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1. INTRODUCTION 

Gauge theories are 

fields o/ which are not 

formulated in terms of gauge fields A~ and matter 

directly connected with physical particles, although 

the use of notations like "quark" and "gluons" suggests such an interpreta­

tion. In fact, the structure of the set ·or particle ~tates depends stronglY 

on the dynamics, as you all know from the discussion on quark confinement, 

Higgs mechanism, charge screening and so on. A particular problem is the 

occurence of "charged" particles, i.e. particles which are separated from 

the vacuum by some superselection rule, the classical example being parti­

cles with half integer spin [1]. By the very definition of .superselection 

rules there cannot exist an observable field which generates states of such 

a particle out of the vacuum. 

In theories which have only global gauge symmetries this problem is 

often ignored. In these theories one has available besides the observable 

fields non observable fields which obey local commutation of anticommutation 

relations. These fields generate a set of superselection sectors which often 

contain all particle states. It may happen, however, that one has not suffi­

ciently many fields at the beginning. As an example let me mention the 

Sine-Gordon theory; there the fields creating the soliton states from the 

vacuum are not contained in the original formulation of the theory (see e.g. 

(2]). It may also happen, that a non gauge invariant field does not create a 

new superselection sector out of the vacuum; this occurs in the case of 

spontaneous .breakdown of gauge symmetry. 
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In fil;l.Ug~ tht:-ories particles may cxiL;t which curry a charge related 

to the local gauge symmetry. Such a chart;e can be measured, according to 

Gauss' law, by the corresponding electric flux through an arbitrarily lar~e 

surface surrounding the particle. There can never exist a local field crea­

ting such a particle from the vacuum, as may be seen by the following 

(standard) heuristic argument: 

Let 'f be a local field and Q the vector representing the vacuum. The 

charge Q is the limit of the electric fluxes ~R through a sphere with 

radius R around the origin. Then 

Q <p«>.Q m .i:-. 4> R 'f' <xl Q 
R-> .. - .e.:,.. 'f' (><) <I>R Q m 

R-> oo 
'f(X) QQ. 

I 1. 1 I 

hence if rl is an eigenvector of Q r..prx£:2 is an eigenvector with the sar~e 

eigenvalue. 

Formally one may write down nonlocal fields creating charged particles. 

An example is the string field 

+t: = <jwo P .. i ~a'y A<y> ( 1 .2) 

where l! is a path from x to spacelike infinity and the symbol P denotes 

path ordering of the exponential. Another example is the electron field of 

quantum electrodynamics in the Coulomb gauge, 

o/,"'' = .y,., ""1'-t•~f.ti :'\.<x",y>.<x-~''r- ~~-J} ( 1. 3) 

Unfortunately, it is very difficult to give a precise meaning to these 

nonlocal expressions. (cr. however_ (3]). 

For avoiding nonlocal quantities one treats gauge theories usually in 

a formalism where the fundamental fields are local and act as operators in 

a vector space W which is equipped with an indefinite metric. There is a 

subspace V, containing the vacuum and being invariant under the application 

of gauge invariant operators (observables), on which the scalar product is 

nonnegative. The subspace V
0 

of V of vectors with length zero is also in-

variant under observables, hence there is a 

servables by operators in the factor space 

space of physical states 3!' h . 
p Y' 

A very difficult question is whether 

natural representation 

\If~. whose completion 
• 

of ob­

is the 

'Je h contains besides the vacuum 
p Y' 
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~ector of the theory also the charged sectors. This depends on the existence 

of certain elements in W which cannot be created by local fields out of 

the vacuum. One would like to derive their existence from a completeness 

property of W, but the absence of a natural notion of convergence ob­

scures this possibility. The general structure of the indefinite metric 

formalism has been studied by Strocchi and Wightman (4} and later by Marchio 

and Strocchi r5J. I refer to the lectures of Prof. Strocchi for more details. 

I want to start from a more general point of view. I consider the in­

definite metric approach or the Euclidean functional integral approach as 

methods to compute the vacuum expectation values of gauge invariant quanti-. 

ties. I want to use only this information for a construction of the set of 

particle states. Actually, the explicit formulas for the observables in 

terms of the fundamental fields are never used. The only structure which 

is exploited is the association of regions G of Minkowski space to algebras 

~(0) of Hilbert space operators; e.g. 

- 'fA ~ ~ '"' ~b <y> ( p "'I! ) lo 
a.JD ' Cl 

1 t path from x toy, I 1. 4 l 

is an observable which is localized in all regions 0 containing l:! . For 

avoiding technical complications with domains of definition we restrict 

ourselves to bounded operators. For a quantum mechanical observable this 

can always be achieved by a suitable change of scale. This leads to the 

so-called algebraic framework of quantum field theory which has been pro­

posed by Haag and Kastler {6]. 

2. THE ALGEBRAIC FRAMEWORK 

According to Haag and Kastler [6], the basic object of a quantum field 

theory is an assignement of finitely extended space time regions 0 to 

operator algebras ()(0) . Each algebra CC(C::J) is isomorphic to an algebra 

of bounded Hilbert space operators which is invariant under taking the 

adjoint (*-operation), Ct(O) contains the unit operator and is closed with 

respect to the weak operator topology, i.e. 

-€.:... (<f,A~ f) = (.f,A 'f') 12.1) 

for all vectors f, f and A~£ OtCO) for all l.. imply A ~ Q:(O} , 

Weakly closed *-invariant operator algebras have first been investigated 

by v. Neumann and are therefore called v. Neumann algebras. (For the mathe­

matics of operator algebras see e.g. {7].) 
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The assignement b ...I)O((Q)is called n local net, It has the following 

properties: 

( 1) Isotony: If 0" c (;.z. then 01(0,) c C((<!\.) , and the 

nnit operators of C((~) and <l(e>'.~,) coincide, 

This property is obvious from the interpretation of ~(6) as well as 

from its construction. It enables us to consider the algebra of all local 

observables, 

a. E u 
<'> 

Or.Cb) (2.2) 

Also C( 0 can be considered as an operator algebra on :;orne Hilbert space, 

e.g, the vacuum Hilbert space. Due to the existence of superselection sectors 
. (*) ~ . H"lb there are representat1ons of ~0 by operators ln other l ert spaces 

which are not unitarily equaivalent to the identical representation in the 

vacuum Hilbert space. The weak operator topologies in inequivalent repre­

sentations are different; the operator norm t however t and therefore also the 

closw-e of ao with respect to this norm 

Ol = ot 0 

are independent of the choice of the representation provided the represen­

tation is faithful (i.e. injective), Ol is called the algebra of (quasi­

local) observables (*-invariant normclosed algebras of Hilbert space opera­

tors are called C*-algebras). For more details see (6 ], 

(2) Locality: If 0
1 

is spacelike separated from 6.1 then, frorr, 

Einstein causality, measurements in 0
1 

and 62 cannot disturb each other, 

hence (A,B] = 0 for A< 0t(b1), BE OtCO,) 

( 3) Covariance: Let A ( 0( (b) be an observable and L = (a, t\ ) a 

Poincare transformation in the identity component r! of the Poincare group. 

There is a. prescription assigning to A an observable A1 ' Ol.{LO). The 

mapping ot
1

:A ___, A
1 

is a symmetry transformation, i.e. it prc:.oerves all 

intrinsic properties of Of. , hence Q(L is an automorphism of Ol.: 

( *) A representation 7C' of a *-algebra (){ is a linear mappiLc; from Ol into 
the algebra of bounded operators B( dex) in some Hilbert space ~7t such 
that (i) 7t(AB) = 1t(A) >t(B) 

(ii) 1t(A)* = lr(A*) 

( i) 

( ii} 

(iii) 

( iv) 

Moreover, if L 
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"c (), A) = A. "c (A) 

"c(A+B) = "cCA) + "•(B) 

o<c CAB) - o<c(A) "L.(B) 

t<t. (A*) "' "c(A)"' 

L 11 2 we have 

0{1.. -=t ocL «L 
• • 

(2.4} 

( 2. 5) 

hence 1' ~ ~L is a representation of P! by automorphisms of Cl such that 

t<t.(aC!:IJ) = 01(L0) (2.6) 

(4) Stability: The systems we encounter in physics have in general 

certain stability properties. Whether this is merely our inability to pre­

pare unstable systems in reproducible experiments or whether it is a funda­

mental physical law, in any case it deeply influences the mathematical 

structure of the relevant models. Stability may be thought of as the exis­

tence of a state with "lowest energy", Unfortunately, the known ;.;ays of 

making precise the condition of stability need more technical input whose 

physical meaning is not fully clarified, I shall come back to this point 

later. 

