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Abstract

We investigate chiral zero modes and winding numbers at fixed points on T 2/ZN orb-
ifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads
to a formula n+ − n− = (−V+ + V−)/2N , where n± are the numbers of the ± chiral
zero modes and V± are the sums of the winding numbers at the fixed points on T 2/ZN .
This formula is complementary to our zero-mode counting formula on the magnetized
orbifolds with non-zero flux background M 6= 0, consistently with substituting M = 0
for the counting formula n+ − n− = (2M − V+ + V−)/2N .
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1 Introduction

Superstring theory is known as a unique candidate of the unified theory between gauge
interactions and quantum gravity. In its formulation, the theory requires the presence of
extra dimensions due to conformal anomaly cancellation. A key issue in the long history has
been to show that the theory can involve the Standard Model (SM) of particle physics. Indeed
in the context of string phenomenology and string cosmology, many frameworks has been used
to construct phenomenological models, e.g., heterotic strings [1–5], type I setups [6–8], type
IIA/B setups [9–14] and F-theory [15–17].

In higher dimensions, irreducible representations of spinors are vector-like in the unit
of four-dimensional (4d) Weyl spinors. In the stringy frameworks above as well as higher-
dimensional model constructions, a crucial difficulty is to obtain chiral spectra like the SM
quarks and leptons. As found in the literature, there are powerful mechanisms to realize
the chirality in 4d spacetime: orbifold projections [18, 19], background magnetic fluxes and
Wilson lines [6, 20–22] and both [23–25]. Phenomenological models including compact extra
dimensions have been widely expected to solve the problems behind the SM. In terms of
the mechanisms above, the higher-dimensional models are found to lead to three-generation
models [26–34], the quark/charged-lepton mass hierarchy [35–43], CP violation [44, 45] and
so on. These mechanisms have played important roles also in model constructions of the
superstring theory [1,10,13,46,47] as well as higher-dimensional grand unified theories, e.g.,
[48–50].

A smart way to discriminate whether a given setup is chiral or not, is to check the index

Ind(i /D) ≡ n+ − n−, (1.1)

where n± are the number of ± chiral zero modes for a Dirac operator /D on extra dimensions.
This is the notion of the Atiyah-Singer index theorem [51]. The index is a topological invariant
and takes non-zero values if the setup contains lowest-lying states with chirality. The index
theorem was applied to a two-dimensional (2d) torus with background magnetic flux [21,52],

n+ − n− =
q

2π

∫
T 2

F = M, (1.2)

where M denotes the flux quanta. For M 6= 0, the index is non-zero and it is easily confirmed
that the lowest-lying states are chiral and degenerate (e.g., n+ = M and n− = 0 for M > 0)
thanks to the presence of magnetic flux.

In our previous paper [53], we have discovered a zero-mode counting formula on magne-
tized orbifolds T 2/ZN (N = 2, 3, 4, 6) for M > 0,

n+ − n− =
M − V+

N
+ 1, (1.3)

where V+ denotes the total winding numbers for positive chirality modes at fixed points.1

Interestingly, both M/N and V+/N are not integers, in general, but the combination (M −
1To be precise, the formula (1.3) has not been established as the index theorem. This is because in [53]

the equality in Eq. (1.3) has been verified by computing n+ − n− and (M − V+)/N + 1 separately and then
comparing their values. Thus, it is not still clear what leads to the formula (1.3).
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V+)/N becomes an integer in any pattern. Thus, the winding numbers at the fixed points
are especially important for the index on the orbifolds.

One would suppose that on the magnetized orbifolds, the index should be affected by
two sources, i.e. the flux background M 6= 0 and the orbifold projections. Let us separate
Eq. (1.3) into the flux-dependent part M/N and independent one −V+/N +1. This makes us
suppose that the former originates from the total flux on the orbifolds, where the fundamental
area is 1/N as much as that on the torus. In this paper, we further pursuit what the flux-
independent term −V+/N + 1 implies. Considering the index theorem on T 2/ZN for M = 0,
we will derive another expression of our zero-mode counting formula

n+ − n− =
1

2N
(−V+ + V−), (1.4)

and find V+ + V− = 2N . Here V± denote the total winding numbers for ± chirality modes
at fixed points. These relations keep a consistency with substituting Eq. (1.3) for M = 0. In
addition, the formula (1.4) is a generic expression because its both sides are antisymmetric
under the exchange of ±.

We prove the formula (1.4) as the index theorem. To this end, we use the trace formula

Ind(i /D) = n+ − n− = lim
ρ→∞

tr[σ3e
/D

2
/ρ2

]. (1.5)

Then, we find that Eq. (1.5) leads to the index formula (1.4). Our derivation clearly shows
that the index n+−n− on T 2/ZN is determined by the winding numbers at the fixed points.
The proof is the main result of this paper.

This paper is organized as follows. In Section 2, we start with the Lagrangian of a six-
dimensional (6d) Weyl spinor on a 2d torus T 2. In Section 3, we explicitly construct mode
functions on orbifolds T 2/ZN . The values of n± for each ZN parity η, the Scherk-Schwarz
twist phase (α1, α2) and N are computed in Section 3. In Section 4, we evaluate the trace
formula (1.5) by using a complete set of the mode functions, and then confirm the relation
(1.4) to the index theorem from the viewpoint of winding numbers V± in Section 5. Section
6 is devoted to conclusion and discussion. In appendix A, we derive a formula used in our
discussion.

2 Six-dimensional Weyl fermion on T 2

First, we briefly discuss the mode expansion of a 6d Weyl fermion on a 2d torus T 2.

2.1 Setup

We start with the Lagrangian of a 6d Weyl fermion on T 2:

L6d = iΨ̄ΓI∂IΨ (Γ7Ψ = +Ψ), (2.1)
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where I (= 0, 1, 2, 3, 5, 6) is the 6d spacetime index and Γ0,Γ1, · · · ,Γ6 denote the 6d gamma
matrices satisfying

{ΓI ,ΓJ} = −2ηIJ (I, J = 0, 1, 2, 3, 5, 6), (2.2)

(ΓI)† =

{
+ΓI (I = 0),

−ΓI (I 6= 0),
(2.3)

with ηIJ = diag (−1, 1, 1, 1, 1, 1). Γ7 is the 6d chiral operator defined by −Γ0Γ1Γ2Γ3Γ5Γ6.
For our analysis, it is convenient to take the following representation of gamma matrices:

ΓI =


γµ ⊗ I2 I = µ = 0, 1, 2, 3,

γ5 ⊗ iσ1 I = 5,

γ5 ⊗ iσ2 I = 6,

(2.4)

where σa (a = 1, 2, 3) denotes the Pauli matrices, I2 is the 2 × 2 unit matrix and γ5 =
iγ0γ1γ2γ3. The 6d chiral operator Γ7 is defined by γ5 ⊗ σ3.

With this representation of the 6d gamma matrices, the 6d Weyl fermion Ψ(x, z) can be

decomposed into 4d Weyl left/right-handed fermions ψ
(4)
L/R(x) as

Ψ(x, z) =
∑
n

{ψ(4)
R,n(x)⊗ ψ(2)

+,n(z) + ψ
(4)
L,n(x)⊗ ψ(2)

−,n(z)}, (2.5)

where xµ (µ = 0, 1, 2, 3) denotes the 4d Minkowski coordinate and z = x5 + ix6 is the complex

coordinate on the 2d torus T 2. Since the 2d Weyl fermions ψ
(2)
±,n(z) are chosen as

σ3ψ
(2)
±,n = ±ψ(2)

±,n, (2.6)

we can express ψ
(2)
±,n as the form

ψ
(2)
+,n(z) =

(
f+,n(z)

0

)
, ψ

(2)
−,n(z) =

(
0

f−,n(z)

)
, (2.7)

where n labels the Kaluza-Klein (KK) levels.
The 2d torus T 2 is defined by the identification

z ∼ z + 1 ∼ z + τ (τ ∈ C, Imτ > 0) (2.8)

under torus lattice shifts.2 The 2d Weyl fermions ψ
(2)
±,n(z) (or f±,n(z)) are required to satisfy

the boundary conditions

ψ
(2)
±,n(z + 1) = ei2πα1 ψ

(2)
±,n(z), (2.9)

ψ
(2)
±,n(z + τ) = ei2πα2 ψ

(2)
±,n(z), (2.10)

where αj (j = 1, 2) corresponds to a Scherk-Schwarz (SS) twist phase.

