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Abotrad 

Expectation values at an a.rbitrary point of the 3-dimensional coupling parameter spate 

in the lattice-regularized SU(2) Biggs-model with a doublet scala.r field are expressed by a 

series of expectation values at infinite self-coupling (A= oo). Questions of convergence of 

this "strong self-coupling expansion• (SSCE) are investigated. The SSCE is a potentially 

. useful tool for the study of the A-dependence at any value (zero or non-zero) of the bare 

gauge coupling. 

1 Introduction 

The standard SU(3) ® SU(2) ® U(l) model has turned out to be very successful up to the 100 GeV 

energy range. The extension to still higher energies is, obviously, one of the central issues in our 

field. The simplest extension. is, of course, to assume that the standa.rd model is valid in its presently 

known simple form up to some very high cut·off, say, the Planck scale. The basic question is, whether 

this extrapolation over roughly 17 orders of magnitude is possible at all, at least in principle. In 

other words, is the standard model mathematically consistent with such a high cut-off? The SU(3) 

colour factor is asymptotically free, therefore there seems to be no problem with a high cut·off in 

this case. The U(1) electromagnetic coupling is not asymptotically free, therefore there could be a 

. problem, at least in perturbation theory, but the value of the coupling can still be very small at the 

Planck scale, therefore the problem is not really serious. The least understood and most problematic 

piece is the Biggs-sector, which in its simplest form is a four-component (complex scalar doublet) 

<1>4 model coupled to the weak SU (2) gauge field. A simple and important question is, whether this 

•standard Biggs model" is mathematically consistent with a very high cut·off. Going to the extreme, 

and assuming lattice regularization, the question is, whether the standard Biggs model on the lattice 

has a non·trivial continuum limit. 
Other Important problems for the lattice-regularized SU(3) ® SU(2) ® U(1) theory are connected 

to the non·perturbative features of spontaneous symmetry breaking occurring in the Biggs· sector of 

"Supported in pa.rt by Schweizeriseher Na.tiona.lfonds 

taeisenberg foundation fellow 
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the SU(2) ® U(l) electroweak component. The primary question in this respect is the phase structure 
of the ffiggs•sector. In fact, the main concern of the first numerical Monte C&rlo investigations (1,2] 
in the SU(2) Higgs· model with scalar doublet field was the study of the phase transitions. In these 
papers,. as a first approximation, the coupling to fermions and the U(l)~o,.,.Ma,.,.·factor.was neglected. 
The inclusion of the U(l)·factor is, in principle, not very difficult. (For a first study see Ref. [3(.) 
The coupling to fermions (through the Yuk&wa- and gauge-couplings) is much harder to include in a 
numerical approach but, clearly, one has to start at the easier end. 

Concerning the existence of a non-trivial continuum limit in the standard SU(2) Higgs model, 
the distinctive feature, comp&red to the SU(S)·colour gauge sector, is the appearance of the non· 
asymptotically-free scal&r 4>4 self-coupling .A.. According to perturbation theory, such couplings have 
the tendency to grow for increasing cut-off (or decreasing lattice spacing). This growth could, in 
principle, be stopped, if there were a limiting fixed point at some finite .A.-value. In the pure 4>4-model 
(neglecting the gauge coupling) the non-existence of such a non-trivial fixed point is, however, almost 
rigorously proven [4]. Consequently, the bare .A. coupling reaches infinity for some finite cut-off, and 
the continuum limit of the .p4-model has to be trivial (non-interacting). 

The inclusion of the SU (2) gauge coupling can, however, induce a non-trivial continuum limit. 
Such a limit could, in principle, exist for finite gauge coupling fJ < oo, somewhere in the interior of 
the three-dimensional coupling parameter space. A first numerical study of the scaling properties of 
correlations and static energies in Ref. [5] showed, however, that this is not probable. All the numerical 
information obtained up to now on these quantities [5,6,7,8]1s consistent with a possibly non-trivial 
continuum limit at fJ = oo, and the critical value of the hopping parameter " = ""' (.A.) in the pure 
.p4-model, for any fixed positive .A.. This critical point in the ,P4·model is very probably trivial i.e. 
non-interacting for every .A.. Therefore, any interaction in the coupled gauge-Higg~ system iB ill!luced 
b1f the gauge coupling. In particul&r, due to the asymptotic freedom of the gauge coupling, the induced 
.p4-coupling has to vanish, too, at infinite energy. Considering the simplest possible gauge•quantum 
exchange graphs, one can infer, that the physical 4>4-coupling has to go to zero by some power of the 
high energy scale. 

The triviality implies that the pure 4>4-model becomes approximately A-independent, if the cut-off 
is high enough. In.fact, this approximate .A.-independence seems to set 'in quite early, as it is shown, 
for instance, by the figures in recent papers on numerical Monte Carlo studie~> of the 4>4-model [9,10]. 
After the inclusion of the gauge coupling the approximate .A.-independence remains true. This is shown 
by recent numerical results [5,8] in the wide range 0.1 :5: .A. :5: oo, for relatively large gauge coupling 
({J = 2.8). It is quite amazing, that the .A.-independence looks qualitatively so similar, if one compares 
the behaviour of the correlation lengths at fJ = 2.3.and fJ = oo [5]. 

