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Abstract

Expectation values at an arbitrary point of the 3-dimensional coupling parameter space
in the lattice-regularized SU(2) Higgs-model with a doublet scalar field are expressed by a
series of expectation values at infinite self-coupling (A = o0). Questions of convergence of
this "strong self-coupling expansion” (SSCE) are investigated. The SSCE is a potentially
_useful tool for the study of the A-dependence at any value (zero or non-zero) of the bare
gauge coupling. :

1 Iatroduction

The standard SU(3) ® SU(2) ® U(1) model has turned out to be very successful up to the 100 GeV.
energy range. The extension to still higher energies is, obviously, one of the central issues in our
field. The simplest extension is, of course, to assume that the standard model is valid in its presently
~ known simple form up to some very high cut-off, say, the Planck scale. The basic question is, whether
this extrapolation over roughly 17 orders of magnitude is possible at all, at least in principle. In
other words, is the standard model mathematically consistent with such a high cut-off? The SU(3)
colour factor is asymptotically free, therefore there seems to be no problem with a high cut-off in
this case. The U(1) electromagnetic coupling is not asymptotically free, therefore there could be a
. problem, at least in perturbation theory, but the value of the coupling can still be very small at the
Planck scale, therefore the problem is not really serious. The least understood and most problematic
piece is the Higgs-sector, which in its simplest form is a four-component (complex scalar doublet)
#* model coupled to the weak SU(2) gauge field. A simple and important question is, whether this
»standard Higgs model” is mathematically consistent with a very high cut-off. Going to the extreme,
and assuming lattice regularization, the question is, whether the standard Higgs model on the lattice .
has a non-trivial continuum limit. :
Other important problems for the lattice-regularized SU(3) ® SU(2) ® U(1) theory are connected
to the non-perturbative features of spontaneous symmetry breaking occurring in the Higgs-sector of
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the SU(2) ® U(1) electroweak component. The primary question in this respect is the phase structure
of the Higgs-sector. In fact, the main concern of the first numerical Monte Carlo investigations [1,2]
in the SU(2) Higgs model with scalar doublet field was the study of the phase transitions. In these
papers, as a first approximation, the coupling to fermions and the U(1)ayperonorge-factor. was neglected.
The inclusion of the U(1)-factor is, in principle, not very difficult. (For a first study see Ref. [3].)
The coupling to fermions (through the Yukawa- and gauge-couplings) is much harder to include in a
numerical approach but, clearly, one has to start at the easier end.

Concerning the existence of a non-trivial continuum Hmit in the standard SU(2) Higgs model,
the distinctive feature, compared to the SU(8)-colour gauge sector, is the appearance of the non-
asymptotically-free scalar ¢* self-coupling A. According to perturbation theory, such couplings have
the tendency to grow for increasing cut-off (or decreasing lattice spacing). This growth counld, in
principle, be stopped, if there were a limiting fixed point at some finite A-value. In the pure ¢4-model
(neglecting the gauge coupling) the non-existence of such a non-trivial fixed point is, however, almost
rigorously proven [4]. Consequently, the bare A coupling reaches infinity for some finite cut off, and
the continuum limit of the ¢%-model has to be trivial (non-interacting).

The inclusion of the SU(2) gauge coupling can, however, induce a non-trivial continuum limit.
Such a limit could, in principle, exist for finite gauge coupling # < o0, somewhere in the interior of
the three-dimensional coupling parameter space. A first numerical 'study of the scaling properties of
correlations and static energies in Ref. [5] showed, however, that this is not probable. All the numerical
information obtained up to now on these quantities [5,6,7,8] is consistent with a possibly non-trivial -
continuum limit at 8 = oo, and the critical value of the hopping parameter £ = K, (A) in the pure
¢%-model, for any fixed positive A. This critical point in the ¢*.model is very probably trivial i.e.
aon-interacting for every A. Therefore, any interaction in the coupled gauge-Higgs system is induced
by the gauge coupling. In particular, due to the asymptotic freedom of the gauge coupling, the induced
¢*-coupling has to vanish, too, at infinite energy. Considering the simplest possible gauge-quantum
exchange graphs, one can infer, that the physical ¢%-coupling has to go to zero by some power of the
high energy scale.

The triviality implies that the pure ¢*-model becomes approximately A-independent, if the cut-off
is high enough. In fact, this approximate A-independence seems to setin quite early, as it is shown,
for instance, by the figures in recent papers on numerical Monte Carlo studies of the ¢%-model [9,10].
After the inclusion of the gauge coupling the approximate A-independence remains true. This is shown
by recent numerical results [5,8] in the wide range 0.1 < A < oo, for relatively large gauge coupling
(8 = 2.8). It is quite amazing, that the A-independence looks qualitatively so similar, if one compares
the behaviour of the correlation lengths at # = 2.3.and 8 = oo [5].

