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Abstract; Certain embeddings of the low energy SU(3)c x SU(2)L x U(l)y 

gauge group within the higher dimensional symmetry lead to exotic chiral 

generations in addition to a number of standard generations. We study an 

example leading to an anomaly free chiral exotic generation consisting 

of quarks with electric charge +1/6 and -5/6, the corresponding anti­

quarks and additional integer charged leptons. The most striking pre­

diction from such a compactification would be the existence of stable 

half integer charged hadrons with mass of order of the Fermi scale. 

Detection of such particles would be an impressive hint for the exi­

stence of more than four dimensions. 

., ' 
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Higher dimensions are an attractive theoretical idea 1) -but possible 

experimental tests are disappointingly missing. This is due to the high de­

gree of consistency of the standard low energy SU(3)C x SU(2)L x U(lly 

theory _plus the wide gap between the Fermi scale and the Planck scale. If 

we assume that the only particles with mass cOnsiderably smaller than the 

compactification scale Me (typically of order 1017 
- 1018 GeV) are the 

SU(3)c x SU(2)L x U(l)y gauge bosons, a certain number of standard chiral 

fenmi~n generations and one light Higgs doublet, the only implications of 

higher dimensions for these particles are predictions of the parameters of 

the standard model plus nonrenormalizable interactions_suppressed by in­

verse powers of Me. Although it is true that higher dimensions modify2) the 

standard SU(5) predictions on proton decay and the weak mixing angle and 

generally lead to nonvanishing neutrino masses through gravitational inter­

actions3>, these phenomena also occur in four dimensional unified theories 

and can hardly be used as a characteristic test of higher dimensions. 

Higher dimensions lead to rare decays like)'...:,. 3e, b~t the: rate is much 

too small to be observable. There are in principle very interesting gra­

vitational effects - the four dimensional principle of equivalence is 

perturbed4), different particles fall with different speed and do in gene­

ral not move on geodesics. Unfortunately these effects are very likely 

much too small to be detected in precision measurements like the equality 

of gravitational and inertial mass etc.(Such effects may, however, play an 

important role in early cosmology4•5) .) In addition, there may be superhea­

vy stable particles {pyrgons6)) or topological configurations left over 

from the big bang. Again, monopoles or strings are not a very characteri­

stic signature for higher dimensions. A 1 so todays number- of density for such 

remnants may well be below experimentally detectable levels. 

We have depicted a scenario very boring for experimentalists. Unfor­

tunately, such a scenario is consistent and it is not unlikely that it is 

realized. In this case the idea of higher dimensions could only be tested 

by possible predictions on the fermion mass matrices7) {including neutri­

no mass matrices), the Higgs mass and the gauge couplings or by early cos­

mology. Even if we rele'ase our strong assumptions and allow for interme­

diate scales or low energy supersyrrmetry, it is not easy to find effects 

characteristic for higher dimensions. 
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In this letter we explore another possible scenario, namely that the 
low energy theory derived from a higher dimensional model leads to additio­

nal light fermions with ~xotic quantum numbers. Large masses for these exo­
tics are forbidden by chirality with respect to SU(3)C x SU(2)LYU(l)y· The 

restrictions from anomaly cancellation for chiral fermions are automatical­
ly fulfilled if we start with anomaly free higher dimensional models. We 
find that certain embeddings of SU(3)c x SU(2)L x U(l)y within the higher 
dimensional symmetry group lead to one or several exotic generations in ad­
dition to a certain number of standard generations. In our example, an exo­
tic generation consists of a weak doublet of antiquarks {G,H) with electric 
charges -1/6 and +5/6 and two quarks cc and HC in SU ( 2) L singlets with charge + 1/6 
and -5/6. As usual, quarks and antiquarks are colour triplets and antitri­
plets, respectively. In addition, an exotic generation comprises two stan­
dard leptonic doublets and two particles with the quantum numbers of the 
positron. (We only count here the left handed particles.) There are also 
examples where the exotic generation is replaced by an exotic mirror gene­
ration with. quarks in doublets and antiquarks in singlets of SU{2)L . In 
this case one needs at least five standard charge 2/3 and -1/3 quarks since 
two charged leptons from the standard generations can form SU(3)c x SU(2)L 
x U(l)y invariant mass terms with the mirror leptons of the exotic mirror 
generation and disappear from the low energy spectrum. The embedding of 
our example is possible in a six dimensional $0(12) model 8) or in a ten 
dimensional E8 x E8 model 9) favoured by superstrings10). 

