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1. INTRODUCTICN

Cauge theories are formulated in terms of gauge fields Au and matter
fields 4/ which are not directly connected with physical particles, slthough
the use of notations like "guark" and "gluons" suggests such an interpreta-
tion. In fact, the structure of the set of particle states depends strongly
on the dynamics, as you all know from the discussion on quark confinement,
Higgs mechanism, charge screening and so on. A particular problem is the
geeurence of "charged" particles, i.e. particles which are separated from
the vacuum by some superselection rule, the classical example being parti-
cles with half integer spin [1}. By the very definition of .superselecticn
rules there cannot exist an observable field which generates states of such

a particle cut of the vacuum.

In theories which have only global gauge symmetries this problem is
often ignored. In these theories one has available besides the observable
fields non observable fields which cbey local commutation of anticommutation
relations. These fields generate a set of superselection sectors which often
contain all particle states., It may happen, however, that one has not suffi-
ciently many fields at the beginning. As en example let nme mention the
Sine-Gordon theory; there the fields creating the soliton states from the
vacuum are not contained in the original formulation of the theory (see e.g.
[2]). It may =lso happen, that a non gauge invariant field does not create &
new supérselection sector ocut of the vacuum; this occurs in the case of

spontaneous .breakdown of gauge symmetry.
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In gauge theories particles may exist which carry a charge related

to the local guuge symmetry. Such & charge can be measured, according to

Gauss' law, by the corresponding electric flux through an arbitrarily large
surface surrounding the particle. There can never exist a local field crea-—
ting such a particle from the vacuum, as may be seen by the following

{stendard) heuristic argument:

Let ¢ be a local field and £2 the vector reprezsenting the vacuum. The
charge @ is the limit of the electric fluxes 4’R through a sphere with

radius R around the origin. Then

Q;me = lm ¢R poaf2 = E.&Sm P (x) chQ = _\o(x)QQ
~—y 0O

R - o0 (1.1)

hence if £ is an eigenvector of @ (PooEI is an eigenvector with the same

eigenvalue.

Formally one may write down nonlocal fields creating charged particles.

An example is the string field
ifedy Aiys
\PC..-_ 4J(x)P-¢ b 7oy (1.2}

where & is & path from x to spacelike infinity and the symbol P denotes
path ordering of the exponentigl. Another example is the electren field of

quantum electrodynamics in the Coulomb gauge,
fee [ Aoty iy -x)) -X|'3} )
b ) = oy enq}ie y Aoy ty-x)ly-X . (1.3

Unfortunately, it 1s very difficult to give a precise meaning to these

nonlocal expressions. {ef. howeverr[B]).

For avoiding nonlocel quentities one treats gauge thecries usually in
a formalism where the fundamental fields are local and act as operators in
a véctor space W which is eguipped with an indefinite metric. There is a
subspace V, containing the vacuum and being invariant under the application
of gauge invariant operaﬁors (observables), on which the scalar product is
nonnegative. The subspace vV, of V of vectors with length zero is also in-
variant under cbservables, hence there is a natural representation of ob-
servables by operators in the factor space \?ﬂ(, whose completion is the

space of physical states aephys‘

A very difficult question is whether erhys contalins besides the vacuum
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sector of the theory alse the charged sectors. This .depends on the existence
of certain elements in W which cannot be created by local fields out of
the vacuum. One would like to derive their existence from & completeness
property of W, but the absence of g natural notion of convergence ob-
scures this possibility. The general structure of the indefinite metric

formalism has been studied by Stroechi and Wightman {hl and later by Morchio

~ and Strocchi [s]. I refer to the lectures of Prof. Strocchi for more details.

I want to start from a more general point of view. I consider the in-
definite metric approach or the Euclidean functional integral approsch as
methods to compute the vacuum expectation values of gauge invariant quanti-
ties. I want tc use only this information for a cconstruction of the set of
particle states. Actumlly, the explicit formulas for the observables in
terms of the fundamental fields are never used. The only structure which
is exploited is the association of regions & of Minkowski space to algebras

Q(U) of Hilbert space operators; e.g.

E Eﬁcxn}bcy) (Pe':gA )‘“° s € path from x to y, (1.4}

is an observable which is localized in all regions G conteining & . For
avoiding technicel complications with domains of definition we restrict
ourselves to bounded operetors. For a quentum mechanical observable this
can always be achieved by & suitable chenge of scale, This leads to the
so~called algebraic framework of quantum field theory which has been pro-
posed by Haeg and Kastler [6].

2. THE ALGEBRAIC FRAMEWORK

According to Hasg and Kastler [6], the basic object of a quantum field
theory is an assignement of finitely extended space time regions & to
operator algebras (X{() . Each algebra X(®) is isomerphic to an algebra
cf bounded Hilbert space operators vwhich is invariant under taking the
adjoint (*-cperation}, OU(O) conteins the unit operatcr and is closed with

respect Lo the weak cperstor topology, i.e.
em (8, A ¥) =(4,AY%) (2.1)

for all wvectors é, 'f and Al € 0((0) for all 1 imply Ae (s {{v); .
Weakly closed *-invariant operator algebras have first been investigated
by v. Neumann and are therefore called v, Neumann algebras. {For the mathe-

matics of operator algebras see e.g._f?].}



The assignement & —=aMH)is called & local net. It has the following
properties: '

(1) TIsoteny: If 0, <0, then Q@) AE) , and the
unit operators cof Q(Q) and a(@&) coincide.

This property is obvious from the interpretation of QUO) as well as
from its construction. It enables us to consider the slgebra of all local

observables,
a, = L@J ace) . (2.2)

Also a, can be considered as an operator algebra on some Hilbert space,
e.g. the vacuumHilbert space. Due to the existence of superselection sectors
there are representations ) of C(° by operators in other Hilbert spaces
which are not unitarily equaivalent to the identical representation in the
vacuun Hilbert space. The weak operstor topologies in inequivalent repre-
sentations aredifferent; the operator norm, however, and therefore also the

closure of O, with respect to this norm

a =0,
are independent of the choice of the representation provided the represen-
tetion is faithful (i.e. injective), X is called the algebra of (quasi-
local) observables (¥-invariant normclosed algebras of Hilbert space opera-

tors are called C¥-algebras). For more deteils see [6 ]

(2) Locality: If 01 is spacelike separated from &, then, from

2
Einstein csausality, measurements in @1 and 62 cannot disturb each other,

hence [A,B] =0 for Ac a(Q), Be C{(Oz) .