2Since the compactification scale of the torus is irrelevant for our analysis, we will take a radius of T 2 to
be 1. The complex parameter τ of T 2 specifies the shape of T 2.
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2.2 Mode functions on T 2

The mode functions f±,n(z) on T 2 are taken as eigenfunctions of the differential operator
−4∂z∂z̄ , i.e.

−4∂z∂z̄f+,n(z) = m2
nf+,n(z), (2.11)

−4∂z∂z̄f−,n(z) = m2
nf−,n(z). (2.12)

Here, ∂z and ∂z̄ are defined by

∂z =
1

2
(∂5 − i∂6), ∂z̄ =

1

2
(∂5 + i∂6). (2.13)

We then require that the mode functions obey the so-called supersymmetry relations [54,55]

2∂z̄f+,n(z) = −mnf−,n(z), (2.14)

2∂zf−,n(z) = +mnf+,n(z) (2.15)

without loss of generality.
It follows from Eqs. (2.11) – (2.15) that the 6d Dirac equation for Ψ(x, z) reduces to the

4d Dirac equations

iγµ∂µψ
(4)
R,n(x) +mnψ

(4)
L,n(x) = 0, (2.16)

iγµ∂µψ
(4)
L,n(x) +mnψ

(4)
R,n(x) = 0. (2.17)

Thus, the KK mass eigenvalue mn corresponds to the mass of the 4d Dirac fermion ψ
(4)
n =

ψ
(4)
R,n + ψ

(4)
L,n for mn 6= 0.

The mode functions satisfying the equations (2.11), (2.12) and the boundary conditions
(2.9), (2.10) are found as

f±,n+α(z) = A±,n+αun+α(z), (2.18)

un+α(z) ≡ ei2π{(n1+α1)y1+(n2+α2)y2} (n1, n2 ∈ Z), (2.19)

where A±,n+α are normalization constants and y = (y1, y2) is the oblique coordinate defined
by

z = y1 + τy2 (0 ≤ y1, y2 < 1). (2.20)

The mass eigenvalue m2
n+α is then given by

m2
n+α = (2π)2

[
(n1 + α1)2 +

(
−Reτ

Imτ
(n1 + α1) +

1

Imτ
(n2 + α2)

)2
]
, (2.21)

which comes from

4∂z∂z̄ =

(
∂

∂y1

)2

+

(
−Reτ

Imτ

∂

∂y1

+
1

Imτ

∂

∂y2

)2

. (2.22)
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It follows from Eq. (2.21) that only when n = α = 0, there exist the chiral zero-mode
solutions such that m0 = 0. This shows

n+ = n− =

{
1 for (α1, α2) = (0, 0) mod 1,

0 for (α1, α2) 6= (0, 0) mod 1.
(2.23)

Then the index on T 2 is given as

Ind (i /D) ≡ n+ − n− = 0. (2.24)

Namely, the lowest-lying states are always vector-like. Therefore, model constructions on
T 2 is less interesting from an index theorem point of view. As we will see, the index for
T 2/ZN (N = 2, 3, 4, 6) orbifold setups, however, can be nontrivial due to winding numbers at
fixed points on T 2/ZN . Our main motivation of this paper is to show it.

3 Mode functions on T 2/ZN orbifolds

3.1 ZN eigen mode functions

Let us now proceed to T 2/ZN orbifolds. The T 2/ZN orbifold is defined by the torus identi-
fication (z ∼ z + 1 ∼ z + τ) and an additional ZN one

z ∼ ωz (ω = ei2π/N). (3.1)

It has already been known that there exist only four kinds of the orbifolds: T 2/ZN (N =
2, 3, 4, 6). For N = 2, there is no limitation on τ except for Imτ > 0. For N = 3, 4 and 6, τ
must be equivalent to ω because of crystallography [56]. For convenience, we will use both
τ and ω. It should be noticed that in order to be consistent with the orbifold identification
(3.1), the SS twist phase (α1, α2) has to be quantized [25] such that

(α1, α2) =


(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2) forT 2/Z2,

(0, 0), (1/3, 1/3), (2/3, 2/3) forT 2/Z3,

(0, 0), (1/2, 1/2) forT 2/Z4,

(0, 0) forT 2/Z6.

(3.2)

Mode functions on the T 2/ZN orbifold are classified by ZN eigenvalues η = ωk (k =
0, 1, · · · , N − 1) under the ZN rotation z → ωz such as

f+,n+α(ωz) = ηf+,n+α(z), (3.3)

f−,n+α(ωz) = ωηf−,n+α(z). (3.4)

We emphasize that if the ZN eigenvalue of f+,n+α(z) is η, then that of f−,n+α(z) has to be
ωη. This additional factor ω comes from a rotation matrix acting on 2d spinors [25], and is
necessary to be compatible with the supersymmetry relations (2.14) and (2.15).
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In terms of the mode functions on T 2, those on T 2/ZN can be constructed as

ξηn+α(z) = An+α

N−1∑
l=0

η̄lun+α(ωlz), (3.5)

which belongs to the ZN eigenvalue η:

ξηn+α(ωz) = η ξηn+α(z). (3.6)

Here, An+α is a normalization constant.
We can show that the mode function un+α(z) on T 2 satisfies the relations

un+α(ωl(z + 1)) = ei2πα1un+α(ωlz), (3.7)

un+α(ωl(z + τ)) = ei2πα2un+α(ωlz) (3.8)

for l = 0, 1, · · · , N − 1. Note that Eqs. (3.7) and (3.8) hold only when the SS twist phase
(α1, α2) is quantized as Eq. (3.2). From Eqs. (3.7) and (3.8) the ZN eigen mode function
ξηn+α(z) on T 2/ZN satisfies the same boundary conditions as the mode functions on T 2, i.e.

ξηn+α(z + 1) = ei2πα1ξηn+α(z), (3.9)

ξηn+α(z + τ) = ei2πα2ξηn+α(z). (3.10)

Under the ZN rotation, the mode function un+α(z) satisfies the relation

un+α(ωz) = uω(n+α)(z), (3.11)

where ω(n+α) is an abbreviation of the following quantity:

ω(n+α) =


(−n1 − α1,−n2 − α2) forT 2/Z2,

(n2 + α2,−n1 − α1 − n2 − α2) forT 2/Z3,

(n2 + α2,−n1 − α1) forT 2/Z4,

(n2,−n1 + n2) forT 2/Z6.

(3.12)

Here, notice that α = 0 for T 2/Z6.
Note that ξηn+α(z) are not always independent of all n1, n2 ∈ Z. Since ξηn+α(z) obeys the

relation

ξηω(n+α)(z) = η

(
Aω(n+α)

An+α

)
ξηn+α(z), (3.13)

the independent set of ξηn+α(z) is given by

{ξηn+α(z) | n+α ∈ Λ/ZN} , (3.14)
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Figure 1: Examples of Λ/Z2. The black dots denote elements belonging to Λ/Z2.

where

Λ/ZN =

{
{n+α (n1, n2 ∈ Z) | n+α ∼ ω(n+α)} for η = 1 or α 6= 0,

{n (n1, n2 ∈ Z) | n ∼ ωn and n 6= 0} for η 6= 1 and α = 0,
(3.15)

and

Λ =

{
{n+α (n1, n2 ∈ Z)} for η = 1 or α 6= 0,

{n (n1, n2 ∈ Z) | n 6= 0} for η 6= 1 and α = 0.
(3.16)

Notice that n = 0 has to be removed from Λ/ZN (and Λ) for η 6= 1 and α = 0, because
ξη0(z) always vanishes. Explicit examples of Λ/Z2 are shown in Figure 1.