Before discussing some details of our embedding and dimensional reduc­
tion, let us first focus on the most striking predictions of such a scena­
rio. Since the quarks have charge tl/6 and -5/6 they cannot decay into any 
number of particles with charges n1/3 (ni integer). The lightest one of 
these quarks is stable. Because of confinement, we will of course rather 
observe a stable hadron. All baryons containing one or three exotic quarks 
are half integer charged, whereas baryons with two exotic and one standard 
quark are integer charged. Similarly, mesons with one exotic quark and one 
standard quark have half ·integer charge and mesons with two exotics are 
integer charged. The appearance of only half integer charged or integer 
charged hadrons is a generalization of triality. The lowest mass half in-
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teger charged baryon or meson is absolutely stable. Its mass is typically 
of the order of theW-boson mass. Pairs of exotic half integer charged ha­
drons would be copiously produced through strong or electromagnetic inter­
actions at accelerators with sufficient energy. Stability and half integer 
charge- Wi:iUld'-9'1ve a very clear signal. "- "'· <,t.· ~---~,n"-·.• , . .,; .-.,. 

One may ask if the stable exotic hadrons could be detected in ordinary 
matter. This largely depends on their density in terrestrial material. The 
low energy renormalizable interactions imply a separate conserved exotic 
baryon number. There are, however, nonrenormalizable interactions violating 
exotic baryon number conservation like u + d ~Gc + Gc. They are mediated 
by superheavy particles with mass of order Me and become, therefore, quick­
ly suppressed once the temperature of the universe falls sufficiently below 
Me. Decay of those superheavy particles in the very early universe can create 
an exotic baryon number asymmetry which ensures that a certain amount of exo­
tic hadrons survives the big bang. The total hadronic matter density in the 
universe puts upper bounds on the exotic asymmetry, but it is well conceav­
able that the exotic baryon asymmetry is much smaller than the asymmetry for 
standard baryons. (For example, there is no CP violating mixing matrix for 
only one exotic generation.) To derive bounds for terrestrial material re­
quires an investigation if exotic hadrons are more or less distributed like 
ordinary baryons or if they tend to concentrate in the center of galaxies, 
for example. It may also be worthwhile to think about the possible presence 

of exotic hadrons in cosmic rays. 

Another "signature" for an exotic generation is the existence of two 
additional left handed neutrinos, heavy electrons and positrons which is re­
quired by anomaly cancellation. For three standard generations this would 
lead to five neutrinos. If all five neutrinos are light - this is the case 
if all antineutrinos of the model can acquire superheavy masses - the upper 
bound from nucleo·synthesis would be violated. An independent detenmination 
of the number of neutrinos by laboratory experiments is certainly needed. If 
the cosmological bound persists, the case of an exotic mirror generation 
would be preferred compared to the exotic generation discussed above. Our 
arguments apply to this case as well with only minor modifications. 
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Let us now describe in more detail our assumptions and the embedding 

leading to exotic generations. We take a conservative approach and assume 

that the low energy gauge group is SU(3)c x SU(2)c x U(l)y. All low mass 

fenmions must be chiral with respect to this group and anomalies should 

cancel. There is only one Higgs doublet with Small mass. With these assump­

tions the standard chain of unifications in four dimensions 

E6 ~SO(IO) ...,.SU(5)-SU(3)c x SU(2\ x U(l)y cannot lead to chiral exotics. 

The situation changes in more than four dimensions. Groups with only 

real or pseudoreal representations like E8 or 50{12) become viable for 

d = 2 mod 4 dimensions11 ). Consider the case that the higher dimensional 

gauge group contains a subgroup 50(8) x SU{2)L x 5U(2)R with some spinors 

in the representations (8~,2,1) + (8t,1,2) or (81 ,1,2) + (8h,2,1) where 81 

and B.a. are the inequivalent spinor representations of 50{8).~/ithin 50(12) 

this is the decomposition of the two spinor representations 32 1 and 32,a.. 

