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0, INTRODUCTION 

In this lecture I would like to report on recent work to use exact 

renormalization group methods to construct a scheme for calculations in 

quantum field theory and classical statistical mechanics on the conti­

nuum. 11Exact 11 shall mean that use is made of convergent expansions 

only, without any uncontrolled approximations. "Scheme for calculations" 

shall mean that quantities of interest - such as correlation functions 

(Greens functions) - are obtained in the form of convergent series which 

are computable in the sense that the n-th terms is given by O(n)-dimen­

sional integrals (as in Feynman perturbation theory). "Quantum field 

theory" shall mean quantum field theory models in Euclidean formulation 

on continuous space time without UV- or finite volume cutoffs. Some 

possible applications in other fields of physics (or engineering) will 

also be mentioned. 

I will begin by recalling Wilson's renormalization group philosophy, 

followed by a brief review of recent results, by several groups of 

authors, on the question of existence of local quantum field theory 

models (without cutoffs). These results are based on use of convergent 

* Work supported by Deutsche Forschungsgemeinschaft 

**talk presented at the 14th International Colloquium on Group Theoretical 

Methods in Physics, Seoul (Korea), Aug. 1985, based on joint work with 

A. Pordt. 
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expansions, and so is our m.rn work. I will therefore continue with some 

explanation of the nature of expansion methods in statistical mechanics, 

and recall the formalism of polymer systems. Then I will discuss how to 

reformulate a Euclidean quantum field theory on continuous space ti~e 

as a theory living on a "staggered lattice", and how to apply expansion 

methods for lattice systems to it in order to obtain computable expan­

sions for correlation functions of weakly coupled continuum theories. 

This part of the talk is based on joint work with A. Pordt 1 , In joint 

work '.lith K. Pinn 
2

, techniques have been developped to combine the 

analytical techniques presented here with Monte Carlo methods, in order 

to app.ly them to theories that are asymptotically free but not weakly 

coupled. 

An example of a quantum field theory model that has been extensi­

vely studied is A~"' -theory. It requires to give meaning to, and com­

pute, functional integrals of the form 

<e""'>'Jt • vt"f.ll.j> e-'l!(<l>l+l:!(zl4-(zl<lvx 

" z-• l'0v(<i>le-VC4>l+lJ.Pol•z 

with 2><P • ~IR" cl+ (x) and 

'Jt(<i>) • Sclvx [-J: (~cp(zl)1 + '>,<j>(xl"+!f.PCxl'+eovnlerbe...,s] 

'11.(4>) + V(<i>) 

dl.<v ( c:P) is the free field measure associated with 'J(
0

( q:.). The corres­

ponding free propagator is the Y -dimensional Coulomb potential \1' • 

1. K, WILSONS RENORMA1IZATION GROUP 3 

(block spin method or "real space renormalization group") 

A crucial notion is that of 

Effective Hamiltonian (or action) & observables 

Given a classical statistical mechanical system on the continuum 
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(or on a lattice (o2)v with arbitrarily small lattice spacing a) - for 

instance a Euclidean field theory or a ferromagnet - with fields {spins) 

q>(x), Hamiltonian ~(Q>), observables Oi = Oi(cp), it 

gets mapped into a lattice theory 

on a lattice of lattice spacing a' with lattice fields ~(x'), Hamil-
' ' . toni an ';it (~)c. :Ki!ft (f) , and observables Oi ( ~ ) , such that the expecta-

tion values 

' <O;, )'1( • (Oi )7(, exactly, and for all observables. 

This is achieved by a 

Blockspin transformation 

for instance 
4 

I 1.o) 

!!; (x~ • "" Cj>{><) I average 
)(€)(' 

over hypercubes x' of side length a') 

I 1. 1 l 

One regards x' as points of a lattice A of lattice spacing a'. Typi­

cally one is ultimately interested in a' = 0 (correlation length). The 

effective Hamiltonian 'X' is defined by 

e-'lt'(4i 1 • f2r, e-'R(<i>lrr~(i(x'>-""" <P(><1) 
J x' xcx' 

I 1.2) 

Similarly, effective observables 0~ are defined by 

O~(~le-1!'(~ 1 =J2lrp O.(c;le-'R(r,l1T glas above) 11.2') 
'- '\. 1( I 

It is worth emphasizing 5, that the block spin variables need not be 

fields of the same kind as those in the original theory. For instance, 

in the case of an Ising model with variables 0"( z) = + 1 one may work 

with real block spins. For the 2-dimensional planar rotator with vari­

ables s(z) one should include among the block fields topological vari­

ables n(x) which count the winding number of s(z) as z runs around the 

boundary of a square x. An illustrative example can be found in the 

proof of confinement for 3-dimensional U(1) lattice gauge theory by 

GOpfert and the author 
6

. This example shows also that it is crucial 

to verify that a particular choice of block spin leads 

- h -

to effective Hamiltonians that are local up to exponential tails. Other­

wise one can get qualitatively wrong results, In the exact approach, 

such verification is part of the convergence proof. It is important for 

some applications that the block spin method is able to produce exact 

expressions for original continuum correlation functions and not only 

their long distance behavior. The prize to pay for this is that on.e 

must determine effective observables in addition to the effective 

Hamil toni an. 