The set {ξηn+α(z) | n + α ∈ Λ/ZN} of the ZN eigen modes satisfies the complete or-
thonormal condition: ∫

T 2/ZN

d2z (ξηn+α(z))∗ ξηn′+α(z) = δn,n′ (3.17)

with the normalization constant

|An+α|2 =

{
(Imτ)−1 for n 6= 0 or α 6= 0,

(NImτ)−1 for n = α = 0.
(3.18)

We point out that the normalization constant (3.18) is important to derive Eq. (4.5) in Section
4.

3.2 Number of zero modes on T 2/ZN
The mode functions f±,n+α(z) on T 2/ZN with the ZN transformation properties (3.3) and
(3.4) are written in terms of ξηn+α(z) as

f+,n+α(z) = ξηn+α(z), (3.19)
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Z2 twist the number of zero modes index

η (α1, α2) n+ n− n+ − n−
+1 (0, 0) 1 0 1

(1
2
, 0) 0 0 0

(0, 1
2
) 0 0 0

(1
2
, 1

2
) 0 0 0

−1 (0, 0) 0 1 −1

(1
2
, 0) 0 0 0

(0, 1
2
) 0 0 0

(1
2
, 1

2
) 0 0 0

Table 1: The number of the zero modes f±,0 on T 2/Z2 such that mn+α = 0.

Z3 twist the number of zero modes index

η (α1, α2) n+ n− n+ − n−
1 (0, 0) 1 0 1

(1
3
, 1

3
) 0 0 0

(2
3
, 2

3
) 0 0 0

ω (0, 0) 0 0 0

(1
3
, 1

3
) 0 0 0

(2
3
, 2

3
) 0 0 0

ω2 (0, 0) 0 1 −1

(1
3
, 1

3
) 0 0 0

(2
3
, 2

3
) 0 0 0

Table 2: The number of the zero modes f±,0 on T 2/Z3 such that mn+α = 0.

f−,n+α(z) = ξωηn+α(z). (3.20)

The eigenvalue m2
n+α of f±,n+α(z) is still given by Eq. (2.21). Thus, the chiral zero modes

such that mn+α = 0 can appear only when n + α = 0 . The lists of the zero modes are
summarized in Tables 1 – 4.

From Tables 1 – 4, we find that the index n+−n− can be non-zero and the lowest-lying state
in the KK spectrum is chiral. This property has been used to construct phenomenologically
semi-realistic models [18,19,57–59]. We will prove a nontrivial formula:

n+ − n− =
1

2N
(−V+ + V−), (3.21)

as an index theorem. Its nontriviality is that even if n+ and/or n− take zero, the sum of the
winding numbers V± can take non-zero values. Our derivation clearly shows that the index
n+ − n− on T 2/ZN can only be determined by the winding numbers at the fixed points, as
we will see.
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Z4 twist the number of zero modes index

η (α1, α2) n+ n− n+ − n−
1 (0, 0) 1 0 1

(1
2
, 1

2
) 0 0 0

ω (0, 0) 0 0 0

(1
2
, 1

2
) 0 0 0

ω2 (0, 0) 0 0 0

(1
2
, 1

2
) 0 0 0

ω3 (0, 0) 0 1 −1

(1
2
, 1

2
) 0 0 0

Table 3: The number of the zero modes f±,0 on T 2/Z4 such that mn+α = 0.

Z6 twist the number of zero modes index

η (α1, α2) n+ n− n+ − n−
1 (0, 0) 1 0 1

ω (0, 0) 0 0 0

ω2 (0, 0) 0 0 0

ω3 (0, 0) 0 0 0

ω4 (0, 0) 0 0 0

ω5 (0, 0) 0 1 −1

Table 4: The number of the zero modes f±,0 on T 2/Z6 such that mn+α = 0.

4 Index theorem on T 2/ZN orbifolds

In Sections 4 and 5, we derive the index formula (3.21) by use of the trace formula

Ind(i /D) = lim
ρ→∞

tr[σ3e
/D

2
/ρ2

] . (4.1)

This is our main subject of this paper.
In terms of the complete orthonormal sets of the mode functions {f±,n+α(z)}, the trace

limρ→∞ tr[σ3e
/D

2
/ρ2

] can be represented as

lim
ρ→∞

tr[σ3e
/D

2
/ρ2

]

= lim
ρ→∞

∑
n+α∈Λ/ZN

(N+,n+α −N−,n+α)e−m
2
n+α/ρ

2

= lim
ρ→∞

∑
n+α∈Λ/ZN

∫
T 2/ZN

d2z{(ξηn+α(z))∗ξηn+α(z)− (ξωηn+α(z))∗ξωηn+α(z)}e−m2
n+α/ρ

2

, (4.2)

where N±,n+α denote the numbers of the mode functions f±,n+α and n± ≡ N±,0. The
right-hand-side in the second line of (4.2) can reduce to n+ − n− because of the relation
N+,n+α = N−,n+α for n+α 6= 0.
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By using the relation

−4∂z∂z̄ξ
η
n+α(z) = m2

n+αξ
η
n+α(z) (4.3)

and a fact that the integration measure d2z and (ξ
η(ωη)
n+α (z))∗ξ

η(ωη)
n+α (z) are invariant under the

ZN rotation z → ωz, Eq. (4.2) can be rewritten as

lim
ρ→∞

tr[σ3e
/D

2
/ρ2

]

= lim
ρ→∞

1

N

∫
T 2

d2z lim
z′→z

e4∂z∂z̄/ρ2
∑

n+α∈Λ/ZN

{ξηn+α(z)(ξηn+α(z′))∗ − ξωηn+α(z)(ξωηn+α(z′))∗}, (4.4)

where we have replaced
∫
T 2/ZN

d2z by (1/N)
∫
T 2 d

2z. Inserting the relation (3.5) into Eq. (4.4)

and taking Eqs. (3.15) and (3.18) into account, we find

lim
ρ→∞

tr[σ3e
/D

2
/ρ2

]

= lim
ρ→∞

1

NImτ

∫
T 2

d2z lim
z′→z

e4∂z∂z̄/ρ2
∑
n1∈Z

∑
n2∈Z

N−1∑
l=0

ηl(1− ωl)un+α(z)(un+α(ωlz′))∗. (4.5)

Eq. (4.5) is proved in the appendix.
In the limit of ρ→∞ and z′ → z, the l = 0 term could diverge like δ2(0), but it actually

vanishes thanks to the coefficient (1 − ωl). Therefore, we can take the limit of ρ → ∞ and
z′ → z without any divergence or singularity. Then, taking the limit leads to

lim
ρ→∞

tr[σ3e
/D

2
/ρ2

] =
1

N

∫
T 2

dy1dy2

∑
n1∈Z

∑
n2∈Z

N−1∑
l=1

ηl(1− ωl)un+α(z)(un+α(ωlz))∗. (4.6)

Here, we have replaced the integral
∫
T 2 d

2z by Imτ
∫
T 2 dy1dy2, where Imτ corresponds to the

area of the 2d torus T 2.
One may take the integral

∫
T 2 dy1dy2 to be

∫ 1

0
dy1

∫ 1

0
dy2, as usual. However, it is more

convenient to choose the fundamental domain of T 2, as depicted in Figure 2, in order to avoid
troublesome treatment of delta functions appearing on y1 = 0, 1 or y2 = 0, 1.3

To sum up n1 and n2 in Eq. (4.6), it is useful to introduce y(l) = (y
(l)
1 , y

(l)
2 ) (l = 0, 1, · · · , N−

1) as

ωlz ≡ y
(l)
1 + τy

(l)
2 . (4.7)

For l = 1, (y
(1)
1 , y

(1)
2 ) is explicitly given by

(y
(1)
1 , y

(1)
2 ) =


(−y1,−y2) for T 2/Z2,

(−y2, y1 − y2) for T 2/Z3,

(−y2, y1) for T 2/Z4,

(−y2, y1 + y2) for T 2/Z6.

