still

applies. A very straightforward calculation gives for the actual rate

Tlw>eq e G Hu n 260 MeV (11.84)

——

6NN

where the numerical value follows by using for M a4 value of 83 GeV. Hence from
{IT.83) we expect the total width of the W to be around 3 GeV. Using the result
{I1.83) and the caleulation of Paige /33/ for the producticon rate (see Fig. 10):

=

CluH) + o ™) - oy xio et o Yy mb (11.85)

one expeacts

o -Biwl,ev) =~ 033 ml
(I1.36)

*
This is veasonable except for the case of the top quark, whose mass is in the

range of 40 GeV
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The value quoted for this branching fraction by the UAl and UA2 collaborations is
134/
+

0.09) nb (UA1)

o Blntaev)y (0.53 =

]
[=3
8

I

(I1.87)

1
o
o

]

+ +
a'.gfba*'-,e vy = {0.53 0.10) ub (uaz)

which is slightly higher than (I1.86).

For z° decays one can proceed analogously. However, because of the structure of the
neutral current there will be a difference in the branching fracrion of the z° to
different fermion pairs. Since

T" = 2z (12- S\:n.-lc’ 3t )

MO 'S Y

it is easy to see that the effective coupling of the 2° to the varicus fermions is

given by (I write this for one generation, for brevity)

e
< t vy -
Zw‘ z e z %vctifr -iwl relq v +9,vxle
2 tay 0,09,

+ ok '5: G T 5:\(‘\-,]\) + ;C‘f"'ftf a:ff\g]d]}
(I1.88)

The various couplings ‘g in Eq. (II.88) are detailed in Eqs. (IL.55) and {I1.79). In
the partial rates the contributions of the vector and axial couplings centribute
equally and there is no vector-axial interference term. This is because one can com—
pute the decay of the z% into states of given handedness, and obviously each of these
two configurations will not interfere. The projectious into given handedness confi-
gurations in (I1.88) involve the couplings: (gv z gA). Whence the toral rate is pro-

portional to (35 + gi). The rate Zo-g ;; VE is easily scaled from Eq. (II.84). One
finds

- 3
r( T’ vV, ) = G; < f1 E(if . '(]L)L] - Ge p‘zz (11.89)
efn LA T

The relative branching ratios into the other channels can be read off from Eq. (I1.88)
and the formulas for the coupling constants in terms of che Weinberg angle. One finds,

remembering the factor of 3 for color for the quarks,
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.1-,(10_,;‘\/‘3 P2 eey = T (¥ Gu) Mz*Hdd) =

IR [P - :3{( =g euld )’y n} : 3?(.-5:J9,,)‘+- }
3 3 (11.90)

Using for the 2% mass Mzc-_- 94 GeV, Eq. (II.89) gives a partial widch of Zn-pa"c
of about 180 MeV. Using Eq. (II.90), extended to three generations and taking
account of some kinematical suppression for the decay 2° — tE, gives a total z°
width of about 3 GeV = quite similar to that of the W. Since Sinzq“ﬂa «t , the
width T (20-4 e+e_) % 90 MeV. Thus the branching fraction of 2° into lepton pairs is

smaller than the corresponding branching ratio for the W's (Eg. IT.83):
B(2°o eTe ) w37 (11.91)

This result coupled with a somewhat smaller production creoss section, as shown in

Fig. 10, explains why the number of W's defected experimentally is much above that
of the z%'s.

The {V-A) nature of the coupling of the W to fermions predicts a correlation between
the direction of the electrons (positrons) coming from W (w+) decay and that of the
proton (antiproton). Preferentially, electrons will be produced in the direction of
the proton, positrons along that of the antiproten. This feature can be easily under—
stood by focusing on the handedness of the particles involved in the process. Con-
sider, for instance a W being produced in the CM system of ps by the fusion of a d
and a u. Because of the (V-A) interaction the collision occurs only if the d is left =

handed, as shown in Fig. 1ta

= o
p d u p
W

Fig. 11a: Production of W oin pp collision
and the W is produced in a particular helicity state. Since the W decays into a

left handed e;, the direction of the e is correlated to that of the proten, as shown
in Fig. i1b
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The masses of the W and 2 ﬁeasured at the CERN collider by the UA) and UA2 collabora-

— e a— tions are: (IThese are averages of the results of the two experiments) /36/
‘_.__.._-.-
Ve €

M, > 82.2 1.8 gev

- . (11.92)
#W M, ='93.2 2 1.5 Gev
Fig. 11b: Decay correlation in W decay
The GSW model predicts (see Eqs. I1.24 and II.27)
In the rest frame of the W_, the o angular distribution with respect to the diree—

\
tion of the proton beam should have a maximum for collinearly produced elec;rons MN - LI % - 3?.13 G:V
and vanish in the backward direction. This is just the familiar (1 + r,_osam) distri- .ty ——"
bution which I discussed before, The situation is precisely the same as that de-— ‘ﬁ' CF $ia Vs 5.»\-3w
picted in Fig. 6(a). I show in Fig. 12 the angular distribution for the electron {I1.93)
emission angle in the rest frame of the W , determined by the UA1 collaboration /35/. M MN
As can be seen the data fits very well the (1 + cos GCM)Z distribution. This is ' S ———
positive evidence that the heavy particle seen in these experiments really has some— J-é Cos BN
thing to do with the mediator of the parity violating weak interactions.
Taking sin2 6‘" = 0.23 and P = | gives
! M, = 77.8 Gev
30 | {11.94)
Ua i MZ = 88.7 GeV
Acceptance corrected / These numbers are in fairly goed agreement with the experimental results (II.92),
*.2 but perhaps a little on the low side. In fact, this is not totally unexpected. The
(1+c0s ©7) / results given in Eq. (II.93) are computed without worrying about possible radiative
20— / corrections., Because the GSW model is a vencrmalizable theory, radiative effects are

computable and in general charge the lowest order predictions by corractions of

O{« }. For the case of the relations in Eq. (IT.93), however, it turms out that the
change, altheough of 0(®), is numerically Sig. Roughly speaking, this is because all
the parameters that enter in Eq. (IL.93) for the W and Z massas ( o, GF, S\'-.-,eb and

dN/dcos 6%

10 e ) are determined at very low energy scales. The radiative corrections to Eq. (Ir.93)
contain logarithmic terms of O [ ¢ S (A /( 'y where (q") is this typical

mass scale.

I quote below the predicted values for the W and z° masses in the GSW mcdel, including

radiative ceorrections /37/:

b, (Theory) = 83 % 2.5 Gev

*
cos 9

(I1.95)
+

MZ(Theory) 93.8 - 2.5 GeV

K

Fig. 12: Electron angular distribution in W decay, from Ref. 35.
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These values are in very good agreement with the collider results. The rather large
etror in the theoretical numbers is mostly a reflection of the experimental error
in detsrmining sin29 . An error in si.n2 o, . b sinzau =% 0,006 is reflected
in a 1 GeV uncertainty in Mw Indeed, the value of the W mass Eound at the collider
provides, at the moment, the mest accurate determination of gin 6

IIT. Scructural and Open Problems of the GSW Model

Undoubtedly, as the discussion of the previous section showed, the GSW model is
phencmenologicaliy very successful. There are, however, parts of the medel which

are unsatisfactory. The part of the model which is really tested experimentally con-
cerns the fermion-gauge sector, given by the interaction Lagrangian of Eq. (IL.21).
What is untested and, as I shall discuss, in some ways theoretically troubling is

the whole symmetry breaking sector of the theory. To be sure, the idea that

SU{2) x U(L) = U(])em has received dramatic confirmacion at the collider, with

the discovery of the W and Z with the predicted properties. However, there is ne
evidence yet for a scalar field — the Higgs f£ield - which is supposed to be associated

~ with the breakdown.

