
*H
EP
-P
H/
05
0∣
04
2*

Revised Version  TTP/05-01
 DESY 05-001

ar
X

iv
:h

ep
-p

h/
05

01
04

2 
v2

   
6 

A
pr

 2
00

5

TTP/05-01

SFB/CPP-05-01

DESY 05-001

Heavy Quarkonium Spetrum and

Prodution/Annihilation Rates to order �

3

0

�

3

s

A.A. Penin

a;b

, V.A. Smirnov

;d

, M. Steinhauser

a

a

Institut f�ur Theoretishe Teilhenphysik, Universit�at Karlsruhe,

76128 Karlsruhe, Germany

b

Institute for Nulear Researh, Russian Aademy of Sienes,

117312 Mosow, Russia



Institute for Nulear Physis, Mosow State University,

119992 Mosow, Russia

d

II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,

22761 Hamburg, Germany

Abstrat

We ompute the third-order orretions to the heavy quarkonium spetrum and

prodution/annihilation rates due to the leading renormalization group running of

the stati potential. The previously known omplete O(m

q

�

5

s

) result for the heavy

quarkonium ground state energy is extended to the exited states. After inluding

the O(�

3

s

) orretions the perturbative results are in surprisingly good agreement

with the experimental data on the masses of the exited � resonanes and the

leptoni width of the �(1S) meson. The impat of the orretions on the � sum

rules and top quark-antiquark threshold prodution ross setion is also disussed.

PACS numbers: 12.38.Bx, 14.40.Gx, 14.65.Ha



1 Introdution

The theoretial study of nonrelativisti heavy quark-antiquark systems is among the earli-

est appliations of perturbative quantum hromodynamis (QCD) [1℄. Its appliations to

bottomonium [2℄ and top-antitop [3℄ physis entirely rely on the �rst priniples of QCD.

In general perturbation theory an be applied for the analysis of these systems. Non-

perturbative e�ets [4,5℄ are well under ontrol for the top-antitop system and, at least

within the sum-rule approah, also for bottomonium. This makes heavy quark-antiquark

systems an ideal laboratory to determine fundamental parameters of QCD, suh as the

strong oupling onstant �

s

and the heavy-quark masses m

q

.

The binding energy of the heavy quarkonium state and the value of its wave funtion

at the origin are among the harateristis of the heavy-quarkonium system that are of

primary phenomenologial interest. The former determines the mass of the bound state

resonane, while the latter ontrols its prodution and annihilation rates.

Reently, the heavy quarkonium ground state energy has been omputed through

O(�

5

s

m

q

) inluding the third-order orretion to the Coulomb approximation [6℄. The

result has been used to extrat m

b

from the �(1S) meson mass. The properties of the

exited states are more sensitive to the nonperturbative phenomena, and the orrespond-

ing perturbative estimates annot be used, e.g., for the aurate determination of the

heavy-quark mass by diret omparison to the meson masses. However, they have to be

taken into aount in the framework of the nonrelativisti sum rules [2℄ whih is based on

the onept of quark-hadron duality and keeps the nonperturbative e�ets under ontrol.

Moreover, by investigating the exited states with reliable perturbative results at hand

one an test the e�ets and struture of the nonperturbative QCD vauum. Still only a

few states with small prinipal quantum numbers n and zero orbital momentum l are of

pratial interest.

As far as the wave funtion at the origin is onerned a omplete result is only avail-

able through O(�

2

s

) [7,8℄. The O(�

2

s

) orretion has turned out to be so sizeable that

the feasibility of an aurate perturbative analysis was hallenged [9℄, and it appears in-

dispensable to gain full ontrol over the next order. Only the logarithmially enhaned

O(�

3

s

ln

2

�

s

) [10,11℄ and O(�

3

s

ln�

s

) [12,13℄ (for QED, see Refs. [14,15,16℄) orretions are

available so far.

