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Abstract: 

We consider equal-time commutation relations of chiral SU(N)1 x SU(N)R charge 

densities in the non-linear (j"-model. These commutators are derived using the 

cocycle formali~m and from the usual canonical theory. Both methods give the 

same result. The charge density commutator of the symmetry currents contains 

operator valued Schwinger terms arising from the Wess-Zumino term. 
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1, Introduction 

Many years ago, Wess and Zurnino (1) derived a low energy effective action for 

pseudoscalar mesons in the presence of external gauge fields. The result was 

given in terms of a certain five-dimensional integral containing the Bardeen 

anomaly [2]. It was observed that the integral is non-vanishing, even when th,e 

gauge fields go to zero,· This interaction term (in the following referred to as WZT) in 

duces abnormal parity interactions such as J.<.+ t<-~ r fC-'!C() and, if coupled 

tO an external photon field, processes as "fr0~2Qand r~ ~+~-fi:'D etc, 

Further phenomenological discussion can be found in [3]. 

Witten [4) has given a simple intuitive reason for the presence of the Wess-

Zumino action, namely, that it removes a certain symmetry from the non-linear 

cr-model. This symmetry, 'lf:,; 7 - 7l::i , where 7l:'i is the octet of pseudo-

scalar fields in the case of SU(3)1 x SU(3)R chiral symmetry, for example, is 

not a symmetry of QCD and, therefore, should not be present in the effective 

action. The term, which breaks this symmetry with the fewest number of deriva-

tives, in order to act as a, low-energy effective action, is the Wess-Zumino 

action with gauge fields set equal to zero, In the equations of motion the WZT 

makes a local contribution, which, however, cannot be derived from a local 

Lagrangian. Witten (4] showed that it can be written more symmetrically as an 

integral over a five-disk. In this way it is seen that the action depends on the 

orientation of the five-di?k· This leads to an ambiguity which depends on the 

winding number of the pseudoscalar meson configuration, and has the consequence 

that the overall coefficient is equal to an integer up to a known normalization 

constant. 
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In the 0""'-model the WZT induces modifications of the conventional SU( 3) 1 x SU( 3)R 
'I'<,L 
~ (X"') is a swn of two parts, the old current 

~R,L, 
currents. The complete current 

l<,L ;r (x-) and the anomalous current~ t.X") originating from the WZT 

~ J?,L(><') = ~1 '1?-,L( 
d""' ><-) 

+- i :E;L" d,.._ ~)(') I 1. 1) 

These complete currents have been written down by Witten [4] as a function of the 

non-linear field U. Their expansion in terms of physical particle states can be 

found in [3]. One might expect that the WZT anomaly not only modifies the currents 

but the equal-time current commutation relations as well. Several authors consi-

dered these commutators for the non-linear (J"' -model with WZT, Bars [ 5 J has calcu­

lated the equal-time commutators in two dimensions and obtained the modified 

current algebra. In particular he obtained c-number Schwinger terms also in the 

local charge commutators. They are proportional to the quantized interaction 

strength of the Wess-Zumino term, Rajeev [6] has given the modification of the 

-J.~L{ equal-time commutators of the naive currents o- >r-) in the presence of a 

WZT in four dimensions. Under the assumption that the Hamiltonian for this theory 
'li,L 

has the Sugawara (7] form in terms of the J~ he could show that his commutators 

fl,J.. 
lead to the correct equations of motion. These commutators for the;/"""*' -currents 

contain anomalous pieces proportional to the WZT strength. His algebra, however, 

is not the algebra of the physical currents :;:.,1!1 J. {>t;) , the currents that couple 

to the electroweak interactions and which enter into the usual current algebra 

formulation of low energy processes. One of us 

[ 
11,1- '"I ~';:1 ,Z ()t:·)

1 
J0 QJ&J at equal-time starting from the 

and Palmer [ 8] calculated 

"7 1l,L ·' commutator of '{, Or'/ with the 

non-linear field U as given by the properties of U under SU(N)
1
.x SU(N)R trans­

formations, These modified commutators have operator valued Schwinger terms which 

are functionals of the non-linear field U. [F 1
) 
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From a completely different viewpoint Fadeev and Shatashvili [9] have shown that 

a unified mathematical description of anomalies can be given in terms of cocycles. 