After having discussed the general properties of the set of obser­

vables we no;.; have to consider the notion of a state, In the quantum 

mechanics of finit·ely many particles states are described by unit vectors 

in the Hilbert space of square integrable wave functions. In quantum field 

theory there is no a priori given Hilbert space of wave functions. 'rhe· 

basic object is the algebra of observables Q. If £X is realized by opera­

tors in some Hilbert space <Je, each unit vector I.J!E ae describes a state. 

Let us consider the mapping 

0! • A ~ ( '!?, A '1!) ~' <->~ CA) (2.1) 

which associates to each observable A its expectation value in the state 

described by ~ • The expectation values of all powers of A already fix 

the whole probability distribution of measured values of A since A is bounded, 

Hence we may identify a state by its expectation functional. This leads to 

the following definition: 
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Definition: A state on a C*~algebra Ol. (with unit) is a linear functional 

(.) with 

( i) 

(ii) 

w(A*Al 2 o , A e Ot 

w(1.)=1 

(positivity) 
(2.8) 

{normalization) 

Examples for states are the expectation fUnctionals induced by unit vec:ors 

or density matrices in some Hilbert space representation of 0{. Actually 

every state is the expectation functional of some unit vector in a suitable 

representation of ot : 

Theorem 2.1 (GNS-construction) (7] 
Let <..>be a state on a C'*-algebra Ol Then there exists a Hilbert space de, 
a representation JC of Q. by operators in at' and a unit vector Q E de 

- T -
t.o the point x and the antiparticle near Lo y. In the limit y ~ spacelike 

infinity the ~t'qU<:_>nce ( 4 ) does not converge strongly, and the weak limit x,y y 
is zero. Local measurements, however, are not influenced by the antiparticle 

at spacelike infinity, thus the expectation values of local observables 

converge, and the sequence of states C..) (A) = (~ , A cP ) converges 
xy ")' xy 

pointwise to a functional on Ot which is linear, positive and normalized 

and hence a state on Ot , The corresponding GNS construction gives a Hilbert 

space ~ and a representation X of C{ in de . It is not possible to identify 

df with the charge zero Hilbert space de
0 

by some unitary operator U such 

that 

UAU'~' = l<(A) 
( 2. 11) 

such that {X' is not unitarily equivalent to the identical representation on ~0 ), 

( i) l ~<A)Q,AE Ot} is dense in de 

( ii) (Q, lt(A)Q) • <o>IA) 

It is instructive to illustrate this theorem on the example of a state of 

the form w(A)•k3A with a density matrix 9 in a Hilbert space de
0 

Ot. = B( 3e
0

) is the algebra of bounded operators in 'de
0

• Let de 
Hilbert space of Hilbert-Schmidt operators in d€

0 
with the scalar 

where 

be the 

product ( s, T) =-,;;. s"T 
is an ideal in B(de

0
)J A £ 

tor on ~, 

, Since the algebra of Hilbert-Schmidt operators 

B(de0 ) acts by left multiplication as an opera-

Jr(A)T• AT , A• BCat>.), T. de ( 2.9) 

. . ("' ) '~• . Jf l.S a representatlOn of B QL
0 

• The square root 9 of the denslty 

matrix q is a: Hilbert-Schmidt operator, hence an element of ~ , and 

( g'lz' l< (A) ~''•) = (g''z, A t•) = -r; '!.''• A t• 
= "'t' g A "' ""(A) 

thus w is a vector state in the representation 7r . 

The advantage of the algebraic notion of a state is a larger flexibi­

lity in describing different physical situations. As an example let us look 

at a free theory of a charged scalar particle. We want to approximate 

charged states by chargeless states describing particle-antiparticle pairs 

by shifting the antiparticle 11 behind the moon". Let + xy denote a unit 

vector describing a particle-antiparticle pair where the particle is near 

This follows {modulo some technicalities) from the fact that the local 

charge operators 

(';IR = I o~~ 
1~1<. ~ 

jo<oJ~) ( 2.12) 

converge weakly to zero in aeo and to one in ae. 
The set of all states of 0( is very large, and it is difficult to 

determine the structure of the whole state space. For the purposes of par­

ticle physics, however, only those states must be considered which describe 

an incoming or outgoing configuration of finitely many particles. Such 

states should be vector states in a positive energy representation of Ol~]. 

Definition: A representation Jt of 0{ is called a positive energy repre­

sentation if there is a unitary, strongly continuous representation U of the 

translation group in the representation space dex , implerr.enting the trans­

lations on Ot, 

-1 
U'"> "(A) Uo<> = 1rcx, (A) ( 2.13) 

such that the generators P = ( P 0 , J:) of U, 

U(x.) = ec:)(P )( p - xo F! !i·P J ( 2.14) 

fulfil the relativistic spectrum condition 

"P p <: [ p E /R• , p2 z o , P. 2 o} 5! V,. ( 2. 15) 
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The existence of a faithful positive energy representation is a specific 

form of the stability requirement. Borchers (9) h~s shown that in a positive 

energy representation X it is always possible to modify U such that [U(x)} 

is contained in the weak closure 1£ (Otf of the observable algebra 7rl0.). 

This justifies the interpretation of P as energy-momentum. If U can be 

extended to a representation of the Poincare group implementing the Poincare 

transformations «1 , the energy-momentum spectrum is Lorentz invariant. 

However, as is well known, there are positive energy representations (e.g. 

coherent infrared representations of the free photon field (1 0, 1 1] and 

representations describing electrically charged states in quantum electro­

dynamics [12}) where such an extension is not possible. It is remarkable 

that nevertheless also in the general case there is a natural definition 

of the normalization of energy-momentum such that sp P is Lorentz invariant 

(13, 14]. We shall always use this definition of energy-momentum for positive 

energy representations. 

3. CHARGED SINGLE PARTICLE STATES (*) 

In gauge theories particles may occur which carry a gauge charg,;, i.e. 

a charge which is measurable in the spacelike complement 0 1 of an arbitra­

rily large finitely extended region 0 , Such particles can never be created 

by local fields. One may conjecture that there exist stringlike localized 

fields creating such particles; but it is difficult to guess properties of 

these nonlocal objects. Therefore we do not assume any a priori knowledge 

of the localization of particles, Instead of this we characterize particles 

by their energy-momentum properties. Let H""' a { p E: IR" J P'• ""'2~ p. z: o J 
be the single particle hyperboloid. We say that a positive energy represen­

tation X of Ot. contains charged single particle states if 

H., 0: "" !' 0: II., u l p • 11!4 , p2 z. M2 J ( 3.1 I 

for some 0 <. m < M. 

The states in a representation may be partially classified by their 

charge quantum numbers. In the abstract framework considered here charge 

operators restricted to the representation 1[' are simply those elements of 

the weak closure x(Otf of x(<:t} which commute with each element in 1C let} 

i.e. the elements of the center of 7t(Ct)-. 

(*)The results in this section rely essentially on joint work with 

D. Buchholz (15, 16J. 
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A positive energy representation ~ containing charged single particle 

states is called a single particle representation if all vector states in 

the representation space ::le.71: have the same charge quantum numbers, i.e. 

the center of 7t:(otJ is trivial, 

JC(Otft~or(ot)' = {~1 1 Ael!.1 ( 3.21 

Here for a subset .A<. of the set B( 'ae) of all bounded operators in a Hilbert 

space 3e Jl..1 
denotes the commutant of .A( , 

.A<' • { B < 1\Caf), [1!1
1

A] • 0 for all A< )< 3 ( 3-31 

Representations with a trivial center are called factorial. Note that by 

(3. 1 I Of p , hence there is no vacuum state in the representation 7t, 

By ( 3.2) a vacuum state in 7r would have the same charge quantum numbers 

as the single particle states, so the particle would be "chargeless". 