(4.8)

3Of course, we can reach the same results even if we take the fundamental domain of T 2 to be 0 ≤ y1, y2 <
1.
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Figure 2: The gray area (−ε ≤ y1, y2 < 1− ε) denotes the fundamental domain of T 2 with a
small positive number ε.

Then, after summing up n1 and n2 in Eq. (4.6), the index n+ − n− is expressed as

n+ − n−

=
1

N

∫
T 2

dy1dy2

∑
m1∈Z

∑
m2∈Z

N−1∑
l=1

ηl(1− ωl)ei2π(α1m1+α2m2)δ(y1 − y(l)
1 −m1)δ(y2 − y(l)

2 −m2),

(4.9)

where we have used the formula ∑
n∈Z

ei2πny =
∑
m∈Z

δ(y −m). (4.10)

To evaluate Eq. (4.9) further, we will examine T 2/ZN orbifolds with N = 2, 3, 4 and 6,
separately.

A. Index for T 2/Z2

Let us first discuss the T 2/Z2 orbifold. In this case, (y
(1)
1 , y

(1)
2 ) is given by (−y1,−y2). Inserting

it into Eq. (4.9) with N = 2 and ω = −1, we have

n+ − n− =
1

4

∫
T 2

dy1dy2

∑
m1∈Z

∑
m2∈Z

ηei2π(α1m1+α2m2)δ(y1 −m1/2)δ(y2 −m2/2). (4.11)

Since the fundamental domain of T 2 has been taken to be −ε ≤ y1, y2 < 1− ε, the values
of (m1,m2), which remain in the summation of Eq. (4.11) after the y-integration, are given
by (m1,m2) = (0, 0), (1, 0), (0, 1) and (1, 1). Then, we find

n+ − n− =
1

4

∫
T 2

dy1dy2 {ηδ(y1)δ(y2) + ηei2πα1δ(y1 − 1/2)δ(y2)

+ ηei2πα2δ(y1)δ(y2 − 1/2) + ηei2π(α1+α2)δ (y1 − 1/2) δ(y2 − 1/2)}

12



Z2 twist coefficients of the delta functions

η (α1, α2) W1 W2 W3 W4

1 (0, 0) 1 1 1 1

(1/2, 0) 1 −1 1 −1

(0, 1/2) 1 1 −1 −1

(1/2, 1/2) 1 −1 −1 1

−1 (0, 0) −1 −1 −1 −1

(1/2, 0) −1 1 −1 1

(0, 1/2) −1 −1 1 1

(1/2, 1/2) −1 1 1 −1

Table 5: The coefficients in front of the delta functions in Eq. (4.12).

≡ 1

4

∫
T 2

dy1dy2

4∑
j=1

Wjδ
2(y − yfj ), (4.12)

where yfj (j = 1, 2, 3, 4) are defined by

yf1 = (0, 0), yf2 = (1/2, 0), yf3 = (0, 1/2), yf4 = (1/2, 1/2). (4.13)

An important observation is that yfj given in Eq. (4.13) is just the position of the fixed
points on T 2/Z2, as explained below. Fixed points on T 2/ZN in the complex plane z = y1+τy2

are defined by

zf = ωzf +m1 +m2τ for ∃m1,m2 ∈ Z, (4.14)

where ω = ei2π/N for the T 2/ZN orbifold (N = 2, 3, 4, 6). The orbifold fixed points, which
are invariant under the ZN rotation up to torus lattice shifts, are found as

zf =


0, 1/2, τ/2, (1 + τ)/2 on T 2/Z2,

0, (2 + τ)/3, (1 + 2τ )/3 on T 2/Z3,

0, (1 + τ)/2 on T 2/Z4,

0 on T 2/Z6.

(4.15)

Thus, yfj (j = 1, 2, 3, 4) in Eq. (4.13) corresponds to the position of the fixed points on T 2/Z2

in the complex coordinate. This fact implies that the index n+−n− can only be determined
by information on the fixed points.

The explicit values of Wj (j = 1, 2, 3, 4) are summarized in Table 5. We can then confirm
that the formula (4.12) correctly gives the index n+−n− in Table 1, as it should be. However,
in the derivation of Eq. (4.12), the physical meaning of Wj is less clear. In the next section,
we reveal a geometrical meaning of Wj.
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B. Index for T 2/Z3

Let us next discuss the index for the T 2/Z3 orbifold. In this case, (y
(l)
1 , y

(l)
2 ) (l = 1, 2) is given

by

(y
(1)
1 , y

(1)
2 ) = (−y2, y1 − y2), (y

(2)
1 , y

(2)
2 ) = (−y1 + y2,−y1). (4.16)

Inserting Eq. (4.16) into Eq. (4.9) with N = 3, we have

Ind(i /D)

=
1

3

∫
T 2

dy1dy2

∑
m1∈Z

∑
m2∈Z

{η(1− ω)ei2π(α1m1+α2m2)δ(y1 + y2 −m1)δ(−y1 + 2y2 −m2)

+ η2(1− ω2)ei2π(α1m1+α2m2)δ(2y1 − y2 −m1)δ(y2 + y1 −m2)} . (4.17)

After the integration of
∫
T 2 dy1dy2, the delta functions δ(y1+y2−m1)δ(−y1+2y2−m2) and

δ(2y1− y2−m1)δ(y2 + y1−m2) in Eq. (4.17) remain only when (m1,m2) = (0, 0), (1, 0), (1, 1)
and (m1,m2) = (0, 0), (1, 1), (0, 1), respectively. Then, it follows that Eq. (4.17) can be
written into the form

Ind(i /D) =
1

2× 3

∫
T 2

dy1dy2

3∑
j=1

Wjδ
2(y − yfj ), (4.18)

where

W1 =
2

3

{
η(1− ω) + η2(1− ω2)

}
, (4.19)

W2 =
2

3

{
η(1− ω)ei2πα1 + η2(1− ω2)ei2π(α1+α2)

}
, (4.20)

W3 =
2

3

{
η(1− ω)ei2π(α1+α2) + η2(1− ω2)ei2πα2

}
. (4.21)

Here, yfj (j = 1, 2, 3) are identified with the position of the fixed points on T 2/Z3, i.e.

yf1 = (0, 0), yf2 = (2/3, 1/3), yf3 = (1/3, 2/3), (4.22)

which correspond to the fixed points given in Eq. (4.15)
The explicit values of Wj (j = 1, 2, 3) are summarized in Table 6. We can then confirm

that the formula (4.18) correctly gives the index n+ − n− in Table 2, as it should be. In the
next section, we reveal the relation between Wj and the winding nmbers at the fixed points
(4.22).

C. Index for T 2/Z4

Let us discuss the index for the T 2/Z4 orbifold. In this case, (y
(l)
1 , y

(l)
2 ) (l = 1, 2, 3) is given

by

(y
(1)
1 , y

(1)
2 ) = (−y2, y1), (y

(2)
1 , y

(2)
2 ) = (−y1,−y2), (y

(3)
1 , y

(3)
2 ) = (y2,−y1). (4.23)
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Z3 twist coefficients of the delta functions

η (α1, α2) W1 W2 W3

1 (0, 0) 2 2 2

(1/3, 1/3) 2 0 −2

(2/3, 2/3) 2 −2 0

ω (0, 0) 0 0 0

(1/3, 1/3) 0 −2 2

(2/3, 2/3) 0 2 −2

ω2 (0, 0) −2 −2 −2

(1/3, 1/3) −2 2 0

(2/3, 2/3) −2 0 2

Table 6: The list of the coefficients in front of the delta functions in Eq. (4.18).