Question i) How can one calculate the (complicated) ~en? 

ii) How could one do Monte Carlo simulations for the 

resulting lattice theory with such complicated )e~tf (when necessary)? 

Renormalization group (RG) 

A block spin transformation a~a' (which maps a theory on a 

lattice spacing a into one with lattice spacing a') can be carried out 

through a sequence of block spin transformations as above. For instance 

o. 2 O.w-+ 0 w-1"' aw-~ . ' Lw ...-.,. a1.-.. Qo 5o. • Q 

This is so because the average of an average is an average , 

""' xc.x" 
4> (x1 0.1> 

x'£x" "" x£ x' 
(p (x l 

In this way a sequence of Hamiltonians is introduced 

~: "J(N-+ "lf.l/·1~ _.. 'R, _. 'R.• " 3t •It 

. Sj • L 
.J Oj., 

~hey live on a sequence of lattices Aj. By doing simple dimensional 

analysis, we may also regard them as living on lattices of lattice 

spacing 1 instead. The resulting sequence of Hamiltonians is called a 

(discrete) RG-flow. 

A single RG step "J(.--.'1( J 1\ ........ A.,is manageable, 
j l"' l J• 

at least if L is not too large and "Rj admits a split 

7<·(<p1 -l '](f.,< ((p) + "i (rp) I 1. 3) 
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with a "sufficiently small" perturbation vj 
i.e. if the running coupling constants are 

not too big (yet) at length scale a., The 
J 

field ep lives on J\j. Split (p into a term 

that is determined by Cl' s block averages i , 
and a remainder ~ called the "fluctuation 

field" 4 

'l>(•l- L. .A(x,x'l$(xl +~(xl 
x'.:Aj--t 

= .Aiji (xl + 1, (x) , >«Aj 

The split is made unique by requiring that ~ 

has zero block average, and choosing the 

kernel .A so that <i'(x'); (x)')- • 0 
~/ru. 

Integration over C, becomes integration over 

~ and ~ • The defining equation of 7tj_ 1 

has a 8 -function in the integrand. There­

fore the i -integral can be done, with the 

result 4 

-'1<1·.,(~) 5-' ( ) -V;!!(>;l e • '}"e ; e 
a po:rlihon ,fund\ on o( auxil\or~ ( 1. 4) 

la1tice .fie.ld t.heow-'j 

v,p<z, \ • vi (.Aili"+7, l 

The Gaussian measure 

c}ur (2,) = free field measure deter­

mined by propagator r. 

The fluctuation field propagator r is deter­

mined by .A and the propagator V associated 

with "J(f."t .. , its crucial property is that it 
' 4 ' decays exponent1ally over dlstance aj-l' As 

a result 

~ 

l 

~ 

Figure 
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the auxiliary lattice field theory has short range correlations 

{ ~ L lattice spacing if a. 
1
/a. = L), at least if the system is weakly 

J- J 
coupled at scale aj - i.e. if V in eq. ( 1.3) is ."small", This is the 

most .fundamental ingredient of Wilsons philosophy. It is basic for us 

because weakly coupled lattice theories whose free propagator has 

correlation length of a few lattice spacings can be handled (including 

nonperturbative contributions) by expansion methods of classical sta­

tistical mechanics. To use such exact renormalization group transforma­

tions by way of expansions as a scheme for calculations will require 

i.) Iteration of renormalization group steps ( oo many for a 

continuum theory) 

ii) The expansions for the individual steps must be formulated 

and combined so that the leading terms in the combined expansions are 

computable as low dimensional integrals. 

More on that later.,, 

Existence of quantum field theory models 5 (on the continuum). 

To obtain a theory on continuous space time, the limit W-"'OO has 

to be taken so that. the initial lattice spacing (UV-cutoff -l) 

-N 0 a 11 ow • L a 0 ___.,. · 

The initial Hamiltonian 'X.., depends on, and is determined by, bare 

coupling constantS gu a g(N). Therefore also Xj will depend on ~(H) 

viz. 'Jtj ~ "llj ( W, 9 (W\1 (j>). 

Renormalizability holds nonperturbatively if tJ -dependent g(N) 

exists such that 
~-linuum 

..tim 'ito (N, 3(W)i(j>) • 'iteff (ep) " ...... 
exists and is nontrivial {not quadratic in (p). Evidence is accumulating 

that perturbative renormalizability is neither necessary nor sufficient 

for this, 
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Here is a list of models that have been shown to exist and obey 

nonrerturbative renormalizability 

r:=::.~.~- _ ~}·:W:':r:~~!J.~X:":l~~~ ':'1."!-J::~E(. ( 6-ll ) c.p'l.4 , (p;, Yukawa2 , Abelian Higgs 2 , 

Abelian Higgs
3 

(and probably soon to come: None.belian pure Yang Mills
3 

[Balaban] ) 

. . ( 12 13) 
~':tt.: .. :r:e.9~r_ll)a).1--.z.~)?J.-,~.: Gross-i-.eveu 2 ' 

P.~!:~ : .. !1-~~:t:~n?X!I:~~~-~~~~~-= Gross-Neveu 2 + £ ( 
15

) 

