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expansions, and so is our own work. I will therefore continne with some
% *# explanation of the nature of expansion methods in statistical mechanies,
EXACT RENORMALTIZATION GROUP A3 A SCHEME FOR CALCULATIONS . . R
and recall the formalism of polymer systems. Then I will discuss how %o
reformulate a Buclidean quantum field thecry on continuous space time
as a theory living on a "staggered lattice", and how to apply expansicn

methods for latiice systems to it in order to obtain computable expan-

Gerhard Mack sions for correlation functions of weskly coupled continuum thecries.
TI. Institut flir Theoretische Physik der Universitét Hamburg This part of the talk is based on joint work with A. Pordt . In joint
Luruper Chaussee 149, 2000 Hamburg 50 work with K. Pinn 2, techniques have been developped to combine the
Germany analytical techniques presented here with Monte Carlo methods, in order

to apply them to theories that are asymptotically free but not weakly
coupled. .

0.  INTRODUCTION . ;
An example of a quantum field theory model that has been extensi-

In this lecture I would like to report on recent work to use exact vely studied is ?\tf)"—theory. It requires to give meaning t¢, and com—
renormalization group methods to construct a scheme for calculations in "pute, functicnal integrals of the form '
quantum field theory and classical statistical mechanics on the conti-

puum. "Exact" shall mean that use is made of convergent expansicns

0 V
<eu¢>q¢ - d’fﬁé e-?l(d:)a-j:l(z)cb(z)dz

' v
only, without any uncontrolled approximations. "Scheme for calculatiens” z z—f Sd/’(v (%) e-V@’) +§7dbd2
shall mean that quantities of interest — such as correlation funcitions
(Greens functions) - are obtained in the form of convergent series which ' with D = ;III'R" elep (=) and

are computable in the sense that the n-th terms is given by O(n)-dimen- v 2 .
. 4
sional integrals (as in Feynman perturbation theory). "Quantum field _ H{P) = Sd z ['11" (V,:,.¢ ()Y + A (=) +§_1<#(zl + Counder Eerms]
" tum field theory models in Buclidean formulation
theory" shall mean quantum fle eory models in Bucli = wo (‘b) » V(¢)
on continuous space time without UV- or finite wvolume cubcffs. Some . _ ) :
possible applicaticns in other fields of physics (or engineering) will du,, (d) is the free field measure associated with " (). The corres-

also be menticned. ponding free propagator is the w -dimensional Coulcmb potential wr .

T will begin by recalling Wilson's renormalization group philesophy,

followed by & brief review of recent resulis, by several groups of 1. K. WILSONS RENORMALIZATION GRQUP 3
authors, on the question of existence of local quantum field theory (block spin method or "real space renormalization group”)
models {without cutoffs). These results are based on use of convergent

A crucial notion is that of

* .
Work supported by Deutsche Forschungsgeméinschaft Effective Hamiltonian (or action) & observables

®% th : . .
talk presented at the 14~ International Colloquium on Group Theoretical Given a classical statistical mechanical system on the continuum

Methods in Physics, Seoul (Korea), Aug. 1985, based on joint werk with
A. Pordt,



{or on a lattice (02)" with arbitrarily small lattice spacing a) - for
instance a Euclidean field theorv or a ferromegnet — with fields {spins)
@(x), Hamiltonian H{®)}, observables Oi = Oi((p), it

gets mapped into a lattice theory

on a lattice of lattice spacing a' with lattice fields §(x‘), Hamil-
. ' -
tonian R(F )= x!ﬁ(é) , and observables 0;(§), such that the expecta-

tion values
; .
<Oi >7¢ = <O.t >3£' exactly, ?.nd for all observables. (1.0}

This is achieved by a

Blockspin transformation

for instance

é(x’)- av () (average over hypercubes x' of side length a')
xex' ()

One regards x' as points of & lattice A of lattice spacing a'. Typi-
cally one is ultimately interested in a' = O {correlastion length). The

effective Hamiltonian ’JC' is defined by
-%(& -
e - S.‘?)qp e (Q')T!'S@(x')-nu- @ (%)) {1.2)
x' xex'
Similarly, effective observables O‘; are defined by