Recall that in the GSW model, to trigger the breakdown of SU(2) x U(1) = U(1)em, it
was necessary to add scalar fields with an appropriate self interactiom. To repreduce
the experimentally successful prediction that ‘9 = 1, .these scalar fields had te be
doublets under SU(2), and the simplest possibility is thus te add just one complex
doublet § . The potential

INTE X By o

forces E te have a non zero vacuum expectation value

L v
3> = ( ‘:‘; ) (111.2)
and leads to the breakdown SU(2} x U(1) —» U(i)em. 0f the four real fields in §
three are really absorbed to give the longitudinal degrees of freedom of the W and
the 2 - necessary for massive spin i particles. There remains, however, one excita-
tion left over, which will be associated with a massive spin zero state — the Higgs

boson.

The irrelevant fields in E are those that would correspond to Goldstone excitations,

if the SU{2) % U{}) symectry had not been gauged., They may be eliminated from the
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theory by adopting the same kind of exponential parametrization for § as that dis-
cussed in Section I, in connection with the U(1) medel {cf. Eq. (I.86)}. Let me

write.

. T
‘ —c.—i,txx/v L (v 4 Hexn)
?L(n = £ Lo (II1.3)

Q

-
Obvigusly all dependence on the three fields g (x) disappear in V. Furthermore, one
-p

can show that § also can be eliminated from the covariant-derivative term in
:GSW of Eq. (II.33) - basically by picking a definite gauge for the W’_ fields,
essentially in the same way as it was done in Sect. I. After this gauge choice, the

Lagrangian for the scalar field will only contain W} . A simple calculation gives

He
Q ? = —lerDtH -‘:-tvu+_‘iu“)"
Gsw [

- L L 3 L oart - af
Lg tva W) w.,_—;la*a b vt ) v?Zf
(111.4)

. L
where of course the coupling constants g and g' are related to € and sin O“ by
Eq. (IL.20}.

From (IIL.4) certain properties of the Higgs ‘field H can be immediately read off.
The quadratic term in the field H in Eq. (IIL.4) identifies the mass of H as

" ) (I1I1.5)

Although one knows the magnitude of Vv - the Fermi scale - since it sets the scale of

the weak interactions {cf Eq. IIL.37):
-1
v=(J2 G /2= 250 Gev, {II1.6)
the mass of the Higgs field is arbitrary since it is proportional to the coupling
constant b , of which one has no information vet. Putting it the other way around,
once H is discovered (if it exists!), then Bq. (IT1.5) wifl give a measure of the

scalar field self coupling .

There are both trilinear and guadrilinear couplings of the field H to the W and Z
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bosons. I give below the trilinear couplings, which can be directly read off
Eg. (IIL.4). These couplings, I note, are proportional to the mass of the gauge

bosons:

be ~ - = M, 2tz W
Wiy sty g (111.7)

—

Iuw'w = - & B, w0 “.r\‘
Sup,

If the mass of the Higgs boson is lighter than that of the W or Z then these particles
can decay into a Higgs plus a lepton pair, by virtue of the couplings given in (III.7).
These processes occur through the graphs shown in Fig. 13, where the virtual W or 2

then transmute themselves into lepton pairs.

e+

Z° e

ZO

H

Fig. 13: Decays of a W or z° into a Higgs boson plus a lepton pair.

The actual magnitude of these decays is very small, however. Bjorken /38/ estimates

that for a 20 GeV Higgs boson

- -
Fe2s uph-) ~ 8 x 10 (I11.8)

|l A r‘}')

Since the branching ratio of the z° into r.pairs is only 3 Z, one sees that the
detection of the Higgs boson at the collider, as a byproduct of W ar 2 decay, is
essentially hopeless. Furthermore, since » s arbitrary it could also well be that
the Higgs boson mass is above that of the gauge bosons. Clearly, the Higgs boson

appears rather elusive!

The introducticn of the doublet field § in the GSW model, which precipitates the

spontanecus breakdown of SU(2) x U(1) into U(l)em, has a further utility. It can be
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used to generate masses for the quarks and leptons! Recall that explicit mass terms
for the fundamental fermionic fields were forbidden in the G3W model, since the left
and right handed fieids transform differently under SU(2) x U(!). However, couplings
between é and two fermion fields ecan be built, whiech are SU(2) x U(1) invariant.

When @ acquires a vacuum expectation value, these couplings are the source of the

mass terms for the fermious.

Let me illustrate this for the specific case of the u-guark. The Yukawa interaction

{ - W el () . (4" m(:)Llr

‘L‘QH&

(1I1.9)
is obviously SU(2) invariant, It is U{1) iavariant also, since Y, = 2/3, Y¥p=-1/2,
Y u. 1/6. Clearly, when one reparametrizes $ as in Eq. (III.§) and absorbs the

- = *
(d)L unphysical Goldstone fields g in a redefinition of the (3) doublet :
L
. _;," >
v S Vo v v
A - ¢ = a\) (I1I.10)
L .
4 L L
the Yukawa Lagrangian contains a mass for the u gquark:
o?' ;-E v o+ v u Jlven
Tvle.... e [ LR L
1
{IIT.11}
= - M Yy - ™v GuH
. v
where
'“‘u-_ _L'_ v
' (1I1.12)

To simplify the notation, { use the same symbols for the redefined fields in &q.

(TIT.10)
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The u quark mass is proporticnal to the Fermi scale and arises only because SU(2yxu(1)
is broken down spontanecusly. Because the Yukawa coupling h is unknowm, Eq. (111.12)

is not a prediction for the quark mass. Rather, the quark mass parametrizes the Yuka-

wa coupling. This is an analogous. situation to what happened for the Higgs field., Note

that che Higgs field through the Yukawa interaction now couples to the u quarks, with

a coupling which is preportional to the mass of the u quark,

One can generalize this analysis so as to give masses to all quarks and leptons in
the GSW model, Beside § , which has Y=-1/2 one also needs another doublet that has
Y = + 1/2. This can be constructed from @ itself. One can check that the charge-
conjugate field ‘% defined by

~ " + .
§ - 7 t'£ = (_z"* (I11.13)

~
is an SU(2) doubler and has ¥ = 1/2. Just as (é) gave mass to the u quark, <§>
will give mass to the lower members of the fermion doublets. It is clear, however,

that none of the farmion masses will be predicted since they will zll depend on un-—

known Yukawa couplings — the analog of Eq. (LIL.12).

Although the fermion mass generating mechanism I outlined is full of arbitrariness,
and as I shall discuss shorctly is one of the mysterles to be solved, it dces make
an intevesting structural prediction. Namely, that as a result of the SU(2) x ul1)
breakdown, the currents 3'{ which couple to the W bosons are nat generation diago-

nal for the quarks. The neutral currents, however, remain diagonal. To understand

SRR

9

this point I need a small amount of notation. Let

IR O RS SR [ RG:

Lip - i b A, f

{IIT-14)

. . . : . - *
(I will not introduce any right-handed neutrine fields, since neutrinos are massless }.