In this paper, we take the next step and alulate the nonlogarithmi third-order

orretions to the wave funtion at the origin and to the spetrum of the exited heavy

quarkonium states proportional to �

3

0

, where �

0

is the one-loop QCD beta-funtion. To-

gether with the ontributions already known, the new term allows to derive the omplete

result for the binding energy of the exited states. On the other hand the large-�

0

terms

usually onstitute a onsiderable part of the orretions and an be used to estimate the

unknown nonlogarithmi third-order ontribution to the wave funtion.

In the next setion we present the O(�

3

0

�

3

s

) orretions for the states with priniple

quantum number n = 1; 2; 3 and angular momentum l = 0. In Setion 3 we generalize

the omplete O(m

q

�

5

s

) result for the ground state energy [6℄ to the exited states. In

Setion 4 we disuss the impat of the orretions on the phenomenology of the b

�

b and t

�

t

2



systems. Our summary is presented in Setion 5.

2 Heavy quarkonium parameters to O(�

3

0

�

3

s

)

In the framework of nonrelativisti e�etive theory [17,18,19,20℄ the orretions to the

heavy quarkonium parameters are obtained by evaluating the orretions to the Green

funtion of the e�etive Shr�odinger equation [21℄. The �

3

0

part of the third-order on-

tribution results from the leading renormalization group running of the stati potential

whih enters the orresponding e�etive Hamiltonian and is given by (see also Ref. [22℄)

V

C
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C
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�

s

r
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1 +

�

s
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�
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160�
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�
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#

+O(�

4

s

)

)

; (1)

where L

r

= ln(e



E

�r), 

E

= 0:577216 : : : is Euler's onstant, �(z) is Riemann's zeta-

funtion with value �(3) = 1:202057 : : :, C

F

= (N

2



� 1)=(2N



) and C

A

= N



for the

SU(N



) gauge group. Furthermore, we have �

s

� �

s

(�) if not stated otherwise. The

oeÆients a

i

(i = 1; 2) and �

i

(i = 0; 1; 2) are given in Appendix A. For the three-loop

oeÆient a

3

only Pad�e estimates are available so far [23℄. In the order of interest one

has to onsider single iterations of the �

3

0

term, double iterations of the �

2

0

and �

0

term

and triple iterations of the �rst-order orretions proportional to �

0

. For the pratial

omputation we use the method elaborated in Refs. [24,7,25℄. In this way we obtain the

orretions to the energy levels and wave funtion at the origin in the form of multiple

harmoni sums. For general n the result is rather umbersome. For a spei� n, however,

the summation an be performed analytially. Below we present our result for n = 1; 2; 3

and l = 0 whih is suÆient for the phenomenologial appliations. For vanishing angular

momentumwe an write the perturbative part of the energy level with prinipal quantum

number n as

E

p:t:

n

= E

C

n

+ ÆE

(1)

n

+ ÆE

(2)

n

+ ÆE

(3)

n

+ : : : ; (2)

where ÆE

(k)

n

stands for orretions of order �

k

s

. The leading order Coulomb energy is given

by

E

C

n

= �

C

2

F

�

2

s

m

q

4n

2

: (3)

For the O(�

3

0

�

3

s

) term we obtain

Æ

(3)

�

3

0

E
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= E

C
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#

; (4)

where L

n

= ln(n�=(C

F

�

s

(�)m

q

)) and �(5) = 1:036927 : : :. Note that the n = 1 result has

already been known [26,27,6℄. The perturbative expansion for the wave funtion an be

written as follows

j 

n

(0)j

2

= j 

C

n

(0)j

2

�

1 + Æ

(1)

 

n

+ Æ

(2)

 

n

+ Æ

(3)

 

n

+ : : :

�

; (5)

where

j 

C

n

(0)j

2

=

C

3

F

�

3

s

m

3

q

8�n

3

; (6)

is the leading order Coulomb value. Our result for the O(�

3

0

�

3

s

) term reads

Æ
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�

3
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2

� 160�(5)

#

;

Æ

(3)

�

3

0

 

3

=

 

�

0

�

s

�

!