-'Aq," ( 14) 
~ 

~he subcripts on the models indicate space time dimensionality. -A<p; 
is ~It--theory in 4 dimensions with the 11 wrong" sign of the coupling 

constant. It can be given meaning as a Euclidean field theory but lacks 

Osterwalder Schrade~ positivity so that analytic continuation to a bona 

fide quantum field theory in Minkowski space is not possible. This model 

is asymptotically free in the ultraviolet. A comparable achievement is 

the control of the infrared behavior of 

.. . ( 16 17) 
massless cp,. -theory on a latt1ce ' 

This model is asymptotically free in the infrared. In contrast, Gross· 

'i{'VP:J 2+E. is not asymptotically free, but its ultraviolet behavior is 

governed by a nontrivial RG fixed point which approaches the trivial 

(Gaussian) one as E.,. 0 , This fixed point is believed to be associated 

with a nontrivial conformal invariant QFT, and its existence was expec­

ted vn the basis of the conformal bootstrap. 
18 

Construction of the pert. renormalizable and nonrenormalizable 

models mentioned above represents last years main progress. There is 

hope that realistic models like 4-dimensional Yang Mills will also come 

under control in the not too distant future. 19 The most active groups 

of constructive field theorists working on these questions of existence 

are Balaban, Imbrie and Jaffe; Battle and Federbush; Feldmann, Magnen, 

Rivasseau and Seneor; Gallavotti and NicolO, Kupiainen and Ga•.,.edzki. 

Gallavotti 1 s review article will be helpful to the reader 20 • Federbush's 

approach has some similarities in spirit with our own 
21 

Methods devel­

opped for disordered systems 22 are also relevant here because they 

help treating the socalled "large field problem". The pioneering work 

- 8 -

of Benfatto at al. 23 on this was very influential 
4

, but we will follow 

another route. Concerning the confinement Problem, see Ito's contribu­

tion 
24 

2. POSSIBLE APPLICATIONS OUTSIDE QUANTUM FIELD THEORY AND CLASSICAL 

STATISTICAL MECHANICS 

The need to convert continuum problems into lattice problems is 

ubiquitous because only lattice problems are suited for analysis by 

cor:r!)uter. We will mention two examples of problems where our method 

could be applied, thanks to the existence of a functional integral for­

mulation. 

i) Solution of classical Maxwell equations with boundary conditions. 

This is important e.g. in the design of microwave cavities, or of ele­

mentary particle accelerators. Let us for ~implicity consider an elec­

trostatic problem and look for the fundamental solution G(x,y) of the 

potential equation with Dirichlet boundary conditions on the boundary r 
of a domain D (and Neumann boundary conditions forD') 

(--<~,+<w)G(x.~l • S(x-~l O>JQ~ .f•omr 

G(x.j)•O -f<>•x<r,~•D 

o· r 
Figure 2 

G admits a functional integral representation 

G(x.~l • <C4>(•>Cf(~l'>G • £'f<i>(•)Cj>(~l•-~(<;l0<j> 

'Jf(C.l •rSdvz q>(z)(-;~,r +<.,)Cp(z) !!f('l>, [-Lt +i.,lep), 

Ar Laplacian with the specified boundary condition on r. Now split 

into a translation invariant free pA.rt ~0 (e.g. on a· torus} and an 
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"interaction" V that is concentrated on r (35) 

'X(c,) • ~0 (<p) +V(epl 'J(
0

(Cpl•J:(q.,-ACp) 

Sdo- ( Cp (x+n•)n·V<j> (x} 1 
w~ih 

V(Cp) • • l:m 
(~0 r 

To facilitate the reader's understanding, let us mention the corres­

ponding forulae in case we were to start from a lattice rather than 

continuum. In this case, r may be regarded as a set of directed links 

nearest neighbours) normal to the "surface" r 

r 
< x,y) (=pairs of 

'Jt(<j>) * ().Y-~!: 
o <x.•:f> 

;\: [ep(x)~Cp('jl]~ 
:J ! i L: 

(sum over ordered pairs of nearest neighbours) 

V(Cp) • o."·~!: C,(yJ[ep(xl-<f(~l1 
< )(. ':f> f: ,.. r·- -, 

in ~dimensions, for lattice 

spacing a. <:~C,'j>£r onlyifXE'D, ~£:0'. Figure 3 

Let us return to the continuum theory. The effective action forma­

lism will reexpress the exact Greens function G(x,y) as expectation 

value of a lattice theory. 

"'I '("' '(.x -:re;ci>-v.IICi> c1r , G(x,u l • Z o ,.->o ..,> e Tr ,..(xl 
J K ~ . K' 

compare the discussion in section 1. The idea is to handle this effec­

tive theory by computer, using for instance the method developped by 

K. Pinn and the author 
2 

ii) Quantum statistical lattice models in Y dimensions. 

Such models can often be mathematically reformulated as classical sta­

dimensions with continuoUs periodic (Eucli-tistical mechanics in Y+ 1 

dean) "time" (26 ) We propose to use our methods to discretize time 

by way of an exact transformation (as opposed to a discrete time appro­

ximation) and to handle the resulting effective theory by computer. 

3. ON EXPANSION METHODS 

Question: What do expansion methods of (classical) statistical 

mechanics really do? 