{3) Coveriance: Let A ¢ O{B) bve an observable and L = (a,A) a
Poincaré transformation in the identity component PI of the Poincar& group.
There is a preseription assigning to A an observable AL € QLY. The
mapping NLH\ — AL is a symmetry transformation, i.e. It preserves all

intrinsic properties of O, hence o is an automorphism of a:

(*

) A representation T of & *-algebra ® is a linear mapping from @ into
the algebra of bounded operators B(¥y) in some Hilbert space ¥y such
that (i) m{aB) = m(A) ®=(B)

{ii) m(a)® = w(a¥)

(i) o« (AA) = X« (A)

(ii) x,_(Ai-B):: oc,_(A)i-wI_(B)
(1i1) «L(AB) - uL(A) “‘L(B) {2.4)
(iv) & (A%) = (A

Moreover, if L = L1L2 we have
L (2.5)
hence L' —3 NL is a representation of Pr by sutomorphisms of & such that

x (AE) = O(LO) : (2.6)

(L) Stability: The systems we encounter in physies have in general
certain stability properties. Whether this is merely our inability to pre-
pare unstable systems in reproducible experiments or whether it is a funda-—
mental physical law, in any case it deeply influences the mathematical
structure of the relevant models, Stability may be thought of as the exis-
tence of & state with "lowest energy". Unfortunately, the known ways of
meking precise the condition of stability need more technical input whose
physical meaning is not fully clarified. I shall come back to this point

later.

After having discussed the general properties of the set of obser-
vables we now have to consider the notion of a state., In the quantum
mechanics of finitely many particles states are described by unit vectors
in the Hilbert space of square integrable wave functions. In quantum field
theory there is no & priori given Hilbert space of wave functions. The-
basic object is the algebra of observables QL. If O is realized by cpera-
tors in some Hilbert space &€, each unit vector Ye ¥ descrives a state.

Let us consider the mapping
asA —> (Y, AY) = wy,(A) (2.7)

which associates to each observable A its expectation value in the state
described by ¥ . The expectation values of all powers of A slready fix

the whole probability distribution of measured values of A since A 1s bounded,
Hence we may identify a state by its expectation functional. This leads to

the fellowing definition:
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Definition: A state on & C¥-algebra O (with unit) is a linear functicnal

W with
(i} W(A*A) 20 3 Ae XX {positivity}

(2.5}
(i1} wi(1) =1 {normalization)

Examples for states are the expectation functicnals induced by unit veciors
or density matrices in some Hilbert space representation of Ol . Actually
every state is the expectation functionsl of some unit vector in a suitable

representation of (:

Theorem 2.1 (GNS-construction) [7]

Let ) be a state on a C¥-algebra O . Then there exists a Hilbert space 3@,
a representation X of & by operators in 3 and & unit vector Q. e ¥
such that

(i) [ xtA£2,Ae Ot} is dense in o€
(i) (2, x(AY2) = w5 (A)

It is instructive to illustrate this the;:)rem on the example of & state of
the form u(A)-TgA with a density matrix § in a Hilbert space aeo
where Ol = B( Ro) is the algebra of bounded operators in ?o' Let €

be the Hilbert space of Hilbert-Schmidt operators in 3@0 with the scalar
product (S,T) =" S”T . Since the algebra of Hilbert-Schmidt operators
is an ideal in B(BCQ)J A e B(%O) acts by left multiplicaticn as an opera-
tor on ¥ N

x(AT = AT | Ae B(®,), TeR | ,

ny
e

1
X 1is e representation of B(IO). The square root 9/2

of the density
matrix ¢ is & Hilbert-Schmidt operator, hence an element of %€, and
%

(g%, 7 (W) g%) = 3% Ag*) =T A"
T?A = w(A)

thus t» 1s a vector state in the representation T

The advantage of the slgebraic notion of a state is a larger flexibi-
lity in describing different physical situations. As an example let us lock
at a free theory of a charged scalar particle. We want to approximate
charged states by chargeless states describing particle-antiparticle pairs
by shifting the antiparticle "behind the moon". Let *xy dencte a unit

vector describing & particle-antiparticle pair where the particle is near

— ’_r' -
to the peint x and the antiparticle near Lo y. In the limit y — spacelike
infinity the s::rquenue(cﬁx y}y does not ccnverge strongly, and the weak limit
¥

is gero. Local measurements, however, are not influenced by the sntiparticle
at spacelike infinity, thus the expectation values of local observables

(a) = (&

converge, and the seguence of states wy 2 A 4)"7' ) converges

oaxy
pointwise to a functiconal on O which is linear, positive and normalized

end hence a state on (U, The corresponding GNS construction gives a Hilbert
cpace % and a representation % of O in ¥ . It is not possible to identify
¥ with the charge zero Hilbert space aeo by some unitary operator U such

that

VALY = xA) (51

{ X is not unitarily equivalent to the identical representation on &O).

This follows [modulo scme technicalities) from the fact thet the local

charge operators

3
O = § o j,00,%) (2.12)
Xi<R

converge weakly to zerc in xo and to one in w .

The set of all states of O is very large, and it is difficult to
determine the structure of the whole stete space. For the purposes of par-
ticle physics, however, only those states must be considered which describe
an incoming or outgoing configuration of finitely many particles. Such

states should be vector states in a positive energy representation of Ol[&]

Definition: A representation X of X is called a positive energy repre-—
sentaetion if there is a unitary, strongly continuous representation U of the
translation group in the representation space ‘&’, , implementing the trans-

lations on OU,

Vo I(A)UU‘;1 = oy (A) (2.13)

such that the generators P = (PO, B) of U,

Uexy = ixF , xP= x*P -

tx
U]

3 {2.14)

fulfil the relativistic spectrum condition

(2,15}

n
<

sPPc{pe/R",p‘zo?p,zo}
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The existence of a faithful positive energy representation is a specific

form of the stability requirement. Borchers [9] has shown that in e positive
energy representation ¥ it is always possible to modify U such that {U(x)}
T of the observable algebra ().

This justifies the interpretation of P as energy-momentum, If U can be

is conteined in the week closure

extended to a representation of the Poincarf group implementing the Poincaré

transformations oy, the energy-momentum spectrum is Lorentz invariant.

However, as is well known, there are positive energy representations (e.g.

ccherent infrared representations of the free photon field fio, 11] and

representations deseribing electrically charged states in guantum electro-

dynemics [12]) where such an extension is not possible. It is remarkable

that nevertheless also in the general case there is a natural definition

of the rormalization of energy-momentun such that sp P is Lorentz invariant

[13, lhl. We shall always use this definiticn of energy—moméntum for positive

energy representations.

3. CHARGED SINGLE PARTICLE STATES (*)
In gauge theories particles may occur which carry a gauge charge, i.e.

a charge which is measursble in the spacelike complement &' of en arvitra-

rily large finitely extended region @ . Such particles can never be created

by local fields. One may conjecture that there exist stringlike locelized

fields creating such particles; but it is @ifficult to guess propertles of

these nonlocel objects. Therefore we do not assume any e pricri knowledge

of the localization of particles, Instead of this wé characterize particles

by their energy—momentum propertieé. Let Hm = {p( JR“, pi= vnz‘, P2 o}

be the single particle hyperboleid. We say that a positive energy represen-

tation X of O conteins charged single particle states if

H, < spP < H_ v fpe RY, p2 2 M2} {3.1)

for some 0 &< m & M.