Instead of requiring sharp charge quantum numbers, i.e. factoriality 

of the representation ~ , we could use the stronger assumption that ~ 

is irreducible; by Schur's Lemma, this means that the commutant of 7rl0l) 

is trivial (r]. As a matter of fact, it turns out, under one additional 

assumption, the so called duality condition (3.27) discussed below, that 

each single particle representation is a multiple of an irreducible single 

particle representation [15], i.e. the representation space aex of a single 

particle representation 1t can be written as a tensor product ~lr-= de,®df'~ 

of Hilbert spaces de 1 and ~. and there is an irreducible single particle 

representation x(A) ~ x,CA)8>1ae, for •'} A<,IX. · 

The mentioned spectral properties of single particle states are tYPical 

x; on de1 such that 

for particles in a theory without massless particles. In the presence of 

massless parti:les more general situations occur; the single particle mass 

shell Hm will not be isolated from the rest of the spectrum, and it may 

also be that there is no discrete weight for Hm• as it is the case for 

infraparticles. The charged particles of quantum electrodynamics are pro­

bably examples for such a situation [17]. In these cases the spectral con­

ditions admit many inequivalent representations of the observable algebra 

describing situations which are from the experimentalist's point of view 

indistinguishable. Buchholz (18] has proposed the concept of a charge class 

in which a lot of representations which differ only by some practically 

unobservable infrared cloud are kept together (cr. the lectures of Prof, 

Wightman and Prof. Strocchi). In spite or the considerable progress which 
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has been achieved crucial problems, e.g. the scattering theory for infra-

particles, are far from being solved. 

If no massless particles are present, the particle definition in (3.1), 

(3.2) seems to be suitable. On a first sight one might believe that gauge 

symmetry requires the existence of massless particles corresponding to the 

gauge field, In fact, the associated term in the Lagrangian has no mass 

term. However, by a Higgs phenomenon or a similar effect it may happen that 

in the physical mass spectrum no massless particles exist. This is for 

instance expected in quantum chromodynamics. 

Another possibility is , that the charged particles in gauge· theories 

can only exist in the presence of massless particles. Swieca has investigated 

this question in a gauge theory with gauge group U( 1) (19}. In such a theory 

the charge is the integral of the zeroth component of a conserved current 

which is the divergence of the field strength, 

~ c (.tl!! i.Co,!!) a}' 
~ 

= ~ ~" I 3.' 1 

j~ and F~Y are observable fields which should therefore obey local commu­

tation relations, 

[~,<x>, F!c<y>] = o 'J<-y>' <. 0 ( 3. 5) 

For a scalar particle fulfilling the spectral condition (3.1) the form factor 

of F~y has the form 

< '11 ~"Col I f > =2i(o P. _, P.l 
~ y Y:.o" 

f<£ ,_p,•) 
{~-pl• ( 3.6) 

1/2 with p = (p2 + m2) 
0 - ' 

- 1 
qo - (_g_ 2 + m 2) /2 f(O) is proportional to the charge 

of the particle. If the charge of the particle is nonzero, the form factor 

of F~v would be singular at zero momentum transfer. Swieca has given an 

argument that this singularity is incompatible with locality (3.5) and the 

spectral properties ( 3.1 ) .• 

Swieca 1 s argument may be sketched as follows. Let g be a strongly 

decreasing function with a Fourier transform g such that (m,Q) + supp g 
and Cm,Q) - supp g intersect the energy momentum spectrum only on the mass 

shell, and let 1.2> denote the improper single particle state with spatial 

momentum E and the normalization 

<£:I~> 

- 11 -
3 

= 2..,! s <£: -!) .a. a "t.z , ..,P. ce .... > . 13.71 

Let F .(g)= Sd
4

x g(x) F .(x). Then F .(g) /0) and F .(g)* lo>are single 
01. 01. 01_ - 01. -

particle states. From the locality of F
0

i and the strong decrease of g the 

expectation value of the commutator in the zero momentum state f£> 

<!!1 [F,,<!!>,F.,<~J]/~) = h<:!!l 13.8) 

is rapidly decre-asing for large .!.)and therefore the Fourier transform h(E.l 

is a smooth function. Since only single states contribute as intermediate 

states in (3.8) we find from (3.6) 

h<£:> ={<~I f;.,<£:>1-_E><-£: I F.,<~l/f'> 

-<£I F;, <s>l f :> < f I ~i < e_>l ~ >} 
c -(2><>

3e..,p .. • CfWtil' f~c<.,p-"'>,p>- i<-,..,p_"',,e>J 
- -· - -

I 3.91 

where t = IP- (m,D))' = 2mlm -c.>.) and g((.,_- m), p)- g(-(W - m), :p_) = 
- -" -" - E 

= t G(£) with a smooth function G which does not vanish for£ = 0 for sui-

table g. 

Eq. (3.9) implies that f(O) must vanish since otherwise h would not be 

a smooth function. Thus the particle has zero charge. 

Unfortunately, the argument of Swieca is not completely rigorous, due 

to the use of improper particle states with sharp momentum. It could be 

improved if it would be known that f is continuous at zero. One might think 

that this missing point in the proof is of minor importance. There is a 

widespread belief among theoretical physicists that nhigh precision" mE>.the­

matical arguments have no physical meaning. On the contrary it is generally 

accepted that high precision measurements often lead to the detection of 

completely new phenomena. I would like to convince you that the search for 

a "high precision" argument might equally well provide completely new in­

sights, and I think that Swieca's theorem on the absence of charged parti­

cles in a massive U(1) gauge theory is a good example. 

Actually, the missing information on the continuity off is of the 

same character as the information on the singularity of f(t)/t. Swieca 1 s 

argument shows how one can proceed from the weaker property to the stronger. 
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In terms of position space both properties refer to the localizatiQn of the 

particle. Thus we may ask the more general questi.on: how well are particles 

localized? 

To find an answer we try to exhibit particle states which are as well 

localized as possible. The idea is the following one. Let p ~ Hm and let 

+ ~ 'Cr., with energy momentum spectrum SPp + in a small neighbour-

hood of P• Let A' OH(:)) • The ensemble described by 1f(A) i consists 

of particles in the original ensemble f which have been influenced by A, 

so they must have passed through 0 , of particles which have not been 

influenced by A and keep therefore their momentum unchanged, and of campo-

nents where additional particles have been created and whose momenta are 

therefore not on the mass shell H • Thus the components of K(A)cf with 
m 

momenta on the mass shell Hm but not in Sf'pc! should be localized near 0 

l• 'Stii.'J 
'!' P " H., 

To filter out only these components we choose a test function 

with "'fl' r .. 'Pp+,., ·~p+ ~ ~t. "'1'1' r .. 'Pp+ ,., 
and set 

B" J«1x f«l«,(A) (3.10) 

From the heuristic argument given before ~(8Ji is a candidate for a vector 

representing a well localized state. 

There are different possibilities for a precise definition of the term 

"well localized". Here the appropriate notion of localization is concen­

tration of the energy momentum content. I want to indicate the argument. 

The argument relies essentially on a suitable utilization of almost 

local operators with a sharp momentum transfer which map single particle 

states onto single particle states. Here an operator B is called almost 

local, if there are observables A5t G Ot(bR) ) eA • l X E R"J IX 0 1 + J~l < R} 
such that 

U g- A~ U R~ --> o >R-...,oo ( 3.11) 

for all n • fJ . The operator Bin (3.10) is an example for an almost 

local operator. 

Now let B
1 

and B0 be almost local operators with momentum transfer 

such that 1t (8
0
)+ and '7t ( ocJClB .. > B.) f are single particle states . ~ 

and Xoc.::(B1)f=O forallxE.fR (Fig.3.1).Let 8
1

(tJ't) 

= fd.'!!e-·~~ ~(ix\(B1 ) .Then >t(S1 (i 1 ~lltcO and -·-

- 13,-

w.., 
.(, 

~ lflo<xl&.lB.)i 

-----+--

tZ1J" - - -......., 
•rp""Au~,li 

Figure 3.1: The choice of B
0 

and B
1 

,.,(r 8, cf, ,,, s,Jlf = x < 8, <-t,1> &. )! 
c .f<~) x(S,!o,;l &. l ~ = f<.El >t(CB,co,~>,B.Jlf, 

( 3.12) 

I'<!:). -uor[•t[cr• .. .,•J''•-<cr .. 1,' .. ,..,•>''•J) 

B- [B
1
to,,_l,B.] = 5 «\ ~-' ~!! r "<• •l c B,>, s.J ·-Now 

and I - ) B m (B,(i;:l.l, B. are almost local operators. Thus we have 

found a relation 

1t(B 1>i ~ .fC_E) >t(B)t ( 3. 13) 

with almost local operators B and B'. If B would be invertible, the measure­

ment of the function f(f) of the momentum operator in the state x(B)f could 

be replaced by the almost local operator ~(B'B- 1 ), so in a sense, the 

momentum content of the particle in the state Jf(8)f is essentially loca­

lized in a finite region. 