5 .
Fven if neutrinos had a small mass, it is so much smaller than that of the charged

fermions that it can be neglected for the purposes of this discussion.
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Ther the most general SU(2) x U(1) invariant coupling one can write involving these
P

fields is
: v o S
IYuum. T L'.‘. Q“L eun - l"'i . & a‘sﬂ'

~

""f} Z-'L§"it + hoe.
(III.15)

The coupling constants hij with £ = 2u,d, £f_d_g not need to be gemeration diagonal,
The spontanesus breakdown of SU{2} x U(1) will generate mass matrices for the fer-
mions. These matrices will only connect fields of the same charge, but otherwise they
are arbitrary, since the couplings in (IIT1.15) are. It is easy to convince oneself

that for each charged fermion species:

£
M- = & L_- v {111.16)
'y ﬁ. A .

Cbviously, if the matrices Mf are not diagonal one must make a basis change to deal
with stat;as which are diagonal in mass. This basis change will in general cause mix-
ing among generationg in the fermiomic currents of the GSW model. It is easy te check
that only the quark charged currents are affected by this mixing. To prove this asser-
cion let me organize all the charged fermions of a given rtype f, £ =§u,d, e}, into

£ £ .
column vectors PL and \I} = For instance:

v, -

v
L

r

Py

¢
E

. f s : . : .
The matrices ¥ can always be diagonalized by bi-unitary transformations

§F ¢ F £
(Ug_) M UR - MA.-“

f £
u =10
where L ‘B

change in the fermion fields

- ,
\Pf - Uf ‘«Pf . ‘{’i - U'_ ?i (IT1.17)

if ¥ is Hermitean. This diagonalization is #ffected by making a basis
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This transformation will not affect the neutral currents since these are charge dia-
gonal and U*U = . For the charged currents, on the other hand ,one has two different

unitary matrices entering and there will be a non zero generation mixing.

f" .
Consider, for instance, 3: . In terms of the compact notation I am using, before

the basis change

T :.[\T«‘: Y"\?f + @:Y*‘P:]

v &
where +.. = ‘3"- . After the basis change :Y_. becones!
(1%

- P —wv <
R R N AT (B L RS MR (R R N B

"~
Hence there is a general mixing matrix ¢ =fUz)(Ug)between the quarks of different
generations and a matrix UL in the lepton sector. The effect of Uf,
illusory. Since the nmeutrinos are massless, any linear combinatien of neutrinc

however, is

fields is still a neutrine field. The redefinition QLV—» (J: ¢‘: gets

rid of the matrix Uf in Eq. (III.18) and defines the physical ¥, field as that which

[
is coupled in the weak current to the charged lepton 4

. . a s -~ I3 ~ -
There is physics, however, in the matrix C. For o generations of quarks C is a upi-

Eiﬂ:ll phases.

tary n x n matrix, which is characterized by EL%le real angles an
Net all these phases are physical since one can rotate (2n-1) of the phases away by
redefinition of the quarks fields q}E and ?’E, still retaining the mass matrices M°
and Md diagonal *. Let me call C the matrix obtained from E'after these rvedefinitiens,
Then C hag “iE%il real angles and 1/2(n-1){(n-2) phases. The matrix C is called the
Cabibbo-Kobayashi-Maskawa matrix. For the case of three generations of quarks, it is
characterized by three angles GT’ 65 and 63 and a phase $ . These parameters can be
measured experimentally by looking at charged current weak interaction processes in-
volving the quarks of the Znd and 3rd generation. The presence of a non zera phase

E atlows for the viclation of CP in the GSW model,

Introducing Yukawa couplings in the GSW model allows for mass generation for the

fermions and predicts that in rhe quark sector there should be mixing in the charged

2n-1 not 2n since an overall phase has no meaning,
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currents. Although this is cbserved, as the Cabibbo Kobayashi Maskawa matrix is noen
trivial experimentally, ome is left in a rather unsatisfactory situvation. All the
quark and lepton masses are igggi parameters in the model, as are the angles 9.‘

& , 0} and § . In principle, all these parametefs are arbitrary, since they are
related to the arbitrary Yukawa couplings of Eq. (IIIL.15), Tn pracEice, however, the
pattern of the Fermion masses is so bizarre, and the amcunt of mixing sc "obvicusly"
related to the mass pattern, that one is naturally led te ask what underlying physics
determines all of this. To answer these questions one must go beyond the GSW model,
since in the model, as it is presently formulated, any pattern of masses and mixing
are allowed, This conundrum is not a theoretical inconsistency but a mystery, whose
resolution will require new physics. A probably related mystery of the GSW model is
the question of why are there generaticns of quarks and leptons, anyway? The number
of families is, in principle, a free parameter in the model and there is oo under-—

standing of why there ave {apparently) only three in nature.

I would like to gquantify these statements a bit by detailing some of the informatien

one has on the fundamental fermions. As far as one knows, neutrines are massless,
although positive evidence for mvs = 30 eV has recently been reported /39/. The particle
data boolk /40/ gives the bounds:

M, {4 eV L M, 4 Soo Ha ©oMa, &Ly MV (IIT.19a)

(A ’ 3 i T "

The charged leptons have the masses /f40/:

o, = 0.511 Mev ; mr = 105,66 YeV ; mt = 1.784 GeV (IIT.19b)
The masses of the quarks are inferentially determined. For the light quarks using
current algebra techniques and for the heavy quarks from the study of quarkonia /41/.
-
The top quark mass has very recently been established from W decay (Weyp Th) at the

collider, by trying to reconstruct this decay process /42/. One Finds

m . 5 MeV i 1.5 GevV o, 240 GeV
(IIL.19¢c)

L3 b
my ~10 MeV m * 200 MeV L 5 GeV

The elements of the Cabibbo Kobayashi Maskawa matrix are aqually "random", although
the randomness appears to be definitely correlated with the large mass splittings.

Essentially the mixing becomes less and less as the quarks get more separate in mass
and as they get heavier. For instance, from a comparison cf - decay and nuclear @

decay, including radiative corrections, one infers a small departure from unity for
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Coa 143/
|c 1= 0.9737 T c.0025 (I11.20a)
A new careful study of hyperon and kaon decays yields /44f
le, | =o0.221 * o.002 ' (1IT.20Cb)

From the shape of the lepton spectra in decays of B mesons /45/ and from new measure—

ments of their lifetimes /48/ one infers

¢ .
le 1 40005 (I11.20c)

and

le,, 1= 0.08 £ a.005 (1IT.20d)

It is hard to believe that all these numbers should be taken as Eree parameters.

The introduction of the Yukawa couplings in Eg. (IIT.15) mechanically makes it possible
fer masses and mixing to arise, once SU(2) x U{1) is broken down. It fails to explain,
however, at the basic level why they really arise. I should note an incidental resule,
which may be of some phenomenological importance. If the fermion do ger their mass
from the Lagrangian (III.15), one has an immediate prediction of how the Higgs field

d couples to fermions. Since, according to Eq. {IIL1.3), the Higgs field H enters in

'§ always in the combinatien (v+H), it is clear that che basis change which diagona-
lizes the fermion mass matrices (LII.16) will alsc diagonalize the coupling of H to
the fermions. Hence one predicts that H couples diagonally to fermions with a coupling

proportional to the fermion mass:

a Wgs = “‘:"_,.G -?‘Flv-l (I11.21)

where £ is any of the fermions in the thecry. According to this equation, therefaore
cne expects the Higgs bosen to decay to the heaviest pair of fermions kinematically
allowed. Unfortunately Eq. (ITL.21} alse suggests that direct preduction of the Higgs
boson by fusion of light quarks in pp collisions, or directly in ete” collisions,

will be greatly hindered.