Inserting Eq. (4.23) into Eq. (4.9) with N = 4, we have

Ind(i /D) =
1

4

∫
T 2

dy1dy2

∑
m1∈Z

∑
m2∈Z

× {η(1− ω)ei2π(α1m1+α2m2)δ(y1 + y2 −m1)δ(y2 − y1 −m2)

+ η2(1− ω2)ei2π(α1m1+α2m2)δ(2y1 −m1)δ(2y2 −m2)

+ η3(1− ω3)ei2π(α1m1+α2m2)δ(y1 − y2 −m1)δ(y2 + y1 −m2)} . (4.24)

After the integration of
∫
T 2 dy1dy2, the delta functions δ(y1 + y2 −m1)δ(y2 − y1 −m2),

δ(2y1 −m1)δ(2y2 −m2) and δ(y1 − y2 −m1)δ(y2 + y1 −m2) in Eq. (4.24) remain only when
(m1,m2) = (0, 0), (1, 0), (m1,m2) = (0, 0), (1, 0), (0, 1), (1, 1) and (m1,m2) = (0, 0), (0, 1),
respectively. Then, it follows that Eq. (4.24) can be written into the form

Ind(i /D) =
1

2× 4

∫
T 2

dy1dy2

4∑
j=1

Wjδ
2(y − yfj ), (4.25)

where

W1 = η(1− ω) +
1

2
η2(1− ω2) + η3(1− ω3), (4.26)

W2 = η(1− ω)ei2πα1 +
1

2
η2(1− ω2)ei2π(α1+α2) + η3(1− ω3)ei2πα2 , (4.27)

W3 =
1

2
η2(1− ω2)ei2πα1 , (4.28)

W4 =
1

2
η2(1− ω2)ei2πα2 . (4.29)

Here, yfj (j = 1, 2, 3, 4) in Eq. (4.25) are defined by

yf1 = (0, 0), yf2 = (1/2, 1/2), yf3 = (1/2, 0), yf4 = (0, 1/2). (4.30)
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Z4 twist coefficients of the delta functions

η (α1, α2) W1 W2 W3 W4

1 (0, 0) 3 3 1 1

(1/2, 1/2) 3 −1 −1 −1

ω (0, 0) 1 1 −1 −1

(1/2, 1/2) 1 −3 1 1

ω2 (0, 0) −1 −1 1 1

(1/2, 1/2) −1 3 −1 −1

ω3 (0, 0) −3 −3 −1 −1

(1/2, 1/2) −3 1 1 1

Table 7: The list of the coefficients Wj in front of the delta functions in Eq. (4.25).

The yf1 and yf2 correspond to the fixed points on T 2/Z4 given in Eq. (4.15). Interestingly, we
found additional contributions from the points yf3 and yf4 . Since the Z4 group includes Z2 as
its subgroup, there are additional two “Z2 fixed points” that are not invariant under the Z4

rotation but invariant under such a subgroup Z2 (z → ω2z = −z) up to torus lattice shifts.
Indeed, yf3 and yf4 are the “Z2 fixed points”.

The explicit values of Wj (j = 1, 2, 3, 4) are summarized in Table 7. We can then confirm
that the formula (4.25) correctly gives the index n+ − n− in Table 3, as it should be. In the
next section, we show that Wj is related to the winding numbers at the fixed points (4.30).

D. Index for T 2/Z6

Let us finally discuss the index for the T 2/Z6 orbifold. In this case, (y
(l)
1 , y

(l)
2 ) (l = 1, 2, 3, 4, 5)

is given by

(y
(1)
1 , y

(1)
2 ) = (−y2, y1 + y2), (y

(2)
1 , y

(2)
2 ) = (−y1 − y2, y1),

(y
(3)
1 , y

(3)
2 ) = (−y1,−y2), (y

(4)
1 , y

(4)
2 ) = (y2,−y1 − y2), (y

(5)
1 , y

(5)
2 ) = (y1 + y2,−y1). (4.31)

Inserting Eq. (4.31) into Eq. (4.9) with N = 6 and computing in the same way, we arrive at

Ind(i /D) =
1

2× 6

∫
T 2

dy1dy2

6∑
j=1

Wjδ
2(y − yfj ), (4.32)

where

W1 = 2η(1− ω) +
2

3
η2(1− ω2) +

1

2
η3(1− ω3) +

2

3
η4(1− ω4) + 2η5(1− ω5), (4.33)

W2 = W3 =
2

3
η2(1− ω2) +

2

3
η4(1− ω4), (4.34)

W4 = W5 = W6 =
1

2
η3(1− ω3). (4.35)
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Z6 coefficients of the delta functions

η W1 W2 W3 W4 W5 W6

1 5 2 2 1 1 1

ω 3 0 0 −1 −1 −1

ω2 1 −2 −2 1 1 1

ω3 −1 2 2 −1 −1 −1

ω4 −3 0 0 1 1 1

ω5 −5 −2 −2 −1 −1 −1

Table 8: The list of the coefficients Wj in front of the delta functions in Eq. (4.32). Here, we
omit the SS twist phase because of α1 = α2 = 0.

Here, yfj (j = 1, 2, · · · , 6) in Eq. (4.32) are defined by

yf1 = (0, 0), yf2 = (1/3, 1/3), yf3 = (2/3, 2/3),

yf4 = (1/2, 0), yf5 = (0, 1/2), yf6 = (1/2, 1/2). (4.36)

The yf1 corresponds to a single fixed point on T 2/Z6 given in Eq. (4.15). Since the Z6 group
includes its subgroups Z3 and Z2, there are additional two “Z3 fixed points” and three “Z2

fixed points” that are not invariant under the Z6 rotation but invariant under such Z3 and
Z2 rotations up to torus lattice shifts, respectively. The two Z3 and three Z2 fixed points are
just given by yf2 ,y

f
3 and yf4 ,y

f
5 ,y

f
6 in Eq. (4.36), respectively.

The explicit values of Wj (j = 1, 2, · · · , 6) are summarized in Table 8. We can then
confirm that the formula (4.32) correctly gives the index n+−n− in Table 4, as it should be.
In the next section, we show that Wj is related to the winding numbers at the fixed points
(4.36).

5 Winding numbers at fixed points on T 2/ZN
In this section, we compute the winding numbers at fixed points on T 2/ZN and clarify the
geometrical meaning of the coefficients Wj in front of the delta functions in Eqs. (4.12), (4.18),
(4.25) and (4.32).

Let us define the winding number for the ZN eigen modes ξηn+α(z) as

χj(η,α) ≡ 1

2πi

∮
Cj

dl · ∇ log(ξηn+α(z)), (5.1)

where Cj denotes a sufficiently small circle encircled anti-clockwise around a fixed point
z = pj. The line integral along the contour Cj gives a winding number (or occasionally
called vortex number), i.e. how many times ξηn+α(z) wraps around the origin, as illustrated
in Figure 3. Note that if ξηn+α(z) does not vanish at z = pj, the winding number χj(η,α)
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Figure 3: Cj denotes an anti-clockwise contour around the fixed point z = pj. In this
example, the winding number is equal to +2.

obviously takes zero due to the “Cauchy integral formula” in ξ space. The important prop-
erties of ξηn+α(z) in Eq. (5.1) are determined only by the ZN transformation (3.6) and the
boundary conditions (3.9) and (3.10).

We are now ready to define the winding numbers for the mode functions f+,n+α(z) and
f−,n+α(z). Then, we define the winding numbers χ±j for the mode functions f±,n+α(z)
around the fixed point z = pj, as4

χ+j ≡ χj(η,α) for f+,n+α, (5.2)

χ−j ≡ χj(ω̄η̄,−α) for f−,n+α. (5.3)

One might define the winding number χ−j for f−,n+α by χj(ωη,α), instead of χj(ω̄η̄,−α),
since f−,n+α = ξωηn+α. This is not, however, the case. As we will see later, the definition (5.3)
for χ−j leads to the expected result

Wj = −χ+j + χ−j, (5.4)

otherwise we will not obtain any meaningful relation.
Another reason to adopt the definition (5.3) may be explained as follows. To this end,

let us consider the 6d charge conjugation C to the 6d fermion Ψ(x, z):

Ψ(x, z)
C−→Ψ(C)(x, z) = CΨ̄T (x, z). (5.5)

The 6d charge conjugation matrix C is represented as

C = C(4) ⊗ iσ2, (5.6)

4In the previous paper [53], we have introduced the winding number only for the mode function f+. Here,
we need to define that for f− also in order to show the formula (3.21).