)
O{'@)e—'x@} =53(p O‘.(Q’)e"w(@) ks S(as above) {1.2%)
xf

It is worth emphasizing 5, that the blicck spin variables need not be
fields of the same kind as those in the original theory. For instance,
in the case of an Ising model with variables ©{z) = * { one may work
with real block spins. For the 2-dimensionsl planar rotator with vari-
ables s{z) one should include among the block fields topological vari-
ables n{x) which count the winding number of s{z) as z runs around the
poundary of a square x. An illustirative example can be found in the
proof of confinement for 3-dimensional U{1) lattice gsuge theory by
Gdpfert and the author 6. This example shows also that it is crucial

to vgrit‘y that e particuler choice of bloek spin leads

-4 -

te effective Hamiltonians that are local up to exponential tails., Other-
wise one can get qualitatively wrong results, In the exact approach,
such verification is part of the convergence proof. It is important for
some applications that the block spin method is able to produce exact
expressions for original continuum correlation functions and not_only
their long distance behavior. The prize to pay for this is that one

must determine effective observables in addition to the effective

Hamiltonian.

Question ‘i) How can one calculate the (complicated) X.ﬂ?

ii) How could one do Monte Carlo simulstions for the

resulting lattice theory with such complicated :e,_“_ {when necessary)?

Renormalization group (RG)

A block spin transformation a—sa' {which maps a theory on a
lattice spacing & into one with lattice spacing a')} can be carried out

through & sequence of block spin transformations as above. For instance

AT A O, ~wQ —W 1  —b g —aQ sa'=t" ;Y=L
2 Ay Ny N-2 4l o 2 Qjes

This is so because the average of an average is an average ,

avr Gx) = ar av  Px)
xex” x'ex” xex'

In this way a sequence of Hamiltonians is introduced

RsH,—~>R, — -+ —>H->H S ot

They live on a sequence of lattices Aj. By doing simple dimensional
analysis, we may alsoc regard them as living on lattices of lattice
spacing 1 instead. The resulting sequence of Hamiltonians is called a

(discrete) RG-flow.

A si RG- . i £ s
single RG-step 'J(J —;-’J(J_t R AJ—;- AJ" is manageable

at least if L is not too large and 'Ri admits a split

Kile) = Hy (@)+Vile) (1.3)



with a "sufficiently small" perturbation VJ -
i.e. if the running coupling constants are
not too big {(yet) st length scale &5 The - -
field ¢p lives on Aj' Split ¢ into a term
that is determined by ¢ 's block averages § R
and a remainder % called the "fluctuation

field" b

G(x¥= I AxXYEEY +30)
X'EAJ'__.

= AP () + (), XeA;

- a v

The split is made unique by requiring that Z‘

has zero block average, and choosing the

xernel A so that <§("');(*)7?¢{m' o . .
Integration over ¢ becomes integration over
$ and % . The defining equation of 'R.‘i“
has a & —function in the integrand, There-
fore the § -integral can be done, with the
result

e— ’J‘i—q (é) - V§ (zl )

“ faun(z3)e

= partibon funchon of auxiliary (1,1) .
latrice fielel theory ;

V() = V; (AE+3)

The Gaussian measure

a'/ur-_ (2} = free field measure deter-
mined by propagator .

The fluctuation field propagator I is deter-
mined by J4 and the propagator ¥ asscciated
with 'é'(#,,“ , its crucial property is that 1t
decays exponentially = over distance a._ .. As

a1
a result
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Figure 1

L

the auxiliary lattice field theory has short range correlatiouns

{= L lattice spacing if aj—‘i/aj = L)}, at least if the system is weakly
coupled at scale a; - i.e. if V in eq. (1.3} is "small". This is the
most -fundamental ingredient of Wilsons philosophy. It is basic for us
because weskly coupled lattice theories whose free propagator has
correlation length of & few lattice spacings can be handled (including

nonperturbative contributions) by expansion methods of classical sta-

tistical mechanics, To use such exact renormslization group transforma-

tions by way of expansions as & scheme for calculations will require

i} Iteration of renormalization group steps { oo many for =

continuum theory)

ii) The expansions for the individual steps must be formulated
and combined so that the leading terms in the combined expansions are

computable as low dimensional integrals.

More on that later ...

Existence of gquantum field theory models 3 {on the continuum).