It is a simple exercise to check that these representations appear for 

E8 using the chain E8...,SO(I6)...,. S0(12) x S0(4). In addition there may be 

other interesting embeddings for a large group like E8• There are two dif­

ferent ways to embed the Pati-Salam group12 ) SU(4)c x SU(2)L x SU(2}R into 

SO( 8) x SO( 4): For the standard embedding SO( 8) -+SO( 6) x SO( 2) the vector 

decamposes 

8v_,.6+1+1 (I) 

and the spinors transform under SU(4)C x SU(2)L x SU(2)R as 

(8.,2,1) ~ (4,2,1) + (4,2,1) 
(2) 

(8,_,1,2) ~ (4,1,2) + (4,1,2) 

All particles contained in these representations have quantum numbers of 

standard quarks and leptons or mirror particles. An inequivalent embedding 

of SU(4)c x U(l) in S0(8) (parallel to the SU(5) embedding in SO(IO)) gives 

av -:, 4_1 + 4., 

81 -'> 41 + 4...., 
8-t ~ 60 + 1~ + l_.z. 

( 3) 

-,_--.~~ 
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{we have also indicated the U{l) charge and we note that the embeddings 

(1)(2) and (3) are related by S0(8) triality.) Spinors in the 8,_of S0(8) 

will lead to exotic quarks. The 6plet of SU(4) gives the colour representa­

tions 

6 ....., 3 + 3, (4) 

but the hypercharge of 5U(2)L doublets is twice the hypercharge of stan­

dard quark doublets. The representation 81 leads to standard quarks so 

that exotic quarks and standard quarks can coexist. 

The fact that a real representation as the 6 of 5U(4} can indue~ chiral 

exotic quarks in four dimensions is an intrinsic higher dimensional effect. 

In the process of dimensional reduction, the chirality index13 ) may be dif­

ferent for the 3 and 3 colour'states in the 6. Unwanted representations can 

simply be absent due to a vanishing index and the possibilities of unifica­

tion with a complex spectrum are much wider than in four dimensions. We 

emphasize that the systematic search for possible embeddings of 5U(3)c x 

SU(2)L x U(l)y into the higher dimensional symmetry group has to be redone, 

since the criteria for viable enbeddings differ completely fran four dimen­

sional unification. We will make the following requirements for candidates 

of viable (anomaly free) chiral theories:· 

1) All known fennions have to be reproduced. 

2) All charged chiral fermions must get a mass from SU(2)L x U(l)y 

breaking by a SU(2)L doublet scalar. 

3) The weak mixing angle at the unification scale should be .... 
sin vw = 3/8 ( 5) 

For the purpose of this letter we will in addition assume that corrections 

to gauge couplings from nonrenormalizable terms of the type discussed in 

ref. 2 are small, so that sin~Jt; can be calculated fran the embedding of 

SU(3)c x SU(2)L x U(l)y into the unification group. 



As an example for such a systematic analysis we discuss monopole solu­
tions14} in the six dimensional 50(12} model 8). The embedding problem into 
groups like_E8 will be of similar nature, but more involved. The monopole 
solutions are· simple enough to serve as a nice theoret-ical laboratory to 

generate different four dimensional chiral models. Our analysis proceeds 
in nine steps: 

1) One determines the SYJlTIIetries left unbroken by the monopole solutions 

(compare ref. 8). 

2) We look for all possible embeddings of SU(3)c and SU(2)L into these 
symmetries. We find from our first requirement that this embedding must be 
the same for all cases. We write the monopole field as 

A9' = )_.f ( ± 1- «>-'> lJ- ){ -.( H, +-H,_) -r /' ( H, •Hv rtfs) t-'"' Ho j 

.. -.!- (:t1 -UY~.?) q 

0"' _.,, 
o ... _.,, 

01' 
-po ,,. _,, 

ap ..,, 
0~ 

-no 

(6) 

where the group SU(2)l acts on 
on indices 5 ... 10. 

the first four- indices whereas SU(3}c acts 

3) The nypercharge generator must be a linear combination 

Y = - t a.-( H, +H._)+- ! 8-( lfs +-H• N{r) t- c. H, ( 7) 

Allowed values of a, b, c are detenmined by the requirements that all quan­
tum numbers of observed quarks and leptons appear in the spectrum of the 
SO(l2) spinor representat-ions 321 and 32-t.. We find three possibilities: 

(A) a = 2, b = 1, c = 0: this is the standard embedding for which 
only standard fenmions and mirror fermions appear. 

4) 
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{B) a= 2, b = -1/2, c = 1: this corresponds to the alternative 
embedding of SU(4)C into 50(8) (3). Exotic quarks appear in 
addition to the standard fennions. 

(C) a ~ 2, b ~ 2, c ~ 2: in this case SU(3)C x SU(2)L x U(l)y 
is not embedded in SU(4Jc x SU(2)L x SU(2)R. Another set of 
exotics with integer charged hardons and doubly charged 
leptons appears. 