Of course, the .A.-independence of the continuum limit in the Riggs model implies, that the con• 
tinuum theory has one free p&ra.meter less than the regularized theory. Since this is a.n essentially 
non-perturbative phenomenon, it can be called non-perturbati11e parameter reduction1 • A direct con
sequence of it is, that the value of the Riggs-boson mass can be predicted from theW-boson mass and 
the renormalized gauge coupHng. The question of the A-dependence in the standard ffiggs model is 
thus very interesting both from the principal and practical points of view. 

Numerical Monte Carlo studies can, on their own., only provide indications but never· proofs for 
such mathematical features Hke the exact .A.-independence or the existence of a continuum limit. 
Therefore, it is useful to combine the numerical work with analytical techniques. In this context one 
of us suggested [6] to use the expansion around .A.= oo for the study of .A.-dependence in the standard 
Higgs model (and also in other types of Higgs models). 

The purpose of the present paper is to study such "strong self-coupling expansions" (SSCE's) in 
the standard Higgs model. After elaborating on the general technique of SSCE, the convergence will 
be proven for· a. finite lattice in Section 2. The convergence in the practi£al sense will be questi9ned 
in Section 8 by numerically determining the .A. ·= oo correlations, which appear in a low order SSCE 

1We tha.nk Ba.rbua Schrempp for propo1ing ua thi1 suggestive terminology. 
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of some relevant qua.ntities. Section 4. contains some concluding rem&rks. Useful formulas for SSCE 
calculations are collected in the Appendix. 

2 General framework 

2.1 Lattice aetlon 

The standard Biggs model is described on the lattice by the SU{2) link-variables U(3;, I') E SU(2) for 
the gauge field and by the length· (p. ~ 0) and angular· (a. E SU(2)) variables of the Biggs-field. 3; 

denotes lattice points, 11 = ±1, ±2, ±3, ±4 are link directions and (x, 11) is the link from the point x to 
the neighbouring point (x + M in direction I"· The lattice action in these variables can be written like 

SA,(J,,. =~I; (1- iTrUp) 
p 

+I;{;.- 3log p. + A(l.- 1)
2
-" I; P•+P.P•Tr ( a~+.llU(x,,.)a.)} 

~ . ~>0 

(1) 

Here EP stands for a summation over positively oriented plaquettes. The first term is the familiar 
Wilson-action [12[ for the gauge field proportional to the bare gauge coupling~ = 4/fl'. The bare 

coupling parameters for the Biggs-field are: the self-coupling >. and the hopping parameter "· The 
integration measure corresponding to Eq. (1) is dp. d3a. d3U(x, 11) (where d8g denotes the Baar· 
measure in SU(2)). The peculiarity of the SU(2) doublet scalar field is, that its angular part is 

equivalent to the local gauge degree of freedom. Therefore, at any finite ~ it is possible to introduce, 
instead of the SU(2) link· and site-variables, a gauge invariant link variable 

(2) 

In terms of this, the lattice action is 

SA,(J,,. =~I; (1-.!.TrVp) + E{P!-Slogp, +A(P! -1)2
-t> I;Pz+iiP•TrV(x,lt.)} (3) 

p 2 • 1'>0 

After performing the trivial integration over a., the integration measure for Eq. (3) is dp. ~V(x, Ill· 
In the limit~ -'-+ oo the variable change in Eq. (2) is inappropriate, because the gauge part of the 

action vanishes (the link-variables become gauge equivalent to unity). Therefore, one has to use for 

the ~ -+ oo action 

SA,(J=oo,• = I; {p~ - 3log p. + >.(p! - 1)2 
-" I; P•+i>P•Tr ( a~+ila•) } 

e p>O 
(4) 

This defines an SU(2) 0 SU(2)· (or 0(4)·) symmetric four-component <P'·model corresponding to the 
lattice version of the Gell-Mann·L~vy linear u·model [13]. 

In this paper we shall often consider the >. -> oo limit. In this case the length of the Higgs· field is 

frozen to P• = 1, and the action in Eq. (3) goes over into 

SA=oo,~,• =~I; (1- iTrVp) -I> I; TrV(x,lt.) 
p ~p>O 

(5) 

The corresponding limit of the action in Eq. (4) defines the SU(2) 0 SU (2)-symmetric non-linear 
u-model on the lattice: 

(6) 

3 



2.2 Expansion at the partition function 

The aim of the SSCE is to express the expectation values in an arbitrary point (>., /3, 11:) of the 
coupling parameter space in terms of a series of expectation values at .\ = oo. The gauge coupling 
will be kept fixed, and the hopping parameter will be changed by an arbitrary (positive) scale factor 
82 to 1: = 8211:. The motivation for this will become clear later. According to Eqs. (4), (6) the relation 
between the actions in these points is: 

Therefore, the partition function Z>.,fj,,. in the point (.\, /3, 11:) can be written like 

Z>.,fj,,. = J [dV](dp] ex'p( -sA,p,,.) 