Of course, the A-independence of the continuum limit in the Higgs model implies, that the ¢con:
tinnum theory has one free parameter less than the regularized theory. Since this is an essentially -
non-perturbative phenomenon, it can be called non-perturbative parameter reduction!. A direct con-
sequence of it is, that the value of the Higgs-boson mass can be predicted from the W-boson mass and
the renormalized gauge coupling. The question of the A-dependence in the standard Higgs model is
thus very interesting both from the principal and practical points of view.

- Numerical Monte Carlo studies can, on their own, only provide indications but never proofs for
such mathematical features like the exact A-independence or the existence of a continnum limit.
Therefore, it is useful to combine the numerical work with analytical techniques. In this context one
of us suggested [6] to use the expansion around A = oo for the study of A-dependence in the standard
‘Higgs model (and also in other types of Higgs models).

The purpose of the present paper is to study such "strong self-coupling expansions” {SSCE’s) in
the standard Higgs model. After elaborating on the general technique of SSCE, the convergence will
be proven for a finite lattice in Section 2. The convergence in the practical sense will be questioned
in Section 3 by numerically determining the XA = oo correlations, which appear in a low order SSCE

'We thank Barbara Schrempp for proposing us this suggestive terminology.
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of some relevant quantities. Section 4. contains some concluding remarks. Useful formulas for SSCE
calculations are collected in the Appendix.

2 General framework

2.1 Lattice action’

The standard Higgs model is described on the lattice by the SU(2) link-variables U(z, g) € SU(2) for
the gauge field and by the length- (p, > 0} and angular- (a, € SU(2)} variables of the Higgs-field. »

denotes lattice points, g = +1,2, +3, +4 are link directions and (z, g} is the link from the point z to
the neighbouring point (z + #) in'direction . The lattice action in these variables can be written like

1
S =8 (1 - ETr Up)
3 |

+ E {ﬁ: — 3logp. + A(p?-. - 1)2 - K z Pz+pPsTT (ai-;-ﬁv(‘c’ I‘)az) } (1)

#>0

Here ¥ p stands for a summation over positively oriented plaquettes. The first term is the familiar
Wilson-action [12] for the gauge field proportional to the bare gauge coupling § = 4/g*. The bare
coupling parameters for the Higgs-field are: the self-coupling A and the hopping parameter £. The
integration measure corresponding to Eq. (1) is dp, 0, d%U(z, ) (where d3g denotes the Haar-
measure in SU(2)). The peculiarity of the SU(2) doublet scalar field is, that its angular part is
equivalent to the local gauge degree of freedom. Therefore, at any finite § it is possible to introduce,
instead of the SU(2) link- and site-variables, a gauge invariant link variable

Ve, b) = of Uz, p)as ' (2)

In terms of this, the lattice action is

1
S5xam =82 (1 - Errvp) +3 {p: —38logps + Mpz = 1)* — K 3 porapeTrV (2, u)} 3
P z p>0

After performing the trivial integration over as, the integration measure for Eq. (3) is dp. &V (z, p).

In the limit 3 — oo the variable change in Eq. (2) is inappropriate, because the gauge part of the
action vanishes (the link-variables become gauge equivalent to unity). Therefore, one has to use for
the 8 — oo action

Sa,B=cox = Z {P: —3logp,+ A(F: - ]-)2 - K Z PurpPeTT (a:-;.aan:) } (4)
z p>0

This defines an SU(2) @ SU(2)- (or O(4)-) symmetric four-component ¢*-model corresponding to the
lattice version of the Gell-Mann-Lévy linear #-model [13].
In this paper we shall often consider the A — co limit. In this case the length of the Higgs-field is

frozen to p, = 1, and the action in Eq. (3) goes over into

Sicann =B (1-377Ve) =6 T TrV (e, ©
P

a,u>0

The corresponding limit of the action in Eq. (4) defines the SU(2) ® SU{2)-symmetric non-linear

o-mode] on the lattice:
Srmoogmoon = =8 3 T (af,pe) (6)
z,u>0
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2.2 Expansion of the partition function

The aim of the SSCE is to express the expectation values in an arbitrary point (X, 3, &) of the
coupling parameter space in terms of a series of expectation values at A = co. The gauge coupling
will be kept fixed, and the hopping parameter will be changed by an arbitrary (positive) scale factor
82 to & = #%x. The motivation for this will become clear later. According to Eqs. (4), (6) the relation
between the actions in these points is:

1 1\?
Srpw = Sr=co,8x + D {_IA— —3logp, + A (Pg -1+ '51") —-K ZO(P:quPz - 6 TrV (2, #)} (7)
x n>

Therefore, the partition function Zy g, in the point (X, 8, &) can be written like

Zase = [10V]1d6] exp(~Si0.0)