18



where C(4) is the 4d charge conjugation matrix. Under this charge conjugation, the mode
functions f±,n+α transform as5

f±,n+α
C−→ f

(C)
±,n+α = ±(f∓,n+α)∗. (5.7)

Then f
(C)
+,n+α(z) = (f−,n+α(z))∗ satisfies

f
(C)
+,n+α(ωz) = ω̄η̄f

(C)
+,n+α(z), (5.8)

f
(C)
+,n+α(z + 1) = e−i2πα1f

(C)
+,n+α(z), (5.9)

f
(C)
+,n+α(z + τ) = e−i2πα2f

(C)
+,n+α(z). (5.10)

The above transformation properties bring another reason to adopt Eq. (5.3) as the winding
number for f−,n+α.

In the following, we will define the winding numbers χ±j on the fundamental domain of
T 2 even for the orbifold T 2/ZN . If one defines the winding numbers on the fundamental
domain of the orbifold T 2/ZN , instead of T 2, the sum of the winding numbers χ±j at fixed
points should be divided by N , i.e.

∑
j χ±j/N due to 1/N reduced area and the deficit angles

around the fixed points in comparison with that of the torus.

A. Winding numbers for T 2/Z2

In the following, we examine the winding numbers χ±j for the mode functions on T 2/Z2 at
the fixed points (4.13), which correspond to

p1 = 0, p2 =
1

2
, p3 =

τ

2
, p4 =

1

2
+
τ

2
(5.11)

in the complex plane.
Under the Z2 rotation z → ωz (ω = −1) around the fixed points pj (j = 1, 2, 3, 4), the

Z2 eigen mode function ξηn+α(z) is found to satisfy the relations

ξη(ωz) = ωkξη(z), (5.12)

ξη(ωz + 1/2) = ωk+2α1ξη(z + 1/2), (5.13)

ξη(ωz + τ/2) = ωk+2α2ξη(z + τ/2), (5.14)

ξη(ωz + 1/2 + τ/2) = ωk+2α1+2α2ξη(z + 1/2 + τ/2), (5.15)

where η = ωk (k = 0, 1). Since the label n + α of the mode function ξηn+α(z) is irrelevant
for the analysis below, we omit it, unless otherwise stated.

By plugging z = 0 into the relations (5.12) – (5.15), the Z2 eigen mode function ξη(z)
takes zeros at the following fixed points [60,61]:

ξη(p1) = 0 for η = −1, (α1, α2) = (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2), (5.16)

5The transformation (5.7) is consistent with the supersymmetry relations (2.14) and (2.15).
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Z2 twist winding number
∑

j χ±j index

η (α1, α2) χ+1 χ+2 χ+3 χ+4 χ−1 χ−2 χ−3 χ−4 V+ V− (−V+ + V−)/4

1 (0, 0) 0 0 0 0 1 1 1 1 0 4 1

(1/2, 0) 0 1 0 1 1 0 1 0 2 2 0

(0, 1/2) 0 0 1 1 1 1 0 0 2 2 0

(1/2, 1/2) 0 1 1 0 1 0 0 1 2 2 0

−1 (0, 0) 1 1 1 1 0 0 0 0 4 0 −1

(1/2, 0) 1 0 1 0 0 1 0 1 2 2 0

(0, 1/2) 1 1 0 0 0 0 1 1 2 2 0

(1/2, 1/2) 1 0 0 1 0 1 1 0 2 2 0

Table 9: The winding numbers χ±j at the fixed points pj on T 2/Z2 and their sums V± =∑
j χ±j. All the values of (−V+ + V−)/4 exactly agree with the index n+ − n− for the chiral

zero modes.

ξη(p2) = 0 for

{
η = 1, (α1, α2) = (1/2, 0), (1/2, 1/2),

or η = −1, (α1, α2) = (0, 0), (0, 1/2),
(5.17)

ξη(p3) = 0 for

{
η = 1, (α1, α2) = (0, 1/2), (1/2, 1/2),

or η = −1, (α1, α2) = (0, 0), (1/2, 0),
(5.18)

ξη(p4) = 0 for

{
η = 1, (α1, α2) = (1/2, 0), (0, 1/2),

or η = −1, (α1, α2) = (0, 0), (1/2, 1/2).
(5.19)

These relations imply that the winding numbers at the fixed points become nontrivial for the
above zeros of the Z2 eigen mode function ξη(z). From Eqs. (5.12) – (5.15) we can compute
the winding numbers χ±j around the fixed points pj. The results are summarized in Table
9. From Tables 5 and 9, we can see that the coefficient Wj in Eq. (4.12) is related to the
winding numbers χ±j as

Wj = −χ+j + χ−j (j = 1, 2, 3, 4) (5.20)

for any η = ±1 and (α1, α2) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2). This implies that the
index formula on T 2/Z2 is given by

n+ − n− =
1

4
(−V+ + V−), (5.21)

where V± are the sums of the winding numbers χ±j at the fixed points pj (or yfj ), i.e.

V± =
∑
j

χ±j. (5.22)

20



B. Winding numbers for T 2/Z3

In the following, we examine the winding numbers χ±j for the mode functions f+(z) = ξη(z)
and f−(z) = ξωη(z) on T 2/Z3 at the fixed points (4.22), which correspond to

p1 = 0, p2 =
2

3
+
τ

3
, p3 =

1

3
+

2τ

3
. (5.23)

in the complex plane.
Under the Z3 rotation z → ωz (ω = ei2π/3) around the fixed points pj, the Z3 eigen mode

function ξη(z) is found to satisfy the relations

ξη(ωz) = ωkξη(z), (5.24)

ξη(ωz + 2/3 + τ/3) = ωk+3α1ξη(z + 2/3 + τ/3), (5.25)

ξη(ωz + 1/3 + 2τ/3) = ωk+3α1+3α2ξη(z + 1/3 + 2τ/3), (5.26)

where η = ωk (k = 0, 1, 2).
The relations (5.24) – (5.26) tell the phase shifts to the Z3 eigen mode function ξη(z)

when rotated by 2π/3 around each fixed point. To evaluate the winding number χj(η,α)
around the fixed point pj, all we should do is to utilize the relations (5.24) – (5.26) three times
repeatedly. Then, we obtain

χ1(η,α) = k mod 3, (5.27)

χ2(η,α) = k + 3α1 mod 3, (5.28)

χ3(η,α) = k + 3α1 + 3α2 mod 3, (5.29)

where η = ωk. From Eqs. (5.27) – (5.29) the winding numbers χ+j = χj(η,α) and χ−j =
χj(ω̄η̄,−α) can be read off and are summarized in Table 10. From Tables 6 and 10, we can
see that the relation

Wj = −χ+j + χ−j (j = 1, 2, 3) (5.30)

holds for any η = 1, ω, ω2 and (α1, α2) = (0, 0), (1/3, 1/3) and (2/3, 2/3). Thus, the index
formula on T 2/Z3 is found to be

n+ − n− =
1

6
(−V+ + V−). (5.31)

We would like to make two comments on the winding numbers χ±j. As found from Table
10, χ±j are equal to 0, 1 or 2, as discussed in [53]. The second comment is that we here
consider the fundamental domain of T 2 in order to define the winding numbers χ±j. We have
defined the winding number χj(η,α) in Eq. (5.1), where the contour Cj is taken to be a circle
encircling the fixed point pj. If the winding number is defined on the fundamental domain
of T 2/Z3, it should be divided by N = 3 due to deficit angles around the fixed points.
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Z3 twist winding number
∑

j χ±j index

η (α1, α2) χ+1 χ+2 χ+3 χ−1 χ−2 χ−3 V+ V− (−V+ + V−)/6

1 (0, 0) 0 0 0 2 2 2 0 6 1

(1/3, 1/3) 0 1 2 2 1 0 3 3 0

(2/3, 2/3) 0 2 1 2 0 1 3 3 0

ω (0, 0) 1 1 1 1 1 1 3 3 0

(1/3, 1/3) 1 2 0 1 0 2 3 3 0

(2/3, 2/3) 1 0 2 1 2 0 3 3 0

ω2 (0, 0) 2 2 2 0 0 0 6 0 −1

(1/3, 1/3) 2 0 1 0 2 1 3 3 0

(2/3, 2/3) 2 1 0 0 1 2 3 3 0

Table 10: The winding numbers χ±j at the fixed points pj on T 2/Z3 and their sums V± =∑
j χ±j. All the values of (−V+ + V−)/6 exactly agree with the index n+ − n− for the chiral

zero modes.