Considering as underlying theory massless chiral. fermions interacting with a 

Yang-Mills field the second cocycle, for example, is in infinitesimal form equal 

to the anomalous equal-time commutator of the gauge generators in odd-dimensional 

space, if a Hamiltonian description in even-dimensional space is given. The odd-

dimensional second cocycle is derived from the Chern-Pontryagin density in three 

dimensions higher. This dimensional descend is produced by the coboundary operation. 

It would be interesting to see how these different derivations of anomalous 

equal-time commutators are related and whether they produce the same result for 

[ ']01i!1 L{.~)) ~'R1l(7)]. This is the purpose of this paper. 

First we study how the Schwinger terms for the non-linear ~-model with WZ anomaly 

emerge in the approach of Fadeev and Shatashvili [9]. Then we derive the ~qual-

. f h . '!. ~~'- . . 1 . tJ.me commutators o t e naJ.ve currents 00 startJ.ng from canonJ.ca commutatJ.on 

relations. This way we obtain Rajeev 1 s commutators without any additional assump-

tions. They can be used to derive the commutators of the full currents. 

The outline of the paper is as follows, In Sect. 2 we derive the anomalous equal-

time commutators on the basis of the topological approach following closely the 

work of Fadeev and Shatashvili [9]. The canonical theory is developed in Sect. 3. 

Here we rely on the differential geometric approach as introduced by one of us 

many years ago (10], The connection of the commutators for the naive currents 

1<?L cf"'- I c;,_) with the full current is also established in this section. We 

close with a summary and some concluding remarks in Sect. 4. 

~---
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2. Topology 

An anomalous term in the time-time commutator of the current algebra is related 

to a projective representation of the gauge group on the space of functionals 

depending on gauge potentials in three-dimensional space [9]. With U(g) implemen-

ting a representation of the gauge group element g the composition law reads 

ZU{ft J ],<_ {~ ... ) = exp {-z-'o(.._(A/~1,g,.J) 2Ui13"-) 

A = Aa._{a is the gauge field with values in the Lie algebra su(N) of SU(N), We 

shall use an anti-Hermitean basis Xa. of su(N) satisfying 

[X~ Xb] = rbc~c :!.. ["'-h 
.t. 

I 
'/}· ( X"Xb) = 

(In terms of the Gell-Mann matrices /\a we have Xa A,.a/2i). The expansion 

gc -;; = -1 + ?)."'{i!JX"- + -----

U(aJ = -r - '-fa3K- -zJ"cxJ J;(xJ +---· 

leads to the equal-time commutation relations [9] 

[ J,'l(~J) J/cffJ] = 1..:;%c. :;;/ex) J -+ .... ) 
(X-(! 

+ Sa" (Ai ~J) 

12.1 I 

(2.2) 

(2.3a) 

(2.3b) 

(2.4) 
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The anomalous Schwinger term Sab can be calculated by expansion of the phase 0(
2 

in (2,1 ). 

It has been shown that the phase 0( 2(A; g
1

, g
2

) is a 2-cocycle with regard to the 

cohomology of the gauge group [9]. o(
2 

can be traced back to a 0-cocycle C(
0

(A) 

that does not depend on gauge group elements. The latter is a functional of gauge 

fields A in five-dimensional space. It can be expressed by the integral of a 

5-form JC2
5
(k) over five-dimensional space, 

o<o (,4) = 2'/t' j _Q5 (A) ( 2. 51 

12 
5 

is the so-called Chern-Simons density, related locally to the Chern density 

-'2 6 by exterior derivation 

• 3 = d.D.s n6 = - ;.b 'Pr r= 1;8.,. 
(2.6al 

..Q
5 

= _ _i_ 'l'r ( 4 F2.. -f P,4 3 + -t...i..A5
) 