,__.-- ---- --·---- • ~---• r-----~-----~--. --• ·--------- ----------~_.------.__--- -~-~---·-· ·--

- 1-0 -

Answer: They express observable quantities (e.g, free energy as 

function of external fields or sources) of an infinite 

system in terms of properties of small subsystems. 

Expansion = sequence of approximate answers that are determined by 

partition functions of ("small") subsystems of increasing size. 

Example: Virial expansion for a real gas ( 2!), The leading term 

(ideal gas) is known if the partition function for a single particle is 

known. The 1-st order correction involves 2-particle clusters and is 

known if the partition function of a-system of 1 or 2 particles is 

known. 

Different expansions are obtained by different choices of subsystems. 

For instance, in a lattice gas the subsystem might either consist of 

n = 1, 2, 3, ..• particles, or it might consist of 1, 2, 3 ••• sites 

that could be occupied. 

A systematic procedure is provided by the.theory of polymer sys­

tems 28 . Before proceeding let us emphasize again that we are only 

interested in convergent expansions, so that also nonperturbative 

effects are properly treated. 

Polymer systems 

The polymers considered here are a mathematical abstraction. To 

specify a polymer system one must, first of all, specify a set A of 

sites which may be occupied by the polymers - for instance the squares 

of a chessboard. Certain finite nonempty subsets P of A are declared 

to be polymers - for instance unions of squares that can be cut out of 

card board without falling apart. A polymer P l x 1 with only a single 

site x is called a monomer. Finally, a (real) activity A(P) is assigned 

to each polymer P - for instance A(P) = ex:p(-pn•), n = no. sites in P. 

Once a polymer system is defined in this way, partition functions 

of finite subsets X of 1\ are defined* 

*HeFe and everywhere, the symbol 2: is used for union of disjoint sets, 
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Z(X);. L TIA(l>) (3.1) 
X• I:P P 

s~~ation is over partitions of X 

into mutually compatible polymers P. 

In our applications, mutually com­

patible shall mean nonoverlapping. 

It is important to note that 

the activity A(P) is unique~y de­

termined by the partition functions 

Z(X) for x-s P. Proof: Suppose true 

for (no. of sites in P)-$ n. Con­

sider a polymer X with n+1 sites, 

Then A(X) = Z(X)-J:1T(activities 

of polymers with-~ n sites) is de­

termined by partition -functions 

Z( Y) for Y ~ X. D 

There exists a formula for the 

free energies 

hZ(X) d: k.A(\"J) + 
xcX -

+l:a(Gll1T A(l>l . 
G. 'P<~ 

( 3.2) 

The first term involves monomer 

activities. Sum over Q is over 

collections of not necessarily 

[] Monomer {x} 
. . [I]

c 

r··T"TJ :::_:: .. :-.~;-:. :' :::: •
•••••• 

. 
. . 

I'2[JJ .. · Polymers P [{]§J 

Figure 4 

distinct polymers P such that the following graph is connected: Draw 

a vertex for each P and link two such vertices when the polymers are 

·incompatible. a" (Q) are combinatorial coe-fflents 1 ' 29 and 

A·(l>l • A·(Pl/TF A({x}) . 
X€P 

Convergence of the infinite series for ~Z(X) is assured if the acti-

ties A(P) satisfy suitable bounds 28 • 29 • The convergence conditions 

are very restrictive - for instance they may be violated because the 

monomer activities A( { x} ) are too small - and it is therefore a good 

iiea to avoid taking logarithms by way of expansion ( 3.2) whenever 

possible. Instead one may proceed as follows 
1 

It is customary and convenient to consider partition functions as 

functions of external fields or sources ~ such that desired correlation· 

functions are obtained as derivatives of Z 

( -· s s ( I G(z,, ... ,z.l~Z A(o)-,- .. ·- Z Aj'ljl) 
o1jl(z,l J'li'(Znl \oi•O 

( 3.3) 

By including in the definition of Z(X lV) suita:ble (X-dependent but 

~-independent) normalization factors, it may be enforced that 

Z(Xi"'•O)• 1 for all X 

This implies 

A('P('\ol•o) • !>,,., (n = no. sites in P) 

It follows now from the polymer representation (3,1) that 

G ("' .. z, l ~ ~ 8~cz,> S~cz,> A('PI'\ol• o) + 

+Z. ..1..._ A('P ('ljl.o)..J..,.. A('P,I'Ij/=0) (3.4) 
~ ,"P:a. CCI,pCII.t. dlfl(z .. ) " o'V(z:,) 

etc. Often Z(XJ'P) depends on "+'(%) only if xcX. In this case the 

same is true of A(X \¥), It folloWs that the series for G( X 1, z 2 l 
converges on an infinite lattice if the series 

r: 
'P 'z .. ~"P 

..1..._ A ('PI"' • o) 
J"'(%,) 

converges absolutely, together with its derivative with respect to 

""( z2). 

Finally we need to mention one rather trivial gener~lization of a 

polymer system. One may admit different polymers that occupy the same 

set of sites, e.g. 
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1•1+1 1~1•1 
Figure 5 

The partition functions will only depend on the sum of their activities. 

4. COMPUTABLE CONVERGENT EXPANSIONS FOR EUCLIDEAN FIELD THEORY ON 

CONTINUOUS SPACE TIME 

The program to obtain them is as follows 1 

Remember: There exist convergent weak coupling expansions for 

lattice field theories. 