The symmetty breakdown caused by the Higgs potential (IIT.1) gives masses tc all the

fundamental fields in the GSW model in terms of the scale v of the breakdown. Of

[S SR e o ——— e -
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course, in the fermion sector, since one knows the masses of the fermions, one pre-
fers instead to eliminate the unknown Yukawa couplings and replace them by mf/v, e.8.
as done in Eq. (IIL.21) Nevertheless, if there were no symmetry breakdown, all par-
ticles would be massless in the thecry. Since v is the only mass parameter in the
model, it is certainly silly to ask what sets its scale to approximately 230 GeV.

It has rc be obviously an input parameter. However, if one imagines that the GSW

madel is not a complete thaory, the question of the scale of v becomes meaningful,

Wilson /46/ was one of the earliest to remark that a fixed value for v # 250 GeV, is
net particularly natural, His arguments can be well understocd by focusing on the
Higgs mass and working in a theory with a cutoff. The cutoff represents the scale at
which physics beyond the GSW model emerges., The value of the Higgs mass, given in
Eq. (ITI.5), gets shifted by radiative corrections due to the interaction of the
Higgs field with itself and with the other fields in the theory (gauge bosons and
fermions). These radiacive shifts are quadratically divergent and in a theery with—
out a physical cutoff have to be venormalized away. That is, one has to imput the
Higgs mass value as a paramecer. Here, however, one wants to see what influence the
underlying theory has and one ought to compare these effeccs to the lowest crder

value, The Higgs mass, including the radiative effects, is schematically:
L1 -
M= 2ol e o A (I11.22)

where M is the cuc off. Clearly if one wants the Higgs mass to be light with re-
spect to the cut off, one has to adjust the initial value carefully to effect a can-
cellation. Saying it another way, the theory is unstable under perturbations. There

is no relation between the input and output parameters that one can control.

To restore naturalness in the theory there are.clearly twe opticns, which in fact can
be read off from Eq. (IIT.22):

Optien (1): The cut off M could be so. small that indeed the radiative corrections
are small corrections. But this means that the cut off is really of the same size as
the mass of the Higgs boson - or the Fermi scale. Clearly this canr orly happen if the
Higgs boson is not elementary but compcsite! There is no elementary Higgs field, but
some underlying strong interaction theory which in some way triggers the spontanecus
breakdown of SU(2) x U(1).

Option {2): There are extra interactions in the theory which force cancellacions in
the radiative corrections, so that these corrections are mo longer quadratically
dependent on A but only dependent logarithmically on A ’. This means that the final
value of mi depends on the initial value. Obviocusly, unless there is some symmetty
reason it will be impossible to obtain the desired cancellation. Naturalness is re-

stored because the corrections are protected by some symmetry.
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Attempts to enlarge the GSW theory with the view of making the Higgs sector of the
theory natural have been vigorously pursued in the last few vears and there exists
an ever expanding literature on the subject. Suggestions following the first option
above go under the generic name of Technicolor /47/ and attempt to find a nonper—
turbative, strong coupling, scenaric to understand the breakdown of SU(2y = U(1)
dynamically. The follewers of the second option, instead, introduce a Bose-Fermion
symmetry - supersymmetry — to stabil{ze the GSW model perturbatively. As super-
symmetry is the subject of J. Ellis lectures in this school, I shall not discuss in
any detail how it stabilizes the theory. Suffice it to say that given the complete
symmetry betwaen bosons and fermions, there is cancellation ameng the graphs because
fermions obey the Pauli principle and introduce appropriate facters of (-1). Rather,
L shall discuss a bit here how Technicoler theories are supposed to work and tie this
in with the even more speculative idea that the fundamental excitations of the GSW

model are themselves composite.

I begin my discussion of Techmicolor - or dynamical symmetry breakdown - by consider-
ing a numerically unrealistic, but physically cogent, source for the masses of the

W and Z bosons, which has to do with the strong interactions of quarks, The quarks
interact among themselves strongly through their color interactions, These inter—
actions are also governed by a gauge theory, based on the group SU{3), This theoxy,
Quantum Chromodynamics {QCD) is amply discussed in the lectures of Quigg and Brodsky
at this schoel. So I shall only focus on the few properties of QCD which I need for
my purposes here. QCD, in contrast to the electroweak theory, suffers ne spontaneous
breakdown. Because the gauge group is unbroken the theory confines. Thus, one does
not see the elementary excitations of QCD, the quarks and the gauge bosons (gluons),

in the spectrum but only their bound states, the hadrons.

In the limit in which one neglects the masses of the quarks, QCD has a large glebal
symmetry group. Ome can rotate all the left handed quark fields — of different
Elavors: u,d,s,.., - smong themselves and all right-handed quark fields among them—
selves and the QCD Lagrangian remains the same. This is easy to see. The QCD Lagran-

gian is, neglecting quark masses

- FYl
‘2;( . - £ ﬁi'(-ff'{_br \q? - {:E' F“_v {ITII.23)
N Flovas

-’
where Far is the gluon field strength and D is the appropriate SU(3) covariant

r

derivative for the quarks. Since the interaction is vectorial, the kinetic energy

term is just the sum of LL and RR contributicns
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F AT vngte A A A s

and this is obvicusly invariant under the SU(nE) X SU(nf) transformations
L R

£ Uff' £
@=L 9

(I11.24)
fE! £!

£
-9.UR 9

g

The dynamical scale A D associated with the energy scale at which the binding of

the quarks and gluons ?Eto hadrons happens, is of the order of several hundred MeV.
On this scale, only the masses of the u and d quarks are negligible. So, as far as
the strong interaction dynamics goes, only SU(Z)L % SU(Z)R is a good (approximate)
symuetry. For the heavier quarks, the neglect of their masses Is a bad dynamical
approximation, so the transformation inm (II.24) is not even (approximately) an in-
variance of the theory *. Whenever there is a global symmetry, as I discussed in
Section I, there is either a Wigner Weyl realization or a Nambu-Goldstone realiza-
tion, depending on whether there are degenerate multiplets or Goldstone bosons. The
spectrum of hadrons one knows shows no multipler structure corresponding to an
SU(Z)L X SU(Z)R syumetry, but there is a clear (approximate) isospin symmetry. The
iscspin symmetry corresponds to the diagonal subgroup of SU(Z)L X SU(Z)R. That is,
one rotates u and d quarks into each other the same way for both left and right
helicities. Furthermore the W -mesons appear to be considerably lighter than any
other hadronic excitations. This pattern suggests that the global SU(Z)L % SU{2)R
symmetry im QCD is broken dewn to SU(Z)L+R' As a result of the breakdown

SU(Z)L X SU(2)R — SU(2)L+R one expects to have three Goldstone bosocns, associated
with the generators of SU(Z)L_R, which do not annihilate the vacuum. These Goldstone
bosons are the pions, which in reality acquire a small mass, since a, and w; are not

strictly zero.

Cone may reasemably ask, what this nice piece of physics has to do with the W and Z°
masses? To answer this I must add one piece of dynamical information. The breakdown
of SU(Z)L x SU(Z)R in QCD happens because the QCD vacuum allows the Formatien of
SU(Z)L X SU(Z)R variant condensates. Although the color singlet combinations
ui{x)ui(x), di(x)di(x) (Here i is a color index i = 1,2,3) transform non trivially

under SU(Z)L x SU(Z)R they have a nen zero vacuum expectation value

# - + . .
For the strange quark, s, the situation is marginal.
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{utx)ulx) ¥ = {d=x)A(x)P £ 0 {(111.25)

This is analogous to what happens in superconductivity. Although fermion nuamber is a
good symmetry of the theory, there exist Gdoper pairs in the BCS ground state —
which carry fermion number two. The dynamical condeasates in (III.25) are the pre-
cise analogue of the Cooper pairs in a superconductor., The existence of these non

zere vacuyum expectation values is what causes the breakdown cof:
SU(2), = SU(2), - SU(2), o
and the formation of the Geldstone pions.