To obtain a theoery on continuous space time, the limit N-#pa has

to be taken so that. the initisl lattice spacing (UV=-cutoff -1y
-N
ava, = L a, —»r o.
The initial Hamiltonian 'J(" depends on, and is determined by, bare

coupling constants g, = g{W}. Therefore alao 'th will depend on g(N)
viz. 'J[J = 'RJ (M,S(N)h’p)‘.

Renormalizaebility holds nonperturbatively if N —dependent g{N}
exists such that

Continvum

Lim U, (N, q(N1G) = Uy (@)
N-w e

exists and is nontrivial {not guadratic in @), Evidence is accumulating
that perturbative rencrmalizability is neither necessary nor sufficient
for this.
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Here is a list of models that have been shown to exist and obey
nonrerturbative renormalizsbility

perts superrenormalizable (5711 M U vukawa,, abelian Higes,,

Abelian Higgs
[Balavan] )

(and probably soon to come: Nonabelian pure Yang Mills3

3

{12, 13) ,1¢h(1m

pert. renormalizable: Gross-Feveu i

2

(15)
2+E

pert. nonrenormalizeble: Gross-Neveu
The suberipts on the models indicate space time dimensionality. -)u?:
is qu—theory in 4 dimensions with the "wrong" sign of the coupling
constant. It can be given meaning as & Euclidesn field theory but lacks
Osterwalder Schrader positivity so that analytic continuation to a bona
fide quantum field theory in Minkowski space is not possible. This model
is asypptotically free in the ultraviclet, A comparable achievement is
the control of the infrared behavior of

massless qﬁ—theory on a lattice (16, 17)

This model is asymptotically free in the infrared. In contrast, Gross-
Neveu,, . is not asymptoticslly free, but its uliraviolet behavior is
governed by & nontrivial RG fixed point which approaches the trivial
{Gaussian) one as €O . This fixed point is believed to be associated
with a nontrivial conformal invariant QFT, and its existence was expec-
ted on the bhasis of the conformal bootstrap. 18

Construction of the pert. renormaliezable and nonrenormalizable
models mentioned above represents last years main progress. There is
hope that reslistic models like b-dimensional Yang Mills will alsc come

19

under control in the not too distant future. The most active groups
of constructive field theorists working on these questions of existence
are Balaban, Imbrie and Jaffe; Battle and Federbush; Feldmann, Magnen,
Rivasseau and Seneor; Gallavotti and Nicold, Kupiasinen and Gawedzki.
Gallavotti's review article will be helpful to the reader 20. Federbush’s
approach has some similarities in spirit with cur own 21. Methods devel-
opped for disordered systems 22 are also relevant here because they

help treating the socalled "large field problem". The picneering work

. . 4 .
of Benfatto at al. 23 on this was very influential =, but we will follow
another route. Concerning the confinement problem, see Ito's contribu-

b
tion 2 .

2. POSSIBLE APPLICATIONS CUTSIDE QUANTUM FIELD THECRY AND CLASSICAL
STATISTICAL MECHANICS

The need to convert continuum problems intc lattice problems is
ubiguitous because only lattice problems are suited for analysis by
computer., We will mention two examples of problems where our method
could be applied, thanks to the existence of a functional integral for-

mulation.

i) Solution of classical Maxwell equations with boundary conditions.

This is important e.g. in the design of microwave cavities, or of ele~
mentary particie accelerators. Let us for simplicity consider an elec—
trostatic problem and look for the fundamental solution G{x,y) of the
potential equation with Dirichlet boundary conditicns on the boundary T'

of a domain D {and Neumann boundary conditions for D')

(-Axi-{w)G(x,\j) - 8(“".1) away from
G(x.yy= 0 Jor xer ,yeb

Ahlo bk bk bk bk koo ekt ko

— I L

D rﬁDm i

i G o O o a ar A

Figure 2
G admits a functional integral representation
Gyl = <G>, = Z-‘fqo(x)qo(.j)e_k(@)ﬂqo
(o) =3id% o @ (A" +i0)@(2) 246, A +iolE)

r
A" = Laplacian with the specified boundary conditien on I*. Now split

into a translation invariant free part ¥ (e.g. on a torus) and an



"interaction" V that is concentrated ocn ™ (35)
HG) = H (@) +V(@) with K (¢)=5(¢,-20)
V() = '5-‘;"‘0 Srdc[¢(x+na)n-v¢(,}]