=C f [dV] exp(—Si=cc,8,2) (exp [NZTz(p=+ap= - sz)]) (8)
i A

where € is an unessential (3, &)-independent constant, [ is an abbreviation for the positively-oriented
Yink (z,u), T) stands for TrV (z, p) and the A-dependent expectation valne (---)) is defined, for an
arbitrary p-dependent fanction f{p), by

flagl (o) exp {~ =, _[-3 log ps + Alg? — 1 + )]}
fdp] exp {-—E, [—3logp, F AR -1+ fx)z]}

In the following expressions an important réle will be played by the A-dependent expectation value
of the powers of a single length variable py (for an arbitrary site y):

{fir= {9)

15° dpy £y exp [-Moj — 1+ 5)7] = (D) _ (10)

JoC dpy pg exp I-'-,*A(ps -1 le)z] =~ To(N) T k

For an explicit form of these integrals see Appendix A.l.
The A-dependent expectation value in Eq. (8) can be exponentiated in the well-known way, as

(exp [ﬁ z Ti(potppe — 83)]>
! A

(ks =

=exP{KZTc(if-{?2) +E % Z: Ty, ...T;,cn(h...ln)} (11)
i

n=2 f1.dq

where the "connected ¢-product” ¢, is defined by

en(li.. dn) = el . 8n) = {{Pey 45 P21) - o (Prptiin Pz D3 (12)

The superscript ¢ on {---}§ denotes "connected” (A-dependent) expectation value. In the definition of
the connected parts, the products within parentheses have to be considered as a single entity. (This
kind of notation will be used throughout this paper, also in connection with other sorts of expectation

values.)
The basic relation (11} makes it possible to obtain the expectation value of any function F(V')

depending only on the link variables V (x, #):

_ J4V]1dp] exp(—=Sy s ) F(V)
FVMrsr = =] 1d0 exp("g.\,ﬁ,n)
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R Ln
Z; b f [dV] exp(—Sx=co8 4} F (V) exp {x;m‘? —)+ Y= 3 Ty Tl ...z,)} (13)
n=3 " I;..da
This is a typical relation which will be the starting point for the SSCE of correlation fanctions,
considered below. In order to obtain the SSCE series from Eq. (13), one has to expand the right hand .
side in powers of x, (or, equivalently, in the mumber of link-traces T, or in half of the total number of
powers of Higgs-field lengths contained in the ¢-factors of Bgs. (10), (12).)

Up to now, the framework for SSCE was kept quite general. Relations like (13} can connect, for
fixed 8, an arbitrary point to an arbitrary A = oo point, Some special cases are, however, of particular
interest. If, for instance, the A = oo point is chosen at (8 = 00, k = 0), then the resulting expansion is
equivalent to the "high temperature expansion” of the #% model in statistical physics [11]. In this case
the A = o0 action Sy=oo f=cok=0 is trivial, and the right hand side of Eq. (13) does not contain any
further integration. By choosing £ = 0 for any § < 0o one obtains-a more general "hopping parameter
expansion”, where the terms of the SSCE series are given by expectation values of correlations ir the
pure SU(2) gauge theory. .

For the study of the A-dependence at any fixed {finite or infinite) 3, a favourable choice of the
x-rescaling factor '

2= _ F(A =)
2= () = 07 (14)
is such, that along the curve £(A) = &/ 83(A) the link expectation value is constant:
(TrV (2, 8))5,8,0(1) = cOmL. (15)

The reason is the approximate universality of the physical expectation values along the curves
(8 = conet., {T}) = const.).

2.8 The.convergence of SSCE on a finite lattice

Let us now sketch the proof of the convergence of the SSCE on the example of the link-variable
dependent expectation value in Eq. (13). It is convenient to introduce an integral Ep(a), which
depends on an extra parameter a,

Ep(a) = f[dV] exP(_SA=oo,,8,a"’n)F(V) <.exP [O.'K ZI:TI(P:!:-WP: - 32)]) (16)

b
The expectation value in Eq. (13) is.then given by

Ep(a)

(FV ). = (o) {tn

a=]

The SSCE is equivalent to the power seri¢es expansion of the right hand side in &, taken at o = 1. We
shall see that, for any bounded F', Ep(a) is an entire function of a.
The power series expansion of Ep(a) is '

Er(a) = [14V] exp(~Ss=eo gt VY

& (aK)®
E (_';;1)_ Z Tl: .. -Tln <(Px1+ﬁ: Pz, — 3’} e (psn-f‘ﬂu Pze — 32)>'\ ' (18)
n=0 R S



The interesting piece of this series satisfies

E o,...17, ((Pz1+ﬁ1pz1 - 82) coe (Pzn+ﬂ. Pz — 32))A

f1..1a

< 2" Z: ((Pn-f-iupn + 92) ces (f&s‘?’f‘nph + 82))A (19)
I1.dn

In addition, the power series expansion

(exp [ch S (p=1pp- + s’)]) =y E%]: 3 ( (Pes+p1 ey + 8%) oo (Pontig Pun + v”)) , (20)
i A :

n=0 lI ...la

has positive coefficients and is, obviously, convergent for every a. It follows, thiat the series under the
[dV] integral in Eq. (18) is uniformly convergent, hence it can be integrated term by term. In view of
Eq. (20), the resulting series is convergent for an arbitrary o, therefore Ep(a) is an entire function of
a, as stated before.