The states in a representation may be partially classified by thelr
charge quantum numbers. In the abstract framework considered here charge
operstors restricted to the representation X are simply those elements of
x () of x{X) which commute with sach element in R (Q)
i.e. the elements of the center of ®(@).

the weak closure

(*)

The results in this section rely

essentially on joint work with
D. Buchhelz [i5, 16].

e e ——

A positive energy representation f containing charged single particle
states is called a single particle representation if all vector states in
the representation space &g have the same charge gquantum numbers, i.e.
the center of X(M) is trivial,

x(o) ax(w! ={f11,leC} . (3.2}

Here for a subset M of the set B() of all bounded operators in a Hilbert
!
space ¥ M denotes the commutant of K ,

M'-{chch,fBjﬂ.JwO for all Ag¢ J(}

(3.3)

Representations with & trivial centér are called factorial. Note that by
(3.1)

By (3.2) a vecuum state in T would have the same charge guantum numbers

0* P ,» hence there is no vecuum state in the representation T .

as the single particle states, so the particle would be “chargeless”.

Instead of requiring sharp charge quantum numbers, i.e. factoriality'
of the representation X , we could use the stronger assumption that W
is irreducible; by Schur's Lemma, thismeans that the commutant of nio)
is trivial f’(] As a matter of fact, it turns out, under one additional
assumption, the so called duslity condition {3.27) discussed below, that
each single particle representation is & multiple of an irreducible single
particle representaticn [ 5], i.e. the representation spacé xx of a single
particle representation N can be written as a tensor product &x = 381834
of Hilbert spaces '&1 and 3&2, end there is an irreducible single particle

representation X, on @1 such that x(Ad= 11(-4)@18 for all AeCX.’
A =

The mentioned spectrsl propefties of single particle states are typical
for particles in a theory without massless particles. In the presence of
wassless particles more genersl situations occur; the single particle mass
shell Hm will ;ot be isoléted from the rest of the spectrum, and it may
alsc be that there is no discrete weight for H , as it is the case for
infraparticles., The charged particles of guantum electrodynamies are pro-—
bably examples for such a situetion {17]. In these cases the spectrsl con-
ditions admit many inequivalent representations of the observable algebra
deseribing situations which are from the experimentalist's point of view
indistinguishable. Buchholz [18] has proposed the concept of a charge class
in which a lot of represéntations which differ only by some practically
unobservable infrared cloud are kept together (cf. the lecturss of Prof.

Wightman and Prof. Strocchi}, In spite of the considerable progress which
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has been achieved crucial problems, e.g. the scattering theory for infra-

particles, are far from being solved.

If no massless particles are present, the particle definition in (3.1),
{3.2) seems to be suitable. On a first sight one might believe that gauge
symmetry requires the existence of massless particles corresponding to the
gauge Field. In fact, the associated term in the L&grangian has no mass
term, However, by a Higgs phenomenon or a similar effect it may happen that
in the physical mess spectrum no massless particles exist. This is for

instance expected in quantum chromedynamics.

Ancther possibility is , that the charged particles in geuge theories
can only exist in the presence of massless particles. Swieca has investigated
this question in a gauge theory with gauge group U(1) [19]. In such a theory
the charge is the integral of the zeroth component of a conserved current
which is the divergence of the field strength,

Q@ = (d3x 4,00, %) , (3.1)

ju and FHV are observable fields which should therefore obey local commu-

tation reletions,

2
[Eyo0,Feeepl =0, «-» < o (3.5)

For & scalar particle fulfilling the spectral condition (3.1) the form factor

of Fu” has the form

) fiq-ps*>

<1;t Eh“ (o) i £.> = 2 f(?‘lF; - ?,,B. (Q"P): {3.6)

1 ' 1
. 2 . .
with p_ = (22 + m?) / » Q" (g? + m?) /2. £(0) is proporticnal to the charge
of the particle. If the charge of the particle is nonzero, the form factor
of Fuv

argument that this singularity is incompatible with locality (3.5) and the

would be singular at zero momentum transfer. Swieca has given an

spectral properties {3.1).

Swieca's argument mey be sketched as follows. Let g be a strongly
decressing function with a Fourier transform & such that (m,0) + supp T
and {m,0) - supp ¥ intersect the energy momentum spectrum only on the mass
shell, and let ]p?% denote the improper single particle state with spatiai

momentum p and the normalization

- 11 - )
3 2 2%
<£l1>-2u28{£-—1) ,wpnte-»m) . (3.7
b .
Letw F;{e} = gd x glx) Foi{x). Then F_.(g) |0 > and F ;(g)* 19> are single
partiele states, From the locality of Foi and the strong decrease of g the
oy,

expectation value of the commutator in the zero momentum state

<ol [F; 00, Fuglie> = he (3.8)
is rapidly decréasing for large 5,and therefore the Fourier transform K(E)
is a smooth function. Since only single states contribute as intermediate

states in (3.8) we find from {3.6)
Rep={celFppi-p><-piFcqie>
"<9'Ea‘3”£>< p | F;‘.<£>l_0_>}

= - (2:)38wt wé ( f0)/4) [%’ttwg-m),g) - §(-(u£—m),EJ]
(3.9}

where t = {p - {m,0))? = 2m(m -%) and g((ﬁ - m), 2) - g(—(t-m\l2 - m), p} =
= t G{p} with a smooth function G which does not vanish for p = 0 for sui-

table g.

Eq. (3.9) implies that F(0) must vanish since otherwise b would not be

a smooth function. Thus the particle has zero charge.

Unfortunately, the argument of Swieca is not completely rigorous, due
to the use of improper particle states with sharp momentum. It could be
improved if it would be known that f 1s continuous at zero. One might think
that this missing point in the proof is of minor importance. There is &
widespread belief among theoretical physicists that "high precision" mathe-
maticel arguments have no physical meaning. On the contrary it is generally
accepted that high precision measurements often lead to the detection of
completely new phenomena. I would like to cenvince you that the search for
a "high precision" argument might equally well provide completely new ip-
sights, and I think that Swieca's theorem on the absence of charged parti-

cles in a massive U(1) gauge theory is & good example.

Actually, the missing information on the continuity of f is of the
same character as the information on the singularity of f{t}/t, Swieca's

argument shows how one can proceed Trom the weaker property to the stronger.
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In terms of position space both properties refer to the localization of the
particle. Thus we may ask the more general questfon: how well are particles

localized?

To find an answer we try to exhibit particle states which are as well
localized as possible, The idea is the fellowing one. Let p € Hru and let
é € Ix with energy momentum spectrum sppé in a small neighbour-
hood of p. Let A e OULH) . The ensemble described by W(A)¢ consists
af particles in the original ensemble § which have been influenced by A,
50 they must have passed through &, of particles which have not been
influenced by A and keep therefore their momentum unchanged, and of compo-
nents where additional particles have been created and whose momenta are
therefore not on the mass shell H . Thus the components of (A} with
momenta on the mass shell Hm but not in spP§ should be localized near ©
To filter cut only these components we choose a test function {e X(R”

with wf-r sp,§nspp§=¢, wﬂfq-sppé n spP < H,

and set

B = [d*x foo x,“("‘) . (3.10)

From the heuristic argument given before N(5)§ is a candidate for s vector

representing & well localized state.

There are different possibilities for a precise definition of the term
"well localized". Here the appropriate notion of localization is concen-

tration of the energy momentum content. I want to indicate the argument.