To facilitate the reader's understanding, let us mention the corres-
ponding forulae in case we were to start from a lattice rather than
continuum. In this case, [ may be regarded as a set of girected links

£ %,y {= pairs of nearest neighbours) normal.to the Ysurface" 1" .
2

H(@)= " * L Lie-e(y] - r

° <Y 4 . . ii ii

{sum over ordered pairs of nesrest neighbours)

- a¥ % -G (y}
v(e) a “E,.;,-“"”’[(P"" @ (yr]

« =9

4+ emma awma o

o ke 4

P
v —
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P
-
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in v dimensions, for lattice

P R R

I
wmh@a.(&g>€?oﬂyhﬂﬂb,ﬂcn' Figure 3

Let us return to the continuum theory. The effective action forma-—
lism will reexpress the exact Greens function G(x,y) as expectation

value of a lattice theory.

g . - "o (F) = Vep ()
Glxy) = 27" fo (Pr0(gre °° _

Trtié;(xﬁ
xf
compare the discussion in section 1. The idea is to handle this effec-

tive theory by computer, using for instance the method developped by
K. Pinn and the author 2.

ii) Quantum statistical lattice models in w dimensions.
Such models can often be mathematically refprmulated as classical sta-
tistical mechanies in w+1 dimensions yith continuoﬁg periodic (Eucli-

(26)

dean} "time" . We propose to use our methods to discretize time

by way of an exact transformation (as opposed to a discrete time appro-

ximation) and to handle the resulting effective theory by computer.

3. ON EXPANSION METHCDS

Question: What do expansicn methods of {elassical) statistical

mechanlcs really do?

- 10 -

Answer: They express observable quantities {e.g., free energy as
function of external fields or sources) of an infinite

system in terms of properties of small subsystems.

Expansion = sequence of approximate answers that are determined by

partition functions of ("small") subsystems of increasing size.

Example: Virial expansion for a real gas (27). The leading term
{ideal gas) is known if the partition function for a single particle is
known. The 1-s3t order correction involves 2-particle clusters and is

known if the partition function of & system of 1 or 2 particles is

known,

Different expansions are obtained by different choieces of subsystems.
For instance, in a lattice gas the subsystem might either consist of
n=1,2, 3, ... particlgs, or it might consist of 1, 2, 3 ... sites
that could be occupied.

A systematic procedure is provided by the.theory of polymer sys-
tems 28. Before proceeding let us emphasize again that we are only

interested in convergent expansions, so that slso nonperturbative
effects mare properly treated.

Polymer systems

The polymers considered here are a mathematical abstraction. To
specify a polymer system one must, first of all, specify a set A of
sites which maey be cccupied by the polymers - for instance the squafes
of a chessboard., Certain finité nonempty subsets P of A are declared
to e polymers - for instance unions of squares that can be cut out of
card board without falling apart, A polymer P = {x] with only a single
site x is called a monomer. Finally, & (real) activity A(P)} is assigned

. _ o _ . -
to each polymer P - for instance A{P) = exp{~Bn%),n = no.sites in P,

Once a polymer system is defined in this way, partition functions

of finite subsets X of A are defined*

*
Here and everywhere, the sympol X is used for union of disjoint sets.

ey e s ety et e _pemem oy e
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- TTAMP) .
Z(x) ﬁ_zppM (3.1)

Summstion is over partitions of X
into mutuslly compatible polymers P.
In our applications, mutually com—

patible shall mean ncnoverlapping.

It is important to note that
the activity A(P} is uniguely de—
termined by the partition functions
Z{X) for X§ P. Proof: Suppose true
for {nc.of sites in P} 4 n. Con~
sider a polymer X with n+1 sites,
Then A(X) = 2(X)-ZTHactivities

of polymers with € n sites) is de-

termined by partition funetions
2{Y) for ¥ & X, O

There exists a formula for the

free energies

Z(X)y= L A AlIx}) +
. x¢X -

- Polymers P

(3-2)

The first term involves monomer ‘Figure b

activities. Sum over § is over

cellections of not necessarily

distinet polymers P such that the fcllbwing graph is connected: Draw
a vertex for each P and link two such vertices when the polymers are

“incompatible. A(Q) are combinatorial coeffients Y 29 ana

APy = A(PY/TE Al{x}) .