48~ 0 
(2.6bl 

In (2.6a,b) F is the curvature (field strength) of the connection (gauge field) A, 

p = dA + AAA ( 2. 71 

where AA A is a matrix product in su(N) and a wedge product vith respect to 

differential forms. The symbol )\ is omitted in (2.6a,b) to simplify the notation. 
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To make contact with WZT,which will be studied in the next section, we consider a 

flat connection with F = Q, Then fl
5 

is closed and is an element of the cohomology 

5 
class ~ (M), where M is the five-dimensional base space of the SU(N) principal 

bundle, For a flat connection we have 

F : d.4 + AAA = 0' (2.81 

so that the ~onnection A is 
[1"Z] 

A = 2(
1
d U = cvCR.) wifl. u G SUCN) ( 2.91 

i.e. ve can identify the connection A with the left-invariant Maurer-Cartan form ~(R) 

on the groupmanifold of SU(N) restricted to a five-dimensional submanifold. Hence 

..fls(w) t. 
= - 480-rr;3 

'l'r cu 5' (2.101 

The 0-cocycle 0(0 {~) is an integral number 

IXJ(,J) :::: .Zn: f ...Q,{t..J) -=-;;~.,._ f 'l'rtv5' = ?'/.(U) € Z (2.11 I 

n(U) is the degree of mapping U M + SU(N). If we take M :S s5 ve knov from 

Bott 1 s periodicity theorem that the homotopy group is isomorphic to the group of 

integral numbers: Tr;- {SUCN)) ~ 7L {N> 5/_.v) . The normalization 

factor of .fl
5 

in (2.10) corresponds to the axiomatic normalization of the Chern 

classes (see e.g. [11]). 

Starting from the 5-form12
5

(A) in (2.6b) ve arrive at the 3-form 
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..f23 {A i ff.>~_,J 
z.. 

"'AZ(.2rr/ 
'l'r{ A( dg,dp;._j-.-g,- 1 

- 81 dfj .. ~:1.-1 (}t _, "#1 (/1-1 ] + terms independent of A 

by a twofold application of the group coboundary operator followed each time by 

an inversion"of the spatial exterior derivative [ 9]. Integrating :lrr .Q3 over 

three-dimensional space we obtain the 2-cocycle 0( 2 , 

c<~ (A ~~ ~.._) = .Z1> f ..03 (A i #14"'.) 

Inserting the expansion (2.3a,b) yields the anomalous Sch'Ninger term 

s"'~, (A. 
I 

~ 

x, 
1 'T'r{ [X';XbJ._ XC} -)) 

d = -.t'l--rr"' 

.:JI .. "' A c _,) ("\ ~ ('{.., ... ) ·Eo· ·(X o.o,x--t, • • J ~ q ) 

or for the flat connection (2.9) 

";J> = 1,2.1 3 

S~{tc!i t, 5> =.z:tr!- 'l'r{lX';X% cv.-cv;j e"Y"-r;~o.~<- Sci- i) 

(2.12) 

( 2. 13) 

(2.14) 

( 2.15) 

with 4>t.· = u-l /)t,• u , The terms independent of A in (2,12) do not contribute, 

To obtain (2.15) from (2.11>) we ueed 'iJ:lVJ(it); -<J;t.JJ• + z['J,;~·Z{_ 
(see also (3.3a) below). It is remarkable that the explicit form of the Schwinger 

term in the time-time component current commutator can be obtained from topological 

structures without going back to the explicit form of the Lagrangian. In the next 
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section we shall see how this commutator can be derived from the Lagrangian on the 

basis of the canonical commutator relations for the pseudoscalar fields, 

3. Canonical Theory 

In the canonical theory we have to introduce coordinates on the group manifold 

SU(N) that parametrize the matrices U, e,g, we may use the perturbative expansion 

ne~r the unit matrix 

za"') = """? {- .!L 70,.. r) 
;z:-'t"" 

( 3.1) 

For the case of SU(3) symmetry {rr;a..} (a= 1,- 2, ••• , 8) is the octet of pseudo­

SCf! ~ ar mesons and F1t" = 186 MeV, With respect to the coordinates 7C' i the Maurer­

Cartan form (2.9) can be decomposed as 

0 == u- 1dU. = X'C.;"-
.. .I • 

= X """"· <:<..~" • ( 3.2) 

The coefficients ~a are 1-forms on the group manifold and obey the structure 

relations 

d4.) = - CJ /\ 4.) 