The argument relies essentially on a suitable utilization of slmost
local operators with & sharp momentum transfer which map single particle
states onto single particle states. Here an operator B is called almost
local, if there are observables AR [ OI(OR) ’ GR - [xe¢ RV) lx°f+|5(<E}
such that

[%}
(B~Agh R — 0 , R = = (3.11)

for a1l m & N . The operator B in {3.10) is an example for an slmost
locel operator.
Now let B‘l and BO be glmost local operators with momentum transfer
such that %x(B)$ anda =w{w, (B) B,)é are single particle states
L3 B 3
and Xy (B)E =0 for all xe R (Fig. 3.1). Let 81(1&11)

i Idgf e 1 L l‘(31) . Then 5{(§1(4) i)) $da0 and
1.1

- 13'A

Figure 3.1: The choice of BO and }31

(L& t¢,9,81)¢= x (B, ¢, 8¢
= [(B) (B o8, &= [(P)x([E0q9,BDE,

(3.12)
3 1
P(R) = wup {1t LR wt)m (B gY 4 m' )2 ]]
tow B = [B,(0,0),8] = fx e 3% [, (B) 8]
and B'wm [ §‘ ((;1); Bo] are almost locél operators, Thus we have '
found a relation
(B & = [(P) n(B)E (2.13)

with almost local operators B and B'. If B would be invertible, the measure-
ment of the function £{P) of the momentum operator in the state x{B}§ could
be replaced by the almost local operator x(B‘B_1), so in a sense, the
momentum content of the particle in the state X{B)$ is essentially loca-

lized in & finite region.

By using multiple commutators and by smearing over the time variables
one can establish the relaticn (3.13) for an arbitrary smooth function f
such that the almost local operator on the right hand side does not depend

. i . ¥
on T, It is not clear whether one can choose an invertible B( )_ The precise
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thecrem which can be derived is the following one:
Theorem 3.1 [14]. Let P& H., =and let A be & neighbourhocod of p. There

exists some ¢ ka with Sppé < /A and almost local operators B, B,
u =10, «.., 3 such that

(1) w(B)g #o0
(i)  Box®)¢ = n(B,)$
115y m(BYBIE = r(BYBLDP
Now let & be the state on O induced by & vector W(B)$ ) x(B) , §
chosen according to Thm 3,1 with ] I(B)@“ = 1 . Then for A ¢ QUO)

Ywea, (A) = (B [P, (A] x(B)E)
= {(x(B)E, ma, (A (B)E) ~ (n BV, xee, (W R(BIE)]

= J (8,2 (B2« (W] x(B) ) = (£ [BY o, (W] £ (B)F)
+(E,xe, (A x(BIR - BB} (3.18)

where the last term disappears because of Thm 3.1 (iii). Hence
! (A) [1CBY, w (W] + HIEY, w00
?,.wx,, | € comad { RLEL, oy ;X . (3.15)

Thus the derivative of % =% @8, (A) decreases rapidly in spacelike
directions. » —» &, {A) will tend therefore to a constant for x tending
to spacelike infinity. This constant iz independent of the direction in more
than two dimensions. In two space time directions there may be different
limits for x tending to the right and tending to the left; the particle is
then called & soliton [16]. In any case the limit @, 1is a translation
invariant state which can be interpreted as the vacuum. The corresponding
GNS representatlon W, is a positive energy representation with a unique

(uwp to a phase) translation invariant unit vector L0 and & mass gap:
13 ; 2
spP < [l v {peR" p22 (M~w) p 20} (3.16)

We have found the following thecrem:

Theorem 3.2. For all Ae O, , un(x(A) - H.(A) is rapidly decreasing

in spacelike direction (ax1 — X% —> os ).

{*)

Note that no assumption on themultiplicity of spP on H . i.e. on the
number of components of single particle wave functions™has been made.
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This result does not depend on the use of bLounded operators. It holds equally

well in the framework of Wightman fields., Specializing to the case of a
U{1) gauge thecry, it means that the expectation values of the electric
field decremse rapidly in spatial direction, hence the electric charge of

the state & 1s zero. Since all particle states in the representation X

‘have the same charge, this proves Bwieca's theoren [16].

In the Hasg-Kastler framework a much stronger result holds. From (3.15}
one goncludes that
I?}. woe, (A)] < PAT h(R) (3.17)
with & rapidly decreasing function h, where R 1s chosen such that xx(A)
comrutes with G{(OR) . This shows that ®&, converges to &3, uniformly
on large subalgebras of Ol corresponding to certain unbounded regions. Let

G be a region containing a path x{s) to spacelike infinity with uniformly

bounded tangent vectors X (s) such that for some £ » ©

O +x ¢ 6 (3.18)

Roughly speaking, G may be though of as a string which fattens.

Let A e OS(B) = [Aé W)EA,R]‘ 0 ror al1 Be Q((Q)J 0:5},

Then
[0 5y~ @) (A = Igds' APesy Yutewor o (A))]
< Al Hes)
(3.19)

[ )
' £
with the strongly decreasing function H(s$) = aaq«le'(d)l IH(S' Jels' .

Thus the convergence L SN —3 W, is uniferm on € G). There-
* -
fore &), can be extended to & normal () state g on x{ac6)y |

Thus there is a density matrix ?G in w Such that

W, (A) =T g, T (A) | Ae @’CE) . (3.20)

%
0 A state is celled normal if it is weakly continuous on uniformly bounded
subsets.
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Using more advanced methods of the theory of v. Neumann algebras (Araki's

theory of natural cones [T]) one can even find & unit vector YG 4 xr
with

W (Y, m (A P) = o, 4) | Ae A°C6)
Gy Mg - (BN 5 Ui, - X ACEI
G x(ACENY, = rmlodnBIE

(3.21}

Hence there is & vector state in the single particle representation x which
looks like the vacuum in the spacelike complement of G. Moreover, this state
differs from ¢ con the whole algebra U not more than on the algebra oacG).
If we further assume that m(R)E is eyclic for ®(OT) , i.e. x(CV) x(B)$

ig dense in 38, , We can use {PG for a definition of a unitary charge

generating operator. Let VG be an operator from E, to Et with
Ve A = x(A) Y, | Ae O°(6) . ' (3.22)

n, {(°CGHL  is dense in 3, sccording to the Reeh-Schlieder Theorem Bl
x [Ol‘(G))g,’G is dense in mn according te (3.21) and the assumed cyeli-
city of mB)$ for w0 . HMoreover

I Vgx, (AU = I x AP 11" = (¥ , x(AA) ¥,)

- w0, (A%A) = (Q, X (AAD) = In,A) 1’ (3.23)

N

hence VG is a unitary operator from @, onto &z . V., intertwines the

G
representations X, and X, restricted to xHC6) ,

Ve T lA) = m(A) Vg , Ae ®CG) . {3.21)

VG may be interpreted as an operator which ‘generates a charge within the

region G.

VG has similar localization properties as the formal operators 4‘8
of {1.2), restricted to the vecuum Hilbert space afo » and mey be considered
ss a mathematically rigorous version of such an operator. If local fields
exist which create the particle states from the vacuum, one can even find

unitary operators V0 associated to bounded regions € such that

_ 1"" -
Vo To(A) = x(A)Y, ,Aec QlO) {3.25)

where 6' ig the spacelike complement of & and 0((0') is the C¥*-alpgebra
¥
generated by the algebras OUQ,) with O,¢€ © .