= C jldVJ exp(-S~=co,p,,.) (exp [~~: ~Tr(P•+iiP•- e
2
)]) A (8) 

where Cis an unessential (/3, #:)·independent constant, lis an abbreviation for the positively-oriented 
link (z, I'), T1 stands for Tr V (z, I') and the >.-dependent expectation value (· · -)A is defined, for an 
arbitrary p-dependent function f(p), by 

f[dp] f(p) exp {- L:. [-3log p, + >.(p!- 1 + i.r)2]} 
(/h = f[dp] exp {-L:. [-3log p.+ >.(~- 1 + tJY]} (9) 

In the following expressions an important role will be played by the >.-dependent expectation value 
of the powers of a single length variable p, (for an arbitrary site y): 

(I,:)A = fooo dp, p=+k exp [->.(p: .;_ 1 + itJZj = Ik(>.) = ik 

' J0
00 dp, ~ exp [-,..>.(~ -1+ f-lY] - Io(>.) -

(10) 

For an explicit form of these integrals see Appendix A.l. 
The >.-dependent expectation value in Eq. (8) can be exponentiated in the well-known Wlcy', as 

( exp [II:~ Tr(P•+PP• - 8
2
)]) A 

= exp {II: l:Tr(i~- 8
2

) + f: :~ 2: Tr, ... Tr.cn(II···ln)} 
1 n=2 /t .. .la 

(11) 

where the "connected i-product" c,. is defined by 

(12) 

The superscript con (· · ·)1 denotes "connected" (>.-dependent) expectation value. In the definition of 
the connected parts, the products within parentheses have to be considered as a single entity. (This 
kind of notation will be used throughout this paper, also in connection with other sorts of expectation 
values.) 

The basic relation (11) makes it possible to obtain the expectation value of any function F(V) 
depending only on the link variables V(z,~t): 

(F(V)) = f[dV] (dp] exp(-S>.,p,,.)F(V) 
>.,8,10 - f[dV] [dp] exp( -8>.,,8,,.) 
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z;J,. j!dVJ exp(-S~=oo,p,..)F(V) exp {~~: l:Tt(i~- s
2

) + f: :~ l: 1}, .. . T,,c,.(h . .. 1,.)} (13) 
I n=l I, .. J, 

This is a typical relation which will be the starting point for the SSCE of correlation functions, 

considered below. In order. to obtain the SSCE series from Eq. (13), one has to el(pand the right hand . 

side in powers of~~:, (or, equivalently, in the number of link-traces 7}, or in half of the total number of 

po\vers of Riggs-field lengths contained in the i-factors of Eqs. (10), (12).) 

Up to now, the framework for SSCE was kept quite general. Relations like (13) can connect, for 

fixed {3, an arbitrary point to an arbitrary ~ == oo point. Some special cases are, however, of particular 

interest. If, for instance, the ~ = oo point is chosen at (/3 == oo, 1': = 0), then the resulting expansion is 

equivalent to the "high temperature expansion• of the ,P4 model in statistical physics [ 11]. In this case 

the ~ = oo action B>.=oo,P=oo,n=o is trivial, and the right hand side of Eq. (13) does not contain any 

further integration. By choosing /e = 0 for any {3 ~ oo one obta.ins·a. more general "hopping parameter 

expansion", where the terms· of the SSCE series are given by expectation values of correlations in the 

pure SU(2) gauge theory. 

For the study of the ~-dependence at any fixed (finite or infinite) /3, a. favourable choice of the 

~>·rescaling factor 

is such, that along the curve~~:(.\)= li:/s2(~) the link expectation value is constant: 

(TrV(a:, p)h,/1,~(>.) = const. 

The rea.Bon is the approximate universality of the physical expectation values along the curves 

(/3 = const., (71) = const.). 

2.8 The convergence of SSCE on a finite lattice 

(14) 

(15) 

Let us now sketch the proof of the convergence of the SSCE on the example of the link-variable 

dependent expectation value in Eq. (13). It is convenient to introduce an integral EF(a), which 

depends on an extra parameter a, 

EF(a) = jldVJ exp(-S>.=oo,/l,h)F(V) (exp [a~> ~Tt(Po+/lP~- s2
)]) >. (16) 

The expectation value in Eq. (13) is then given by 

(17) 

The SSCE is equivalent to the power series expansion of the right hand side in a, taken at a = 1. We 

shall see that, for any bounded F, EF( a) is an entire function of a. 

The power series expansion of E.F(a) is 

(18) 
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The interesting piece of this series satisfies 

E Tr, ... 2i. ( (P.1+to1P•1 - 8
2

) ••• (p •• +p..P •• - 8
2
)) >. 

/t ... t. 