C. Winding numbers for T 2/Z4

In the following, we examine the winding numbers χ±j for the mode functions f+(z) = ξη(z)
and f−(z) = ξωη(z) on T 2/Z4 at the fixed points.

As noted in the previous section, there are two Z4 fixed points

p1 = 0, p2 =
1

2
+
τ

2
, (5.32)

and additionally two “Z2 fixed points”

Z2 fixed points : p3 =
1

2
, p4 =

τ

2
, (5.33)

which are not invariant under the Z4 rotation but invariant under the Z2 one (z → ω2z = −z)
up to torus lattice shifts. The winding numbers not only at the Z4 fixed points (5.32) but
also at the “Z2 fixed points” (5.33) contribute to the formula (4.25).

Under the Z4 rotation z → ωz around the fixed points p1 and p2, and under the Z2

rotation z → ω2z around the fixed points p3 and p4, the Z4 eigen mode function ξη(z) is
found to satisfy the relations

ξη(ωz) = ωkξη(z), (5.34)

ξη(ωz + 1/2 + τ/2) = ωk+4α1ξη(z + 1/2 + τ/2), (5.35)

ξη(ω2z + 1/2) = (ω2)k+2α1ξη(z + 1/2), (5.36)

ξη(ω2z + τ/2) = (ω2)k+2α2ξη(z + τ/2), (5.37)

where η = ωk (k = 0, 1, 2, 3).
From Eqs. (5.34) – (5.37) the winding number χj(η,α) around the fixed point pj is found

as

χ1(η,α) = k mod 4, (5.38)
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Z4 twist winding number
∑

j χ±j index

η (α1, α2) χ+1 χ+2 χ+3 χ+4 χ−1 χ−2 χ−3 χ−4 V+ V− (−V+ + V−)/8

1 (0, 0) 0 0 0 0 3 3 1 1 0 8 1

(1/2, 1/2) 0 2 1 1 3 1 0 0 4 4 0

ω (0, 0) 1 1 1 1 2 2 0 0 4 4 0

(1/2, 1/2) 1 3 0 0 2 0 1 1 4 4 0

ω2 (0, 0) 2 2 0 0 1 1 1 1 4 4 0

(1/2, 1/2) 2 0 1 1 1 3 0 0 4 4 0

ω3 (0, 0) 3 3 1 1 0 0 0 0 8 0 −1

(1/2, 1/2) 3 1 0 0 0 2 1 1 4 4 0

Table 11: The winding numbers χ±j at the fixed points pj on T 2/Z4 and their sums V± =∑
j χ±j. All the values of (−V+ + V−)/8 exactly agree with the index n+ − n− for the chiral

zero modes.

χ2(η,α) = k + 4α1 mod 4, (5.39)

χ3(η,α) = k + 2α1 mod 2, (5.40)

χ4(η,α) = k + 2α2 mod 2, (5.41)

where η = ωk. Eqs. (5.38) – (5.41) show that the winding numbers χ±j can be read off and
are summarized in Table 11. From Tables 7 and 11, we can see that the relation

Wj = −χ+j + χ−j (j = 1, 2, 3, 4) (5.42)

holds for any η = ωk (k = 0, 1, 2, 3) and (α1, α2) = (0, 0) and (1/2, 1/2). Thus, we find the
index formula on T 2/Z4 as

n+ − n− =
1

8
(−V+ + V−). (5.43)

As one can see from Table 11, χ±1 and χ±2 (χ±3 and χ±4) are equal to 0, 1, 2, 3 (0, 1), as
discussed in [53]. In fact, the numbers in Table 11 lead to the formula (5.43).

D. Winding numbers for T 2/Z6

In the following, we examine the winding numbers χ±j for the mode functions f+(z) = ξη(z)
and f−(z) = ξωη(z) on T 2/Z6 at the fixed points.

As noted in the previous section, there is only a single Z6 fixed point

p1 = 0, (5.44)

and there are additionally two “Z3 fixed points” and three “Z2 fixed points” given by

Z3 fixed points : p2 =
1

3
+
τ

3
, p3 =

2

3
+

2τ

3
, (5.45)
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Z2 fixed points : p4 =
1

2
, p5 =

τ

2
, p6 =

1

2
+
τ

2
. (5.46)

The winding numbers not only at the Z6 fixed point (5.44) but also at the “Z3 fixed points”
(5.45) and the “Z2 fixed points” (5.46) contribute to the formula (4.32).

Under the Z6 (Z3 and Z2) rotation z → ωz (z → ω2z and z → ω3z) around the fixed
points p1 (p2, p3 and p4, p5, p6), the Z6 eigen mode function ξη(z) is found to satisfy the
relations

ξη(ωz) = ωkξη(z), (5.47)

ξη(ω2z + pj) = (ω2)kξη(z + pj) (j = 2, 3), (5.48)

ξη(ω3z + pj) = (ω3)kξη(z + pj) (j = 4, 5, 6), (5.49)

where η = ωk (k = 0, 1, · · · , 5).
From Eqs. (5.47) – (5.49), the winding numbers χj (η,α = 0) around the fixed points pj

are found to satisfy

χ1(η,α = 0) = k mod 6, (5.50)

χj(η,α = 0) = k mod 3 (j = 2, 3), (5.51)

χj(η,α = 0) = k mod 2 (j = 4, 5, 6). (5.52)

Note that the SS twist phase is restricted to α = 0 on T 2/Z6. From Eqs. (5.50) – (5.52) the
winding numbers χ±j can be read off and are summarized in Table 12. From Tables 8 and
12, we can see that the relation

Wj = −χ+j + χ−j (j = 1, 2, · · · , 6) (5.53)

holds for any η = ωk (k = 0, 1, · · · , 5) with α = 0. Thus, we find the index formula on T 2/Z6

as

n+ − n− =
1

12
(−V+ + V−). (5.54)

As one can see from Table 12, χ±1 (χ±2, χ±3 and χ±4 , χ±5 , χ±6) are equal to 0, 1, 2, 3, 4, 5
(0, 1, 2 and 0, 1), as discussed in [53]. In fact, the winding numbers in Table 12 lead to the
formula (5.54).

6 Conclusion and discussion

In this paper, we have derived the index formula

n+ − n− =
1

2N
(−V+ + V−) (6.1)

on the T 2/ZN orbifold from the trace formula (4.1). In Section 3, we have explicitly con-
structed the mode functions on T 2/ZN and counted the numbers n± of the chiral zero modes.
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Z6 winding number
∑

j χ±j index

η χ+1 χ+2 χ+3 χ+4 χ+5 χ+6 χ−1 χ−2 χ−3 χ−4 χ−5 χ−6 V+ V− (−V+ + V−)/12

1 0 0 0 0 0 0 5 2 2 1 1 1 0 12 1

ω 1 1 1 1 1 1 4 1 1 0 0 0 6 6 0

ω2 2 2 2 0 0 0 3 0 0 1 1 1 6 6 0

ω3 3 0 0 1 1 1 2 2 2 0 0 0 6 6 0

ω4 4 1 1 0 0 0 1 1 1 1 1 1 6 6 0

ω5 5 2 2 1 1 1 0 0 0 0 0 0 12 0 −1

Table 12: The winding numbers χ±j at the fixed points pj on T 2/Z6 and their sums V± =∑
j χ±j. Here, we omit the column of (α1, α2) due to the fact that (α1, α2) = (0, 0) for the

T 2/Z6 orbifold. All the values of (−V+ + V−)/12 exactly agree with the index n+ − n− for
the chiral zero modes.