Superselection sectors corresponding to representations & fulfilling
relation (3.25) are called locally generated. The structure of locally gene-

rated superselection sectors has been analyzed in general by Doplicher,

.Haag and Roberts (DHR) [20]. Their analfsis extends and partisally corrects

an earlier analysis of Borchers [21]. Using the "duality assumption"
i
x, (01{0)) = x, ((©)) (3.26)

they showed that there is & compositien law of sectors, corresponding to the
idea that charges can be added. Furthermore, they prove that {in more than

2 space time dimensions) there is an intrinsic notion of statistics leaving
only the possibilities of {para-) Bose, {para-) Fermi and infinite statistics.
The pethological case of infinite statistics has been ruled out For single
particle representations by an application of Thm 3.1 [’22, 15]. In the case
of finite statistics, Doplicher, Haag and Roberts derived the existence of
antiparticles and of multiparticle scattering states. Very recently [23],
Doplicher and Roberts showed that there is always & compact group ( the
"global gauge group") whose irreducible representations label the locally
genereted superselection sectors, and they construect a C*-algebra Foo
{the "field algebra”} on which the gauge group acts by autcmorphisms such
that @ is the invariant part of T , and which contains encugh local charged
fields to create all lbc&lly generated superselection sectors out of the

vacuum.

By analogous methods one can perform a similar anslysis for represen-
tations fulfilling relation (3,24), and cne finds stringlike localized field
operators and (in more than 3 space time dimensions) a full set of particle
states, including antiparticle states and all incoming and cutgoing multi-
particle scattering states [15] Instead of the duslity assumption {3.26)

one uses in this analysis the assumption
- T
T (G = x, (LG (3,27

which can be proven for a sufficiently large set of stringlike regicns in

the Wightman fremework of field theory [.?h].
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One may ask whether s more clever analysis of single particle states

in massive theories will always lead to the DHR type of localization. This
would mean that gauge charges can never occur in massive theories and would
be a very strong generalization of Swieca's Theorem. Such a possibility
cannot be ruled out in the moment; the fact, however, that the wegker pro-
perty (3.24) already leads to the usual structure in the set of particle
states shows that there is no intrinsiec inconsistency in the stringlike
localization. There are, on the other hand, severe dynamical restrictions
imposed by this kind of localizetion., These will be discussed in the next

section.

L. DYNAMICAL IMPLICATIONS OF THE EXISTENCE OF GAUGE CHARGES

We have derived localization properties of single particle states which
show that there always exist field operators generating the particle states
from the vacuum which are localized in a stringlike region G. We shall now
concentrate on the case where this localization cannct be improved to a fini-

te lecalization of the DHR-type.

In such & case there are unoc nonzero cpersators V% fulfilling relation

(3.21). The commutant of W, @ X {O(O)),

T, &x (00(6)) = {8 ¢ B30 ®),[B nox(Al]l=0 ¥Ac QO (1.1

.consists therefore only of operators C,@8C , C, e x‘(OZ(()’)I and
C e xioeny . The bicommutant, i.e. the commutant of the commutant,
is then
i
r@x(0oh)’ = x,(oue'N @ x (o))" ) (4.2)

Since the bicommutant coincides with the weak closure (v. Neumann's bi-

commutant theorem) we find that the "charge operator'
Q= 14@-4 (1.3)

is contained in the weak closure of X, @ & { CU(EY for all { . This

may be considered as an abstract version of Gauss' law.

Now from the locmlization properties of charged states derived in Sect.3
(} cannot be a sum of operators which ere localized in double cones in 6’
Thus @ cannot be the sum of partial electric fluses as it is the case for

U{1) gauge theories. This might be interpreted as a generalized Swieca

theorem: - 19 —
In massive gauge theories only multiplicative charges can occur.

If we think of the total charge operator @ to be the product of the electriec
fluxes E1 and E2 through two opposite halfspheres, @ = E1E2, we have

fw(E.;)'- D-(EI)I = Q , t= 12 {(4.4)

and

&30(5515;’) - 1 , W (Ea E;_)::— 1 . {4.5)

Now [4.4) and {4.5) sre only compatible if the fluxes E, and E, are strongly

correlated already in the vacuum. Hence the nonvenishing of the correlation
w (E,EL) = o (E) w, () (4.6)

is a necessery condition for the existence of a charged particle correspon-

ding to the charge E E,. We shall see that {4,6) will be the basis for a

ot
confinement criterion,
Let us investigate the dependence of the charge genersator VG on the

stringlike region @. Let G, be ancther stringlike region. Then from (3.13)

(ii)
UV, Q2 - Vg QU5 2 lU(eo- 0 PO+ § (wo-wa) P Ce ]
] .

(L.7)

Now from (3.16), if G n G, 2 6R we have
z
quQ.- Vann = & H(R) (L.8)

where H is the rapidly decreasing function in (3,19}, hence the asymptotic
direction of the string is not visible. If we interpret Val VG as an operator
which shifts a charge within G to infinity and brings it back in G1 we see
thet such a charge transfer on a closed loop has an expectaticon value near

to 1,

-1 f/‘
I(QJV& VG Q-1 s ”VC—VG1)§7-" £ 2 H(R) . (L.9)

. i
If, on the other hand, G, [.ad 62 , the states induced by VGQ_ will con-

: ;)
verge weakly to &, in the limit R—» o6 ; one can show that this implies
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that the scalar preduct with VGQ tends to zero,

(VG‘Q,VGQ) —»0 , R —» = . {L,10)
i - i
If G, = G n op » Vo Vg may be interpreted as a charge
4 .
transfer inside of G into the spacelike complement of OR -« The vacuum

expectation values of such quantities are small,
~1
(a,V, Vo, Q) — 0 ,R—s (5.11)
» 76, G ’

In Section 6 we shall see that the comparison of the behaviour of charge
transfers on open strings (4.11) with that on closed loops (L4.9) leads to

another confinement criterion.

5. THE 22 HIGGS MODEL

We now went to confront the resulits of the genersal analysis with the
structure of a lattice gauge theory; as a simple example we take the 22
Higgs model which is & gauge theory with gauge group Zg coupled to & Z2
valued Higgs field, This model has first been introduced by Wegner [25].

The present analysis relies mainly on joint work with M. Marcu [26].