The integral in the denominator E{a) is, of course, also an entire function, and for real « it is
positive definite, hence the function Er{a)/E;{a) is analytic at least in a strip along the real axis. The
isolated zeros of E1(a) produce singularities. Therefore, the SSCE series in Eq, {17) can be convergent
only if the nearest zero og of E(a) satisfies [ao| > 1. The convergence of the SSCE can, however,
always be achieved by a simple resummation. Namely, instead of «, one can always introduce a new
variable &, such that the relation '

a=) ad (21)
k=1

defines a conformal mapping of the unit circle in & into the finite strip of analyticity along the real
a-axis between, say, Rea = 1. An explicit class of such mappings can be given, for instance, by the
integral representation

_ fié(l—iﬁ)/(l+iﬁ) dt 5
@=c), vasmaoem =

With a suitable choice of the real parameters 0 < k < 1 and ¢,d,6 > 0 one can achieve, that the
conformal image of the unit circle in & is a rectangle within the region of analyticity in a. .

The reordering of the Taylor series of Ep{a)/F(a) according to the powers of & defines a conver-
gent reordering of the SSCE series (at & = 1). This reordering is such, that the k** term of the new
series is a combination of the first & terms of the old one. Since F(a) appears in every expectation
value, the reordering is the same for every quantity. In fact, at a given finite order & in #, the resum-
mation is equivalent to the multiplication of the terms of SSCE by some number obtained from the
partial sums of the expansions of o' (i < k) at « = 1. {For every fixed #, the multiplicator of the 7**
term tends to 1 if ¥ — co0.) Such a resummation can have some practical importance only if very long
series are at disposal. The pragmatic question of convergence is, of course, whether a relatively small
number of terms gives a good approximation or not.

In the above proof, the finiteness of the lattice was essential, because the summation over the links
3"; could otherwise cause problems. In an extension to an infinite lattice, one has first to control
the link sums. This can be done at such points of the parameter space (A = oo, 8, &), where the
correlation length is finite, since then the connected parts vanish exponentially with the distance of
links. In general, the non-convergence of SSCE on an infinite lattice can come from two sources: first,
the individual terms of the expansion can diverge because of an infinite correlation length, second,
the sum can diverge, even if the terms are finite, because of an unfavourahle choice of the x-rescaling
factor 2 in Eq. (14).



2.4 Expansion of the correlation functions

The connected correlation functions are of particular interest for the study of quantum field theories.
For instance, the mass gap in a given channel can be determined from the exponential decay of an
appropriate 2-point function at large distances. In the following we consider in detail the SSCE of some
simple types of correlation functions. The expansion of other, more complicated types of correlations
can be performed in a similar way. .

As a first example, let us take the correlation function of m link variables 7} = T'rV (z, s}, which

is defined by
log (exp [E 3‘:’&] ) | (28)
7

7=0 AAx

For the expectation value on the right hand side one can apply Eq. (13}). But first it is convenient to
introdace the generating function of the expectation values of arbitrary composite. Tj-products by

am
R I I
(ﬂl {3 i"")Asls!" a]h s a_ﬂm

Z2[K]oo = log (exp f: Y Eally...0a)T n]) _ {24)

n=01..1, A=o00,4,R

The subscript co refers to the fact, that Z[K]. is an expectation value in the A = oo peint, where
SSCE is done. The functions K, {l1...ln) {n = 0,1,...) are, for the moment, arbitrary composite
currents. From Eq. {13} one obtains

log <exp [Z;m]) = Z[KW],, — Z[K)],, (25)
i M,

where the composite currents K,(;’-) are given by
K =0, K1) =5, + 661 = o)

1]
KDy .. 1) = %!.c,,(zi veidy) (n22) (26)

It is clear from Eqs. (24-28), that Z{K],, can be written as a sum over the ”"partitions” of n. By
the partition n{ny...ni} of the positive integer n we understand a set of positive integers ny,...,n;

satisfying
n=n;+2ny+...+kn; (27)

Let us define the factor /7, 1 belonging to the partition n{n;...nz} by

)
: 1
— (43 _ n
Flarmsy = G — 6™ E n;l (51" (28)
Then the SSCE of the n-link correlation function in Eq. (23) can be written as
o~ o () :
- . I n
(T4 Th - Th)5 o = Zjos (F)m, ..., )hm’ on (29)
Here F(*) is a sum over partitions:
F®) = E ffﬂx---m}Ta':--ﬂn} (30)
ni{ng..ngl