:S 2" E (<P••+i>•P·· + B') .• 0 (P •• +P.P•· + 82
) ),\ 

'l··J· 
In addition, the power series expansion 

(19) 

(20) 

has positive coefficients and is, obviously, convergent for every a. It follows, that the series under the 
[dV]integral in Eq. (18) is uniformly convergent, hence It can be integrated term by term. In view of 
Eq. (20), the resulting series is convergent for an arbitrary a, therefore EF(a) is an entire function of 
a, as stated before. 

The integral in the denoi:ninator E1 (a) is, of course, also an entire function, and for real a it is 
positive definite, hence the function EF(a)/E, (a) is analytic at least in a strip along the real axis. The 
isolated zeros of E1 (a) produce singularities. Therefore, the SSCE series in Eq. (17) can be convergent 
only if the nearest zero ao of E,(a) satisfies [ao[ ;::: 1. The convergence of the SSCE can, however, 
always be achieved by a simple resummation. Namely, instead of a, one can always introduce a new 
variable IX, such that the relation 

00 

a= Eakrl' (21) 
k=l 

defines a conformal mapping of the unit circle in a into the finite strip of analyticity along the real 
a-axis between, say, Rea= ±1. An explicit·class of such mappings can be given, for instance, by the 
integral representation 

lo
id(l-i~>)/(lH~>) dt 

a=c . -i6 
0 v'(l- t2)(1- k 2t3 ) 

(22) 

With a suitable choice of the real parameters 0 < k < 1 and c, d, 6 > 0 one can achieve, that the 
conformal image of the unit circle in IX is a rectangle within the region of analyticity in a . . 

The reordering of the Taylor series of EF(a)/EI(a) according to the powers of IX defines a conver· 
gent reordering of the SSCE series (at a = 1). This reordering is such, that the kth term of the new 
series is a combination of the first k terms of the old one. Since E 1 (a) appears in every expectation 
value, the reordering is the same for every quantity. In fact, at a given finite order k in a, the resum· 
mation is equivalent to the multiplication of the terms of SSCE by some number obtained from the 
partial sums of the expansions of ai (i :S k) at a = 1. (For every fixed i, the multiplicator of the i 1h 

term tends to 1 if k -+ oo.) Such a resummation can have some practical importance only if very long 
series are at disposal. The pragmatic question of convergence is, of course, whether a relatively small 
number of terms gives a good approximation or not. 

In the above proof, the finiteness of the lattice was essential, because the summation over the links 
E1 could otherwise cause problems. In an extension to an infinite lattice, one has first to control 
the link sums. This can be done at such points of the parameter space (.X = oo, {3, .It), where the 
correlation length is finite, since then the connected parts vanish exponentially with the distance of 
links. In general, the non-convergence of SSCE on an infinite lattice can come from two sources: first, 
the individual terms of the expansion can diverge because of an infinite correlation length, second, 
the sum can diverge, even if the terms are finite, because of an unfavourable choice of the ~~:-rescaling 
factor s2 in Eq. (14). 
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2.4 Expansion of the correlation functions 

The connected correlation fWlctions are of particular interest for the study of quantum field theories. 
For Instance, the mass gap in a given channel can be determined from the exponential decay of an 
appropriate 2-point fWICtion at large distances. In the following we consider in detail the SSCE of some 
simple types of correlation functions. The eXpansion of other, more complicated types of correlations 
can be performed in a similar way. 

As a first example, let us tate the correlation function of m link variables 71 = TrV (x, p), which 
is defined by 

(28) 

For the expectation value on the right hand side one can apply Eq. (13). But first it is convenient to 
introduce the generating function of the expectation values of arbitrary composite. Tt·products by 

(24) 

The subscript oo refers to the fact, that Z[K]oo is an expectation value in. the .\ = oo point, where 
SSCE is done. The functions K,.(lt ... I,.) (n "' 0, 1, ... ) are, for the moment, arbitrary composite 
currents. From Eq. (13) one obtains 

log ( exp [I:JiTt]) = Z[K(il]oo- Z[K(0l]oo 
l ).,{J,K 

(25) 

where the composite currents K!/) are given by 

(26) 

It is clear from Eqs. (24-26), that Z[K]00 can be written as a sum over the "partitions• of n. By 
the partition n{n, ... nl} of the positive integer n we understand a set of positive integers n,, ... ,nk 
satisfying 

n = n, + 2n2 + ... + knk (27) 

Let us define the factor!{ .. , ... ,.,} belonging to the partition n{n, •.. nk} by 

• 1 
... = (i~ - s~J"• IT -;7:::,.,..-
'{ ......... } 1 . n·!(il)"' 

•=1 t 

(28) 

Then the SSCE of the n·link correlation function in Eq. (23) can be written as 

(29) 

Here F(n) is a sum over partitions: 

F(n) = (80) 
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The function Tf,., ...... } belonging to the partition n{ "' ... "h} is the product of "' single-link variables, 
n2 two-link variables, •.• , Ai k·link variables, summed over all the links~ The first few F(") in Eq. (3fr) 
are given explicitly by 

p(l) = (i~- r> ~T, · 
I, 

p(2) = ~ [i<i~- s2)21),Tr, + ic(l1l2) (1),1)2 )] 

1,1, 

(31) 

where we recall that in the connected expectation values of Eq. (29), the variables put in parentheses 
in Eq. (31) count a.s a. single entity. 