By using multiple co~1utators and by smearing over the time variables 

one can establish the relation (3. 13) for an arbitrary smooth function f 

such that the almost local operator on the right hand side does not depend 

on f. It is not clear whether one can choose an invertible B(*). The precise 
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theorem which can be derived is the follOifing one: 

Theorem 3. 1 (14]. Let 

+.<e. 
pE. U..., and let 6. be a neighbourhood of p. There 

exists some with Sppf c fl and almost local operators :S, Bu• 

~ = 0, ••• , 3 such that 

IiI lt'(B)f '*' 0 

( ii) Pr "(B)f = 1t IB_..) {> 

(iii) lt'(B:B)f• J<(S*B_..)~ 

Now let c.> be the state on ~induced by a vector 7rlBJf , l'r(B), f 
chosen according to Thm 3.1 with llx(!)f /1• 1 . Then for A' 0((0) 

~woe, (A) • it ldBlt J~, "• (A)] "(B) i) 
• <{Cl<CB_..)t> '""•CA)>r(JVrl -(>riB)f,>r«,(AhC~ • .)~>) 

= z{ci,xCR,:,.,,<A>] xlRHJ-(f,n [&",o<,CAJ],..I~Jf) 

+(f ,xoc,CA)l<CB;g- E"'E_,..)il} I 3. 14 I 

where the last term disappears because of Thm 3.1 (iii}. Hence 

13,-o.>ot,lAll s c.w~{aC;.",oc,lAl}/1 + /I[B","•lAJ]liJ. 13.151 

Thus the derivative of x __, c..JOCxlA) decreases rapidly in spacelike 

directions. )I( ___,. ~I< (A) will tend therefore to a constant for x tending 

to spacelike infinity, This constant is independent of the direction in more 

than two dimensions. In two space time directions there may be different 

limits for x tending to the right and tending to the left; the particle is 

then called a soliton (16]. In any case the limit c.)• is a translation 

invariant state which can be interpreted as the vacuum. The corresponding 

GNS representation ~. is a positive energy representation with a unique 

(up to a phase) translation invariant unit vector tl and a mass gap: 

"''P "' f•i v { pe IR\ p• 2. CH-•·->', p, z: o} ( 3.161 

We have found the following theorem: 

Theorem 3.2. For all A E (){. • w ocJ((A)- ~.c~ 
in spacelike direction (I~ I - t)(•l ~ 06 ) . 

is rapidly decreasing 

(*) Note that no assumption on the multiplicity of spP on H , i.e. on the 
number of components of single particle wave functions~as been made. 
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This result does not depend on the use of Oounded operators. It holds equa~ly 

well in the framework of Wightman fields, Specializing to the case of a 

U( 1) gauge theory, it means that the expectation values of the electric 

field decrease rapidly in spatial direction, hence the electric charge of 

the state ~ is zero. Since all particle states in the representation K 

have the same charge, this proves Swieca's theorem [16]. 

In the Haag-Kastler framework a much stronger result holds. From (3.15) 

one concludes that 

q,. ....... CAl I s; n AI h(R) I 3.1·, I 

with a rapidly decreasing function h, where R is chosen such that "xiAI 
commutes with 01: ( ~) . This shows that WOC)I, converges to t..>0 uniformly 

on large subalgebras of ot corresponding to certain unbounded regions. Let 

G be a region containing a path x(s) to spacelike infinity with uniformly 

bounded tangent vectors x~(s) such that for some '~ 0 

0 ' + X(S) <: G s I 3.181 

Roughly speaking, G may be though of as a string which fattens. 

Let A£ OlcCGl • [AE ot,CA,B]& 0 for all B~ ~(0),e>cG}. 
Then 

~ 

1(<.>« x<s>-"'•){A)i •I fas' X!'(s'J ~~l">o< , (A)) I -
5 

, -xc£) 

S /IAII J.I«J 
I 3.191 .. 

with the strongly decreasing function H(s) = "!il·•1"dKJt<~J/ J hts1E)eis' 
s 

Thus the convergence w oc ) ___, "-) • is uniform on OC.c( G). There-
-x<.s (*) _ 

fore "-). can be extended to a normal state w, on X ( ac:c G)) 

Thus there is a density matrix C? (; in 3f1t" such that 

"'• (A) - "t;. ~I> lt' lA) A£ot'CG) I 3.201 

l*l A t t ' 'f . ' kl . . s a e 1S called normal 1 1t 1s wea y cont1nuous on un1formly bounded 
subsets. 
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Using more advanced methods of the theory of v. Neumann algebras (Araki's 

theory of natural cones [7]) one can even find a ·unit vector "J!G E. 3e'Jr 

with 

(i) 

'-"' 
(iii) 

( 't'G, x(A) I£ G)= <.> 0 (A) , A E et<CG) 

lli£G- x(Blio 11
1 

" U ("'•- ..,) ~ Ol.cC Gl U 
- . - . -

" (or.<( I>}} 'I'& c II' (00" (8)~ 

( 1.21 I 

Hence there is a vector state in the single particle representation 1t which 

looks like the vacuum in the spacelike complement of G. Moreover, this state 

differs from c...> on the whole algebra Ot not more than on the algebra cz.<>CG). 

If we further assume that Jr(8)i is cyclic for x(Ot) , i.e. xlQ.)'K£8)~ 

is dense in aex ' we can use tp' for a definition of a unitary charge 

generating operator. Let VG be an operator from 3t'0 to 3fJf with 

VGJr•(A)Q. <= J<CA)'f'G A E Ole( G) ( 3.221 

7[
0 

(Olc(G))rl. is dense in at. according to the Reeh-Schlieder Theorem (SJ, 

;Jt (Otc(G))IJ:'G is dense in 4eJl according to {3.21) and the assumed cycli­

city of Jt(8)cJ for x(ot) Moreover . . " II V G "• (A) Q.ft =II" CA) <£,II = ( '!'G , "CA A) 'I',) 

• ..:>.cA•A) = (Q, ,...<A"Al~) = I >r
0

CA).Q.X' ( 3.231 
} 

' 

hence VG is a unitary operator from ~0 onto :Je'l . VG intertwines the 

representations x. and X , restricted to Ol,... (G) J 

VG tt, tAl = 1t (A) VG , A~ Otc(G) ( 3.24) 

VG may be interpreted as an operator which ·generates a charge within the 

region G. 

VG has similar localization properties as the formal operators ~r! 

of ( 1.2), restricted to the vacuum Hilbert space at'0 , and may be considereJ 

as a mathematically rigorous version of such an operator. If local fields 

exist which create the particle states from the vacuum, one can even find 

unitary operators V
0 

associated to bounded regions tJ such that 
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V6 "•(A) = 1<CAl v,. , A ~ Ot((.?') ( 3.25 I 

where 6 1 is the spacelike complement of 0 and Of.((;/) is the C*-algebra 

generated by the algebras ot(O .. ) with 01 <. c;' . 

Superselection sectors corresponding to representations 'f" fulfilling 

relation (3.25) are called locally generated. The structure of locally gene­

rated superselection sectors has been analyzed in general by Doplicher, 

Haag and Roberts (DHR) [20]. Their analysis extends and partially corrects 

an earli,er analysis of Borchers (21]. Using the nduality assumption" 

>< 0 (01((;>1))
1 = _1<'0 (OI.(C>)) ( 3.261 

they shm.,ed that there is a composition law of sectors, corresponding to the 

idea that charges can be added. Furthermore, they prove that (in ~~ore than 

2 space time dimensions) there is an intrinsic notion of statistics leaving 

only the possibilities of (para-) Bose, (para-) Fer~i and infinite statistics. 