Convergence of the infinite series for AmZ{X) is assured if the acti-

_‘12_

ties A(P) satisfy suitable bounds 28, 29. The convergence conditions
are very restrictive - for instance they may be violated because the
monemer activities A{{ x} ) are too small - snd it is therefore a good
idea to aveoid taking logarithms by way of expansion (3.2) whenever

. 1
possible. Instead one may proceed as follows

It is customary snd convenient to consider partition functions as
functions of external fields or sources % such that desired correlstion:

functions are obtained as derivatives of 2

-1 s S
G(z4,...,z,,)=f2(/\|°) M""mn’z(l\lw)lw_o (3.3)

By ineluding in the definition of Z(X|W) suitable (X-dependent but

Y -independent) normalization factors, it may be enforced that

Z(X|w=0)= 1 for all X .
This implies

A(Plw=o) = &, , (n = no. sites in P)
It follows now from the polymer representation (3.1) that

G (2, 22) =.§-3§,—@ S%E,gA(p“‘” 0 +

%%’;wﬂpnt- &.1Am W'O)S_‘JS—’_(;z’A(p‘Wgo) : (3.4)
ete. Often Z{X[¥) depends on W(z) only if =ze€X. In this case the

same is true of A{X |W). It follows that the series for G{ z, 22)

converges on an infinite lattice if the series

S . A(Piv=o0
-§=z,¢1=6‘!v(znA( =0

converges absolutely, together with its derivative with respect to

vz,

Finally we need to mention one rather trivial generalizaticn of a
polymer system. One may admit different polymers that occupy the same

set of sites, e.g.
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NES e

, g e
Figure 5

The partition functions will only depend on the sum of their activities.

i, COMPUTABLE CONVERGENT EXPANSIONS FOR BUCLIDEAN FIELD THECRY ON
CONTINUCQUS SPACE TIME

The program to obtain them is as follows !

+ Remember: There exist convergent weak coupling expansions for

lattice field theories.

+ Transform continuum field theory exactly into a field theory on
a staggered lattice. The staggered lattice A is composed of an
-o0 sequence of hypercubic lattices Ai of decreasing lattice

spacing a; = L_J&o (L» 1), j=20,1, 2,

In case of a weaskly coupled model treat this lattice theory on

A by expansion methods of classical statistical mechanics.

» For theories that sre not weakly coupled but asymptotically free
we envisage calculation of the Boltzmenn—factor of an effective
lettice theory on the {ordinary) lattice Ay in the form of a
polymer representation by use of the expansion methods of classi-
cal statistical mechanics. The further snalysis of the lattice
theory on A, would have to proceed by computers. Metheds to do
Monte Carlo simulations for such polymer systems were devel-

opped by K. Pinn and the author 2 but will not be described here.

The expansions are not power series expansions in the coupling con-
stant A . But they will have the following properties, for the weakly
coupled ﬁd:u—theory—models of section 1.

« Computability: The n-th term ias given by an O(n)-dimensional in-

tegral.

+ Relation with perturbation theory: The remainder after the
{n-1)-st term iz O{A"%®) | E-tor—é- .

- 14 -

The expansions are computable versions of phase cell cluster ex-

pansions. In principle, phase cell cluster expansions are obtained by
iterating expansions for doing individual renormalizstion group steps.

In practise they were independently introduced and developped in parallel
with the renormalization group technology, by Glimm and Jaffe T, Magnen
and Seneor 8,'Feldmann and Rivassesu 13, Federbush 19 and Battle EF,

and others. Typically the phase cell cluster expansions used in work

on existence questions consist of terms that are 9 —dimensional func-
tignal integrals. For computability we insist en having instead C(n)-
dimensional integrals for the n-th term . Federbush’s approach has

some similarity in spirit with cur own, but does not use bleck spin

variatles.

A single renormalizaticn group step aj-# a involves expansions

-1
on the lattice Af . Compounding all the steps, one is naturally led

to expansicns on the staggered lattice A = A°+ a\‘ + Ay +...