As a second example, let us consider the m·point correlations of the site variables 
p,, ... p.,.,, which are defined by 

(p,,p.,, ... p,.,)~ . .s,. = 
0 

IJ"'{) ·1 log(exp [~r,p,]) 
r,t ~.. r,m -o 

"- r >.,P,tc 

The derivation of SSCE consists of similar steps a.s before. Instead of Eq. (25) we have now 

where the composite current K(•) is given by 

The .>.-dependent connected expectation values c,,; a.re defined, in analogy with Eq. (12), by 

(32) 

(38) 

(34) 

c,,;(ll .. . !,),, .... , = c(h .. . !,),, .. ,,, = {(p31+ii1Pz,) ... (Pz.+ll.Pz.)p,, ... p,,)~ (35) 

The final result for the m·point correlation function is: 

(36) 

The link variable dependent combinations p(n) are the same a.s in Eqs. (30-31), supplied with p(O) = 1. 

The new combinations G~! .. ,., appearing in Eq. (36) are again sums over partitions of the points 
11 ... Jm· The first few of them are: 

GL~l = ~~ ~ c(/1 ••• I,.), (1)1 ••• 1).) 
h ... l. 

GL~L. = ~ [~1 c(l1 ... I,),,,, (71, ... 1).) 
h .. J. 

8 



' 

) 

n-1 l ] 
+ f

1 
ml(li ~ m)((lt···lm),,c(lm+t ... !,.),, (Tr, ••. Tr.,) (11.,+> ••• 7;.) 

G~~~ .. ,., = L c(lt)r1 ••• , .. Tr, (37) 
r, 

: The whole expression for the nth order in Eq. (86) can also be considered as a sum over the partitions 

of n links. The difference compared to Eq. (29) is, that the additional points y1 ••• Ym are distributed 

among the connected link groups in all possible ways. 
An alternative way to derive the SSCE for the connected p-correlation functions is to use a. gener· 

alization of the relation in Eq. (U): 

(38) 

This implies identities between the expectation values of p-products and infinite series of link·variable 

expectation values. The simplest examples of such identities are: 

00 " . 

(p,,) -\,,8, = L :, L (Tr, · · · Tr.h,p,~ c(lt ... l,.),, 
n=O lt ... l,. 

(39) 

and 
00 It" 

(p,,Py,)~..s.~ = L n! L (Tr, • ·· Tr.h..s.~ c(lt ... l,.),,. 
n=O h .. J,. 

oo n-1 ICn c 

+ L L ml (n _ m)! L ((Tr, •. . Tr.,)(Tr,.+l ... Tr.>h..s.~ c(lt ... lm),,c(lm+t ... 1,.),, (40) 
n=2m=l h .. J,. 

Here the right hand sides are combinations of expectation values depending only on the link-variables 

Tr. These can be expanded by using Eq. (18). The results are, of course, identical to Eqs. (36,37). 
Up to now the fixed .B·value for SSCE was always con~idered to be finite. This is, howeVer, not 

essentia.l, because every formula. is valid without change also for the limit ,8 = oo. The reason is, that 

in the p == oo actions (4,6) the role of 11 = TrV(:z:,p) is taken over by 

Tr = Tr { at.flaz) (41) 

The above SSCE formulas are valid also for ,8 = oo, if for Tr this expression is used. 

3 Monte Carlo calculation of the SSCE coefficients 

In order to have a feeling a. bout the qualitative behaviour of low order SSCE, we performed a Monte 

Carlo calculation of the .X = oo correlations needed in the 3'4 order SSCE of some simple quantities. 

The numerical calculation was done on an 84 lattice, at the point (.X = oo, ,8 = 2.3, 11: = 0.4). The 
choice of the ,B·value is motivated by the existence of 84 Monte Carlo data obtained earlier at ,8 = 2.3. 
The value of the hopping parameter is such that the point is in the Higgs· phase, in the neighbourhood 

of but not too close to the confinement· Higgs phase transition. At this point, on the 84 lattice, the 

link expectation value is (tTrV) = 0.2933(7), the W·mass in lattice units amw = 0.66(7), and the 

Higgs boson mass amH = 0.58(6). We collected our statistics in about 2 · 106 sweeps, where the first 
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10000 sweeps were omitted for equilibration. The updating was done by the Metropolis method with 
6 hits per lint, using the gauge Invariant variables in the action (5). 