The pathological case of infinite statistics has been ruled out for single 

particle representations by an application of Thm 3.1 (22, 15]. In the case 

of finite statistics, Doplicher, Haag and Roberts derived the existence of 

antiparticles and of multiparticle scattering states. Very recently [23], 

D0plicher and Roberts showed that there is always a compact group ( the 

"global gauge group") whose irreducible representations label the locally 

generated superselection sectors, and they construct a C*--algebra 't ~ ot. 
(the "field algebra") on which the gauge group acts by automorphisms such 

that Ol is the invariant part of T , and which contains enough local charged 

fields to create all locally generated superselection sectors out of the 

vacuum. 

By analogous methods one can perform a similar analysis for represen­

tations fulfilling relation (3.24), and one finds stringlike localized field 

operators and (in more than 3 space time dimensions) a full set of particle 

states, including antiparticle states and all incoming and outgoing multi­

particle scattering states D5]. Instead of the duality assumption (3.26) 

one uses in this analysis the assumption 

- I 
1<

0 
(Ole( G)) R lt'

0 
( Ot (G)) ( ].271 

which can be proven for a sufficiently large set of stringlike regions in 

the Wightman framework of field theory [?4}. 
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One mu.y ask vhether a more cJ_ever un~lysis of single particle states 

in massive theories will always lead to the DHR type of localization. This 

would mean that gauge charges can never occur in massive theories and would 

be a very strong generalization of Swieca 1 s Theorem. Such a possibility 

cannot be ruled out in the moment; the fact, however, that the weaker pro­

perty (3.24) already leads to the usual structure in the set of particle 

states shovs that there is no intrinsic inconsistency in the stringlike 

localization. There are, on the other hand, severe dynamical restrictions 

imposed by this kind of localization. These will be discussed in the next 

section. 

4. DYNAMICAL IMPLICATIONS OF THE EXISTENCE OF GAUGE CHARGES 

We have derived localization properties of single particle states "''hich 

show that there always exist field operators generating the particle sta~es 

from the vacuum which are localized in a stringlike region G. We sha:"-1 no;.; 

concentrate on the case where this localization cannot be improved to a fini­

te localization of the DHR-type. 

In such a case there are no nonzero operators V6 fulfilling relation 

( 3.21). The commutant of r. f) X' ( ot (b1
)) , 

n:,EBit (Ot(b'J)' • ( s £ .:S<ae.e 'ae,.),[B,n,<J>J<(AlJ~o If A• Oi(o}} 14. 11 

consists therefore only of operators C.f9 C , C0 " 1r,/ot.(O'/ and 

C < "(OW:>' I)' 

is then 

The bicommutant, i.e. the commutant of the coiT~utant, 

>r
0

er(O!CO'Jl' = .:.Catcb'))'a!>r CO!CC.'))" 14.21 

Since the bicommutant coincides with the weak closure (v. Neumann's bi­

commutant theorem) we find that the "charge operator" 

~"' 1.8l-i I 4.3) 

is contained in the weak closure of "· E!> lt ( "' ( C>')) for all 0 , This 

may be considered as an abstract version of Gauss' law. 

Q 

Now from the localization properties of charged states derived in Sect.3 

cannot be a sum of operators which are localized in double cones in 6~ 

Thus Q cannot be the sum of partial electric fluses as it is the case for 

U(1) gauge theories. This might be interpreted as a generalized Swieca 

theorem: - 19 -

In massive gauge theories only multiplicative charges can occur. 

If we think of the total charge operator Q to be the product of the electric 

fluxes 8
1 

and 8
2 

through two opposite halfspheres, Q ~ E
1
E

2
, we have 

lwCE,)- .,,(E:,)/ z o ) L • -1, 2 I 4.41 

and 

i.J,(E,E",)- 1 ..., CE, E,) ~- 1 I 4. 5 I 

Now (4,4) and (4.5) are only compatible if the fluxes E1 and E2 are strongly 

correlated already in the vacu~~. P.ence the nonvanishing of the correlation 

w,(l:, E1 )- '"'· CE",) w, CE.l I 4. 6 I 

is a necessary condition for the existence of a charged particle correspon­

ding to the charge E1E2. We shall see that (4.6) will be the basis for a 

confinement criterion, 

Let us investigate the dependence of the charge generator VG on the 

stringlike region G. Let G 
1 

be another stringlike. region. 'i'hen from ( 3. 18) 

( ii) 

IIVGO. -VG,n.l!'!!i 2./1/(w-'-',l~O!cCG)fl+ //(w-w,)~Ot"cG,J11 

14:71 

Now from (3,16), if G " G, 7 ()R we have 

ftVGQ.-VGQ.n~ ~ 41HR) 
' 

( 4.8} 

where His the rapidly decreasing function in (3.19), hence the asymptotic 
. . . . . . . -1 

d1rect1on of the str1ng 1s not v1s1ble. If we 1nterpret VG v0 as an operator 
1 

which shifts a charge within G to infinity and brings it back in G1 we see 

that such a charge transfer on a closed loop has an expectation value near 

to 1, 

tcQ, v;,'vG QJ- 11 
., 

s I(VG -V<i )Q/1 "l H(RJ • 
• 

I' .9 I 

If, on the other hand, 
I 

G c 61t 1 

verge weakly to t...>
0 

in the limit 

, the states induced by VG 0. will con­

' R~oo ; one can show that this implies 



- 20 -

that the scalar product with VG Q. tends to zero, 

(V,,O.,VGQ.)--. o , R-oo I 4.1o) 

If 
I 

G, := G " b R -· VG, VG may be interpreted as a charge 

transfer inside of G into the spacelike complement of 0~ The vacuum 

expectation values of such quantities are small, 

-1 
(a, VG VG a) __, o 

1 
J R ~ 06 I 4.11 l 

In Section 6 we shall see that the comparison of the behaviour of charge 

transfers on open strings (4,11) with that on closed loops (4.9) leads to 

another confinement criterion. 

5. THE Z2 HIGGS MODEL 

We now want to confront the results of the general analysis with the 

structure of a lattice gauge theory; as a simple example we take the ~2 
Higgs model which is a gauge theory with gauge group ~ coupled to a ~ 

valued Higgs field. This model has first been introduced by Wegner [25]. 

The present analysis relies mainly on joint work with M. Marcu (26]. 

Let us first look at the associated classical statistical mechanical 

system, i.e. the Euclidean theory from the point of view of quantum field 

theory. On a hypercubic lattice z.d+l, d 2 2 we have a gauge field 

t' (b) = ! 1, which is defined on the lattice bonds b of Z.. d+l, and a 

Higgs field ($ (x) which is defined on the sites X£ zrl.'foi, The Hamilton 

function (the Euclidean action) is 

:let..-,6> = (?. L. £np> + (3~ I:: r(b) S"(i>) 
• p b 

I 5. 1 l 

where fl~,(1~>· are coupling constants, p runs over the plaquettes and 

b over the bonds of the lattice and ~ denotes the 11 exterior derivative" 

'T<pl = 11 .-(b) 

b• ~p 
) ~ <S(b) - lf c!.(K) 

><<'lb 

The phase diagrams of the model is expected to have the form shown in 

I 5.2) 

Fig. 5.1. It consists out of two phases, the screening/confinement phase :r) 
and the free charge phase (II) (27]. In both phases there exist subregions 

(the shaded regions in Fig. 1) where convergent expansions are known (see 

(28] for the screening/confinement phase and [29] for the free charge phase), 

1 

IA~h 

~ ~ 
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\-- J 
:);~ 

0 u. f.l, 1 

Figure 5.1: The phase diagram of the Zz Higgs model (conjectured) 

The corresponding quantum system in the temporal gauge is defined on a 

lattice Zd which represents the space. The time is continUous in the quan­

tum system. On each lattice bond g there are Pauli matrices T 3(g) and 

1r 1 (~) representing the gauge field and the electric field, respectively. 