Transform continuum field theory exactly into a field theory on 

a staggered lattice. The staggered lattice 1\ is composed of an 

·oo sequence of ~ypercubic lattices Ai of decreasing lattice 
. -J ( I . spac~ng aj = 1 a0 1 ') 1 , J = 0, 1, 2, 

In case of a weakly coupled model treat this lattice theory on 

)\ by expansion methods of classical statistical mechanics. 

For theories that are not weakly coupled but asymptotically free 

we envisage calculation of the Boltzmann-factor of an effective 

lattice theory on the (ordinary) lattice A0 in the form of a 

polymer representation by use of the expansion methods of classi­

cal statistical mechanics. The further analysis of the lattice 

theory on /\ 0 would have to proceed by computers. Methods to do 

Monte Carlo simulations for such polymer systems were devel­

opped by K, Pinn and the author 2 but will not be described here. 

The expansions are not power series expansions in the coupling con­

stant A . But they will have the following properties, for the weakly 

coupled ~~4-theory-models of section 1. 

Computability: The n-th term is given by an O(n)-dimensional in­

tegral. 

Relation with perturbation theory: The remainder after the 

(n-1)-st term is O(~nc), £.•-f;ort. 
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The expansions are computable versions of phase cell cluster ex­

pansions. In principle, phase cell cluster expansions are obtained by 

iterating expansions for doing individual renormalization group steps. 

In practise they were independently introduced and developped in parallel 

with the renormalization group technology, by Glimm and Jaffe 7 , Magnen 

and Seneor 8 , Feldmann and Ri vasseau 13 , Federbush 19 and Battle 21 

and others. Typically the phase cell cluster expansions used in work 

on existence questions consist of terms that are ~ -dimensional func­

tional integrals._ For computability we insist on having instead O(n)­

dirnensional integrals for the n-th term 1. Feder bush's approach has 

some similarity in spirit with our own, but does not use block spin 

variables. 

A single renormalization group step a.~ a. 1 involves expansions 
J J-

on the lattice Aj· . Compounding all the steps, one is naturally led 

to expansions on the staggered lattice A • A0 + "• + A 1 + •.. 

5. THE STAGGERED LATTICE 

Pedagogical prelude 

Consider divisions of the real interval 0 ••• 1 into intervals 

n. 2-k ... (n+1)2-k of length 2-k (n"' 0 •.. k). Do so fork= 0, 1, 2, ••• 

Sufficiently good functions F(z) of the real variable %t: [o ..• 1) 

a~~it a (unique) representation as sums of functions fk that are con-
-k stant on the intervals of length 2 , and have zero average over the 

next larger intervals (of length 27 k+l) if k f 0, Let us reserve the 

letter x to label intervals, and let A be the countable 

such intervals x (of arbitrary length). The intervals of 

set of all 
-k 

length 2 

are said to form the layer Aj of the staggered lattice 1\ , Set 

f(x) = f}xl when xE:Aj , and write ')(' x(z) for the characteristic 

function of interval x. Then the decomposition looks as follows 

F(z) =I: 'X,(z>f(x) 
X<A 
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0 1/2 1 
• "o 

• • /\1 
• • • • "z 

Figure 6 

-The figure on top shows successive approximations to F obtained by 

restricting the sum over x to layers Aj with j $ k = 0, l, 2, •••. The 

characteristic function ?( x(-z) of interval x could be replaced by other 

kernels .,A.(z,x), e.g. by smooth approxin_mtions to step function. This 

construction is used in the theory of the Fourier ~ransform, and the 

block spin method of the renormalization 

cestor there in Littlewood Paley theory 

The _s_t_agge_:t.e.d l_a._t_t_i_c_e 

group appears to have an-an~ 
30 

Consider now a Y -dimensional continuum IR" ~ called the base- space 

(base). Choose a
0 

and an integer L > 1, and decompose base space into 
. -k .. 

hypercubes of s~delength L a.
0 

s~m~larly as before. Do so for k = 0, 1, 

2, . . . . Let A be the countable set of all hypercubes x obtained in 

this way. Regard the hYPercubes x as points of a staggered lattice A 
whose layers A; are made of the cubes of side length aj = L -ja

0
• 

The same construction can be carried through for a base space that is 

a lattice of lattice spacing a = aN = L-H a 0 • In this case there is 

a finite number N of layers. W•1>4 in the continuum limit. 

-- 16 -

/·.-·.y 
. . . . . . 

. . . . . . 

/( 
.... ·.·.·.·.·.·.·.·.· . ......... . . . . . . . . . . . . . . . . . . . . 
• • • • • 0 • • • . . . . . . . . 

• • • • • 0 • 

"o 
/\1 

"z 

£;f/~base /. . . = R\1 
Figure 7 

It is convenient to introduce an "integration" over the staggered 

lattice 

in v dimensions. 
H v 

l ( .. l·?. a.l: (--·) 
X~/\ J•O J X~Aj 

( j. 1) 

Now we may decompose fields and propagators on base space. Points on 

base space shall be denoted by z, while x is reserved for points on the 

staggered lattice. 