# de../'- = 

~ "" tU .:/j 

fo..hc ,:;/" 1\ 4) C A z 

"' CJ jli. f <>-be CJ,t cJ.c. 
~ J 

(3.3a) 

( 3.3b) 

( 3.3c) 
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From eq. (3.1) we obtain the power series 

cv['-{r.:) 
.... 

" ;s. + --- . - F,. 
..!_ r·"~ ~~ + ... - ( 3.4 I 

The duals of the left-invariant 1-forrns 'V a are the left-invariant vector fields 

v". 

V"' = f".;L 
'() n-. ) 

:.-«> b 
f. 4). • = J«-h 

They s~tisfy Lie-algebra commutation relations dual to (3.3a-c) 

[ va.) Vb 1 = fa.bc VC 

~ r·J·1......,. ;b" - rbJ~ r"-.: 
() r.; J '"0 11: J 

{abc; fc~ 

Let us now turn to the Lagrangian. We write 

L = L" + L .... 

( 3. 51 

( 3.6al 

( 3.6bl 

( J, 71 

where 10 is the normal and La the anomalous part, The normal part is based on the 

canonical metric of SU(N). A convenient normalization of the metric g .. is 
lJ 

J.,;i (-rr:;) 
2 

~ - .fa_ 'T'r ( c.J .. &.) J) 
8 

:;.,i -r ----- ( 3.81 

Hence r,;e take 

L = 
0 

;::_L 
- _JL_ 

16 
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Jd~X" 7',-[ t[~Zt Zt-~u J 
:r:.' r f J . . = ---;:--- Jd~x- 'f,- <v>CJJ ?~n-~,dAr.;.1 

= -1 

..t, 
fd'~ X,'- g,_J' {W) ~ 1i: i r;y'1i:"J 

The action 1
0 

leads to the field equations 

()"''- ( u;~· ~ 7(;-.:) = Cl,... 4.//"' = 0 

( 3.91 

( 3.101 

with ~ : (.) .. ~ ?r i We obtain, of course, the same Lagrangian, if we 

use the right-invariant form 

0 ( L) = dU '2[-t ) 
ci£.;(L} = CJ(L} A cu(L) ( 3,11 I 

instead of (3.2). The right-invariant fields Va(L) satisfy 

[ V"(L)) V"(L)] == - {a.bc VYL) ( 3.121 

The Lagrangian L
0 

is clearly invariant under the chiral group SU(N)L x SU(N)R E G 

acting on the matrices U as follows 
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'U ~ g-r 2(. ;;1 

The corresponding conserved right- and left-handed currents are 

;FC'R-) = J ._·i -?u 1C'.. -r.Jc'R. J 

(j:{L) ', $/dr 7r:". -t"JCL) 

(3.13) 

(3, lha) 

( 3.14b) 

where taj are the components of the tangent vectors to the tran~formations (3.13) 

t"J =: ';;) 7/:J 

'0 &."" J = -1 -t- #""X""+--·· ( 3.15 I 
) 

One easily shows 

taio .. ) = r"'J(LJ ) 
t '+i{1<.) = 

We than have from eqs. (3.5) and (3.8) 

'F:.z. 
;;: (1?.) =- -1: UJ.._"'CR.) J (j,:{L) =: 

~"icR.) 

+;i2.. 4) "'{L) 
-~~ '/"' 

( 3.16) 

( 3.17) 

The defin~tons eq. (3.1ha,b) correspond to those in ref. (3], the axial current 

/\: is 

A"' r 
fir 

-T ~1(;"- + .... 

.... 
The generators of the symmetry are Q..,.,'- ::: 
also (2.3b)). 