5. THE STAGGERED LATTICE |

Pedagogical prelude

Consider divisions of the real interval 0 .,.1 intc intervals

ne 278 e or tength 2 (n =0 ...k). Do so for k = 0, 1, 2, ...
Sufficiently good functions F(z) of the real variabvle ze[n ... 1]

admit a {unique) representation as sums of functions fk that are con-
stant on the intervals of length 2—k, and have zero average over the

vk+1)

next larger intervals (of length 2 if k # 0. Let us reserve the

letter x to label intervals, and let A be the countable set of all

such intervals x {of arbitrary length). The intervals of length 2—k
are said to form the layer Ai of the staggered lattice A , Set
f(x) = fj(x) when xeAj , and write 'xx(z) for the characteristic

function of interval x, Then the decomposition looks as follows

F(z) =x>.EA %, (23 (%)

e
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™ . . ./\2

Figure 6°

The figure on top shows successive approximations to F obtained by
restricting the sum over x to layers Aj with j$ k=0, 1%, 2, ... . The
characteristic function ‘xx(rz) of interval x could be replaced by other
kernels o&(z,X}, e.g. by smooth approximations to step function. This
construction is used in the theory of the Fourier transform, and the
block spin method of the renormalization group appears to have an- an-

cestor there in Littlewood Paley theory 30,

The staggered Iattice

Consider new & ¥ -Gimensionsl continuum RY, called the base space
(base}. Choose a, and an in;c.{eger L » 1, and decompose base space into
hypercubes of sidelength L &, gimilarly as before. Do so for K=0, 1,
2, ... . Let A be the countable set of all hypercubes x obtained in
this way. Regard the hypercubes x as points of a staggered lattice A
whose layers Ai are made of the cubes of side length aj = L_jao.
The same construction can be carried through for a base space that is
& lattice of lattice spacinga =ay = L-“a.o. In this case there is )

a finite number N of layers. Nwoe in the continuum limit.
. . '

——— - - —,,e—,- -~ -~ . A M M m  m M m  m M o oA e
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It is convenient to introduce an "integration" over the staggered

lattice
L
S ) =L a. 2, () in ¥ dimensions. {(5.1)
XEA j=o un\j

Now we may decompose fields and propagators on base space. Points on
base space shall be denoted by z, while x is reserved for points on the

staggered lattice.

N .
dy=L § AExeix = § RExe) (5.2)
j=o xu\i XeA

The decomposition is unique when it is required that the average of (p‘]
over hypercubes BeAj‘i vanishes, for j‘ai .[The megsure dnv(('p) is
concentrated on such fields ¢ because the average o_‘,*p’v(x,xr’ -OJ .

Write CJ)\, for expectation value with respect to a free field theory

T T s U U S WU Y
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(on base space) with propagator vr . Regard < as determined by ¢ . The
kernels & can be so chosen that there is .no correlation between

. - 1 .
different layers in a free field theory >, viz.

<3 (yr>, = th vix,y4y) -For xc/\j s yeh,
Since < (z, 1 (217 = v (%,,%,) it follows that
v(zZ,, %) = 21: “ cﬂ(z‘,x,)v(x{.xlhﬁ(zi.x,_)

x"XICI\j .

=2

“x X €A 'A(z"x*)v("vxz.)‘ﬂ (72 %) {5.3)
PRkt 8

In shorthand and graphical notation
¢ - IAC‘O , U= ﬁv:ﬁ*
(5.4)

T — 2 - Z, AAAASEEmme A T
Y 3
t 1 x, Xy

Semigroup of symmetries.

The staggered lattice A admits e semigroup & of symmetries {maps)

compounded from

1) translation by T a
2) retations byJ;_.a.round axes of the cubic lattice A,y

1) dilations by L%, k=0, 1, 2, «..

One might want to call A & "semicrystal" since it has long range order

. s 1
and a semigroup of symmetries 3 .

We shall have cceasion to consider polymer systems on the staggered
lattice A . The elements o of the gsemigroup § can also act on subsets
P (polymers) of A . Their dual of* acts on activities A of polymers on A

(«*A)(P) = A(xP)

In guantum field theory, the activities A will depend on parameters g
{renormalized coupling constants) that determine the theory: A(P|g}.
The sction of of* associated with dilations of determines the Gell-Mann

Low renormalization {semi) group 32 of transformations g - gy

(«*AY(Plg) = A(Play)

The running coupling constants g, may be regarded as functions of the
length scale u.-1 determined by of , viz u_1 = a.j if olAg = Aj .