In Sections 4 and 5, we have succeeded in evaluating the trace formula (4.1) and clearly shown
that the index n+−n− is determined by the winding numbers at the fixed points on T 2/ZN .

We have emphasized that the dependence of n± on N , η and (α1, α2) is rather simple, as
shown in Tables 1 – 4, but the equality in Eq. (6.1) is nontrivial. This is because the values
of V± (or χ±j) can be non-vanishing even if n+ and/or n− are zero, as seen in Tables 9 – 12.
Furthermore, V±/2N are not integer-valued in general, but the difference (−V+ + V−)/2N
becomes an integer in any case.

It is interesting that from Tables 9 – 12 the sums V± of the winding numbers at the fixed
points satisfy the relation

V+ + V− = 2N, (6.2)

which may be regarded as an expression of the index theorem. Then, from Eqs. (6.1) and
(6.2) we have

n+ − n− = −V+

N
+ 1. (6.3)

This can be understood as a special case of M = 0 in the zero-mode counting formula [53]

n+ − n− =
M − V+

N
+ 1. (6.4)

There the formula (6.4) with the quantized magnetic flux M has been confirmed only for
M > 0. Since we can show that the relation (6.2) holds also for M 6= 0, the formula (6.4)
can be rewritten as

n+ − n− =
1

2N
(2M − V+ + V−), (6.5)

which leads to a generalization of the formula (6.1) to M 6= 0.
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In this paper, we found that the orbifold projections bring the chirality of the massless
level in the KK tower from the vewpoint of the index theorem (even if no flux is turned
on). In addition, the orbifold fixed points and zero points there play important roles in the
trace theorem, as we expected from the previous paper [53]. Thus, these evidences let us
conclude that the term −V+/N + 1 or (−V+ + V−)/2N reflects the contribution from the
orbifold geometry, i.e. the singularity of the fixed points.

There are two possibilities to interpret the term −V+/N + 1 or (−V+ + V−)/2N . One is
that the term originates from some singular spin connection or curvature at the orbifold fixed
points, which should be regarded as “geometric flux”. Another possibility is that there exist
localized Wilson-line sources at the fixed points, as discussed in [60, 61]. In this case such
sources should be regarded as “gauge flux”. Our result suggests that the two-dimensional
orbifolds T 2/ZN are equivalently described by setups with localized fluxes at fixed points.

A remaining task is to derive the formula (6.5) for M 6= 0 from the trace formula. In order
to evaluate the trace formula, we may need a complete orthonormal set of ZN eigen mode
functions on the magnetized T 2/ZN orbifold, as we have done in this paper. That, however,
seems to be hard since mode functions on the magnetized T 2/ZN are given by Jacobi theta
functions [12] and their ZN transformation property is quite complicated [25,62].
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A Appendix

In this appendix, we prove the relation∑
n+α∈Λ/ZN

{ξηn+α(z)(ξηn+α(z′))∗ − ξωηn+α(z)(ξωηn+α(z′))∗}

=
1

Imτ

∑
n1∈Z

∑
n2∈Z

N−1∑
l=0

ηl(1− ωl)un+α(z)(un+α(ωlz′))∗, (A.1)

which is used in deriving Eq. (4.5). To prove Eq. (A.1), we separately discuss the following
four cases:

(1) α 6= 0,
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(2) α = 0 and η 6= 1, ωη 6= 1,

(3) α = 0 and η = 1, ωη 6= 1,

(4) α = 0 and η 6= 1, ωη = 1.

(1) α 6= 0

For α 6= 0, the left-hand-side of Eq. (A.1) can be evaluated as follows:

I(z, z′) ≡
∑

n+α∈Λ/ZN

{ξηn+α(z)(ξηn+α(z′))∗ − ξωηn+α(z)(ξωηn+α(z′))∗}

(3.5)
=

∑
n+α∈Λ/ZN

|An+α|2
N−1∑
l=0

N−1∑
l′=0

η−l+l
′
(1− ω−l+l′)un+α(ωlz)(un+α(ωl

′
z′))∗

l′=l′′+l
=

∑
n+α∈Λ/ZN

|An+α|2
N−1∑
l=0

N−1∑
l′′=0

ηl
′′
(1− ωl′′)un+α(ωlz)(un+α(ωl

′′+lz′))∗

=
1

Imτ

∑
n1∈Z

∑
n2∈Z

N−1∑
l′′=0

ηl
′′
(1− ωl′′)un+α(z)(un+α(ωl

′′
z′))∗, (A.2)

where in the last equality, we have used Eqs. (3.11), (3.18) and the formula

∑
n+α∈Λ/ZN

N−1∑
l=0

F (ωl(n+α)) =
∑

n+α∈Λ

F (n+α)

=
∑
n1∈Z

∑
n2∈Z

F (n+α) (A.3)

for α 6= 0.

(2) α = 0 and η 6= 1, ωη 6= 1

In this case, Λ/ZN should not include n = 0 (see Eq. (3.15)). Hence, we can write Λ/ZN
explicitly as

Λ
′
/ZN ≡ {n (n1, n2 ∈ Z) | n ∼ ωn and n 6= 0} (A.4)

and

Λ
′ ≡ {n (n1, n2 ∈ Z) | n 6= 0} . (A.5)

Then, we find

I(z, z′) ≡
∑

n∈Λ′/ZN

{ξηn(z)(ξηn(z′))∗ − ξωηn (z)(ξωηn (z′))∗}
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(3.5)
=

∑
n∈Λ′/ZN

|An|2
N−1∑
l=0

N−1∑
l′=0

η−l+l
′
(1− ω−l+l′)un(ωlz)(un(ωl

′
z′))∗

l′=l′′+l
=

1

Imτ

∑
n∈Λ′

N−1∑
l′′=0

ηl
′′
(1− ωl′′)un(z)(un(ωl

′′
z′))∗∵ (3.11), (3.18) and

∑
n∈Λ′/ZN

N−1∑
l=0

F (ωln) =
∑
n∈Λ′

F (n)


=

1

Imτ

∑
n1∈Z

∑
n2∈Z

N−1∑
l′′=0

ηl
′′
(1− ωl′′)un(z)(un(ωl

′′
z′))∗, (A.6)

where in the last equality, we have used u0(z) = 1 and

N−1∑
l′′=0

ηl
′′

=
N−1∑
l′′=0

(ωη)l
′′

= 0, (A.7)

for η 6= 1 and ωη 6= 1.

(3) α = 0 and η = 1, ωη 6= 1

In this case, I(z, z′) is expressed in terms of Λ/ZN and Λ
′
/ZN as

I(z, z′) =
∑

n∈Λ/ZN

ξηn(z)(ξηn(z′))∗ −
∑

n∈Λ′/ZN

ξωηn (z)(ξωηn (z′))∗

(3.5)
=

∑
n∈Λ′/ZN

|An|2
N−1∑
l=0

N−1∑
l′=0

(1− ω−l+l′)un(ωlz)(un(ωl
′
z′))∗ +

N

Imτ(
∵ η = 1, |A0|2 = (NImτ)−1, u0(z) = 1

)
=

1

Imτ

∑
n∈Λ

′

N−1∑
l′′=0

(1− ωl′′)un(z)(un(ωl
′′
z′))∗ +

N

Imτ∵ (3.11), (3.18) and
∑

n∈Λ′/ZN

N−1∑
l=0

F (ωln) =
∑
n∈Λ

′

F (n)


=

1

Imτ

∑
n∈Λ

N−1∑
l′′=0

(1− ωl′′)un(z)(un(ωl
′′
z′))∗(

∵ u0(z) = 1,
N−1∑
l′′=0

(1− ωl′′) = N

)

=
1

Imτ

∑
n1∈Z

∑
n2∈Z

N−1∑
l′′=0

(1− ωl′′)un(z)(un(ωl
′′
z′))∗. (A.8)
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(4) α = 0 and η 6= 1, ωη = 1

We can prove the relation (A.1) in the same way as the case (3) for α = 0 and η 6= 1, ωη = 1.
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