H 

cj>(z) •?. I u4(z,x)'l>J(xl 
J•O X€Aj 

a l .A(z,x l(p(Xl 
X< A 

(5.2) 

The decomposition is unique when it is required that the average of Cpj 

over hypercubes !:fl("'-j•i vanishes, for j·~ i .[The measure du.,(('p) is 

concentrated on such fields Cf because 

Write < 
1 
>,for expectation value with 

the average o.u xc ~ v (x, x '> • 0 J . 
respect to a free field theory 
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(on base space) with propagator U', Re~ard ep as determined by o:P, The 

kernels ~ can be so chosen that there is .no correlation between 

different layers in a free field theory 
1 

• 
4

, viz . 

<<p(xlCp(~l'>., • Sj~v(x,'j) fo• xcAj, ':!•"• 
Since <<P(%

1
l<P(z 1

) >'\1 :o= 1J' (z1
, zl.) it follows that 

v(z,, z 1
) ~ L \\ ..A(z,,x, )V(x,,x1

JJl(x1 ,x1 ) 

1 x1,X:a.€Aj 

E! ~~ JJ (%1 , X1 ) v(x1 ,Xt.)~ (zt., 'X:a.) 
X 1 , X :a.£ A 

In shorthand and graphical notation 

<I> - Jl<p v .. t.Avc.R* 

•.---•. --~~----:-~~ z, ~1 )('1 "a. 

Semigroup of sxmmetries. 

( 5' 3) 

( 5.4) 

The ·staggered lattice A admits a semigroup S of symmetries (maps) 

compounded from 

1) 

2) 

translation by rr. a.o 

rotations by Jf around axes of the cubic lattice A 0 

3) dilations by·L-k, k = 0, 1, 2, ,,, 

One might want to call A a 11 semicrystal11 since it has long range order 

and a semigroup of symmetries 
31 

We shall have occasion to consider polymer systems on the staggered 

lattice A The elements o( of the semigroup S can also act on subsets 

p (polymers) of A , Their dual cC* acts on activities A of polymers on 1\ 

(oi*A)(P) • A(oiP) 

In quantum field theory, the activities A ~ill depend on parameters g 

{renormalized coupling constants) that determine the theory: A(P{g). 

The action of at• associated with dilations o( determines the Gell-Mann 

Low renormalization (semi) group 32 of transformations g -.gat 
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(o1*A )(PI~) • A('PI~ .. l 

The running coupling constants g"' may be regarded as functions of the 

length scale 1.1-
1 

determined by o(, viz 1.1-
1 = aj if o(A0 • Aj . 

6. POLYMER SYSTEMS ON THE STAGGERED LATTICE 

Finally we are ready to specify our expansions, Consider for in­

stance a weakly coupled AcP~-theory, on 2- or 3-dimensional continuous 

space time ("superrenormalizable case 11
) or on a 4-dimensional lattice 

but with zero physical mass ( "renormalizable case11
) - cp. section 1. 

The free propagator is denoted -by U' , The free-propagator-amputated 

Greens functions 

G(x., ... ,z. 1 • Z (of',.L ··· __L Z (V)I 
o 1jJ (:z., 1 .1'1V (z. 1 "'. o (6. 1) 

are determined by the partition functions Z{'l.&l) of the theory in the 

presence of a background field 'f' . 3 3. Normalization constants are 

understood to be chosen so that Z(O) = 1, 

We will define partition functions Z(Xi~) for finite subsets X of 

the staggered lattiCe A in such a way that 

Z ('ljl) • -tim Z (Xjljl) and Z(XIO)•i. (6.2) 

)(~A 

We know from our earlier discussion of expansion methods that the parti-' 

tion functions Z(XJ'lt') with-~.!; P will determine the activity A(P I 'ttl) 

of a polymer system on A • The Greens functions G (z
1

, .. J~)can be repre­

sente~ as sums of products of derivatives of (upton) activities 

A(Pi I'll), cp. eq, (3.4). For a finite staggered lattice A (finite vo­

lume in base space and finite UV cutoff a~1 ) the sum is a finite sum. 

Its convergence in the no-cutoff limit requires a careful choice of the 

X-dependent partition functions Z(X \ \f.l) including "proper renormaliza-

tion". More on this below. Now we turn 

functions Z(X \ '41). Given v , we define 

th·e staggered lattice by 

to the definition of partition 

X-dependent propagators VX on 
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VX (<,~l ~ l v(x,~l. ;( <,~<X 
o othe.l'"wise 

(6.3) 

The Gaussia'n tneasUr-e d)l~X'-(q>) is supported on fields ep on A with 

Cp(x) = Q_for X ~X. Therefore rdllyx(<plf(c,) is ann-fold integral 

over n real variables Cp(x), x € X when X has n points. [For an expli­

cit formula- see eqs. (3.12) - (3.15) of ref. 1.) 

Next we define interaction Boltzmannians. For a theory in which 

only mass and vacuum energy counterterms are needed it takes the form 

!e, (u, <j. )•exp (oe (u )+ I [- :>.q, (z l~ + t S .. '(u lz l<l> (z 1']) . 
z(bo..se 

(6.4) 

In 4 dimensions, wave fUnctions and coupling constant renormaliza.tion 

counter terms have to be added, The counter terms will have to depend 

on the free propagator v as is the case in Feynman perturbation theory. 