6. POLYMER SYSTEMS ON THE STAGGERED LATTICE

Finally we are ready to specify our expansions. Consider for in-
stance a weakly coupled Rcb" —theory, on 2- or 3-dimensional continuous
space time ("superreﬁormalizable caze") or on & b-dimensional lattice
but with zero physical mass ("rencrmalizable case"} - cp. section 1.
The free propagator is dencted by . The freEfpropagator—amputa.ted
Greens functions

g 8 S )
Gz = 20 g gy Wl @0

are determined by the partition functions Z(’U) of the theory in the
presence of a background field ¥ . 33, Normelization constants are
understood to be chosen so that Z{C) = 1.

We will define partition functions Z(X|W) for finite subsets X of
the staggered lattice A in such a way that

Z()y= Lim Z(XI¥)  ana Z(Xlo)= ¢ . {6.2)
X* A .

We know from our earlier discussion of expansion methods that the parti-’
ticn functions Z{X|W) with X € P will determine the activity A(PIW)

of & polymer system on A . The Greens functions G {z, 12, can be repre-
sented as sums of products of derivatives of (up to n) activities
A(PilW), ep. edq. (3.1;). For a finite staggered lattice A (finite vo-

lume irn base space and finite UV cutoff a 1) the sum is a finite sum.

Tts convergence in the no—cutoff limit re:uires a careful choice of the
X-dependent partition functions Z{X l\P) including "proper renormaliza-
ticn". More on this below. Now we turn to the definition of partition
functions Z{X|W). Given v , we define X-dependent propagators \.'x on

the staggered lattice by

i gy e e
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v(x,\j) ff x,y eX

v, (X,y} = { .
x 4 ‘& otherwise

{6.3)

The Gaussish measirs d]lv () is supported on fields ¢ on A with

@{x) = 0.for x f X. Therefore Sduvx((p)f(q) is an n-fold integral
over n resl variables ¢p(x), x € X when X has n points. [ For an expli-
cit formula see egs. (3.12) - {3.15) of ref. 1.]

Next we define interaction Boltzmenniens. For a theory in which
only mass and vacuum energy counterterms are needed it takes the form

Z, (v,c#)-exP(Se(vH [[-Ae@’*s £3miwizyd]) . (6.4)

Zcbose

In 4 dimensiens, wave flunctions and coupling constant renormalization
counter terms have to be added. The counter terms will have to depend
on the free propagator W as is the case in Feynman perturbation theory.
Therefore also,z‘(ju,d:) will depend on W . When the propagator is cut
off by substitution of Wy, for 4}, the same substitution will have to be
made in the counter terms in order to meintain "proper renormalization™.
If 4> is not translation invariant, Sml(!&f:!) may depend on . The

crucial fact is that the propsgator wv(x,y) ¢n the staggered lattice

propagates only "horizontally" ard decays exponentially with decay

length L latbice spacings in each layer, The decay of correlations in

the "vertical" @irection (which come from the interaction APY¥) is

achieved by proper renormalization.

Note that the interaection ¢{z)~; when rewritten in terms of fields
¢, involves a prodact. of fields q:(x1) (p_(xh) on four layers
Ah'""f-k -which may be different. So it is nonloecal on A . In this re-
spect the situation is different from an ordinary lattice field theory.

The natural choice for an X-dependent partition funetion might

appear to be of the form

Z (%) = Sdﬂvx(wi', (vyr d+W) (6.5)

with ¢ and ¢ related by eq. (5.2), and Yy = uqvxﬁ*.
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However, this is not a legitimate expression for a partition function
of a polymer systen on A because the condition Z(ﬁ]ty’)-{ is violated
when W4 0 . There are different ways tc remedy this. One could divide
by a X-independent ncrmalization factor, as was done in ref. 1. Here
we will describe an alternative which leeds to & computable variant of
the phase cell cluster expansions of Magnen and Seneor 8, 17, 3h. é}iven
a field ¢ on base space with decomposition (5.2}, we define 4>x s0 that.

it vanizhes when X = @ , as follows.

Let us first consider a slightly" simplified Ad* -model whose free
propagator A% is such that it admits representation (5.3) with kernels

W that are simple step functions

A(z,x) = &}er{i}(z} (6.6a)

In this case we set

4’)( (z) = stX Az, %1 (%)
(6.60}

and

‘UX = VQVX-A*

The appropriate definition for the general case will be given below.