Let us first look at the sesociated clessicsl statistical mechanical
system, i.e. the Euclidean theory from the point of view of quantum field
theory. On a hypercubic lattice de , & 2 2 we have & gauge field

z(b) = ¥ 1, which is defined on the lattice bonds b of & d”, and a
Higgs field & (x) which is defined on the sitez x € Z_‘" . The Hamilton

function {the Euclidean action) is
%, 6 = (3, };_ Sty + @ %’r(h) Se(b) (5.1)

where ﬂa’(zh>0 are coupling constants, p runs over the plaquettes and

b over the bonds of the lattice and & denotes the "exterior derivative"

Stpr = T w(bd ) o) =m TT &0 . (5.2
be?p xevb
The phase diagrams of the model is expected to have the form shown in
Fig. 5.1. It consists out of two phases, the secreening/confinement phase {I)
and the free charge phase (II) [27]. In both phases there exist subregions
(the shaded regions in Fig. 1) where convergent expansions are known (see

[28] for the screening/confinement phase and C29] for the free charge phase},
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Figure 5.1: The phase diagram of the % Higgs model (conjectured)

The corresponding guantum system in the temporal gauge is defined on &
lattice Z.d which represents the space, The time is continuous in the quan-—
tum system, On each lattice bond b there are Pauli matrices TB(Q) and
T1(§) representing the gauge field and the electric field, respectively,
On each lattice point x there are Pauli matrices &,(x) and &,(x), repre-
senting the Higgs field and its canonical momentum, resp. . One has the
"eanonical commutation relations" o ’

000 s T, (8= 1

, 8.0 Ti“_’) = 75(‘3)6"‘5) 5

g0 = 8,00 5 T:)(E)*= ra-(g) , L3203, oy

33000 6,080 = ~ & x) 6,000 , T (kI (k) =~ (B) (k) .

Fields at different points.or bonds commute.

Let F be the ¥_glgebra which is generated by these fields. Cauge trans-

formations on ¥ are implemented by the operators

*
qexy = 6, 0%) 8, 0x) (5.%)

e |
where 81-‘(35) = T 3.‘9":‘(5)

denotes the "divergence" of LT
INE
q{x) can be 3'.nter‘pr‘e%ed‘!S as the external charge at the point x. In & U{1}

theory in the continuum (5.4} corresponds to the difference between the

charge density and the divergence of the electric field,
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Observables A are defined t¢ be gaury invariant elements of F , 1.2,

Aqu) = quOA , x € z* : (5.5)

Let O denote the algebra of observables. O has a nontrivial center which
is generated by the external charges. If in a representation X of o
Gauss' law holds,

. o
e = 78 e) ,xel b (5.8)

one has %{q{x)) = 1 for all external charges. Let I denote the ideal in
Ol which is generated by the operators q(x) - 1, For representations ful-

filling Gauss' law the relevant algebra of observables is

- X .
® T (5.7

B is generated by the rest classes modulo I or '[‘](E) and 13(5)853(13)
which may be calleduT(g) and u3(g), respectively. u1(g) and u3(_‘9) have the

algebraic properties of Paull matrices (5.3), For a set L of bonds let ®iL)

dencte the algebra generated by ui(_l_)), i=1,3, be&l.

I+ is interesting tc note that the quantum system described by R has
no locally generated charges. This fact holds independently of the dynamics.
. <
To see this we first observe that the relative commutant @(i._) of R(E))

QL) = {Be BIC(B,B]=0 #B e ®WL] | (5.8)

coincides with the algebra ®¢ L-c) where Lc denotes the complement of L in
the set of all lattice bonds. This property would be absent for instance

in ¢ = 2 dimensions for the algebra genersted by ui(g) and SUS(E)‘ There
uz(b) for some closed curve M commutes with all operators ujtg‘)

T
sef

is surrounded by M.

lzt tM but is & product of all planuetieoperators Su3(£) where p

The next step is more abstract. Let X, and T be representations or ®
which are disjoint, i.e. the "charge operator” Q@ = 1 @ ~ 1 is contained in
the weak closure of w,@m ( (3) . Thus there is a sequence A, ¢ ®
with MALI €4  such that X (A,) converges weakly to 1 and W({A,)
to - 1 (*). Let L be & finite set of bonds and let GL dencte the {finite)

*

(*) Each element of the weak c¢losure of a *-glgebrs of bounded cperators con
a separable Hilbert space is the weak limit of a bounded seguence accor-
ding to Kaplanski's density theorem {see e.g. fT]).

group which is generated by u1(p) and u3(y), b e L.:Let m denote the

"eonditional expectation"

m (®) = 16" = uru™ (5.9)
= = Ve G

mL(B) commutes with G and therefore also with @(E). Thus mL(A.,)G @(L‘)

=S
and

K (m (A)) — 1 Tom (A — ~ 1

? {5.10)

since o is weakly continuous. Thus

6 e moex QL)

which is the abstract version of Gauss' law discussed in Section L,

Whereas there are no locally generated superselection sectors there is
an uncountable number of mutually disjoint: representations. We are interested
in the question whether there are, besides the vacuum, other positive energy
representations of ®& . This question cannct be answered in the kinematical
framevork described above, instead we have to introduce = dynamies, and the

answer will strongly depend on the dynamics.

A convenient way of introducing a dynamics in a lattice model is the
Euclidean method. There the local Hamiltonians HA L are defined impliel-
tely as  {— M TA} where the local transfer matrices Tp are positive,
invertible operat'o_rs in F . For the gauge invariant Ising—model with the

Hamilton function {5,1) the transfer matrix is (in the temporal cuuge)

— LA 14
IA=e,"’-\eEAe"Q ,
A, = - S, (b)), (k) = S
A G, I Satk T, + ‘(31 fcﬁsrz(ﬁ) . (5.1

- L] Ld »
R R e I R

The local time evolution on F is defined by

«2a) = eiZha 5 02 ,2e €. (5.13)

{*)

Here and in the following A will dencte & box,
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For integer imaginary values of z the locality properties of TA imply

that u£ (A) becomes independent of A for A su'f‘ficiently la?ge. Thus

w,, (A) = A%“Zd oc;e (A) (5,14

exists for all me £, &y is an elgebraic automorphism of F which is not

compatible with the *-operation,

x (A= o_; (A¥) {5.15)

and ;.. ={x )" ; neZ .

It is not known whether D(IA converges for other values of z {in some
sense)}. Under certain conditions one can construct uti
(essentially by using the "symmetric resolvent" (ekoz;_ + g—la__i)_f,

l '3 R R is then called the analytic gener&to? of 0(‘ [30]). It seems,

however, that these conditions are not satisfied in the present model.

for real t from &

Instead of defining the real time evolution directly we study the
problem in & "vacuum” representation of {8 . Unfortunately, alsc the term
"vacuum" = "ground state” is usually defined by means of the time evolution.
It turns out, however, that one can characterize ground state also in terms

of of.

Definition: A state W, on F is called & ground state with respect to «,
if

0 g @ (A% (A)) £ o, (A%A) (5.16)

forell Ae F .

A simple conseguence of the definition is the &; —invarisnce of ), . In

fact

B A> = o, (B, (A)

(5.17)
is a positive sesquilinear form on F and therefore hermitean)
<B A> = <AB> . (5.18)

Thus, for B = 1

— 25'_

W, (0 (A)) = K1, AY = CA 1) = (AT = w, (A} . (59

Let (R‘“E‘”Q) denote the GNS representation of ¥ induced by &

®, = x,(F)QL ,
(Q, 7 A)Q) =0, (8 |, Ae¥F . (5.20)

In %, one can define the global transfer matrix T by
T, x (A2 = x (AN ,Ac T . (5.21)
We have
(x (A2, T, =, (AVQ) = w, (A*x.(A)) (5.22)
hence from the definition of a ground state |

0 =T < 1

. (5.23)

Moreover, TO has a densely defined inverse,.