( 3.18) 

J.:t 3x (jo"'{'R) L) , ( eee 
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In the quantum theory the equal-time commutators for the currents can be reduced 

to the canonical commutation relations 

[ fjC~)J 70-l..{i)) 1 ;;.• set-!) 
J 

=--.._ 

by means of the structure relations (3.6) resp. (3.12). The conjugate field 

following from 1 0 is 

fJ'(?) =: g Jtt. ~. n;-( = 9. 1tJ 

We obtain for right- and left-handed currents [10) 

[j."' c t>) J~ b c i> J =- .,; ( r bJ ~- :r""• - r"'Jd.J. r",;) 
•do 11:;(~) sc;-j) = .,_· fAbcJ.c(~) J'(it-j) 

[j."'(;)) j," ('j) J "' r-'fo.J.c or; c;;) d (it- i) 

+ .. s a.b 'Frr2. 
-16 

61'"' s (X"- j) ) f> = "'z., 3 

(3.19) 

(3.20) 

( 3.21a) 

(3.21b) 

The anomalous rart in WittPn's effective Lagrangian is related to the Chern-Simons 

density ...!1
5 

( ( 2. 10)). According to Witten [4] we may write 

La- .2.1i:'# J ...f2s(t..J) 

&' 

- -.:tV I - - .24077:"' '!',.. w !i' 
QS' 

( 3.22) 
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where N is an integral number equal to the number of colours and Q5 is a five-

dimensional disk in the group manifold whose boundary is four-dimensional space­

time: ~ Q5 = M11
. We know already tha.t-'2. 

5 
is closed but not exact. Nevertheless 

we can assume that the submanifold Q5 c; SU(N) is completely covered by an allow-

able chart of the group manifold. We then introduce a 4-form n4 that satisfies on 

Q5 

d.1)4 = 'T'r t.J 11 

(n 4 is, of course, not unique). We obtain from (3.22) by Stoke's theorem 

La = /l J d'D"' 
G"' 

= /l f :p"' 
M*' 

I 

-~·IV 

:::t. = M<l'11:"' 

I 3.23) 

I 3.2h) 

In terms of local coordinates 7r: i (not necessarily those defined by ( 3. 1)) n4 can 

be expressed as 

-:D4 = L_ ]) .. J'-1<~ d.n;,;Adnd/1. d11:'-/tdrr:l:. 

i<J< t..<e 

1 
=-

-4! 
L. 

•)J; ., (. 

JJ .. ·/-~t.t. d.7r,•:11 dtto' /td~t"l\ dn;e I 3.25) 

where the coefficients of the second representation are totally antisymmetric. We 

. . ,, r~ J parametn.ze the submam.fold M by ".,...... (IJ. = 0, 1, 2, 3) and write the Lagrangian 

(3.24) in terms of the fields "Jt"i(x), 

!...a, = A.. J J)* = 4 ~ Jct.lix- J) .-,4-e {td ~ n-·~ r,;i1r.:-At%-r.e E,Mpso--

11* 0 

I 3.26) 
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It is not difficult to show that the Lagrangian L L + L leads to the field 
o a 

equations 

(Y'"( fJ.:J(n-) ?-'Tj;i) 

+- 5" 71. 'Jl.. { c.J•"C.JfWJ< c.Je. t.J..,] C:J .. :~i~ n:" 11l"e ,91T7r"" e"'"!rr = ()' 
I 3,27) 

Because of (3.8) they are equivalent to the following coordinate-free form 

0~"'-(- lz.. ~) + 5'::t N,.-.CVv&VyWa- E,Mo<>J~ ::tJ"' 13.28) 

Eq. (3.28) means conservation of the total right-handed current ;_"'c'R.) {l3J)~ 

7-a.. CR. ) = 

= 

+,/'" 'l'r ( X~CT')) 
8 

+ o :>... '!',- [ x"'.o"'c~; tJYCR.) &V<rCR.J} e,...~ 

;j~C'R-) 

+.SA{~)/ 'f,-{ X"xbxcx1 ;;:O<-{J/C~)Jr'Y1?{3~~r<r 
The corresponding expression for the left-handed current is l 3] 

;<. 

q.."'(L):..:. ; 'fr{.XO..c..;...{L)) +-S'A..- IJ'r [ X'i/'{J..)4Ji(j.} if()..)} E,...P~rr 

= J,:U-) + 5:t(~q'fr{~Xblf)('-} ;j]{L)c/fc{L)~"{L) 9--vrcr 

I 3,30) 



- 15 -

The first terms in (3.29) and (3.30), respectively, are the normal currents and 

the second terms are the anomalous parts. 