The weak mixing angle is calculated by summing over a complete S0(12) 
representation 

~·,J 0 

"' 
= 

<. :z: r.L.. 
'2:. ~ :v (8) 

For cases (A) and (B) one finds sin~~~= 3/8. This is in fact a conse­
quence3l of a possible embedding into SU(4)c x SU(2)L x SU(2)R for equal 
nonabelian coupling constants. For the embedding (C) we find sint~~o = 3/20 
and we disregard this case. 

5) We next have to ,compute.8) the index 13 ) how often a given representa­
tion appears in the four dimensional spectrum. The standard embedding (A) 
has been discussed in ref. 8 and we concentrate on the alternative embedding 
(B). In table 1 we give the quantum numbers for the different fenmions. The 
generators for right handed isospin IJR' B-l charge YB-l and the Abelian 
charge q commuting with SU(4lc x SU(2)L x SU(2)R read 

I'Y<=-f(H,+H,) ;Ya-~. =~-:}(lf3•H.•%); 7•1fat-~+lt;+flo (9) 

(This is to be compared with YB-l = 2/3(H3 +H~+H~), q = H, for the standard 
embedding (A) or YB-L ~ 2 H6 - 4/3(H3 +H~+H~), q ~ 4 H, + 2(H3 +H~+Hr) for 
embedding (C).) The electric charge is as usual 

G! = I:... +- I,,. + ± Ya-t- ( 10) 

-'~"'----
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We see that there also appear half integer charged leptons J,K etc. In the 

last colummn of table 1 we have listed the SU{2)G representation for all 

massless particles appearing in four dimensions after dimensional reduction. 

(Isometries on the internal sphere S~ induce a generation group SU(2)G.) 

These numbers are the chirality indices for the corresponding· representa­

tions. If negative integers or zeros appear, the corresponding representa­

tion is not present in the massless four dimensional spectrum. In table 2 

we list the number of chiral particles for three examples. 

6) After spontaneous symmetry breaking SU(2)L x U(l)y-+ U(lle.m. all par­

ticles must be in vectorlike representations of SU(3)c x U(l)e.m: Otherwise 

th~ must remain massless forever798 ). Looking at example (C) one finds 

four charge 1/3 anti quarks and only three charge -1/3 quarks. In fact, for 

all rn # 0 the fermion representation is chiral with respect to SU(3)c 

x U(l) and we have to eliminate this case. This embedding requires 
e.m. 

m = 0 so that the monopole solutions are SU{2)L x SU(2}R symmetric. 

7) The symmetry group of the monopole solutions is larger than SU(3)c 

x SU(2)L x U(1)y. Further spontaneous syrrmetry breaking to the low energy 

gauge group will induce SU(3)c x SU(2)L x U(l}y invariant mass terms like 

(JcKc)and (JK}. We see in example (b) that only three standard generations 

remain at low energies. The alternative embedding does not necessarily lead 

to exotics. In this case all half integer charged particles are superheavy. 

The lightest one of those is stable -an example for pyrgons6>. Due to 

SU(2)l-symmetry, the mass term (JK) is antisymmetric in generation indices 

and can only give masses to an even number of pairs (J,K). In example (a} 

one pair J,K can only acquire mass from SU(2)L breakin.g. This is an example 

of a modulo two chirality index13). Such a modulo two chiral, half integer 

charged leptonic doublet may cause a problem: If there is no light JcKc, it 

can only acquire mass from coupling to an SU(2}l triplet operator. Its mass 

would be of order of typical neutrino masses 15 ). We will not consider this 

possibility further. 

8} The most striking feature of the embedding (B) is the appearance of an 

exotic chiral generation in example {b}. Such a generation consists of a 

doublet of antiquarks (G,H), two quarks Gc and He, two doublets {Y,e} and 

10 

two ec. The appearance of whole generations with exotic charges besides 

standard generations is a generic feature of this embedding for n # p. 

(The number of standard generations is l/2(n+p) and for exotic generations 

it is l/2(p-n). For n > p we have instead the corresponding number of mirror 

exotic generations.) It is easily checked that an exotic generation is free 

of all SU(3)c x SU(2)L x U(l)y an001alies and mixed gauge and gravitational 

anomalies. An exotic generation has one weak doublet more than a standard 

generation and the ratio zr.:_Jzt:~~s 3/10 instead of 3/8. Exotic generations 

induce therefore sma 11 deviations from the standard renorma 1 i zati:on group 

equations even at the one loop level, a feature not common in four dimensio­

nal unification. 