. .
T, %, (A= ma (A, AT . (s
Thus we can define the global Hamiltonian by

H.-“' -ﬂeﬂ-r-g (5'25)

and the real time translations by

- S . -'{H
“f(WoM)) = edH‘ K, (A) « $Hfe . (5.26)
If we insert t = in in (5.26) we find
F.3
N‘.n-"l'o== X, e ™, (5.27)

thus (5.26) is consistent with (5,14},

A
It is an open problem whether the time translations Oté leave the nornm

closure of xo(?") or &t least its wesk closure invariant. We therefore
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have 8lso to consider the probably larger algebra T which is generated by
" ”~
&ﬁw.(?‘%fe R 5 end the anslogously defined algebras Of and ® .

If one introduces the dynamics by the Hamiltonian method, i.e. by

choosing & local expression for HA sy ..

= A, +B .28
H.’.\ A A (5.28)
one can construct the time evoluticn direetly in the algebra. Moreover, this
time evolution fulfils & relativistic causality condition (with maximal
signel velocity) up to exponential tails [T]. Unfortunately, in this frame-
work 1t is much more difficult to construct the ground state than in the

Euclidean case. Therefore we prefer the Euclidean method.

A ground state of F with respect to o; can be defined in terms of a
Gibbs state of the Euclidean model. Let <€ > denote a Gibbs state of the
gauge lnvariant Ising model in the temporal gauge and assume that & %
fulfils Osterwalder-Schrader positivity (reflection positivity) for hyper-
planes containing & lattice hyperplane or lying half between two neighbouring

lattice hyperplanes. Define & state €, on T by

u,(TTx:"( m S, x) T Tg(_t;))) = £ T e T )
" xeM, bel., xeM bel

where M = U{'\!*M" ,L': U{h}“‘_—n, M, L
" - = a »r=n
being finite sets of sites and bonds in &, respectively. Then ), is a

ground state of F with respect to &, [31].

A Gibbs state with the properties menticned above may be obtained as
the limit of local Gibbs states with free boundsry conditions. This limit

always exists as a consequence of Griffith inequalities [32].

6. CHARGED STATES OF THE 2%, THEORY

We now want to find charged states of the model, By definition, a
charged state 1s a state which cannot be represented by a vector in the
vacuum Hilbert space and which has finite energy. The latter property means
more precisely that in the GNS representation @ induced by this state
there is a positive bounded operator T - the transfer matrix in the repre-

sentation ® - such that

Tx(A) = v, (T, AcT . {6.1)

- ET -
The idea for the construction of a charged stete is simple. One creates

o churge at some point x together with a compensatihg charge and transports
the compensating charge to infinity. In a gauge theory the charges sare
connected by electric flux lines, so one has to arrange these flux lines

in such a way that the 1limit state has finite energy.

A convenient choice of the flux lines is obtained in the following
*
way ( ). Let x, = {2r, 0, .v.vy 0) & Z't, +e N, and Let L. be the path

along the l1-axis from the origin to . Let
v+
§,. = 610) &2 T 2L Q2 (6.2)

with T (Lf) = TT T. (_'2)

3 6.‘:" 3 ) .
The application of the r-th power of the transfer matrix to the string state
veetor ‘rs(é._r)Q suppresses its high energy components. Now consider the

state

($, Ag,)

ﬂé !!2 > Ae ?- . (6.3)
o+

w(A) =

w is interpreted as a state where the charges have been separated by a

distence 2r such that the energy remeins bounded, independently of r. In

fact, for me N

1T, e Ll
wole™) & cmd T2 B2
BT r )2
Yy (6.4)
= Greef <T(M,, 1:.+-n)>)
41.'(!‘-12' 21.))*/2
where M denotes the rectangular loop in the (0-1)-plane in Zdﬂ with

1
side X in the O-direction and ! in the 1-direction. The perimeters of the

loops in the numerator and the denominator differ by kn, so it is plausille
that the perimeter law for the Wilson loop which is known to hold in the
whole region (Ihw vecause of Griffiths inequalities implies that Qrte" 0)

is bounded uniformly in r. {For a proof see [26] .)

(*)

Another method which also leads to the construction of charged states
has been invented by Szlachényi [33].
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Using the convergent cluster expansions one can show that the sequences
& . converges to & state & in the free charge phase as well as in the
screening/confinement phase. Let us first look at the free charge phase,

The local charge cperator is

8, = I T, (k) . N
A !ge'-)"_/_\ 1 {6.5)
where Q‘A iz the set of bonds with exactly one endpoint in A . We
find
w{ Qp) ol
. -1, A7 Z (6.6)
Wel@y)

whereas for each local excitation of @, ,

»
wota) = 2lFAR) g (6.7)
w (F¥*F)
one has

— 4 (6.8)
@, (Q,) '

This supports the interpretaticn of  as a charged state. A second indi-
cation that ¢ is not in the vacuyum sector comes from the weak convergence
of i'r [lé.r""1 to zero. This can be shown for all ((33)(3&) such theat
the pure gauge theory with coupling (33 satisfies the perimeter law and
such that Bh is sufficiently smeall (dependent on the paremeter in the
perimeter law). The third property of the free charge phase which indicates
the presence of charges is the existence of large vacuum fluctuations be-
tween electrical fluxes as discussed in Sect, b, Let A R be & cube with
side length R and let Se and Sr denote the left and right half of the
boundary Q*AR of Ap. Let

Ee = T ) (6.9)
kes,

be the electric flux through S—‘Z and Er the electrie flux through Sr' Then

QAR: E.:EEI' and
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W (E,) 15, (E,) —a13%A,]
—-—--—Q-—')—' ~ e ’ (6.10),
AN A e

[PAgl ~ RYT

Let us compare these results with the corresponding properties in the
screening/confinement phase. There one finds a vector § in the vacuum
Hilbert space 8, such that

($,44) = w(A) ] (6.11)

L — + -1
§ is obtained as the limit of &,(Q) I éx(Q)Q 1T 631Q)Qu
for r —» o6 . Thus @ 1is certainly not a charged state. For the charge

operator one finds

©,(84) > = ‘ te.ne)

-1
The sequence §'l|£] converges weakly to (QJ§)§ with lQ’é) ® 0O,
Especially

(Q,é,) — (Q)§)l

UL . (6.13)

Last not least, the correletions of electriec fluses are much weaker; one

finds

0 () e (6D _ypv¥s, (6.14)
———— 2>
QOCQQR)
1l ~ RE2

If we formulate these results in the framework of the Euclidean theory
we find three order parameters which seem to be suitable for the distinetien
of the free charge phase from the screening/confinement phase. The first

one is the expectaticn value of the charge operatcr in the state « :

. R R
g, = Lo < &= > (6.15)
R—»oa <E ><4-R-_;->
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where [JR means a square like Wilson loop with side length R and LR

means a dual loop {a loop in the dual theory in d+1 = 3 dimensicns and a
closed surface in the dual theory in @+1 = I dimensions) with side length R.
We have g, =1 in the screening/confinement region and Q=" t in the

free charge phase.

The second one messures the overlap of the vacuum with the approximate

charged state fflffud in the limit r —» 0o

24
g, = L SL 1> (6.16)
r—ror ¢ D >w3
2

We have @, >0 in the screening/confinement phase and ¢, = 0 in the

free charge phase.