Let us now turn to the equal-time commutator [:{,4.{X)) ~b(;)] . We see from 

(3.29) and (3.30) that the latter can be reduced to the commutators 

[,g:m, ,g.hr[/>1 and [J ... m);;;cj>] (p = 1' 2, 3)' 

which in turn can be calculated via the canonical commutation relations. To do so 

we need the ~omenta pi for the full Lagrangian L = 10 +La. We obtain from (3.9) 

and (3.26) 

Pi = ~ 1r'· " . ~ . 
+ 31 J).,.J',(.l ~ 7t".1 q. 7C4_ dO" r 6 O.Ufa-' 13.31 I 

The important point to note is that the momenta are no longer equal to the velocities. 

The additional term in (3.31) does not depend on the velocities and corresponds to 

the vector potential for a charged particle moving in an electromagnetic field. 

Right- and left-handed components ja are defined in terms of the velocities as 
0 

before (3.14a,b). Consequently we get instead of (3.21a) 

[J."U?>, J.b(j)] "' ,_·rbc. doc{X) d {j_ i) 

+ 'f" .. (n-(~) [9, 11;·(~); 'J.n;;·c;>] rbi(n-cfJ) ( 3.32) 

while the commutators (3.21b) remain unchanged. Because of (3.31) the commutator 

of the velocities does not vanish as in the case with no anomalous term. Using 

(3.31), (3.23) and the canonical commutation relations we obtain 

- 16 -. 

p, n-;{X)} 'd,""j·{jJ] ..2ot'?L Tr{ 4.h· <Ji N.t .::;;e <J"!!j 

• d..., n * q, ?t"e do- 7L"' e o.u:t<r S (it-- ; ) ( 3.33) 

(The symbol l· .. J means total anti symmetrization of all indices between the 

brackets, i.e. application of r5! ¥ (i''P where p is the permutation of 5 

elements and~~}> is the signature of;). 

Inserting (3.33) into {3.32) and observing eq. (3.5) we finally get 

[J."'(~l, J/q>] = .,_laJ.cJoc{Jt) 6c:-j) 

+ S"o-1- f,. { X" xb <V.u ""'r CUq- - x"cv..,Xh"-!j'"-iq-

X" xb X"' xbj ""':fa'(' ... .... ) + "'v"-~.l' <V.,.. - .:v...,"-'y<Vo- e o(x-(1 

( 3.34)· 

These are exactly the commutation relations proposed by Rajeev [6]. He assumed 

that the Hamiltonian 11 corresponding to L = 1
0 

+ La has the Sugawara form [7] 

in terms of the normal currents ct~ . With this assumption he showed that (3.34) 

and (3.21b) produce the correct equations of motion, i.e. eq. (3.28). 

Rajeev's assumption about the current times current form can easily be derived in 

the formalism presented here. Indeed, using (3.31) it can be seen that the anomalous 

term in L cancels out and the Hamiltonian has the form 
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7f _ s rJa { .. ... .. ""'> 1"' .... > 1" -'>} - ;:_2- J"'' )(" dD c~) (/a (~ + <Jf" (~ <:Jf' (X: 
~ . 

( 3. 35) 

Thus, although the structure of L = 1 0 + 18 is quite complicated, i.e. L contains 

the anomalous Wess-Zumino term, the Hamiltonian expressed in terms of the normal 

currents looks extremely simple, The anomaly appears only in the commutation 

relations (3.34) which again can be expressed solely by the normal currents. 