I am now ready to return to weak interactions. The condensates in (II1.25) noc only
break the global SU(2)L X SU(Z)R symuetry. If weak interactioms are given by the
GSW SU(2) x U(1) model, clearly the condensates in (IIL.25) will also cause a spen-
taneous breakdown of the loecal SU(2) x U(I) symmetry. Indeed uu and dd carry beth
SU(2) and U(!) quantum numbexrs, but not chatrge. Hence their condensates will break
SU(2) = U{1) = U(])em. The breakdown of a local symmetry always gives mass to the
gauge fields coupled to the broken generators. Therefore the W and the 2° will get
mass. Of course, since the condensates (Gu) and { dd » are typically of the scale
given by the strong interactions O(Aécn}, this mechanism provides a tiny W and 2
mass. Furthermore, there is the further drawback chat the "Goldstone” plons - which
do exist in the real world! - would have to disappear to give the longitudinal degrees

of freedom for the gauge bosons.

Despite these obvious drawbacks, it is instructive to compute the expected W and 2
masses from pure QCD effecrs, as Technicelor [f47/ is jusé a scaled version of this
analysis. In section I, I demcnstrated the Higgs mechanism of mass generation ac the
Lagrangian level. The existence of a nontrivial vacuum expectaction value < ¢ 5 im-
plies that "seagull" term —1" ¢+4’ At A! generates a mass for the gauge field
At ‘“'th = 2 'j" (Q’)(ﬁ\' Here there is no secalar fields coupled to the

5U(2) % U(1) gauge fields and what gets vacuum expectation value are the composite
operators ;i(x)ui(x), Ei(x)di(x}. How does one go about computing a4 mass? The key

to the answer to this questionr are the Goldstone pions. The existence of these mass-—
less particles causes a non trivial shift in the propagators of the gauge fields,

which results in a mass rerm.

Let's see this in detail. The propagator for a gauge field is preportiomal to 15.
This is familiar from QED, and just reflects the fact that the gauge field 1

is masslass. In the presence of interactions, the propagaﬁur structure changes, For
instance, the vacuum polarization graphs shown in Fig. 14, changes the photon pro-—

pagator in QED to - for q2 D mBZ:

1

b ¥ = " "
aco Th-3 b g ]

(II1.26)

Fig. 14: Vacuum polarization graphs in QED

The effect of interactions, as seen in Eq. (III.26), is to give an overall change in
the denominator structure of the gauge propagator. However, gauge invariance, still
demands that this denominater structure be proportional to qz. In general, therefore,

including interactions one expects for gauge propagators the replacement

1

o 1 (11.27)
g G L 1+ Tegy 1
This equation malkes it clear how a gauge field can acquire a mass when there is spon-
taneous symmetry breaking. In these cases there are zero mass particles in the theory
to which the gauge field can couple {through the currents of the theory) - the Gold-
. . 2
stone bosons. The contribution of T1{q"), because the Goldstone busons have zerc mass,
is proportiomal to 15, and this gives a finite mass shift in Eq. (ITT.27}.
q

2, . .
I want to compute T[ {q°) in QCD. For that purpose I need to know how do the weak.iso—
spin currenc J{'and the weak hypercharge current J; couple to the Goldstone pions.

According to Eq. (IT.14), focusing only on the quark piece, one has

- .

+ Tay wire . (- P .
36 s T ¥ 5{ (:5‘ . %‘u_, ALyt T (;)

X (I1I.28)
¢, v ¢ 5 ¢t 1
e R s R
s £ oylv drtd + 1 (Jyfi_’ru.—ﬂ"l‘ef;‘)
n n “
(IT1.29)
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The pions are the Goldstone bosons ¢f the breakdown of SU(Z)L x SU{Z)R into
SU(Z)L+R. Hence the matrix element of the broken SU(Z)L_R currents between the
pions and the vacuum is non zero {(cf. Eq. 1.29):
X W . [ g‘.
. -
Lo\ (5! ). 1T > ert 8
(1II1.30)

g
The 4, ) , currents of QCD are easily computed. They are precisely identical
LR’ s P

with the purely axial vector piece of the weak SU(2) currents. That is for the QCD

Lagrangian

TN (ol vt (v
( .l (A8 L 41);,; {I1L.31)

Hence

(TL—!.); = - "'.' L\:A) Yf Xy Ty (:) (I11.32)

From these equations one can compute the matrix element of the weak currents between

the vacuum and the appropriate one pion states:

CVTUIM ;py = ((EE VP85,

: (IT1.33)
9 - - -
URMEL TR IR G Y
. . & ¢ Tt .
I note in particular that T = T -+ has no matrix element between the

Cw 2 Y

pions and the vacuum.

The masses of the W and Z bosons arise because the contribution of the vacunm pola-
rization tensor is singular due to the presence of the massless pions. I show this

schematically in Fig. 15

Fig. 15: Origin of the lf terms in the vacuum polarizaticn Tf(qz) due to the one

pion intermediate states
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For the Z bosons, for example, according to Eq. (II.21), the relevant coupling is

+ Ne & i
y-'a.\' * 2 —S(." = £ 2 (j;(- —Sw\l@“ -J:up)

Lﬁsews-‘«.au 2lay %‘uv%
(I11.34)

For the graph of Fig. 15, the 1;~ term does net contribute since this term has no,

coupling to the Goldstone pien. The 1; term, however, contributes a mass shift

()

Qcy

T
T
< R N [ 9 $n ]
Cas O, 858y, Lcasdy,

(TT1.35)

+
A similar calculation for the W bosecns gives the same answer except for the cos &

W

facter, since one has a ecoupling for i = 1,2

DZ.M\ < 9 w’ T (II1I1.36)

Thus

(ML\\J) = [ 9—;“] ’ (111.37)

Rep

Remarkably, QCD predicts the same ratio for the W and Z masses as the CSW medel with

cne Higgs doublet

(Jdiu B Ry

)

(U
P

(IL1.38)

t
Cay &
0¢g ™
The actual value for these masses is, however, ridiculously small. The parameter fﬁ
can be calculated from the lifetime of the pions, since the matriz elemeat (IIT.33)
is precisely that relevant for the two body pion dacay [{= #v . From this calcula-

tion one obtains

$n & 95 mev (I11.39)
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Hence . Tt is cbviocus, tharefore, that V is really 0{4)} invariant. But 0{4) is isomorphic
to SUC2) x SU(2), so really ¥ has an 5U(2) x SU(2) symmetry alsc. When § gets a
(M ) = £ g-” ~ 3o ‘HGV (I11.40) vacuum expectation value (i) te , teally this cerresponds to giving one of
w P . the fields in (III.41) a vacuum expectation value. Hence one breaks C{4) =p 0(3).
i TEiA ow .