9) Finally we have to check that all chiral exotic quarks can acquire mass 

from SU(2)L x U(1)y breaking through Yukawa couplings to Higgs doublets. As 

for the standard embedding, this is indeed the case if scalar fields are added 

to the six dimensional action?,S). 

In conclusion we find that certain embeddings of the low energy group 

SU(3)c x SU(2)L x U(l)y within the higher dimensional symmetry group lead 

to exotic chiral generations predicting half integer charged stable hadrons 

with mass at the Fermi scale. These embeddings are not possible within the 

framework of four dimensional unification. They involve real representations 

at some step, so that chirality requires 4n+2 dimensions. Detection of low 

mass half integer charged particles would be a strong hint for higher di­

mensional unification. Nevertheless, the existence of exotic generations 

is consistent within the low energy SU(3)C x SU(2)L x U(lly framework aloneJ 6). 

A systematic search for such particles should be done. 
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Table 1 Quantum numbers of fermions 

su ( 3) cxSU ( 2\ 
H1 + H2 H3+H4+H5 H6 YB-L q Q name SU(2)G 

reeresentation representation 

321 (3 ,2) 0 1/2 1/2 1/3 2/3, -1/3 u,d 1/2(n+p) 
-~ ( 1,2) 0 -3/2 1/2 -1 0, 1 ",e 1/2(n-3p) 

(3,1) 1 -1/2 1/2 2/3 0 -1/6 Ge 1/2(n-p+2m) 

(3,1) -1 -1/2 1/2 2/3 0 5/6 fie 1/2(n-p-2m) 

(1,1) 3/2 1/2 0 2 -1/2 Je 1/2(n+3p+2m) 

(1,1) -1 3/2 1/2 0 2 1/2 Ke 1/2(n+3p-2m) 

(3. 2) 0 -1/2 -1/2 -1/3 -1 -2/3. 1/3 U,d -1/2(n+p) 

( 1 ,2) 0 3/2 -1/2 -1 0, -1 ",e -1/2(n-3p) 

(3,1) -1 1/2 -1/2 -2/3 0 1/6 Ge -1/2(n-p+2m) 

(3 ,1) 1/2 -1/2 -2!3 0 -5/6 He -1/2(n-p-2m) 

(1,1) -1 -3/2 -1/2 0 -2 1/2 je -1/2(n+3p+2m) 

( 1 ,1) 1 -3/2 -1/2 0 -2 -1/2 Ke -1/2(n+3p-2m) 

322 (3, 2) 0 1/2 -1/2 -2!3 0 1/6, -5/6 ~.ii 1/2(n-p) 

(1 ,2) 0 -3/2 -1/2 0 -2 1/2, -1/2 J,K 1/2(n+3p) 

(3,1) -1/2 -1/2 -1/3 -1 -2/3 ,e 1/2(n+p-2m) 

(3,1) -1 -1/2 -1/2 -1/3 -1 1/3 de 1/2(n+p+2m) 

( 1, 1) 3/2 -1/2 -1 -1 ~e 1/2(n-3p-2m) 

(1,1) -1 3/2 -1/2 -1 0 :;:;e 1/2(n-3p+2m) 

SU(3)CxSU(2)L 
H1 + H2 H3+H4+H5 H6 YB-L q Q name SU(2)G 

representation reeresentation 

322 (3,2) 0 -1/2 1/2 2/3 0 -1/6. 5/6 G,H -1/2(n-p) 

( 1, 2) 0 3/2 1/2 0 2 -1/2, 1/2 J,K -1/2(n+3p) 

(3,1) -1 1/2 1/2 1/3 2/3 -;;e -1/2(n+p-2m) 

(3 ,1) 1/2 1/2 1/3 -1/3 de -1/2(n+p+2m) 

(1,1) -1 -3/2 1/2 -1 ee -1/2(n-3p-2m) 

( 1 , 1) -3/2 1/2 -1 0 -ve -1/2(n-3p+2m) 
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Table 2 Examples for exotic particles 

uc de u,d l),e ~c 
elH 

Gc 

(a) n = 2 I 3 5 3 3 5 , 5 , 

p " 4 
m = 0 

(b) n"P"31 3 3 3 3 3 3 I 
m = 0 

(c) n"P"31 3 3 2 4 2 4 I 
m = 1 

-He Gc J,K Jc Kc 

, 7 7 7 

6 6 6 

, , 6 7 5 

r-
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