On each lattice point .!. there are Pauli matrices 4 3(,!.) and d 1 (,~), repre­

senting the Higgs field and its canonical momentum, resp •. One has the 

"canonical commutation relations 11 

&i<~)ta <1 (~)·=1 > ~,(!!_)T~(!.)- </~)6;<!!0, 

&,<!!!),. ~ &,o<), , 1(.!!/ = •slk) , '· :i ~ 1,3 , 15 . 3l 

&,<!!!) 6, <!!!) ~ - <11<!!:) ,,(!>) ' '• (!,)t;;C!.) - - -.;, (!.) •• (j,) 

Fields at different points or bonds commute. 

Let 'f be the *-algebra which is generated by these fields. Gauge trans­

formations on T are implemented by the operators 

~(~) c:; 61 C!!S.> s''-r-1 <!:!> I 5.4 l 

'\olhere g>t't" <X) = lf L T (b) denotes the "divergence" of T 1 • . - .,~.3 ... -
q(~) can be interpret'ed s.s the external charge at the point .!.• In a U( 1) 

theory in the continuum (5.4) corresponds to the difference between the 

charge density and the divergence of the electric field, 
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Observa.bles A are defined to be gauc:._., invariant elements of T, i.e. 

A ~ (l!_) G ~ {~) A ~ • z,( (5.5) 

Let Gt denote the algebra. of observables. Ol has a nontrivial center which 

is generated by the external charges, If in a representation X' of Ot. 

Gauss' law holds, 

Jr ( G,<!!:l) = 7r(b•r1 c~>) 1 ~ E z:' J ( 5.6 I 

one has X ( q(~)) = 1 for all external charges. Let I denote the ii:!eal in 

Ot which is generated by the operators q(;:) - 1. For representations ful­

filling Gauss' law the relevant algebra of observables is 

QS - ()(/I ( 5. 7) 

e is generated by the rest classes modulo I of r 1t.2_l and t'3 {~) ~ ':(!:J 
which may be called u

1
(.2_) and ul£l, respectively. u

1
(.2_) and u

3
(.2_) have the 

algebraic properties of Pauli mt~.trices (5,3), For a set_!:! of bond:; let CB(L) 

denote the algebra generated by ui (..£), i = 1, 3, _.2. 6.f:. 

It is interesting to note that the quantum system described by ~ has 

no locally generated charges, This fact holds independently of the dynamics. 

To see this we first observe that the relative commuta.nt OHb,)c of !?(b)) 

IBC!:t ~ [B< tJ3 I CB, g,) • o ¥ B, « IB<!:l} ( s .8 I 

coincides with the algebra (8( f:c) where 1..c denotes the complement of !:_ in 

the set of all lattice bonds. This property would be absent for instauce 

in d = 2 dimensions for the algebra generated by u 1 (.£) and 

rr ... <b) 
!•M • -
with ! 1 ~ M 

for some closed curve~ commutes with all 

but is a product of all pJ aquette operators 

is surrounded by ~· 

Su
3
(£). T!1ere 

operators u 1 Ct') 

& Ul£) where E. 

The next step is more abstract. Let Jf0 and 1t be representations of I;B 

which are disjoint, i.e, the "charge operator" Q 1 $ - 1 is containeJ in 

the weak closure of lt",(!P< ( I&) Thus there is a sequence 

converges weakly to 1 

A~• (R 
and Jr(A.J with fl A.., K :!: 1 such that ><.CA.) 

to - 1 ( *). Let 1: be a finite set of bonds and let GL denote the (finite) 

( '-! Each element of the weak closure of a *-algebra of bounded operators en 
a separable Hilbert space is the weak limit of a bounded sec.uence accor­
ding to Knplanski's density theorem (see e.g. [1]). 
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group which is generated by u

1
(.2_) and ul£l, .2_ e 1:· Let~ denote the 

"conditional expectation" -

ml(B) 

and 

"'!:(g) = I G,_l 
_, z::. u R u-• 

V< G!. 

con:.mutes with G
1 

and therefore also with /R(L). 
" - Thus 

l'f
0

("'1!: {A..,)) __,. 1 lft'"'i, (A.)J -> - 1 

since m1: is weakly continuous. Thus 

Q ~ l<.ex ( CRC(:c))-

( 5.9) 

"';.<A.)< qs<~ <) 

( 5.101 

( 5. 11} 

which is the abstract version of Gauss' law discussed in Section 4. 

Whereas there are no locally generated superselection sectors t~ere is 

an uncountable number of mutually disjoint representations. We are interested 

in the question whether there are, besides the vacuum, other positive energy 

representations of ~ . This question cannot be answered in the kinematical 

framework described above, instead we have to introduce a dynamics, and the 

answer will strongly depend on the dynamics. 

A convenient way of introducing a dynamics in a lattice model is the 

Euclidean method. There the local Hamiltonians HA (*) are defined implici­

tely as (-..e... TA) where the local transfer ;;atrices TA are positi\'~, 

invertible operat:;-rs in 7 . For the gauge invariant Ising-model with the 

Hamilton function ( 5, 1) the transfer matrix is (in the te:npora} ~:auge) 

T" = f.A6 .. e 

A11 : (1., ~ o63 (!!JT,<~l 
- !.-=6 

* 

Ba 
" 

+ (11 

f. Ao_ 

~ &r3 <p> 
P< i\ -- -

86 = 1\ r::: 6, {~ l 
b:EQ 

• + (l1 C r, (!_) 
~co 

~ r Q 

The local time evolution on Jr is defined by 

-l 

"'f<Al = ._izH6 A ,.-<zHtJ. )Z€_(: 

"["*) Here and in the following .6, will denote e. box, 

( 5.12) 

..e..~ (3 

( 5. 131 
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For integer imaginary values of z the locality properties of TA imply 

that oc.~ (A) becomes independent of fl for f::. su.fficiently la-;ge. Thus 

.e.;... 
!:: r z.• ot.,~ IAl ot.,"<Al- ( 5.14) 

exists for all "€ Z, OCt is an algebraic automorphism of T' which is not 

compatible with the *-operation, 

"'(A)*= oc_, CA"l ( 5. 15 I 

and oc,.,.. =(IX~)" J "'E Z 

It is not known whether ~~converges for other values of z (in some 

sense). Under certain conditions one can construct ~i for real t from «t 

(essentially by using the 11 symmetric resol vent 11 (e.). ot. + e.-). oc . y•, 
' -· l E. IR ; OC~ is then called the analytic generator of ot't (30]). It seems, 

however, that these conditions are not satisfied in the present model, 

Instead of defining the real time evolution directly we study the 

problem in a 11 vacuum" representation of ~ , Unfortunately, also the term 

"vacuum" "ground state" is usually defined by means of the time evolution, 

It turns out, however, that one can characterize ground state also in terms 

of ~· 

Definition: A state c.;>
0 

on 'r is called a ground state with respect to «,: 

if 

o .; "'•<A•O<,(A)) ,;; <>.(A"'A) ( 5.161 

forall A~?:'". 

A simple consequence of the definition is the 

fact 

oti -invariance of GJ
0 

• In 

< 80 A> " = "'• ("!S <><JAl) ( 5. 17 I 

is a positive sesquilinear form on T and therefore hermitean J 

< B, A ) = < A, E > ( 5.181 

Thus, for B 

-----------~ ----
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- --;-:'1<" ) w.co<,<A)) z <1,A) = <A,1) = <->.lA)- .:> 0 (A ( 5.191 

Let ( Jt'0 1 de0 ,Q) denote the GNS representation of T i.nduced by """, 

i.e. 

;Je.= "'·(t)O. 

(Q, -.r.CA)Q) K "'·(A) A • 't 

In de~ one can define the global transfer matrix T0 by 

T. x.(A)Q = ~r.(o<:(A))a , As T. 

We have 

(J<.(A)Q, T. ""• (A)Q) = "'• CA".,.,CAl) 

hence from the definition of a ground state 

osT.~1 

Moreover, T
0 

has a densely defined inverse, 

-· -T. -.:.(A)Q: l!"
0
0(_,(AlQ, A£'f 

Thus we can defin.e the global Hamiltonian by 

H •-.e..T . - . 
and the real time translations by 

• "t(-.:.(A)) "' e•iH • 1!"• (A) 

If we insert t in in (5.26) we find 

,. 
()('. •1t' = 
'" . 

thus (5.26) is consiste.nt with (5.14). 