The quantities .we have studied are the average Higgs field length (p), the average link ( !TrV), 
the lint-lint correlation <iTrV · iTrV)•, the length-lint correlation (p · iTrV)• and length· length 
correlation (pp)•. In the SSCE ofthese quantities, Eqs. (29, 36), the numerically difficult contributions 
come from multi-lint connected correlation fUnctions summed .over the lint positions. As one can see 
from Eq. (31), the number of such contributions can be minimized by choosing the free parameter 8 in 
the expansions to be 8 = i1. (In this case, in Eq. (30), only those partitions contribute, where n1 = 0.) 
In order to have reasonable statistical errors in the SSCE coefliciimts, we had to restrict ourselves to 
third order, or· sometimes even less. 

Table I. 
SSCE predictions for (>. = 1.0, (3 = 2.8, " = 0.375) from numerical data at 

(.). = oo, (3 = 2.8, "= 0.4), corresponding to B = i1; 

quantity oU. order I" order 2"4 order 8'd order data 
(p) 1.0325 1.1554(4) 1.1674(5) 1.80(1) 1.29 

(4-TrV) 0.292(1) 0.292(1) 0.61(3) 0.89(4) 0.57 
{P) 1.0325 1.0325 1.0445(1) 1.0420(1) 1.05 

c •• (4) 0 0 0.03(1) 0.04(1) 
CpL(1) 0 0.22(2) 0.24(2) 
CpL(2) 0 0.12(2) 0.18(2) 
CpL(3) 0 0.08(2) 0.09(2) 
CpL(4) 0 0.07(2) 0.08(2) 
CLL\1) 0.50(3) 0.50(3) 
CLL(2) 0.28(3) 0.28(3) 
CLL(3) 0.19(3) 0.19(3) 
CLL(4) 0.16(3) 0.16(3) 

The obta.lned numerical results for 8 = i1 are collected in Table I. Besides the average length and 
average lint we also included the combination 

(42) 

In this quantity many of the difficult contributions cancel and, as one can ·see from Table I, the third 
order expansion gives a. very good and convergent result. The correlations given in the Table are built 
up from the time-slice variables 

P(t) = ~ r><x, t) 
S X 

N ~"~1' L(t);: SN L..t L..t 2TrV(x,t,m) 
S X m=l · 

(43) 

Here Ns is. the number of lattice points in a time-slice. The total number of lattice points will be 
denoted by N4. The definition of the time-slice correlations for time distance t is: 

Cpp(t);;; N4(p(O)p(t)) 0 

CpL(t): N,(p(O)L(t))• 

CLL(t) :: N,(L(O)L(t))" (44) 

In the last column of the Table some numericall'esults· obtained from a linear interpolation of Monte 
Carlo data, measured at the corresponding parameter values, are shown. 

10 



The dependence of third order SSCE for the average length (p} on the variable " is illustrated in 

Figs. 1 and. 2 for .\ = 1.0, 0.1, respectively. In these figures the existing numerical Monte Carlo data 

are also included, partly from Ref. [5J and partly some new data obtained in more recent runs. As 

one can see from the figures, the third order SSCE describes the Monte Carlo data qualitatively well 

in a wide range of "• but the errors are large and the agreement is not quantitative. The connected 

contributions shift the approximate second order, given in Ref. [6], away from the Monte Carlo data. 

In [6] all connected contributions were neglected and 8 was chosen according to Eq. (15). In this 

way one obtains a curve, which almost coincides with the dashed-dotted lines on the figures (the non· 

connected second and third order contributions are very small). As one can see, this agrees rather well 

with the Monte Carlo data for 8 given by Eq. (15). Shifting the expansion point with "according to 

Eq. (15), one obtains good agreement in a wider range of" (see Ref. [6]). Unfortunately, the connected 

contributions are non-negligible. For the moment we have no good explanation for the good agreement 

obtained without the connected parts. (The neglection of connected correlations corresponds to some 

sort of mean·field approximation.) The complete third order seems to Indicate, although with large 

errors, that for the choice (15), the connected contributions in SSCE have the tendency to alternate 

in sign. This is, of course, disadvantageous for a very fast convergence. The choice 8 = i 1 seems to 

give a better convergence, but even at this point for a quantitative description of all the Monte Carlo 

data more orders are needed than the third order calculated here. 

4 Discussion 

Having in mind the numerical difficulties in the calculation of higher order SSCE coefficients, one 

can conclude that a low order SSCE presumably cannot replace a direct numerical study of the 

.\·dependence in the standard Higgs model. However, the qualitatively good description of the .\

dependence is, in our opinion, still useful. Moreover, the closed 'form of the expansion can be a valuable 

analytical tool. Since SSCE is, apart from an eventually necessary trivial ·reordering, convergent on 

finite lattices, a very interesting possibility is to use it for the study of the infinite volume limit (for 

questions like the order of the confinement-Riggs phase transition etc.). 

A possibly very interesting application of the SSCE is to use it near the continuum limit at {3 = oo. 