The third one is sensitive to the correlations of electric fluxes:

<R ¢ le>

¢ (R} = —— L~ (6.17)
LR >
~ const Rd_1
If behaves éége e in the free charge phase and like

- t R . N . .
e cons in the screening/confinement phase. Note that in d+1 = 3

dimensicns where the theory is selfdusl, gz(oo) is the dual of 92.

All these order parameters may be used as confinement criteria in gauge

theories with matter fields. For g5 this has been proposed in some detail

in [34].

The order parameter ¢, has also been tested in Monte Carle simulations
[35]. It shows the expected behaviour beyond the region of convergence of
cluster expansions. There is, however, a region in the screening/confinement
phase where the results afe not yet conclusive. This on the first sight
unpleasant fact has an interesting explanation. It is connected probably
with the following behaviour of Q:E(r) for finite r., For small r qg(r)
decreases in a similar way as in the free charge phase. Then, at & certain
r it starts to increase again up to some finite value. This turning point
rp may be interpreted as the distance where fragmentation of the string
sets in. It coincides with the transition from the area law to the perimeter
law for the Wilson loop. Rough estimates indicate that Ta is very large in
this region, thus one cannot see the asymptotic value of Qs on & relatively

small lattice (22d+1 lattice points).

,31_
There have been several other attempls to find an order parameter which

distinguishes the free charge phase from the sereening/confinement phase
[z6, 37. 38]. In general they do not reproduce the known phase diagram;
most of them indicete an artificial transition between the screening and
the confinement region. There is one order parameter propoced by Bricmont
and Fréhlich [36] which looks very similar as the order parameter @ ..

Bricment and Frohlich argue that the expectation value of a straight string

a(t) = < > (6.18)

pehaves like

- comol A

att) ~ g {6.19)

in the screening/confinement phase and like

- e""“""f (6.20)

att)y ~ T

in the free charge phase. As a test which behaviour is present they propose

to look whether the limit

2
= e. a(t) o
?gp o 300 al2«) (6.21)
vanishes.
In the language of the quantum model, @gp is
L 2
= e (2,80, 2()Q2) 2 (6.22)
ggp ~ 2 = (QJf) :
LT ”'T; 5(9.)52!!
with é from (6,11), Hence in the screening/confinement region from {6.13)

95? coincides with gQ,. In the free charge region, however, this seems
unlikely. Namely, @gp vanishes if and only if the highest spectral velue
of the transfer matrix in the sector with external charge at the origin is
an eigenvalue [26]. The corresponding eigenstate may be considered as a bound
stete of a dynamical charge with the external charge, i.e. it is the
"hydrogen—atom” of this medel. The existence of such bound states dees not
exclude in generasl the existence of isolated charged particles, hence the
transition indicated by @ B probebly does not coincide with the transition
from the free charge phase to the screening/confinement phase. It would be
very interestiné to verify this conjecture., Some work in this directicn has

been done by Bricmont and Fréhlich (39].
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T. PARTICLE STRUCTURE IN THE CHARGED SECTOR

We now want to investigate the particle structure of the present model
more closely, Isolated particle shells in the joint spectrum of the transfer
matrix and the transletion operators have heen found in the vacuum sector of
several models. Schor proved their existence in strongly coupled pure gauge
theories I:hO]. By his methods actually a rich class of stable particles
was found [41, 42, 43, 4], Another method has been developed by Briemont
gnd Frdhlich. They compute power corrections to the exponential decay of

2-point funetions and derive the existence of particles from there [39].

A necessary condition for a corresponding proof in the charged sector
is the construction of s transfer matrix and of translation operators in
the charged representation. Let (3&,!:, &) be the GNS representation
induced by ¢ (Thz. 2.1). Let &g = W{éy(0) ¢  and let

Wy (A) = (&, ,w(AY &, ) Ae T . {7.1)

]

(AN is a state with an external charge at the origin. Moreover, LJQ is

inveriant under ®;. The transfer metrix T in @€ is now defined by

Tx(A)E, = xu(AE, AeTF . (

-1
1%

T satisfies the relation

TrelA) = re (A)T ;| Ac T (7.3)
and has the densely defined inverse
T xg, = xa mF | AeT . (7.1)
Moreover
05 T & e (7.5)

where & 1is the parameter occuring in the perimeter law of the Wilson loop

f26].

The lettice translations x act as automorphisms o of the algebra T N

S,y = Gty +x) (= 1,3
x %Y LTI (7.6)

Ky T =T, (krx) , <= 43
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Let Wy = 02'0(5 . We have the following thecrem:

Theorem 7.1 [256] There is & unique vector é_,s €3 such that
(1) T = &
(i) (§, , mA)E,) = wy (A
(i1i) ( r;(chs))é , B >0

How the translation operators can be defined by
v A E, = wu,ME,  Ae T (7.7)

They have the following properties:

Theorem 7.2 [26]
(1) VexyUuy) = Ui + y)

{ii) V) (AYUL-x) = o, (A)

{ii1) (U, T ] = ©

(iv}) (‘f,UQS) W) —s0 forall Y ¢ P

[X|=bea

Thm 7.2 (iv) shows that the charged representation is really different from
the vacuum representation. Namely, for the translation operators UO(E) in

the vecuum Hilkert space 9. , defined by

(]
U,y T (AR = T, %, (A2 (7.8)

one has instead of Thm 7.2 (iv)
- 2
(¥,0,c0 Py — ¥ (7.9)
x| »o0
for all YPede, . (For & more precise @iscussion see [26, Sect. T])

There are many open questions., The first one concerns the existence of
an isolated mass shell In the joint spectrum of T and U(z). It is coneei-
vable that there are methods similar to those used by Schor or by Bricmont
and Frohlich by which one can show the existence of charged particles.
Provided these single particle states exist one would like to eonstruct
multiparticle scattering states, i.e, to develop a lattice version of the
Haag-Ruelle scattering theory [hS, h6]. Here the lack of locality of the
real time translation in the Buclidean lattice theory will cause some pro-
blems, and it may be easier tc work in the Hamiltonian formalism (but there

one would have to show first the existence of charged states).
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The next question is whether these purticles will have a well defined

statistics, whether antiparticles exist and whether there is a global gauge
group labeling the charge sectors. As mentioned in Sectiocn 3 the.e questions
have a positive answer in the general framework of quantum field theory in

continuous space time.

A very importunt question is whether the continuum limit exists and
whether the charge structure survives in this limit. In this respect it is
interesting that the 222 Higg model in d+1 = 4 dimensions seems to have a
second order phase transition between the free charge and the screening
phase [hT]. The existence of a second order phase transition is & necessary

condition for the existence of a continuum limit.

There are many other lattice models where similar guestions could be
investigated. Some work has been done on the U{1)} Higgs model. Barata and
Wreszinski have shown that 1n some part of the screening/confinemeni region
the expectation value of the charge operator in the state ., defined in
Eq. {6.3) vanishes in the limit of large r [L8, 49], There is elso scme
recent work by Brydges and Seiler [50] and of Kennedy and King [51] on the
noncompact U(1) Higgs model which has been mentioned in the lecture of

Prof. Wightman.
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