Therefore also ~-t(\) 1 <P) will _depend on ~ , When the propagator is cut 

off by substitution of VX for V, the same substitution will have to be 

made in the counter terms in order to maintain ."proper renormalization". 

If ....,. is not translation invariant, S'm1(u- Jz) may depend on z. The 

crucial fact is that the propagator v(x,y) on the staggered lattice 

propagates only ''horizontally" and decays exponentially with decay 

length L lattice spacings in each layer. The decay of correlations in 

the 11 vertical 11 direction (which come from the interaction Ac;plf) is 

achieved by proper renormali~ation. 

Note that the interaction cPCz)~ when rewritten in terms of fields 

c.p, involves a product of fields Cp(x 1) , ,, (p(x
4

) on four layers 

A11 ... .\jlt which may- be different, So it is nonlocal on A . In this re­

spect the situation is different from an ordinary lattice field theory, 

The natural choice for_ an X-dependent partition function might 

appear to be of the form 

z(xl"') = Jcl!'v (epl~,("x•<l>+'lfl) 
X 

with.Cf and c#> related by eq. (5.2), and "x = ~vxcA*. 

(6.5) 
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However, this is not a legitimate expression for a partition fUnction 

of a polymer systen on A because the condition Z (szS I \')•1 is violated 

when ~~ 0 , There are different ways to remedy this. One could divide 

by aX-independent normalization factor, as was done in ref. 1. Here 

we will describe an alternative which leads to a computable variant of 

the phase cell cluster expansions of Magnen and Seneor 8 • 
1
7, 34 , Given 

a field cJ:. on base space with decomposition ( 5.2), we define q,X so that. 

it vanishes when X = ¢ , as follows. 

Let us first consider a slightly simplified A<P~-model whose free 

propagator V is such that it admits representation (5,3) vith kernels 

~ that are simple step functions 

A (:z,x l -V 
= "j 'Xt•J (zl (6.6a) 

In this case we set 

cj> (z) ~ \ .A(z,x)<:p{x) 
x )(f;x 

and (6.6tl 

"x -= ~vx.A* 

The appropriate definition for the general case will be given below. 

The staggered lattice has a hierarchical structure. Since points 

XE.J\ are also cubes in base space, the inclusion relation .!;, is de­

fined and supplies a partial order relation on A , A subset X t;A will 

be called ~ -convex if x IIi. X, ::J€ X , x~us~ implies u'iX' . 

We define partition functions Z(Xj~) for ~-convex subsets X of 

A first. 

z(x/"') = 11"v,/<i>l!i!,("x·<~>x""'xl (6.71 

The fields (p and c:PX are related as above, and the interaction Boltz­

mannian ~t was defined before. We may imagine taking the limit X.A'A 
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through ~-convex X. In this way the Greens functions ( 6.1) become de­

fined. 

The definition of partition functions is extended to arbitrary 

finite X as follows. A subset X~ A will be called ' -connected if the 

following graph is connected: Draw a vertex for every point x & X,- and 

a directed link from x to y when )(€. Aj , ~e.Aj"-f and x ' y. Arbitrary 

XCI\ decompose into connected components Xi. They are s; -convex. For 

general X with ' -connected components Xi we set 

~(XJv,.P)·1f~("x•<l>x.) and Z(XI\jl)•)clpv (t'fll!(XIt>,<l>+'lv) 
1. 1 " I X (6 .S) 

It is easy to verify that this is consistent with the above definition 

for f -convex sets X. Evidently Z(S1Si\')a1 ( ¢ =empty set). 

According to the discussion in section 3, definition of partition 

functions Z( X I 'f.') for arbitrary finite )( C A specifies the activities 

A(P 1'41) of a polymer system on A such that 

Z (X JIV) • L lT A(PJ1jJ) 
X:ai:P 1> 

(6.9) 

Arbitrary finite subsets P of X are admitted as polymers. We imposed 

the condition Z(X(O) = 1. It follows that the Greens functions G(z11 ••• ,
:") 

have an expansion in sums of products of up to n polymer activities, cp. 

eq. (3.4) of section 3. 

The terms in this expansion are given by finite dimensional inte­

grals. But to fulfill also our second requirement that the n-th term 

in the expansion is 0(~"'), we will still need to split and reorder 

the terms in the expansion. 

The activities A( P I 'fl) are represented as sums of terms that are 

labelled by collections (c 1, ••• , Ck) (k ~ 1) of subsets Ci of P, called 

cores, whose convex hulls C. are disjoint and have P as their union 
' 

A(PI"V) • _f: A(c, .... ,c~ 11V) 
!:C-•'P 

' 

( 5.10) 

We interpret A(C 1 .•• Ck i1V) as activities of different polymers that 
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occupy the same set of sites P = L Ci, cp. end of section 2. A(c 1 •.• Ckl~ 

will be given by integrals over (up to) n real variables (p(x), XE C.._ 

if c 1 .•• Ck together haven points. Inserting this decomposition, one 

obtain~ a representation of the Greens functions G(Z1 -.Z~) as a sum of 

products of (up tom) polymer activities A{C 1 ... Ck \\1). The cores Ci 

appearing as arguments in such a product will have nonintersectini convex 

hulls. We order the terms in the sum in order of total number n of points 

in the cores. The sum over polymer-cores Ci with given number n of points 

can be written as n-fold integral over the staggered lattice. These 

integrals replace the integrals over space time in Feynman perturbation 

theory and make up the n-th term in the expansion. Step functions are 

inserted in the integrands to take care of the restriction that polymer 

cores should have disjoint convex hulls. The somewhat technical explana­

tion of the precise way in wh,ich the split (6.10) is performed will be 

furnished below. 