In fact, SSCE is in principle very similar to the ordinary perturbation theory at g = 0 (vanishing gauge 

coupling): in both cases one is doing an expansion about a point on the boundary ·Of the coupling 

parameter space. The usual weak coupling perturbation theory is a double expansion in the point 

(g = 0, .\ = 0). It is very well possible, that a double expansion at (g = 0, .\ = oo) is at least 

as useful. At the first sight, this combined strong-weak coupling expansion seems to be much more 

difficult, because the expansion point still has a non-trivial lattice action. Going to the critical point 

in the third variable ~e, however, implies that the expansion point is approaching a free theory in 

disguise. Therefore, using the known triviality of the critical point at(.\= oo, f3 = oo, "= K.,(oo)), 

one arrives at the same level of simplicity as in the starting point of weak coupling perturbation theory. 

An important advantage of the strong-weak coupling expansion is that it has a much better chance 

for incorporating the ).-independence of the continuum limit. 
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A Appendix 

A.l Integrals over the Higgs•fleld length 

The .\-dependence in the SSCE formulas are given by the integrals defined in Eq. (10). The basic 

integral is (k = O, 1, 2, ••• ): 

1 /
00 

2 ( z 1 )I+t = -- dz ex -x 1 + - -
2V>. - v'X+ lf(2v'X) p( ) -::;;. 2.\ 

r(2 + jl [ 1 ( 1 ~)2] ( 1 ~) = exp -- --v2.\ D .L --v2.\ 
2(2.\)l+f 4 ;/2>. -2-~ ;/2>. 

(45) 

Here D,.(z) denotes the parabolic cylinder function [14}. The relevant ratio ik is, therefore, given by 

(46) 

The asymptotic behaviour of ik for very large and very small A is [14} : 

. { (.\ .... oo) 1 + k(k- 2)/(16.\) + o(A-2) 

'• .... (.\ .... 0) r(2 + k/2)(1 - .\k(k + 6)/4 + o(.\ 2)) 
(47) 

The integrals in Eq. (45) can easily be performed numerically. The result for some characteristic 

values of.\ is shown for ik (k = 1, 2, ... , 10) in Table Al. 

Table Al. 
The values of i1, ••• , i10 for some typical A. 

.\= 10.0 1.0 0.1 O.ol 
iJ 0.99516 1.03258 1.20569 1.30832 

i2 1.00263 1.13373 1.60794 1.92884 

is 1.02178 1.30652 2.31982 3.12745 

i, 1.05250 1.56687 3.56824 5.48675 

i& 1.09509 1.94393 5.79188 10.2943 

i6 1.15027 2.48403 9.84615 20.4756 

i1 1.21915 3.25837 17.4293 42.8816 

is 1.30326 4.37575 31.9803 94.0450 

ig 1.40459 6.00302 60.6000 215.031 

iJO 1.52566 8.39795 118.233 510.693 

In the SSCE of simple quantities the ik·factors always appear in combinations which are much 

smaller than the individual terms. Such typical combinations are: 

. • ·2 
)2:: t2- t1 

is =is- 8i1i2 + 2i~ 
h = i4- 4iJis- 3i= + 12i~i2- 6it 

. • . • ·2 2·s· + z·& J2s:=t2ts-t1t2- t 1t2 t 1 
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.f!J_., a·'·'+2's 
Jss = •s- '''' •1 

,~:J = ;J- 2i,i,is- aifil + 8ifi,- 4ir 

fa• = isi4- 2i1i2i1- 2i~is- i~ + Hlifiz- 64 
iu = isi4- i,i=- Si~izis- Bi1i= + 6i~i~ + 6i~i,- 6ij 

J44 : i: -4i~i~ - Bi~ + 12ifi~ - 6i~ 

m• = ili• - 4i~i,is - ·~ + 2ifi~ + siri, - e;f 
The values of these combinations are given in Table A2. 

Table A2. 
The values of;,, ... , h24 for the ~-values in Table Al. 

~= 10.0 1.0 0.1 0.01 

h 1.2287E·2 6.7607E-2 U4l!5E·1 2.1715E·1 

fa ·4.4984E·4 ·3.707'TE-3 9.1900E·S 3.5718E·2 

J4 4.4786E·5 ·6.1618E-4 ·6.0460E·3 ·1.6840E·3 

J2s ·1.5053E·4 5.2851E-3 7.2149E·2 1.9228E·l 

i ·2.2867E·5 . 1.9535E-2 2.5007E·1 7.0642E·l 

i ·2.1800E·5 ·1.0215E-3 6.9209E·3 4.1866E·2 

h• 3.7613E·5 ·5.9822E-4 1.0363E·3 3.7526E·2 

iu 7.9730E·6 ·1.3041E-3 3.2030E·2 2.0466E·1 ,. ...... 8.5451E·6 ·7.6604E-4 1.5568E·1 9.1146E·l 

h24 3.7705E·5 . 7.1154E-4 .3.9172E·2 2.1669E·1 

A.2 Summation formulas 

(48) 

The SSCE of correlation functions are built up from sums over links. The terms in the sum are 
proportional to some "connected i·products", like c(h ... I,.) defined in Eq. (12). The basic task is to 
perform sums like 

S,. = L c(lt ... 1,.)1i1 ... 7). 
h .. J. 