3
�
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3
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+

�
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2

�

L

2

3

+

�
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3

� 228�

2

+ 10�

4

+ 600�(3)

�

L

3

�

100679

54

+
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2

2

+

52�

4

15

+

36�

6

35

+ 1374�(3) � 108�

2

�(3)� 432�(3)

2

�360�(5)

#

: (7)

3 Exited states spetrum to O(m

q

�

5

s

)

The heavy quarkonium spetrum up to O(m

q

�

4

s

) has been derived in Refs. [28,7,8℄. For

onveniene of the reader the expressions for ÆE

(1)

n

and ÆE

(2)

n

are listed in Appendix B.
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At O(m

q

�

5

s

) it is onvenient to split ÆE

(3)

n

into two parts: one orresponding to vanishing

beta-funtion and one proportional to the oeÆients of beta-funtion:

ÆE

(3)

n

= ÆE

(3)

n

�

�

�

�(�

s

)=0

+ ÆE

(3)

n

�

�

�

�(�

s

)

: (8)

The ontribution ÆE

(3)

n

�

�

�

�(�

s

)=0

has been evaluated in Ref. [21℄. For ompleteness we inlude

the orresponding expressions in Appendix B. In Ref. [6℄ the quantity ÆE

(3)

n

�

�

�

�(�

s

)

has been

omputed for n = 1. Below we extend it to the exited states. Following Ref. [6℄ we

divide ÆE

(3)

n

�

�

�

�(�

s

)

into four piees

ÆE

(3)

n

�

�

�

�(�

s

)

= ÆE

(3)

n

�

�

�

C:r:
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n

�

�

�
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(3)

n

�

�

�

C:i:
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(3)

n

�

�

�

B:i:

: (9)

The �rst two terms of the above equation are related to the running of the lower-order

potentials. The ontribution ÆE

(3)

n

�

�

�

C:r:

is due to the three-loop running of the stati

potential, Eq. (1). It reads

ÆE

(3)

n

�

�

�

C:r:

= E

C

n

 

�

s
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�

!

3

(

�

6a

1

�

2

0
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0

�

1

�

L

2

n
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�
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a
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2
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3

4

a

2

�

0
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�
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0

�
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2

�

L

n
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�
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n

2
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2

2

�
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n

P

n
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2
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� 6	

2
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!

� a

1

�

2

0
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3

4

P
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a

2

�

0

+ 2P
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a

1

�

1

+

 

�

40

n

2

+

25�

2

3

�

40

n

P

n
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2

n+1

� 20	

2

(n + 1)

!

�

0

�

1

+ 4P

n+1

�

2

)

+ Æ

(3)

�

3

0

E

n

�

�

�

C:r:

; (10)

where P

n

= 	

1

(n)+

E

, 	

n

(z) = d

n

ln(�(z))=dz

n

and �(z) is the Euler's gamma-funtion.

The term Æ

(3)

�

3

0

E

n

�

�

�

C:r:

in Eq. (10) is inluded in Eq. (4).

The ontribution ÆE

(3)

n

�

�

�

B:r:

is due to the one-loop running of the power suppressed

terms in the NNLO

1

e�etive Hamiltonian (see, e.g., Ref. [21℄), whih we denote as the

\Breit potential". For this ontribution we obtain

ÆE

(3)

n

�

�
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= E
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�
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)

; (11)

where S is the spin quantum number.

1

LO, NLO, : : : stand for the leading order, next-to-leading order, et.
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The remaining two ontributions of Eq. (9) are related to the iteration of lower-order

potentials. The ontribution ÆE

(3)

n

�

�

�

C:r:

orresponds to the iteration of the one- and two-

loop running of the stati potential and is of the following form
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where Æ

(3)

�

3

0
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�

�

�

C:i:

ontributes to Eq. (4).