The fanction Tf, ., belonging to the partition n{n)...n;} iz the product of n; single-link variables,

n

ng two-Knk variables, ..., ni k-link variables, summed over all the links. The first few #(*) in Eq. (30)
are given explicitly by
FO=@-M3m,
Iy

FO =% [.21.(,? - 3, T, + %c(llli) (Thﬂz)]

Iilg

FO = 3 [261 - T T T + 306 = Pelala)Ts, (1,00) + gelalals) (0,7, 73]

liigly

1, 1, 1 .
Fi= 3 [ﬁ(*f - )T, T, T, T, + Z(’} ~ 8")2e(lsl) T, T, (T, T1,) + g(’g ~ )

I1lzisly

cllasl)Th (T Tiy ) + gellab)elisld) TuTh) (T Ty) + peellbalel) MLADTL| (31

where we recall that in the connected expectation values of Eq. (29), the variables put in parentheses
in Eq. (31) count as a single entity.
As a second example, Iet us consider the m-point correlations of the site variables

Py; + - - Pym, Which are defined by
| log <exp [E r,p,] > (32)
r=0 L4 A8,

The derivation of SSCE consists of similar steps as before. Instead of Eq. (25) we have now

om
¢ =
(PysPyz - o Pym o o0 = 8ry, ... 01y,

log (Exp [E’v“]) = ZIK"], — Z[K ) (33)
¥ A : .
where the composite current K(*) ig given by
" uﬂ o0 1
K’(:.J (‘1 X clﬂ) = “61,;“8 + F E tT!- 2 fg!_ ‘. -rg’-.c"’i(ll ree lﬂ)’l---ﬂ (34)

=t 5] B

The A-dependent connected expectation values c, ; are defined, in analogy with Eq. (12), by

c“’i(ll e °lﬂ)31-...3; = c(ll ) -l");]_."" = ((p31+a1p51) rea (p¢“+ﬁ.pg-)pgl P p.‘)f\ (35)
The final resuit for the m-point correlation function is:
o0 N ¢ _
(Pys - p’"');.ﬂ,n = Sy193 + - Oysym COm + Z al (EF(N_n)GS??..vm> (86)
=1 n=1 A:oo;ﬁ,n

The link variable dependent combinations #*) are the same as in Eqs. (30-31), supplied with #(®) =1,
The new combinations GE?.,,,,, appearing in Eq. (36) are again sums over partitions of the points
¥1...¥m. The first few of them are:

1

o =%

Yo ellyeeada)y, (... 1)

l]_ ---l-

1
Gatfﬂm = ‘z; ["n—!c(tl ooy )yyys (T - T,
1t
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n-1
+ Z m!(ﬂ m)!C(ll o--lm)jlc(tm-f-l . “I")VS (T[1 N 'Tlm) (ﬂm+1 . .T"‘ )] )

Gy = 2 c1)sgm Ty (37

. ll
. The whole expression for the n* order in Eq. (36) can also be considered as a sum over the partitions
of n links. The difference compared to Eq. (29) is, that the additional points g1 .. .3 are distributed

among the connected link groups in all possible ways.
An alternative way to derive the SSCE for the connected p-correlation functions is to use a gener-

alization of the relation in Eq. (11):

(exp [E rypy + £ ; Tl(Pz'-l-DPs)] )
¢ A

= eXP E !t! Z ¢ T ORI RO TR 4 M (38)-
atiz1 ® _ Vindi

This implies identities between the expectation values of p-products and infinite series of link-variable

expectation values. The simplest examples of such identities are:

CONIED 21D D NI AIVLCIREAN (29)

Huda

and
(Pmpvz))\,,g,,; = Z Z T, - Tla)j,ﬂ,u e(li. . ln)yiy,

n=l Il lg

+ Zﬂmz—i ! (n — m)! Z ((Th Tfm)(T‘m-H s Tfs)),\"g x el .. lﬂ'i)ric(lmi'l lﬂ)ﬂz (40)
Here the right hand sides are combmatmns of expectation values depending only on the link-variables
T;. These ¢an be expanded by using Eq. (18). The results are, of course, identical to Eqs. (36,37).

Up to now the fixed S-value for SSCE was always considered to be finite. This is, however, not
essential, because every formula is valid without change also for the limit 8 = co. The reason is, that
in the 8 = 0o actions (4,6) the role of 7} = TrV {z, s} is taken over by :

Ty=Tr (a:H,az) (41)

The above SSCE formulas are valid also for 8 = o0, if for T} this expression is used.