The simplest non-trivial case is· given by 

s, == L:c(ltls)Tl,Tl, = J2 [<it+ in L:T~~ + i~ L: T1,T1,] 
!,!, h (!,!,) 

(49) 

(50) 

Here the second term is a sum over link-pairs with one common point. It can easily be shown that 
also in the general case, the sum L1, .. .1. in Eq. (49) gets non-zero contributions only from the totally 
connected link configurations. For the more complicated cases let us agree on the convention that if 
some links are put in parentheses, then they have a single common point. (For instance, a closed path 
along a plaquette is in this notation (l,lz)(Z,Is)(ls14)(141!).) In tbis case we have 

"'· ·(')"''"' a· . "''"'"' ""=Jss L.J.Lh + tiJIS L- .. ~,~,, 
h (!,!,) 

+ifj, L 1i,1i,1i, +3iM L T~,T~,Tl, 
(!,!,lr) (l,!,)(l,!r) 

14 
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and 
s4 = iu E T,~ + 4ifis4 E Tl~ Tr, 

h (hlo) 

+3Ji24 E T,~ 11~ + 6iM:1 E Tr, Tl~ Tr, 
(l,lo) (111,)(1,1,) 

+12hi2Jis E T,~TI,Tr, + 6i~Ji4 E T,~TI,Tr, 
(hlo)(l,lo) (l,lolo) 

+ifJ4 E 11, Tr, Tr, Tr. + 12i~J2Ji E Tr, Tr,11,11. 
(hlzlol•) (hl.)(lolol•) 

+ 12ifi: E T,,T,,T~,Tr. + 12ii<i~+ain r: T~,11,T,.Tr. (52) 

(h lo )(lolo )(lsi•) (hi,) (lolo )(lol•) (l•h) 

In the SSCE of p-dependent correlations, like for instance Eq. (36), sums with the other type of 

.\-dependent ".connected i·products" c,;,;(II .• . ln)Vt ... u1 appear. (For the definition of Cn,£ see Eq. (35).) 

The notation for these link-sums will be: 

Sn(y1 ... u;) = E c(l1 ... 1n)y1 ... y1Tr, •.• T1. 

'1··"'· 
(53} 

The simplest sums over links with a few site variables can be decomposed in a similar way like 

Eqs. (50·52). In analogy with the above notations, let us put coinciding. points in curly brackets, like 

for instance {111!12 }. A point on a link will be enclosed in square brackets together with the link: [yl]. 

Touching links will be put in parentheses, as before. Then the simplest link·sum~r with a single point 

111 are given by 
Sl(y,j = ili2 E Tr, 

[r,lt] 

52(r,J = :in E T1~ + ihs E Tr, T,, + 2id: · E Tr, T1, 
[v,t1] ([y,t,][u1t,]J ([v111 ]1,) 

Ss(r,J = h4 E T1~ + 3id24 E Tr, Tf, 
[,,r,] ([Vti,][nlo]) 

+3j,j,s E T,,T1~+3il)~=) E T,,T,~ 
([v1 t,]i2 ) (t,[r1 1,]) 

+i~:i4 E T~,Tr,Tr, +3i~J2is E T~,T,,T,, 
([v11, ][v112 ][y,l8 ]) ([r1 h ]I, I,) 

+6i!J: E 11,TI,TI, +6i~isis E T~,T,,T,, 
([n h ]lz )(!, lo) ( [vtlt][Vtlz]) ( lolo) 

The similar sums with two points !lio !12 are: 

(54) 

. (55) 

(56) 

sl(Vtvz) = ids E Tr, + J: E Tr, (57) 
[btvo}l,] [y,.,l,j 

s2(mo) = 124 E 11~ + JJ~l E Tr~ + i~J4 E Tl, Tr, 
[btv.}lt] [r,rold ([{y,y,}l,][{vm}lo]J 

+2id2is{ E + E + E }T~,T,,+2:ii E Tr,T,, (58) 
([{p,,,}h]lo) (\rml,][roio)) ([Vtroh][u,lo]) ([nl,][rolalJ 
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Figure captions 

P'ig. 1. Comparison of 3'4 order SSCE of the average Higgs field length (p) to the Monte Carlo 
data at (,8 = 2.3, .\ = 1.0). The crosses are data points from Ref. [51 and the results of some more 
recent rnns. The dashed·Jine Is zero'th order, the dashed·dotted one Is first order. The almost full line 
with error bars is 2'"1 order, the full line with error bars is 3'4 order. The lines are drawn to guide the 
eye. The dashed·dotted line practically coincides with 3'4 order, if the ·connected contribntions are 
set equal to zero. Two specific values of Bare shown by arrows: B =it and B = s1 given by Eq. (15). 

P'lg. ll. The same as Fig. 1., for .\ = 0.1 
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