The last ontribution ÆE

(3)

n

�

�

�

B:i:

inorporates the iteration of the Breit potential and

the one-loop running of the stati potential. It reads
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After summing up the four ontributions aording to Eq. (9) we obtain our �nal result

for the O(�

3

s

) orretions to the energy levels involving oeÆients of the beta funtion.

For n = 1; 2; and 3 they read
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9

!

S(S + 1)

#

�

2

�

0

C

2

F

)

;

ÆE

(3)

2

�

�

�

�(�

s

)

= E

C

2

 

�

s

(�)

�

!

3

(

32�

3

0

L

3

2

+

�

12a

1

�

2

0

+ 88�

3

0

+ 28�

0

�

1

�

L

2

2

+

"

a

2

1

�

0

2

+ a

2

�

0

+ 22a

1

�

2

0

+

 

32 +

16�

2

3

+ 128�(3)

!

�

3

0

+ 3a

1

�

1

+ 68�

0

�

1

+ 4�

2

+ 4�

2

�

0

C

F

C

A

+

�

53

8

�

8

3

S(S + 1)

�

�

2

�

0

C

2

F

#

L

2

+

a

2

1

�

0

8

+

5

4

a

2

�

0

+

 

4 +

2�

2

3

+ 16�(3)

!

a

1

�

2

0

+

"

�102 +

4�

4

45

+

�

52

3

� 32�(3)

�

�

2

+ 112�(3) + 384�(5)

#

�

3

0

+

7

2

a

1

�

1

+

 

30 +

7�

2

3

+ 32�(3)

!

�

0

�

1

+ 6�

2

+

 

6 �

2�

2

3

!

�

2

�

0

C

F

C

A

+

"

165

16

�

4�

2

3

+

 

�

5

2

+

4�

2

9

!

S(S + 1)

#

�

2

�

0

C

2

F

)

;

ÆE

(3)

3

�

�

�

�(�

s

)

= E

C

3

 

�

s

(�)

�

!

3

(

32�

3

0

L

3

3

+

�

12a

1

�

2

0

+ 120�

3

0

+ 28�

0

�

1

�

L

2

3

+

"

a

2

1

�

0

2

+ a

2

�

0

+ 30a

1

�

2

0

+

 

136

3

+

16�

2

3

+ 192�(3)

!

�

3

0

+ 3a

1

�

1

+

260

3

�

0

�

1

+ 4�

2

+

8�

2

3

�

0

C

F

C

A

+

�

85

18

�

16

9

S(S + 1)

�

�

2

�

0

C

2

F

#

L

3

+

7

24

a

2

1

�

0

+

19

12

a

2

�

0

+

 

17

3

+

2�

2

3

+ 24�(3)

!

a

1

�

2

0

+

"

�

9514

27

+

2�

4

15

+

�

427

9

� 72�(3)

�

�

2

+ 140�(3) + 864�(5)

#

�

3

0

+

9

2

a

1

�

1

+

 

130

3

+

7�

2

3

+ 48�(3)

!

�

0

�

1

+

22

3

�

2

+

 

55

9

�

2�

2

3

!

�

2

�

0

C

F

C

A

+

"

1217

108

�

4�

2

3

+

 

�

82

27

+

4�

2

9

!

S(S + 1)

#

�

2

�

0

C

2

F

)

: (14)

The equation with n = 1 agrees with the result of Ref. [6℄. The Eqs. (14), (25), (26)

and (27) provide the omplete result for the energy levels up to O(m

q

�

5

s

). We should

note that, although we only present analytial results for the �rst three priniple quantum

numbers, there is no priniple problem to obtain expressions for higher exited states, too.

However, from the phenomenologial point of view they are far less important, and thus

we refrain from listing them expliitly.

It is instrutive to evaluate the energy levels in numerial form:

ÆE

(3)

1

E

C

1

= �

3

s

2

4

 

70:590j

n

l

=4

56:732j

n

l

=5

!