83 Monte Carlo calculation of the SSCE coeflicients

In order to have a feeling about the qualitative behaviour of low order SSCE, we performed a Monte
Carlo calculation of the A = oo correlations needed in the 3¢ order SSCE of some simple quantities.
The numerical calcalation was done on an 8% lattice, at the point (A = oo, 8 = 2.3, & = 0.4). The
choice of the S-value is otivated by the existence of 84 Monte Carlo data obtained earlier at § = 2.3.
The value of the hopping parameter is such that the point is in the Higgs-phase, in the neighbourhood
of but not too close to the confinement-Higgs phase transition. At this point, on the 84 lattice, the
link expectation value is (lTrV) = 0.2933(7), the W-mass in lattice units amyp = 0.66(7), and the
Higgs boson mass amg = 0.58(6). We collected our statistics in about 2- 10% sweeps, where the first



10000 sweeps were omitted for equilibration. The updating was done by the Metropolis method with
6 hits per link, using the gauge invariant varfables in the action (5).

The quantities we have studied are the average Higgs field length (p), the average link (§7rV'),
the link-link correlation ($7'rV - §7rV)°, the length-link correlation (p- $7rV)° and length-length
correlation {pp)°. In the SSCE of these quantities, Eqs. (29, 36), the numerically difficult contributions
come from multi-link connected correlation functions summed over the link positions. As one can see
from Eq. (31}, the number of such contributions can be minimized by choosing the free parameter # in
the expansions to be & = ;. (In this case, in Eq. (30), only those partitions contribute, where n; = 0.)
In order to have reasonable statistical errors in the SSCE coefficients, we had to restrict ourselves to
third order, or sometimes even less. »

Table 1.
SSCE predictions for {A = 1.0, 8 = 2.3, x = 0.375) from nuomerical data at
{A =00, #=2.3, x = 0.4}, corresponding to ¢ = ¢;.

quantity [ 0% order | 1% order | 2"% order | 379 order | data
%) 10825 | 1.1554(4) | 1.1674(5) | 1.80{1) | 1.29
LTV | 0.292(1) | 0.292(1) | 0.61(3) | 0.89(4) | 0.57
(ﬁ) 1.0325 1.0325 1.0445(1) 1.0420(1) | 1.05
C,p(d) 0 0 0.03(1) | 0.04(1)
C.1(i) 0 0.222) | 0.24(2)

ca@ | o 0.12(2) | 0.18(2)

C,z(8) 0 0.08(2) | 0.09(2)

cat) | o 0.07(2) | 0.08(2)

Coa (D) T 0500 | 6.50(3)

Cri(2) | 0.28(3) | 0.28(3)

cu(® | 0193 | 0.19(3)

Cri(4) 0.16(3) 0.16(3)

The obtained numerical results for ¢ = ¢; are collected in Table 1. Besides the average length and
average link we also included the combination : '

) = (9) — 16mia (i~ D ETrV) @)

In this quantity many of the difficult contributions cancel and, as one can see from Table I, the third
order expansion gives a very good and convergent result. The correlations given in the Table are built
up from the time-slice variables :

f: %TfV(x,t,m) (43)

m=1

=g e EO=g T

Here Nj is- the number of lattice points in a time-slice. The total number of lattice points will be
denoted by N4. The definition of the time-slice correlations for time distance # is:

Crlt) = Na(pO)50))°

Cor(t) = N(BO)L#))°
Cri(t) = N(L(0)L(t))° (44)

In the last column of the Table some numerical results obtained from a linear interpolation of Monte
Carlo data, measured at the corfesponding parameter values, are shown.
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The dependence of third order SSCE for the average length (p) on the variable # is illustrated in
Figs. 1 and 2 for A = 1.0, 0.1, respectively. In these figures the existing numerical Monte Carlo data
are also included, partly from Ref. [5] and partly some new data obtained in more recent runs. As
one can see from the figures, the third order SSCE describes the Monte Carlo data qualitatively well
in a wide range of x, but the errors are large and the agreement is not quantitative. The connected
contributions shift the approximate second order, given in Ref. [6], away from the Monte Carlo data.
In [6] all connected contributions were neglected and ¢ was chosen according to Eq. (15). In this
way one obtains a curve, which almost coincides with the dashed-dotted lines on the figures (the non-
connected second and third order contributions are very small). As one can see, this agrees rather well
with the Monte Carlo data for s given by Eq. (15). Shifting the expansion point with & according to
Eq. (15), one obtains good agreement in a wider range of & (see Ref. [6]). Unfortunately, the connected
contributions are non-negligible. For the moment we have no good explanation for the good agreement
obtained without the connected parts. (The neglection of connected correlations corresponds to some
sort of mean-field approximation.) The complete third order seems to indicate, although with large
errors, that for the choice (15), the connected contributions in SSCE have thé tendency to alternate
in sign. This is, of course, disadvantageous for a very fast convergence. The choice # = ¢ seems to
give a better convergence, but even at this point for a quantitative description of all the Monte Carlo
data more orders are needed than the third order calculated here.