But 0{(3) is really isomorphic to SU{Z). Hence the spontaneous breakdown occurring
in the Higgs case is alse

The Technicolor idea /47/ developed by Susskind and Weinberg, uses the dynamical

: . 2 su(2) = su(2
ingredients of the above calculation to generate an "appropriate' breakdown of 5U(2) x su(2) &)

SU(2) = U(1}. Eq. {(IIT.37) fails in obraining the observed W mass because the para-

Therefore cne sees why one should get the same results in the two cases.
meter £y is toa small. Indeed fyg has a scale characteristic of that of QCD:

nv AQCD‘ To get the "right” ¥ mass, one must replace in Eq. IIT.40 fg~ V', the Technicolor is a very mice idea, since it replaces the imput parameter v of the Higgs
Ferui scale (ef. Bq. (I1.35). :I‘he suggestion of Susskind and Weinberg is thac there patential by a much more dynamical scenario. Roughly speaking, the difference between
exist an underlyigg Qeo-like theory, Technicolor, which has a dynamical scale the Technicolor theory and the GSW Higgs sector, is the difference there is between

ATCB 1 TeV = 10° GeV, If in such a theory a global SU(Z)L X SU(Z)R sytmetry broke the BCS theory of superconductivity, where the Cooper pair ceondensate is a dynamical
down to $U{2) . diagonal, the W and 2° could acquire mass by absorbing the "Techni- order parameter, and the Landau-Ginzburg effective theory, where the order parameter
pions” of chat cheory, precisely in the way this happened in the QCD case. The rele- is again the expectation value of some scalar excitation. However, Technicolor suffers
vant parameter fg[ for the breakdown in the Technicelor theory is nathing else but from two severe drawbacks, one technical and one more aesthetic. The technical problem,
the Fermi scale v. which is unsurmountable at least in the simplest version of Technicoler, is that

there appears to be no way to generate fermion masses in this way. The more aesthetic
T should comment on the vecessity of an SU(Z)L x SU(Z)R structure to get the correct objection is that to accomplish the breakdown of SU(2) x U(1) one has replaced one
€ parameter. This may appear as a miracle, and it is worthwhile te ask how this can doublet of scalar fields by a whole strong intaraction field.. theory, whose only
be connected to the simple Higgs example I discussed in Sect. IL. The teasen one gets raison d'8tre is to allow SU{(2) % U(1) to break down!

e = | in QLD and, by repeating this procedure, in Techaicolor, has to do with the

breakdown SU(Z)L x SU(2}R - SU(2) . Tt is the remaining global symmetry that forces

L+R
the parameter fo to be common te all three pion states in Eq. (I11.30). In turn this

To be sure, ultimately experiment will decide what 1s correct. The simple Higgs poten—
. tial predicts the existence of a single excitation - the Higgs boson H, In a Techni-

. _ rot »r : . . s
gives t’ t. a1l that the mixing of ¥ and W: cauges is the appearance of a cos °w coler theery, there is a plethora of Technihadrons, which are the analogue of hadrons
between the scales of the W and Z masses. Without any mixing, it is the residual
SU(Z)L+R

masses of the gauge bosons.

for the Technicoler theory. In absence of better.guidance, one would scale the Techni-

symmetry that guarantees the eguality of the £ 's and therefore of the hadron spectrum from that of ordinary hadrons by the ratio

-1
o ,h.
- ' ( Lo~ )
One can check that in che Higgs case, actually, this same phenowena happens. The ifc = E“ ——‘- ] tse0 (LIL.42)
point is that the potential . " . ;ﬂ
v z A (§+£ —_—k )L Hence one predicts an extraordinarily rich phenomenclogy in the TeV energy scale.
v
has a larger symsetry than SU{2) x U{1}. The field § is a complex doublet, which To pursue the Technicelor scenario at all, one has to find a way to generate masses
J——- * E]
I can write, if T wish, in terms of 4 real fields for the quarks and leptons. In pure Technicolor this appears impossible. This theory
< » L
? is built in complete analogy to 2 flaver QCD. The two techniquarks Tu and Td have the
. ( ¢ PR ¢ same SU(2) x U{1) properties as the u and d quarks, and the assumption is that the
- 1 \ 2 - =
'rs *s . * ) (IT1.41) condensates {TuTu) = (Tde‘)form, breaking SU(2) x U(1) dynamically. This gives the
4

o - 1 . - .
W and 27 a mass, but does not affect the ordinary fermions, since there is no
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coupling of Techniquarks to ordinary quarks. To generates quark masses one needs to
introduce some interaction between quarks and Techniquarks. Scon after the invention
of Technicolor, the guark mass problem spawned the idea of Extended Techmicolor

(ETC) /43/ by which one tan generate fermion masses.

In ETC theories one supposes that the Techniquarks and quarks are counected by {yet)
another gauge interaction, which suffers a spontansous breakdown at a scale

AETC)) ATC' The exchange of these supermassive ETC gauge bosons gives an effective
current () current interaction between ordinary quarks and Techniquarks. Schematiecally

one hasg:

! (T (&Y @ v, T)

¢ - (111.43)
5"9 A“‘.c

where  and T are the quarks and Techniquarks, respectively, It is clear that when
the Techniquarks are allowed te condense: (ET)~ (A.TC)3 # 0, the effective inter-

action (IIL1.43) will generate quark masses of the order of

3
'MQ ~ ATe (III.44)

v
A.ETL

ETC theories run into a variety of very difficult problems, which have discouraged
peeple - after a period of initial great enthusiasm - to pursue this line of attack
to the mass problem. The most pressing difficulties have to de with the presence of
unwanted interactions among ordinary fermions, induced by having introduced the
additional ETC interaction /49/. In addition, to construct medels which are ar least
semirealistic, it is necessary to have more than one doublet of Technifermions. In
such theories, the global group is larger than SU(2)+x SU(2) and in the breakdown
more than just three Technipions emerge. Since the W  and z% can absorb only three
Goldstone states, these medels always have some pseudogoldstone excitations in the
spectrum *. These states have masses of {n& A;C) where o : is one of coupling
constant squared of the standard SU(3) x SU(2) x U(l) model, and some states are in

definite conflict with known bounds /50/.

Pseudogoldstones since, after turning on the ordinary strong and electroweak inter—

actions, these states gain a small wmass.
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T would like te end these lectures by discussing a line of speculations with which

I am actively engaged. As I have mentioned earlier, a more (aesthetic) drawback of
Technicolor is that one has invented a whole other strong interaction theery, whose
sole purpese is really to provide condensates to break SU(2) x U{1). The idea that

I want to air here is that, if one thinks of quarks and leptons as composite objects,
then the underlying theery whose bound states are the quarks and leptons may serve
also at the same time as a Technicolor theory. The same dynamics which is responsible
for producing the quarks and leptons as bound state is alsc able to form condensates
which break SU(2) x U(1) —» U(1)em. Furthermore, if quark and leptons are bound
states, in principle their mass spectrum should be calculable. Hence this approach
locks, potentially at least, vary interesting. In practice, however, there are many

difficulties, some of which I will try to explain here.

Perhaps one of the principal stumbling blocks against the idea that quarks and leptons
are composite is that all the experimental evidence one has points towards their
elementarity! Naturally, this evidence is stronger for leptons, but one can also infer
that quarks are "elementary" dewn to certain minimum sizes. The apparent elementarity
of quarks and leptons implies that, if they are really composite, then their charac=~
teristic size { r» is smaller than that which can be reached with preseat experiments,
It has become coaventional, instead of discussing a size ¢ r)» to put bounds on a

s0 called, compositeness scale AC, with £ro»~ l/Ae.- To the extent that one has
only evidence for elementarity, this meaas that I\c is much larger than the energies

presently being explored,
Let me be a bit more specific and discuss two bounds on A .