+ 15:297 ln �

s

+ 0:001 a

3

+

 

34:229j

n

l

=4

26:654j

n

l

=5

!

�

�

�

�

�

�

3

0

3

5

;

ÆE

(3)

2

E

C

2

= �

3

s

2

4

 

84:634j

n

l

=4

62:164j

n

l

=5

!

+ 8:647 ln �

s

+ 0:001 a

3

+

 

67:337j

n

l

=4

52:434j

n

l

=5

!

�

�

�

�

�

�

3

0

3

5

;
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ÆE

(3)

3

E

C

3

= �

3

s

2

4

 

101:69j

n

l

=4

72:368j

n

l

=5

!

+ 6:305 ln �

s

+ 0:001 a

3

+

 

98:824j

n

l

=4

76:953j

n

l

=5

!

�

�

�

�

�

�

3

0

3

5

; (15)

where �

s

= �

s

(�

s

=n) and � = �

s

=n with �

s

= C

F

�

s

(�

s

)m

q

and we put S = 1 whih

orresponds to the spin-triplet state. The reent analysis of the spin-dependent ontri-

bution to the spetrum, whih is responsible for the hyper�ne splitting, an be found in

Refs. [29,30℄. In Eq. (15) we have separated the ontributions arising from a

3

and �

3

0

.

Using the Pad�e estimates [23℄ we obtain 0:001 a

3

j

n

l

=4

� 6 and 0:001 a

3

j

n

l

=5

� 4. Thus, the

result for the energy levels depends only marginally on the preise value of a

3

provided

the Pad�e estimates give the orret order of magnitude. Furthermore, one an see that

the �

3

0

term ontributes between 25% (n = 1) and 50% (n = 3) of the nonlogarithmi

term.

4 Heavy quarkonium phenomenology

In this setion we disuss some phenomenologial appliations of the results derived in

the previous parts of the paper. As input values for the numerial analyses we adopt

�

s

(M

Z

) = 0:118, and m

b

= 5:3 GeV and m

t

= 175 GeV for the quark pole masses.

Furthermore, we use the soft sale �

s

� 2:10 GeV for the bottom and �

s

� 32:6 GeV for

the top quark ase.

Exited states of bottomonium. The mass of the �(nS) meson an be deomposed

into perturbative and nonperturbative ontributions

M

�(nS)

= 2m

b

+ E

p:t:

n

+ Æ

n:p:

E

n

: (16)

The perturbative ontribution E

p:t:

n

up to O(m

q

�

5

s

) is given in the previous setions. The

phenomenologial appliation of the result to the �(1S) meson mass has been disussed

in Ref. [6℄. For the exited states let us onsider the ratio

�

n

=

E

n

� E

1

2m

b

+ E

1

: (17)

It depends on the quark mass only through the normalization sale of �

s

and does not

su�er from renormalon ontributions. Inluding suessively higher orders one gets for

� = �

s

10

2

� �

p:t:

2

= 1:49 (1 + 0:79

NLO

+ 1:18

NNLO

+ 1:21

N

3

LO

+ : : :) ;

10

2

� �

p:t:

3

= 1:77 (1 + 0:92

NLO

+ 1:37

NNLO

+ 1:55

N

3

LO

+ : : :) ; (18)

where �

(4)

s

(�

s

) is extrated from its value at M

Z

using four-loop beta-funtion aom-

panied with three-loop mathing

2

. Though the onvergene of the series is not good,

2

We use the pakage RunDe [31℄ to perform the running and mathing of �

s

.
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�(2S) �(3S)

10

2

� �

p:t:

n

6:2

+1:7

�1:2

8:6

+2:4

�1:8

10

2

� �

exp

n

5:95 9:46

Table 1: Perturbative versus experimental results for the parameter �

n

as de�ned in

Eq. (17). The theoretial unertainty orresponds to �

s

(M

Z

) = 0:118 � 0:003. The

experimental values are extrated from Ref. [34℄. For a

3

we used the Pad�e estimate [23℄

a

3

j

n

l

=4

= 6272.