For the usual choice of propagator "IJ" , the definition of partition 

functions etc. can be retained, but the definition of cf>x and "X is 

adapted as follows. 

A subset Y of a layer Aj of the sta,ggered lattice determines a 

subset Yb of base space. It consists of the union of cubes x E Y. We 

write X y( z) for the characteristic function of this set ( ?( y( z) = 1 

for z E Yb' and= 0 otherwise). Using the shorthand notation (5.4) we 

define 

and 

with 

ci>X(zJ- Jlx<j>(zJ 5 S Jlx(z,x\<j:>(x\ 
X<A 

* "x ~ Jlx vx Ax 

.AX (z, x) • 'X (zJJI(z,x l 
Xn ilj 

f<>• X€1\j · 

(6.6c) 

The resulting expressions for partition functions Z(X\1v) have some subtle 
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aspects. The definition of the propagator VX involves a characteristic 

function {step function) on the staggered lattice. This choice is made 

in order to achieve computability. On the other hand, the definition of 

~X involves a characteristic function on base space. This matches with 

the locality of the interaction q,(zl'+ in the original base space for­

mulation. 

In the simplified J..q,lt -model with kernels A that are step_ func­

tions (6.6a), definitions (6,6c) agree with (6.6b). For this slightly 

simplified Aq,'+-model, ·our expansions reduce to a simplified version 

of the phase cell cluster expansions of Feldmann, Magnen, Seneor and 

Rivasseau 17. Their convergence is known both for the superrenormali­

zable case and for the renormalizable case. 

For the usual choice of free propagator v , .A is not exactly a 

step function, but .A- ( z,x) decays exponentially with the distance of z 

from hypercube xt:A; , with decay length on lattice spacing aj ( 4), Work 

is still in progress at the time of this writing to extend the results 

on convergence to this case. It is clear, however, that this extension 

of convergence proof requires no more than handling tedious technicali­

ties. 

The same expansions can be obtained by iterated renormalization 

group transformations. In brief, this goes as follows. The effective 

interaction Bel tzmanniS:n e- Vj (of>, which depends on a field on !lj , is 

obtained in the form of a polymer representation on A~j:: A""+ ... +Aj. 

One begins with A ~t~ !i AN ( N' ... tJO in thE'· end). Through expansion steps 

associated with successive renoronn.Jization group trarsformations, the 

polymers and their activities are constructed by an iterative procedure, 

layer by layer. The normalization condition Z(X(O) = 1 is used to get 

rid of finished polymers. 

• Let me finally give the definition of A( ••• ), assuming eq. (6.6a), 

Basically, activities A are given by certain integrals performed with 

Gaussian measures. One performs a Taylor expansion with remainder in 

the integrands to first order in ep (x), v ()(__..) , Introduce integer 
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variables ~()()•0, 1 attached 

Observe that ("~>s )X a ""SnX 
dent Boltzmannians 

to points X€A , Givens, let ~•{)(•A\-1(X)•1} 

and (q:,
5 

)x• <Ps
11
x . Define auxiliary ~-depen-

\!i_.(XIo,</>) • lr:(XIv.s',<P$1 

There will be corresponding partition functions Z~ and polymer activi­

ties A4 • 

To construct the polymer activities A associated with the partition 

functions Z, one may start with a polymer representation for the Boltz­

mann factors ~ 

)!. (Xiu,.j>) • L; iT:E.(Miv,,P) 
4 X•LM M 

Integrate this to get an expression for Z ,.. Jri.. j!
4 

• Expressing 4 -,......,, 

the activities A4 in terms of the partition functions Z4 produces a 

representation of the form 

A (PI<P)-L: r;" A (M,, ... ,Mk\<1>) 
~ 1, "P•l:t Hi 4 

Each term depends on A(x) for X€l> only. For CcA ,~eA set 

"c (x l 
l4;X) X<C 

o!herw,·sc !A(K) Xfolj 
( ~._.) (x J • 0 o!h'"""'' 

and 

()~ 1. • 1. - ., ~·· 
Let Ci ~ Mi and 

reads 

C """c · d · · • ·~i i. The formula for the des1re quant1t1es A 

c. 
' last 

A(c,, ... ,c.I<PJ 
• 

• if A A (M,, ... , M k I<!>) :.cec )( Ac Al4 

whtl1 C. • M· 
' ' 

[The right hand side of this expression vanishes, unless either C •l:C·, 
' Mi for all i, or k = 1, M1 is a monomer, and C = </> • In the 

case it equals 1. This comes about because "B..,..'( M \vy ,q;,Y )•~i•"-
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if M ... Y contains an extremal point, n =No. of points in M. If some Mi 

are monomers with Ci = ~ , the truncated expectation value vanishes 

unless k = 1, The restriction in the sum (6.10) to k-tuples c 1 ••• Ck 

whose convex hulls fill P originates from this fact.] 
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