)T' eO{. . . ., 

-ilU 
4 • 

• 

( 5.201 

( 5.21 I 

(5.22) 

( 5.231 

( 5.241 

( 5.25 I 

( 5.261 

( 5.271 

It is an open problem whether the time translations OC~ leave the norm 

closure of ~0 (~) or at least its weak closure invariant. We therefore 
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have also to consider the probably larger algebra ~ which is generated by - ~ and the analogously defined algebras Of. and OS: • 
J ec~ 'It• C TJ, te 1R 

If one introduces the dynamics by the Hamiltonian method, i.e. by 

choosing a local expression for H6 e.g. 

H~ = At;,+ BC:- I 5.281 

one can construct the time evolution directly in the algebra. Moreover, this 

time evolution fulfils a relativistic causality condition (with maximal 

signal velocity) up to exponential tails (7]. Unfortunately, in this frame­

work it is much more difficult to construct the ground state than in the 

Euclidean case. Therefore we prefer the Euclidean method, 

A ground state of ~ with respect to «c can be defined in terms of a 

Gibbs state of the Euclidean model. Let < > denote a Gibbs state of the 

gauge invariant Ising model in the temporal gauge and assume that < ') 
fulfils Osterwalder-Schrader positivity (reflection positivity) for hyper­

planes containing a lattice hyperplane or lying half between two neighbouring 

lattice hyperplanes. Define a state (.)• on T by 

..,.( rr .. ~~ ( rr .:,'!!"' rr <3 tl!Jll = < 1r <! '~' 1r ri~J > 
" ~e~"' ~E: !::.-. ><~H ~~L 

15.291 

where M • V £""\~ tf..,) l-= U (hJMb.., J M., ,L..,. 
M M 

being finite sets of sites and bonds in zd, respectively. Then (,.,)• is a 

ground state of T with respect to ".: (31] • 

A Gibbs state with the properties mentioned above may be obtained as 

the limit of local Gibbs states wfth free boundary conditions. This limit 

always exists as a consequence of Griffith inequalities (32]. 

6. CHARGED STATES OF THE Z 2 THEORY 

We now want to find charged states of the model, By definition, a 

charged state is a state which cannot be represented by a vector in the 

vacuum Hilbert space and which has finite energy. The latter property means 

more precisely that in the GNS representation ~ induced by this state 

ther~ is a positive bounded operator T - the transfer matrix in the repre­

sentation Jr - such that 

T >r (A) = """''(A) T A~ r 16.1 I 

~--·---
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'l'he id.._·a for the construction of a charged state is simple. One creates 

u chur~Je at uom<:~ point~ tO~t.:!ther with a compensating charge and transports 

the compenso.ting charge to infinity. In a gauge theory the charges are 

connected by electric flux lines, so one has to arrange these flux lines 

in such a way that the limit state has finite energy. 

A convenient 
I • I 

choice of the flux lines is obtained in the following 

way . Let ~r (2r, 0, .•• , o).;. ZJ.. . .,.. E: ~ , and Let br be the path 

along the 1-axis from the origin to ~· Let 

~ .. = 6,(Q) 6l(?S.,.) T. .. <3(!=.,.) .Q 16.21 

"ith t"3 (!.,~) = Tf T3 (2). . . ~·b· . . The appl1cat1on of :he r-th power of the transfer matr1x to the str1ng state 

vector T
1
(f:.,.)Q suppresses its high energy components. Now consider the 

state 

c.:>.,. (A) = (~~,Af.,.l 

tt~ ... a· J A~ 'F I 6.31 

w r is interpreted as a state where the charges have been separated by a 

distance 2r such that the energy remains bounded, independently of r. In 

fact, for 11 E. IN 

"'+(~"~•) ,; C#-.>1 
~-" /IT, r

3
i[,.,..)Q.I/ 

11-r:;"' r 3 C!al n II 

== ~ < T( M2.,. .tt.,._..,>)> ''• 
I 6.4) 

<T(M ))"' 
4.,.~ ~.,. 

where Mk, 
1 

denotes the rectangular loop in the ( 0-1 ) -plane in Z d + 
1 

with 

side k in the a-direction and 1 in the 1-direction, The perimeters of the 

loops in the numerator and the denominator differ by 4n, so it is plausiLle 

that the perimeter law for the Wilson loop which is known to hold in the 

whole region (l.,_">O because of Griffiths inequalities implies that '-'T'l~"Uo) 
is bounded uniformly in r. (For a proof see (26] . ) 

(*)Another method which also leads to the construction of charged states 
has been invented by SzlachB.nyi [33]. 
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Using the convergent cluster expansions one can show that the sequence 

Co.l r converges to a state u in the free charge phase as well as in the 

screening/confinement phase. Let us first look at the free charge phase, 

The local charge operator is 

e .. 1i' '• ( "l 
!! ~·~·~ -

( 6.51 

where a• 6 is the set of bonds vi th exactly one endpoint in ~ . We 

find 

wcC1 0 l 

..,,(tl/0) 
__..., - 1 

whereas for each local excitation of l.J0 , 

one has 

"'F(A) = 
<o>,( F"A F) 

<>,<F"'F) 

"'• ({~(!,) 
'""• (Ill ,C)) 

~ 

6 t z" (6.61 

' F < 'f J (6. 71 

1 ( 6.81 

This supports the interpretation of ~ as a charged state. A second indi­

cation that ~ is not in the vacuum sector comes from the weak convergence 

of !.,. ltf.,./1-1 
to zero. This can be shown for all ( {12, (15,) such that 

the pure gauge theory with coupling {3$ satisfies the perimeter law and 

such that (1&.. is sufficiently small (dependent on the parameter in the 

perimeter law). The third property of the free charge phase which indicates 

the presence of charges is the existence of large vacuum fluctuations be­

tween electrical fluxes as discussed in Sect, 4. Let ~ R be a cube with 

side length R and let 

boundary a¥~/t of 

be the electric flux 

Q!l~t,"' E.t:Er and 

S,e and Sr 

!JR. Let 

denote the left and right half of the 

E~ = 7f' "{'(bl 
' k• s<? 

(6.91 

through 8-'2 and Er the electric flux through Sr. Then 
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<.>,(E~) ..,,(£,1 

<.>,( Qtl.,) -
p•~.,.l _ Ro1-1 

-ocl~"'/\ 1 e -R (6.101. 

Let us compare these results with the corresponding properties in the 

screening/confinement phase. There one finds a vector i in the vacuum 

Hilbert space 3f. such that 

(i,A£) = .,(A) ( 6.11 I 

! is obtained as the limit of· 
_.,. .,. -1 

63 12> I ~.cg).Q /IT &3 (e)Q/I 
for r __, oo . Thus 4> is certainly not a charged state. For the charge 

operator one finds 

"'l<llo) 
<>,(Qe,) 

~ 

_, 
The sequence J., !If) converges weakly to 

Especially 

1 A 1 z" 
) 

(R,!Jf with IQ,£) + 0. 

ln.,i,) 
ftU - (o.,f/ 

( 6.121 

(6. 131 

Last not least, the correlations of electric fluses are much weaker; one 

finds 

&J,(£~) ... (~) - oc 19"'S.,.I ( 6.14 I - e ' <.:>,(CI1 .,l 

I 'd"'S.,.I ~ R ol-2 

If we formulate these results in the framework of the Euclidean theory 

we find three order parameters which seem to be suitable for the distinction 

of the free charge phase from the screening/confinement phase. The first 

one is the expectation value of the charge operator in the state ~ : 

91 Q .t:-. 
R~oo 

. "' < Q.:7 > 
<0 ><<'-'7> 

R R 

( 6.15 I 
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where OR means a square like Wilson loop with side length R and .::":J~R 

means a dual loop (a loop in the dual theory in d+1 ~ 3 dimensions and a 

closed surface in the dual theory in d+1 ~ 4 dimensions) with side length R, 

We have !l
1 

~ 1 in the screening/confinement region and ~1 =- - 1 in the 

free charge phase. 

The second one measures the overlap of the vacuum with the approximate 

charged state t.,.lf.,U .. " in the limit r ~ oo 

%" 

"h = .1:- < n > I 6. 16l ......... < 0 )"• 
2· 

We have 9 
2 

,. 0 in the screening/ confinement phase and ~ 
2 

0 in the 

free charge phase. 