4 Discussion

Having in mind the numerical difficulties in the calculation of higher order SSCE coefticients, one
can conclude that a low order SSCE presumably cannot replace a direct numerical study of the
A-dependence in the standard Higgs model. However, the qualitatively good description of the A-
dependence is, in our opinion, still useful. Moreover, the closed form of the expansion can be a valuable
analytical tool. Since SSCE is, apart from an eventually necessary trivial reordering, convergent on
finite lattices, a very interesting possibility is to use it for the study of the infinite volume limit (for
questions like the order of the confinement-Higgs phase transition etc.). :

A possibly very interesting application of the SSCE is to use it near the continuum limit at 8 = 0.
In fact, SSCE is in principle very similar to the ordinary perturbation theory at g = 0 (vanishing gauge
coupling): in both cases one is doing an expansion about a point on the boundary -of the coupling
parameter space. The usual weak coupling perturbation theory is a double expansion in the point
(g = 0, A = 0). It is very well possible, that a double expansion at (g = 0, A = ¢0) is at least
as usefnl. At the first sight, this combined strong-weak coupling expansion seems to be much more
difficult, because the expansion point still has a non-trivial lattice action. Going to the critical point
in the third variable x, however, implies that the expansion point is approaching a free theory in
disguise. Therefore, using the known triviality of the critical point at (A =00, =00, £ =Kgu({c0)), .
one arrives at the same level of simplicity as in the starting point of weak coupling perturbation theory.
An important advantage of the strong-weak coupling expansion is that it has a much better chance
for incorporating the A-independence of the continuum limit. '
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A Appendix

A.1 Integrals over the Higgs-fleld length

The X-dependence in the SSCE formulas are given by the integrals defined in Eq. {10). The basic
integral is (k = 0,1,2,...):

= [ doot el a (=14 LY
Ii(A) = dpp” Fexp|-Ajp*—=1+
0 2X

- L/w dz exp{—z?) (1+ .. )H%
2vVA J-AH1/(2vR) P A 2a
(2 + &) 1 ( 1 2 1
= —"T 2 exp |-~ -—-u—\/zx) D (———\/2,\) 4
20k [ I\Va -4\ V2% )
Here Do(2) denotes the parabolic cylinder function {14]. The relevant ratio ¢ Is, therefore, given by
k —
_ 50 _T(+8) 0y (- VA ”

tr = =
LN~ @)t Dy (7;—A - VZX)
The asymptotic behaviour of ¢4 for very large and very small A is [14] :

. { (A = 00) 1+k(k—2)/(163) +0(27?) (47)
C (A =0) T2+ k/2)(1— Mk(k+6)/4 + o))

‘The integrals in Eq. (45) can easily be performed numerically. The result for some characteristic
values of A is shewn for 4z (k= 1,2,...,10) in Table Al.

Table Al.
The values of %j,...,%19 for some typical A.

A= 10.0 1.0 0.1 0.01
# | 0.99516 | 1.03253 | 1.20569 | 1.30832
i3 | 1.00263 | 1.13373 | 1.60794 | 1.92884
7 | 1.02178 | 1.30652 | 2.31982 § 3.12745
i¢ | 1.05250 | 1.56687 | 3.56824 | 5.48675
i | 1.09509 | 1.94393 | 5.79188 | 10.2943
is | 1.15027 | 2.48403 | 9.84615 | 20.4756
iy | 1.21915 | 3.25837 | 17.4293 | 42.8816
is | 1.30826 | 4.37575 [ 31.9803 | 94.0450
tg | 1.40459 | 6.00302 | 60.6000 | 215.031
t10 | 1.52566 | 8.39795 | 118.233 | 510.693

In the SSCE of simple quantities the i;-factors always appear in combinations which are much
smaller than the individual terms. Such typical combinations are:

Ja =iy — i{
fs = g — Biybg + 263
I .. 3 2 . 4
Ji =44 — 411g — i3 + 12¢74y — 645
jag = indy — 135 — 2436z + 205
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i =~ alid + 28
J,E,) = 42 — 241498y — 36143 + 8ifsy — 4dF
Ja4 = fgiq — 241983 — 21113 — s, + IOtltg - Gif
o4 = Gaiy — 8183 — B3igis — 36133 + 643i3 + 6iliy — 647
Jad = 13 ~ 4633 —~ 3if + 124443 ~ 645
Jazg = 364 — A3igiy — 3 + P34+ 8505 — 6 (48)
The values of these combinations are given in Table A2.

Table A2.