the N

3

LO perturbative result is in impressive agreement with the experimental values

�

exp

n

= (M

�(nS)

�M

�(1S)

)=M

�(1S)

for n = 2 and 3 as an be seen in Tab. 1. We would

like to emphasize the role of the perturbative orretions neessary to bring theory and

experiment into agreement whih we will use in the following to estimate the order of

magnitude of the nonperturbative e�ets. In fat the absene of a suÆiently aurate

estimate of the nonperturbative part Æ

n:p:

E

n

is one of the main problems in the theory of

heavy quarkonium. In the limit �

2

s

m

q

� �

QCD

it an be investigated by the method of

vauum ondensate expansion [4,5℄. However, for bottomonium it an only be used for

n = 1. For higher states the leading term due to the gluoni ondensate grows as n

6

.

It beomes unaeptably large already for n = 2 where the whole series blows up [32℄.

Even for n = 1 suh an estimate su�ers from large unertainties due to the poorly known

value of the gluoni ondensate and due to a strong sale dependene. A rough numerial

estimate is Æ

n:p:

E

1

� 60 MeV [6℄. Sine our perturbative result agrees very well with the

experimental result we an onlude that Æ

n:p:

E

2

should be of the same size as Æ

n:p:

E

1

.

In general for bottomonium the nonperturbative orretions appear to be rather moder-

ate and the theoretial estimates are dominated by perturbative ontributions. Similar

onlusion has been made in Ref. [33℄ in a somewhat di�erent framework.

�(1S) leptoni width. In the nonrelativisti e�etive theory the leading order approxi-

mation for the leptoni width �

LO

(�(1S)! l

+

l

�

) � �

1

reads �

LO

1

= 4�N



Q

2

b

�

2

j 

C

1

(0)j

2

=

(3m

2

b

), with N



= 3 and Q

b

= �1=3. Combining the known perturbative results up to

O(�

3

s

ln�

s

) (see Ref. [12℄) with the O(�

3

0

�

3

s

) ontribution obtained in Setion 2 we obtain

the following series

�

1

� �

LO

1

�

1 � 1:70�

s

(m

b

)� 7:98�

2

s

(m

b

) + : : :

�

�

�

1� 0:30�

s

� 5:19�

2

s

ln�

s

+ 17:2�

2

s

�14:4�

3

s

ln

2

�

s

+ 0:17�

3

s

ln�

s

� 34:9�

3

s

j

�

3

0

+ : : :

�

; (19)

where �

s

= �

s

(�

s

). The ontribution oming from the hard virtual momenta region [35,36℄

is separated and the orresponding strong oupling is normalized at � = m

b

. Evaluating

Eq. (19) and retaining only the logarithmi and �

3

0

terms at N

3

LO we �nd

�

1

� �

LO

1

(1� 0:445

NLO

+ 1:75

NNLO

� 1:67

N

3

LO

0
+ : : :) ; (20)
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Figure 1: (a) �

1

normalized to

^

�

1

� �

LO

1

j

�

s

!�

s

(�

s

)

as a funtion of � at LO (dotted), NLO

(dashed), NNLO (dotted-dashed) and N

3

LO

0

(full line). The horizontal line orresponds

to the experimental value �

exp

(�(1S) ! e

+

e

�

) = 1:31 keV [34℄. For the N

3

LO

0

result,

the band reets the errors due to �

s

(M

Z

) = 0:118 � 0:003. (b) The analog plot for R

1

with

^

R

1

� R

LO

1

j

�

s

!�

s

(�

s

)

.

where the prime indiates that the N

3

LO orretions are not omplete. Though the

perturbative orretions are huge, the rapid growth of the perturbative oeÆients stops

at NNLO if we assume that the �

3

0

term sets the sale of the nonlogarithmi third-

order ontribution. In Fig. 1(a), the width is plotted as a funtion of � inluding the