The third one is sensitive to the correlations of electric flaxes: 

If behaves a~~e e 
- canst R . 

e 'n 

~,r R) ~ <'I(."" > < .?t? > 
< /.".?~ > 

d-1 
- canst R in the free charge phase and like 

the screening/confinement phase. Note that in d+1 

dimensions where the theory is selfdual, '13(00) is the dual of 

I 6.171 

" 3 

~2· 

All these order parameters may be used as confinement criteria in gauge 

theories with matter fields. For q 2 this has been proposed in some detail 

in (34}. 

The order parameter q2 has also been tested in Monte Carlo simulations 

(35]. It shows the expected behaviour beyond the region of convergence of 

cluster expansions. There is, however, a region in the screening/confinement 

phase where the results are not yet conclusive, This on the first sight 

unpleasant fact hao an interesting explanation. It is connected probably 

with the following behaviour of q 2( r) for finite r, For small r '121 r I 

decreases in a similar way as in the free charge phase. Then, at a certain 

r it starts to increase again up to some finite value. This turning point 

rf may be interpreted as the distance where fragmentation of the string 

sets in, It coincides with the transition from the area law to the perirr.eter 

law for the Wilson loop. Rough estimates indicate that r f is very large in 

this region, thus one cannot see the asymptotic value of ~ 2 on a relatively 

small lattice (22d+l lattice points). 

- 31 -
There have been several other atten;pV.; to find an order parameter which 

distinguishes the free charge phase from the screening/confinement phase 

(36, 37, 38]. In general they do not reproduce the known phase diagram; 

most of them indicate an artificial transition between the screening and 

the confinement region. There is one order parameter proposed by Bricmont 

and }'rOhlich (36] which looks very similar as the order parameter q 2. 

Bricmont and FrOhlich argue that the expectation value of a straight string 

behaves like 

.r­
Q.(-t') = < ---> 

<"""""" .,. (l «....,.) .. 
in the screening/confinement phase and like: 

0..(.,.) ...... 
- "lz .,. _,........,. 

e 

16.181 

16.191 

16.201 

in the free charge phase. As a test which behaviour is present they propose 

to look whether the limit 

S'gp - -t:.... ..... ~ 
vanishes. 

• Q(-t"} 

Cl.(2~) 

In the language of the quantum model, )'BF is 

gBI' = .e.:... 
• • <n, 'ce>T. ~ <2Jn l 

n;. ... Hg> nn• 
= (O.,f)z. 

-r-9M 

16.21 I 

16.221 

with i from ( 6, 1 1 ) , Hence in the screening/ confinement region from ( 6, 1 3) 

9 BF coincides with q 2 , In the free charge region, however, this seems 

unlikely. Namely, 9BF vanishes if and only if the highest spectral value 

of the transfer matrix in the sector with external charge at the origin is 

an eigenvalue (26], The corresponding eigenstate may be considered as a bound 

state of a dynamical charge with the external charge, i.e. it is the 

"hydrogen-atom" of this model, The existence of such bound states does not 

exclude in general the existence of isolated charged particles, hence the 

transition indicated by 9nF probably does not coincide_ with the transition 

from the free charge phase to the screening/ confinement phase, It would be 

very interesting to verify this conjecture, Some work in this direction has 

been done by Bricmont and FrOhlich [39], 
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7. PARTICLE STRUCTURE IN THE CHARGED SECTOR 

We now want to investigate the particle structure of the present model 

more closely. Isolated particle shells in the joint spectrum of the transfer 

matrix and the translation operators have been foillld in the vacuLJl sector of 

several models. Schor proved their existence in strongly coupled pure gauge 

theories (4o}, By his methods actually a rich class of stable particles 

was foillld [41, 42, 43, 44]. Another method has been developed by Bricmont 

and FrOhlich. They compute power corrections to ~he exponential decay of 

2-point filllctions and derive the existence of particles from there (39). 

A necessary condition for a corresponding proof in the charged sector 

is the construction of a transfer matrix and of translation operators in 

the charged representation. Let ( ~ 1 lt > i) be the GNS representation 

induced by w (Thm. 2.1 ). Let is, • 'J£'(,1 (2)) ~ and let 

<->!(A) -= ( fs , Jt(A) ~e) A£ T 

'-> 
0 

is a state with an external charge .at the origin. Moreover, 

inv;riant illlder 0( i. The transfer matrix T in Je is now defined 

T>tCA)t! c 1<o<;(A)!f._ 
J 

A E T 

T satisfies the relation 

T.-(A) & >rO<,(AlT ) A. T 

and has the densely defined inverse 

T-',..CAlt._ = Jfoc_,IAlf~ AE'I' 

Moreover 

0 S T ~ eo< 

11.1 I 

(,.,) is 
!l. 

by 

( 7 .::::' 

11.31 

I 1. 4 I 

I 1. 5 I 

vhere 0( is the parameter occuring in the perimeter law of the Wilson loop 

(26]. 

The lattice translations ~ act as automorphisms 

~'~~JC 't(Y) ct ,,(y+~) - - -
,· = 

Cit of the algebra r . 
E 

1,3 
17.61 

0(!! '"(!?) 1111 -ri(~+~) i- -1,3 
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Let c..)~ • cv2. • 0(!! . We have the following theorem: 

Theorem 7. 1 (26) There is a illlique vector +~ t de such that 

IiI T~!l • i~ 
Iii I ( t~, >tCA) i!!) = ..,~(A) 

(iii) (~r(~3 <!Sll~,£1<) >o 

Now the translation operators can be defined by 

Uq~> >rCA)f! "' "'I<~ CA)f 
- lt 

They have the following properties: 

Theorem 7. 2 (26] 

(il Ut!!l Utt> "' Ut~ + zl 

A< 7 

(iii Ut!!l xCA)UC-l!l • >ro<l!(A) 

(iii) 

(iv) 

[Ut!!>,T] • o 

t'i' UU<l ~) ---. o 
) - ~, ..... for all 'i' • ~ 

(1.11 

Thm 7.2 (iv) shows that the charged representation is really different from 

the vacuum representation. Namely, for the translation operators U0(~) in 

the vacuum Hilbert space 'ae
0 

, defined by 

U0 t!!_) lt
0
(A)Q "' lt'o o<K (A)!>), (7.81 

one has instead of Thm 7.2 (iv) 

(':/:', U.<!>> 'f') - I (Q> 'i' )/
2 

l!too9<:0 
(1.91 

for all I£E:Je • • (For a mOre precise discussion see (26, Sect. 7 ]. ) 

There are many open questions. The first one concerns the existence of 

an isolated mass shell in the joint spectrum ofT and U(~). It is concei­

vable that there are methods similar to those used by Schor or by Bricmont 

and FrOhlich by which one can show the existence of charged particles. 

Provided these single particle states exist one would like to construct 

multiparticle scattering states, i.e, to develop a lattice version of the 

Haag-Ruelle scattering theory (45, 46]. Here the lack of locality of the 

real time translation in the Euclidean lattice theory will cause some pro­

blems, and it may be easier to work in the Hamiltonian formalism (but there 

one would have to show first the existence of charged states). 
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The next question is whether these purticles will have a we~l d0fined 

statistics, whether antiparticles exist and whether there is u global C::lUGe 

group labeling the charge sectors, As mentioned in Section 3 the,,0 question~ 

have a positive answer in the general framework of quantwn field theory in 

continuous space time, 

A very importunt question is whether the continu~~ limit exists and 

whether the charge structure survives in this limit. In this respect it is 

interesting that the Z.2 Higg model in d+l = 4 dimensions seems to have a 

second order phase transition between the free charge and the screening 

phase (47]. The existence of a second order phase transition is a necessar::r" 

condition for the existence of a continuum limit. 

There are many other lattice models where similar questions co~ld be 

investigated. Some work has been done on the U( 1) Higgs model. Earata and 

Wreszinski have shown that in some part of the screening/confiner::en:.. region 

the expectation value of the charge operator in the state c.Jr defined in 

Eq. (6.3) vanishes in the limit of large r [48, 49], There is also some 

recent work by Brydges and Seiler (50] and of Kennedy and King (51] on the 

noncompact U( 1) Higgs model which has been mentioned in the lecture of 

Prof, Wightman, 
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