The values of js,...,Ja34 for the A-values in Table Al.
A= 10.0 1.0 0.1 0.01

72 | 1.228TE-2 | 6.7607E-2 | 1.5425E-1| 2.1715E-1
73 | -4.4984E-4 | -3.7077E-3 | 9.1900E-3 | 3.5718E-2
js | 4.4786E-5 | -6.1618E-4 | -6.04605-3 | -1.6840E-8
Jas | -1.5058E-4 | 5.2351E-3 | T.2149E-2 | 1.9228E-1
_j%; -2.2367E-5'| 1.9535E-2 | 2.5007E-1 | 7.0642E-1
_Jgy | -2.1800E-5 | -1.0215E-3 | 6.9209E-3 | 4.1866E-2
j2s | 3.T618E-5 | -5.9822E-4 | 1,0363E-3 | 3.7526E-2
J32 | T.9T30E-6 | -1.3041E-3 | 3.2030E-2 | 2.0466E-1
74a | 8.5451E-6 | -7.6604E-4 | 1.5568E-1 | 9.1146E-1
Jass | B.7TOBE-5 | 7.11545-4 | 3.9172E-2 | 2.1660E-1

A.2 Summation formulas

The SSCE of correlation functions are built up from suins over links.
proportional to some "connected i-products”, like ¢(l; ..

perform sums like

The ternis in the sum are
.1,) defined in Eq. (12). The basic task is to

Sp= Y ellhoda)ny . Ty, (49)

I1..d0a
The simplest non-trivial case is given by

Sy = e(lda)T, Ty, = Ja |G+ D TR +41 3 1,7, (50)
Iyl ' 1 (fﬂz)

Here the second term is a sum over link-pairs with one common point. It can easily be shown that
also in the general case, the sum Y°;, ,; in Eq. (49) gets non-zere contributions only from the totally
connected link configurations. For the more complicated cases let us agree on the convention that if
some links are put in parentheses, then they have a single common point. (For instance, a closed path
along a plaquette is in this notation {1/3)(lals){Isl4)(l4l1).} In this case we have

= 333) ZTl; + BiyJas Z T,
' (fls)

+'138 E .,0,7, +3‘l-72 Z .
(Tulzle) (Tuls){lals)

,T, T, : (61)
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[

and .
Se=jua 3T + 4igjss Y 1T,
II (l;lz)
35 Y. TRTE 46y Y 1AM,
{hiz} (1182)(ists)
+12%1gajrs Y, TaTuTi, +6ilk Y THT,T,
(hiz}(izle) {11lz1a)

+ifin Y LTI, + 2Rk ), TuTLTT,
{tilalsly) {tala)(balsls)

+1233 Y TTLTL,T, +1245 6y + 34) > T.7,T,T,  (52)
(halz){late)(Tals) (tul2){lale}{lsla) (k1)

In the SSCE of g-dependent correlations, like for instance Eq. (36), sums with the other type of
-dependent "connected ¢-products” c; (%1 .. .In)y,..y; appear. (For the definition of ¢, see Eq. {85).)
The notation for these link-sums will be:

Sﬂ(yi...y;] = E 0(11 - In)yx...v;Th .- 'Tf. (53)

11 ..-‘n

The simplest sums over links with a few site variables can be decomposed in a similar way like
Eqs. (50-52). In analogy with the above notations, let us put coinciding points in curly brackets, like -
for instance {giy:}. A point on a link will be enclosed in square brackets together with the link: [y1].
Touching links will be put in parentheses, as before. Then the simplest link-sums with a single point

¥ are given by
Si(y) = 12 yom, (54)
frads]

Sﬂ(w) = Jas Z Tzﬁ +i§.’f3 E T, + 2&132? Z 7, T, (55)
[vahi] (wahlivata)) (fystalia) '

Sy = o4 3 Th+3ijse ), TyT
: vatd] (watllyate])

+3hps Y. ThTR +3igly Y. TLTE
{wadalte) (1l dz])

3 Y TDTe +%%ais Y TuThTh
(tral1]fmais]lvalal} {lyadzllale) -

+6id Y, T,T,T,+6ias D, ThTLTy (66)
(ralall2)tale) . {[valsllyata])(iala) :

The similar sums with two points yy,yz are:

Sy =0 >, Tu+i Y, Ty (57)

[{wav2 Hi} [y1y2i4]

Sapun =dn 3o T+ Y m+idn Y N,
[{w1vs Hi) lnyzh] ({y1pe Y l[{y1va Ha])

+2i1_fzfs{ o+ Y o+ X }Thz’z,+‘2f§' > omT, (88

([{yaws Malta)  (fwawalillvela])  (wawali]lvada]) ([vafallvate])
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Figure captions

Fig. 1. Comparison of 3¢ order SSCE of the average Higgs field length {(p) to the Monte Carlo
data at {# = 2.3, A = 1.0). The crosses are data points from Ref. [5] and the results of some more
recent runs. The dashed line is zero’th order, the dashed-dotted one is first order. The almost fall line
with error bars is 2" order, the full line with error bars is 3’4 order. The lines are drawn to guide the
eye. The dashed-dotted line practically coincides with 3¢ order, if the connected contributions are
set equal to zero. Two specific values of ¢ are shown by arrows: ¢ = ¢; and ¢ = ¢; given by Eq. (15).

Fig. 3. The same as Fig. 1., for A = 0.1
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