Now we turn to the 9alculation of the equal-time commutator of the complete current 

J~(it). This is obtained from 

[ J'''CKl J..bc~>] • J 0 (J == [ J."'c~>; ;;o"cjJ] 

+ si~: r e/Y"" { [J."'(~>1 ;j;1cj> j/Cj) Jr'?i>J 7'r{,Kbxbxe'X"') 

+ r.--()(Axb'x:'x"') D;1{xr>;lc~>p'm,Jc,"ciJ]} 
( 3.36) 

The first term on the right-hand side of {3.36) is given by (3.34). The remaining 

term can be calculated with the help of (3.21b) since the anomalous part of Ja 
0 

contains only space components of~ • After some lengthy computations using 

(3.21b) and (3.3a) we arrive at 

[ :7,"<:;)} J.b(i>J [ J."''C~>J<j/Cjl) 

+ .s-". il f~t ~q e-/s"' 'T'r ( xcx~> r'x.t') J}c~JJf(;;;:-/x) Sel-f) 
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-s•"-f~S t:. ""~"" 'f,.. { x:"xh xb x' xd'_ x"x•'x~>r'X"' +-x"'t-xcxbxb' 

- x"xb'x<"'x..t'xbj ;;fc;> ,;tc~> (Jf'c;tJ fi'(l- f) 

+ fov':t(~:tG/f"'1'.- {!x;xl>).. x:x<{j~caJJfcJ>CJ,"'Jcx>-§'> ( 3. 37) 

Now we insert (3.34) into (3.37). Then most of the terms cancel and we obtain 

[ 'J,"c;>/~bcj>] - it'bc ~cot) d(~-;J 

+ fo,·i\. 60 "'f'T 'T'r{ [x:t>J+- Nv<Vs} ~.,., Sc~--j) ( 3.38) 

The second term in (3.38) is the operator valued Schwinger term arising from the 

anomaly. It agrees exactly with the result (2.15) obtained on the basis of topolo-

gical considerations and also with the result in [8} derived from the transformation 

properties of U. The derivations in this section also show that (3.38) is consistent 

with Rajeev's anomalous term in the commutatOr [J0
4

{K) J (/o 0(j>J]. 

In this and the previous section ..e considered only the commutators of the right-

handed current. The derivations for the left-handed or mixed commutators are 

analogous. With them the complete current algebra for vector and axial currents can 

be derived. 
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4. Summary 

We have calculated the equal-time commutation relations of the chiral 

SU(N)
1

X SU(N)R charge densitie~ in the non-linear cr'-model with Wess-Zumino 

term. We employed two completely different formalisms. First, using the cohomo-

logy of the gauge group the anomalous term in the commutator is obtained from 

the 2-cocycleo< 2 • Secondly, the canonical theory for the non-linear ~-model 

with Wess-Zumino term is formulated, From this the commutator of the normal part 

of the charge densities is deduced. It has a very simple structure, The modifi­

cation due to the anomaly is trilinear in the normal currents. In these currents 

the Hamiltonian has the current times current form as in the case with no anomaly. 

This remarkable simple structure for the equal-time commutators and the Hamiltonian 

suggests that fUrther algebraic reduction of the model could be possible. 

Finally the commutator of the complete charge densities, normal plus anomalous 

part, is calculated with the known commutators of the normal currents as input. 

The resulting operator valued Schwinger term agrees with that obtained from 

topology. 

After completion of this work we learned that the cal9ulation of the anomalous 

commutator has been attempted in perturbation theory by Jo (12} and by Kobayashi 

and Sugamoto (13) with differing results. Sonoda obtained the correct result of 

Fadeev and Shatashvili by computing Berry's phase in chiral gauge theories. 
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Footnote 

[r11 The anomalous contributions to the time-time component commutator of the 

current, under discussion here, are usually also called "Schwinger terms". 

This may be confusing, but is common practice now. Originally Schwinger 

studied non-canonical contributions to the commutator between time and 

space components of the current. 

(F2] The notation 4J (R) indicates that 4) (R) is changed under right chiral 

transformations. 
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