(1) The anomalous magnetic moments of electrons and muons have been measured with in-
credible accuracy. They have also been computed theoretically on the basis of QED
~ which assumes that the electrons and mucns are peint like. Any discrepancy between
theory and experiment can then be a signal of a finite size for these leptons. To
date the possible discrepancy is only at an extremely low level, which could be well

due to experimental uncertainty. One has /51/

T
I . W) e

$a = ;'-_[ ‘%'L’,H - “3‘?—)°Ebl H

1-§ % g S

(I11.45)

Small weak and streomg interaction corrections are alsc included.
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This discrepancy could be due to effects of substructure. If leptons had an intrinsic

size one would expect an additional magnetic interaction, scaled by A c

zc“ Z y Fov
- [ ]
= & % (TII.46)
ht
just as it happens, for instance, in nucleons. This effective interaction gives an

extra contribution to ?—'L and one predicts

A
$a = ._." (III.47)

Ae

This equation sets a very high bound for A c

A, ted K+ :‘-l-ﬁ‘ GV

v

(ILI.48)

Aoy 2 7 x18%  Gev

If the composiceness scale of leptons {and therefore of quarks} is as high as that
given in the above equation, it will be essentially impossible to establish this

fact by direct experimentation. However, the bound in Eq. (IIT.48) may be an over
estimate, The effective interaction in Eq. (ILI.46) connects again ('R with eL’
since "r' contains 2 Y -matrices and i (r , '(‘} = © . One may argue that
operators in which there is a R-L transition ocught to vanish as the mass of the fields
involved vanishes, I shall makethis-argument more precise below . If this is indeed
the case, then the effective interaction in (III.46) cught to contain a further
factor of "‘G/A‘. That is, no anomalous interaction appears until whatever mechanism

is responsible for getting mass is also turned on. 1f /52/

{0, 0 L (2] o e

[AHS X (L1I.49)
Ac VAL
is the effective residual interaction, instead of (III.46), then
fa ("1‘ \L
Ae (111.50)

a5

In this case the bounds on A o are substantially reduced

A ey 2 28 Cev
¢ -~ (111.51)
A,y 2 350 GeV

et J

(2) One may also obtain bounds omn Ac by asking how well do cross sections for a
given process, computed with elementary quarks and leptons, agree with experiment.
Deviations could signal the presence of new contact interactions induced by composite—
ness. If the quarks and leptons have some nontrivial interwal structure, then one
necessarily has effective interactions among these fields scaled by the scale A In
the limit as A‘-' - , these additional interactions wvanish. Schematically,
therefore, one expects additional interactions ameng the quarks and leptons of a

generic structure as that given below.

LS i
fonbeer Cire Fece "Pc.' Mo ‘(‘J\Pﬂ P!- q’e (I11.52)
AI-
c

Here the +’ ; are quark cr lepton fields; giff is an effective coupling constant, and
the coefficients Q;S‘t are Clebsch Gordon coefficients of G(1), which give the
relative Astrength af the various "current-current''-interazctions in (IIL.52). The
matrices i‘a , in general can span the whole set of possible interactions. Because
the quarks and leptons are presumed te be bound states of a strongly interacting
theory, the residual interactions in (ITL.52) are not '"weak'. Rather one expects

ngf/q‘ﬂ ~0(1).

- . + = . . - - -
Eichten, Lane and Peskin /53/ analyzed e e 1interactions with a view of detarmining
Ac this way. As they found ne deviation from the behaviour of these scattering

amplitudes from the predictions of the electroweak theory, they set a bound:
A c * 750 - 1000 GeV (II1.53)

This bound is very comparable to Eq. (III.51). More recent reanalyses of the high

precision PETRA data have moved this bound claser to 2 TeV.

I should nete that the scale Ac defined through the effective Interactions {III.46)
or (III.49) and (IIL.52) is not precisely the same. However, since both these inter-
actions reflect the same phenomena - a non zero effective size for the leptons (and

quarks) - the scale I\c defined in these two equations cught to be approximately the
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same. Eqs. (IIL.51) and {(TII.53) give a winimum scale A c 2 1 Tev. This scale can
be much increased if one dces not "protect" the interactiom (IIL.46) by an additional
mass factor, as is donme in (ILI.49). Also, considerations of flaver changing preo-
cesses {like i €y ) cangive substantially larger bounds for A o Each of these
bounds, however, involves more assumptions than those discussed hexe. I shall be con-

servative (or is it, perhaps, radical?} and only becund ﬁ(:l 1 TeV,

Even a ''low" bound for A‘:, ﬂ‘:L1 TeV, already signals that the dynamics of composite
quarks and leptons is peculiar. This scale is certainly much bigger than that of the

masses of the bound states

)\‘_ ¥y M My, (T11.54)

Such a circumstance is movel in physiecs. It means that the bound states (quarks and

leptons) have a size which is substantially smaller than their Compton's wavelength!

{r> - X <z 11, ~ (I11.55)

In atomic physics one is used to the fact that the sizes of atoms are substantially

bigger than the relevant Compton wavelength. Fer instance in positronium

<EY s I but }te PO | . Thus
— _
e Moo
5> A
e e (I11.56)
pesitronlium
essentially because w¢¢ { . In the case of hadrenic physics one has
< ~ X
hadrons hadrons (111.57)

This equation is again easy to intuit. Hadronic physics - at least for hadrons made

up of the light quarks - is determined entirely by the dynamical scale Since

AL

qco
this is the only scale, it is clear that both Cr%adrons and Mhadrons should be re-
lated. Namely ¥ . -~ A QCD; ‘r)hadron'\' L. and hence Eq. (ITII.57) Eollows

(X

1f one is to consider the idea that quarks and leptons are composite seriously, one
must construct a dynamics where Eq, (III.55) hold. This causes substantial diffi-
culties if the dynamics of the underlying theory, which bounds the quarks and lep-
tons, is acalogous to QCD. The existence of 2 unique dynamical scale always forces

the bound states to have roughly this mass scale. The ouly way to avoid this con-
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clusion is to build in some protective symmetry which forces certain states to de~
couple from this scale and go to zero mass. In the case of QCD this actually happens
- at least in the limit of zero m, and m, masses. The picns, since they are Gold-

stone besons actually are forced to zéro mass — irrespective of che value of AQCD'

Two suggestions have been put forth for producing (essentially) massless quarks and

leptons in theories where thege states are dynamical bound states:

(1) Quarks and leptons are {approximarely) massless on the scale of A c because the
underlying theory - called in the literature a preon theory — has a protective

chiral symmetry. This symmetry furthermore is not broken in the binding /54/.

(2) Quarks and leptons are essentially massless because the underlying thecry is
supersymmetric and a glebal symmetry in this theory is spontanecusly broken down
/55/. Because there is a spontanecus breakdown there exist necessarily Goldstene
bosons in the spectrum of the theory. Because of the supersymmetry these states

are necessarily accompanied by fermionic excitations - which one then assaciates

with the quarks and leptons.

Two remarks are in order. Chirality protection - which is 't Hooft /54/ mechanism -
is a non trivial dynamical assumption. Clearly if a chiral symmetry survives the
binding process thea fermions with non zere chirality cannot have mass. However, in
QCD ~ which is a prototype for these kind of theories -~ chirality does not survive
in the binding. That is, h’QCD is SU(Z)L X SU(Z)Rsymmetric. This is a chiral symme-
try, since I can rotate the right and left handed underlying fields independently.
However, SU{Z)L X SU(Z)R does not survive the binding process. Condensates form
which break SU(Z)L X SU(2)R~$ SU(Z)L+R’ which is no longer a chiral sywmetry. In-
deed in QCD there are no massless fermions as bound states, The protens and neutrons
are massive even in the limit of m,, m, # 0, since the chiral symmetry is spontane-—

d
ously broken,

't Hooft /54/ spells out precise conditions which are necessary in a theory to allow
chirality to survive in the binding. These ancmaly matching conditions of 't Hooft
are somewhat technical and I shall net attempt to explain them in datail. Suffice it
to say that if one wants an underlying chiral symmetry to be preserved inm the bind-
ing then one must match the behaviour of certain Green's functioms (scattering ampli-

tudes) computed at the underlying level with that computed at the bound state level.