LO, NLO, NNLO and N

3

LO

0

approximations along with the experimental value. For

the numerial evaluation we extrat �

(4)

s

(m

b

) from its value at M

Z

using four-loop beta-

funtion aompanied with three-loop mathing. �

(4)

s

(m

b

) is used as starting point in

order to evaluate �

(4)

s

(�) at N

k

LO with the help of the (k + 1)-loop beta-funtion. As

one an see in Fig. 1(a), the available O(�

3

s

) terms stabilize the series and signi�antly

redue the sale dependene. At the sale �

0

� 2:7 GeV, whih is lose to the physially

motivated sale �

s

, the N

3

LO

0

orretions vanish and at the sale �

00

� 3:1 GeV the result

beomes independent of �; i.e., the N

3

LO

0

urve shows a loal maximum. In the whole

range of � between 2 GeV and 5 GeV the result for the width agrees with the experimental

value within the error bar due to the unertainty of the strong oupling onstant. This

may signal that the missing perturbative orretions are rather moderate. Furthermore,

this result onstitutes a signi�ant improvement as ompared to the NLL approximation

disussed in Ref. [37℄.

For a de�nite onlusion, however, one has to wait until the third-order orretions

are ompleted. The potentially most important part to be omputed is the ultrasoft

ontribution whih inludes �

s

(�) normalized at relatively low ultrasoft sale �

us

� �

2

s

m

q

.

Currently only a partial result for this ontribution exists [38℄.

� sum rules. The nonrelativisti � sum rules [2℄ operate with the high moments of

the spetral density with n � 1=�

2

s

, whih are saturated by the nonrelativisti near-

10



threshold region. The experimental input is given by the masses and leptoni width

of the � resonanes whih are known with high auray. On the theoretial side the

nonperturbative e�ets are well under ontrol. This makes the � sum rules one of the

most aurate soures for the bottom quark mass value. The omplete perturbative

analysis has been performed up to NNLO [24,7,16,39,27℄. The extension to N

3

LO is a

hallenging problem.

The theoretial value of the high moments is saturated by the ontribution of a few

lowest heavy quarkonium states and the orretions to the moments are dominated by

the orretions to their masses and wave funtions at the origin. To estimate the size

of the N

3

LO orretions we inlude the O(m

q

�

5

s

) result for the energy levels and the

partial O(�

3

s

) result for the wave funtion at the origin whih inludes all the logarithmi

term [12℄ and the �

3

0

terms obtained in Setion 3. We perform the analysis along the

lines desribed in Ref. [7℄ using � = �

s

. For n � 20 the orretions to the moments are

dominated by the one to the ground state energy and we reover the result of Ref. [6℄

for the bottom quark mass. For lower moments, whih provide better balane between

theoretial end experimental unertainties [7℄, the situation hanges drastially as the

orretions to the wave funtion at the origin begin to play an important role. For n = 4

the negative third-order ontribution to the wave funtion ompletely anels the e�et

of the third-order orretion to the binding energy, and the orretion to the pole mass

m

b

almost vanishes. The pole mass an be onverted into the MS mass �m

b

( �m

b

) whih is

widely believed to have muh better perturbative properties. If we orrelate the series so

that the k

th

-order orretion to the sum rules goes along with the k-loop mass relation,

whih is natural for low moments, we obtain as an e�et of the third-order orretions

Æ �m

b

( �m

b

)

N

3

LO

� �100 MeV. We take this variation as an estimate for the size of the

N

3

LO orretions within the � sum-rule approah. It is interesting to note that the

N

3

LO orretion to �m

b

( �m

b

) is negative at the soft normalization sale in ontrast to the

series obtained from the ground state energy analysis [6℄.