1f one uses supersymmetry and spontaneous breakdown to get massless fermions in the
theory /55/, then one can be sure that dynamically these states always ensue. Never-

theless, since eventually one wants to remove the "Goldstone partners of the quarks
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and leptons to scme sufficiently heavy mass, so as not to be in conflict with experi-
ment (M 220 GeV?), the supersymmerry must at some stage be broken. Once the super—
symmetry is brokenm, however, one must again appeal to some chirality to keep the
bound stares light. Models with both the supersymmerric Goldstone mechanism and

some chiral protection are therefore quite attractive /36/.

Althcugh many fundamental details are still missing, and many dynamical issues ave
uwnelaar, I want to illustrare with a particular model these ideas. This model will
tie together the ideas of composite quarks and leptons with Technicolor, thus
illustrating the connection that I alluded to earlier. I will simplify some of the
tachnical details of the discussion, which are not relevant here. For a more derailed
exposition, see Ref. 57. The model has an underlying SU(2) x SU(2)' gauge structure
and is supersymmetric. This SU(2) x SU(2)' is an unbroken symmetry and provides the
stroug binding for the theory just as in QCD. There are in the theory & fundamental
doublets of SU{2), 6 fundamental doublets of SU(2Z)' and an object which is a doublet
under both groups. Each of these doublets consists of a two component (left handed)
fermion and its two supersymmetric scalar partmers. The global symmetry of the model
is thus SU{6) % SU'(E) x U{1).

The dynamies of the model is assumed to be such that condensates form to break chis
*
global symmetry. Since the object GGL ™ Kg , with ):a and Ib SU(2) doublet

fields, is an SU{2) singlet, it is clear that the natural condensates

{1

CEar 2’ %2> =
(II1.58)

F ~
e X2 x: yx v’

with 1,2 being "flavor" indices for the fundamental fields will lead te the break-—
daown of SU(6) = SU(4) x SU{2) and SU(E)'—w SB(4)' x SU(2}'. Tf X, S is the funda-
mental field which carries both SU(2) and SU(2)' quantum numbers, then the conden—

sate

{AF ¥ o x™re X x

'
e’ 'kh v vp (I11.59)

will break the U(1) x SU(2) = su(2") -oSU(Z)diagu Hence as a result of these con-

*
There are actually some checks that one can perform which indicate that the

syumetry breakdown assumed is the one that likely happens

&9

densates the global symmectry of the original theory has broken down to
1 '
SU(4) x SU(4)" % Su(z)diag‘

It is easy to check -~ by counting generators - that in the breakdown

SU6) x SU(A)' x U(1) = SUC4) x SU(4") x SU(2) . (L11.60)
diag

there ensue 17 + 17 + 4 = 318 Goldstone bosons. The supersymmetry forces these
bosonic states to be accompanied by a number of fermionmic partmers (Quasi Gold-

stone farmions: QGF) and also some bosonic partners (Quasi Goldstone besens: QGB)

so that

n, ¥ nQGB = ZnQGF (III.61)
where s nQGB’ nQGF is the number of the appropriate bound states. One can check in
the model that for each of the three spontanesous breakdowns there ensue S$+8+4 = 22
QGF and 1+1+4 = & QGB.

These states are very simple to construct in terms of the fundamental fields. Lf I
denote by ¥ (%) the fermionic (bosonic) component of the fundamental fields, then

for example, the nine QGF which emerge from the breakdown SU(6)— SU(4) x SU(2) trans-—

form as

7 a a, i
L!/?‘i ~ €ay (‘{arx:_'-f‘ ‘kp\ p=1,2  q=3,4,5,6

o e (¥ o))

(111,62}

It is clear that the fields ¥'pq are 4 doublets of 8U{4) x SU{Z). By assigning the
charge and color of the fundamental field appropriacely, one can obtain precisely

the 4 left-handed doublets of one generation of quarks and leptons:

woe {10, G G (o}

The corresponding fields in the breakdown of the other SU(H) (SU(6)')} give rise to

the right handed fields — which are also organized in doublets of another SU(2)
group. In this model there is a right handed neutrino and a2 few extra states, like
\P in Eq. (ITI.62).
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If one wants to introduce the gauged SU{2) x U{!) of the CSW model here this can be
done, Because of the identification of (III.83), it is clear that one has to con-
sider the first two compotents of the fundamental fields as doublets under the

SU(2) of GSW. The condensate A of Eq. (EI1.59) which forms in the theory breaks
5U(2) x ¥(1) down since it iavolves 'x] and X 27 which are the fields that carry
SU(2) quantum nUmbers.* In fact the W and Z bosons (and their supersymmetric partners)
get their mass by abgorbing three out of the four excitations which emerged as Gold-
stone fields and partner fields in the last stage breakdown

U1y = su(2) x SUC2) = SU(Z)diag' Thus the underlying theory not only binds quarks
and leptons as massless bound states but also provides condensates which can hreak

SU(2) x U{1). The preon theory acts as technicolor.

The idea that the spontaneous breakdown of SU(2) x V(1) may occur dynamically, in

theories of composite quarks and leptons is extremely exciting. Since the breakdown
of S0(2) x U(l) must occur at a scale of 4 250 GeV, this tells cne that the scale
of compositeness cannot be arbitrarily far away. Indeed since one is producing both
the binding and the breakdown by the same theory, there is an intimate relatiomship
between I\C and v. Of course, A c must be somewhat bigger than v, so that the resi-
dual interactions of Eq. (II1.52} do net affect the success of the GSW theory, and

ﬁc 2,10 v appears to suffice phenomenologically.

Unfortunately, to coastruct realistic models incorporating this idea has proven very

tough. Two stumbling blaocks have stood in the way:

(1) Families of quarks and leptons have no simple dynamical realizationm. They can
be put in somewhat mechanically, but then one does not really gain a correct under-

standing of their roles in the dynamics.

(1} The problem of how to generate mass for the quarks and leptons remains. The under-—
lying theory is constructed with protective symmetries to give massless quarks and

leptons. How does one relax these protective symmetriaes?

Beth these issues are extremely complex and T do not knew what really is the correct
answer, especially with respect to familjes. I have a small hunch on the issue of

mass generation, which T am pursuing, because I think it might not be a totally

x . ]
These fields do rot carry U{!) quantum numbers. But because }" . y; do carry

U(1) numbers, this symmetry is also broken by the condensate Vk
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unreasonable dynamics. The idea that I am trying to follow is that the residual

interactions due to compositeness may themselves act as seeds for the masses of

the quarks and leptons. That is, in the thecry there are certain "irrelevant' con-

densates - corresponding tc condensates of quarks field bilinears or leptom field

bilinears - which one can ignore as a first approximation. These condensates are

small on the scale of A.,. because they are condensates of objects which are them—

selves singlets under the gauge group. Including these condensates, however, can

turn the residual interactions {III.52)} into mass terms for the quark and leptens.

Time will tell whether this idea has any merit.
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