Top quark-antiquark threshold prodution. The nonperturbative e�ets in the ase

of the top quark are negligible. However, due to the relatively large top quark width,

�

t

, its e�et has to be taken into aount properly [3℄ sine the Coulomb-like resonanes

below threshold are smeared out. Atually, the ross setion only shows a small bump

whih is essentially the remnant of the ground state pole. The higher poles and ontinuum,

however, a�et the position of the resonane peak and move it to higher energy. The value

of the normalized ross setion R = �(e

+

e

�

! t

�

t)=�(e

+

e

�

! �

+

�

�

) at the resonane

energy is dominated by the ontribution from the would-be toponium ground state whih

in the leading approximation reads R

LO

1

= 6�N



Q

2

t

j 

C

1

(0)j

2

= (m

2

t

�

t

), where Q

t

= 2=3.

The analog to Eq. (19) reads

R

1

� R

LO

1

�

1� 1:70�

s

(m

t

)� 7:89�

2

s

(m

t

) + : : :

�

�

�

1 � 0:43�

s

� 5:19�

2

s

ln�

s

+ 16:1�

2

s

�13:8�

3

s

ln

2

�

s

+ 2:06�

3

s

ln�

s

� 27:2�

3

s

j

�

3

0

+ : : :

�

; (21)
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with �

s

= �

s

(�

s

). Numerially we �nd

R

1

� R

LO

1

(1� 0:243

NLO

+ 0:435

NNLO

� 0:268

N

3

LO

0
+ : : :) : (22)

The new third-order orretions proportional to �

3

0

amount to approximately �7% of the

LO approximation at the soft sale whih is the same order of magnitude as the O(�

3

s

)

linear logarithmi term. The available N

3

LO terms improve the stability of the result

with respet to the sale variation as an be seen in Fig. 1(b). The absene of a rapid

growth of the oeÆients along with the alternating-sign harater of the series and the

weak sale dependene suggest that the missing perturbative orretions are moderate and

most likely are in the few-perent range. It is interesting to note that the perturbative

ontributions of di�erent orders, whih are relatively large when taken separately, anel

in the sum to give only a few perent variation of the leading order result.

5 Summary

In this paper the important lass of the third-order orretions to the heavy quarkonium

parameters proportional to �

3

0

has been obtained. The omplete result for the exited

states spetrum to O(m

q

�

5

s

) is derived. The perturbative results are in surprisingly good

agreement with the �(2S) and �(3S) meson masses and the leptoni width of the �(1S)

meson. Thus the nonperturbative e�ets in bottomonium seem to be rather moderate

and the theoretial results are dominated by the perturbative ontributions. A failure of

early low-order perturbative analysis to desribe the � system is due to large perturbative

orretions to the Coulomb approximation. On the basis of our results the magnitude of

the N

3

LO orretions to the � sum rules and top quark-antiquark threshold prodution

ross setion is estimated. The available N

3

LO orretions whih inlude all logarith-

mi terms and the nonlogarithmi �

3

0

ontribution stabilize the perturbative series for

the prodution/annihilation rates that makes us more optimisti about possible aurate

perturbative desription of these quantities.
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A Stati potential and beta-funtion

For onveniene of the reader we list in this appendix the result for the oeÆients of the

stati potential (see [41,42,43℄ and referenes therein)

a

1

=

31

9

C

A

�

20

9

T

F

n

l

;

a

2

=

"

4343

162

+ 4�

2

�

�

4

4

+

22

3

�(3)

#

C

2

A
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and the beta-funtion
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where T

F

= 1=2 and n

l

is the number of the light quark avours.

B Results for ÆE

(i)

n

In this appendix we ollet the known results for the perturbative orretions to the heavy
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The result for ÆE
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where L

�

s

= � ln(C

F

�

s

) and L

E

n

stands for the QCD Bethe logarithms with the numerial

values [38℄

L
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1

= �81:5379 ; L
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2

= �37:6710 ; L
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= �22:4818 : (28)

The terms proportional to L

�

s

have been omputed for the �rst time in Ref. [44℄.
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