The staggered lattice has a hierarchical structure. Since points
X€A are slso cubes in base space, the inclusion relation & is de-
fined and supplies a partisl order relation on A, A subget X€A will
be called € -convex if x € X, 35}( » XEUSY implies u&X .

We define partition functions Z{X|W) for € -convex subsets X of

A first.
Z(xIw) = Scyxvx(cm?,("x"bx*‘*’x) (6.7)

The fields & &nd ¢X are related as abo%re, and the interaction Beltz-—

mannian ‘!' was defined before. We may imagine teking the limit X#A
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through § —convex X. In this way the Greens funetions (6.1) become de-

fined,

The definition of partition functions is extended to arbitrary
finite X as follows. A subset X§A will be celled & -connected if the
following graph is connected: Draw a vertex for every point x € X, and
a directed link from x to y when X€ Aj R 3£Aj‘-f and x ¢ y. Arbitrary
XCA decompose into connected components Xi' They are § -convex. For

general X with & —connected components Xi we set

2 (X ]9, 3 )n TE (o) and Z(X 1w)- Xc/’uvx(¢)¥(xlﬂ,¢+(16!’?8)

It is easy to verify that this is consistent with the above definition
for € -convex sets X. Evidently Z(¢l"4’)-1 ( & = empty set).

According to the discussion in section 3, definition of partition
functions Z{X[Y¥) for arbitrary finite X C A specifies the activities
AP {W) of a polymer system on A such that

Z(xjw)= L TTA(PIV) . (6.9)
XaILP P

Arbitrary finite subsets P of X are admitted as polymers. We imposed
the condition Z(X[0) = 1. It follows that the Greens functions G(z’,...,zn)
have an expansion in sums of products of up to n polymer activities, ep.

eq. (3.4) of section 3.

The terms in this expansicn are given by finite dimensional inte-
grals. But to fulfill also our second requirement that the n-th ternm
in the expansicn is O(‘A""), we will still need to split and reorder

the terms in the expansion.

The activities A(P|W) are represented as sums of terms that are
labelled by collecticns (c1, ey ck) {(k 3 1) of subsets €, of P, called
cores, whose convex hulls Ei are disjoint and have P as their union

L ‘ .

A(‘pl’\l’) - _Z: A(c‘!'-':ck]w) (5.10)

=P

We interpret A(C1 e G 1Y) as sctivities of different polymers thsat
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ccoupy the same set of sites P = ZlEi, cp. end of section 2. A(C1... CQH
will be given by integrals over (up to) n real variables e(x), X€ Ci

if Ty oves Ck together have n points. Inserting this decomposition, one
obtaing a representation of the Greens functions G(!g-.znﬁ as a sum of
products of {up to m) polymer activities A{C1 - Ck\ﬁv). The cores C,
appearing as arguments in such a product will have nonintersecting convex
hulls. We order the terms in the sum in order of total number n of points
in the cores, The sum over polymer-cores Ci with given number n of points
can be written as n-fold integral over the staggered lattice. These
integrals replace the integrals over space time in Feyaman perturbvation
theory and make up the n-th term in the expansion. Step functions are
inserted in the integrands to take care of the restriction that polymer
cores should have disjoint convei hulls. The somewhat technical explana-
tion of the precise way in which the split (6.10) is performed will bve

furnished below.

For the usual choice of propagator 1 , the definition of partition
functions ete. can be retained, but the definition of d)x and '\)x is
adapted as follows,

A subset Y of a layer Aj. of the staggered lattice determines a
subset ¥, of base space. It consists of the union of cubes x € Y. We
write XY(Z) for the characteristic function of this set (XY(Z) =1
for z €Y,, and = 0 otherwise). Using the shorthand notation (5.4) we

define

d(z)= A (2) =2 [ Ay (20900
and

Yx *® “Qx"x"a; (6.6c)
with

:./Qx (z.x') - ’XXnAj(z)'ﬂ(z'*) {or xet\j

The resulting expressions for partition functions Z(X|W} have some subtle
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aspects. The definition of the propagator Yy invelves a characteristic
function {step function) on the staggered latbice. This choice is made
in order to achleve compubability. Cn the other hand, the definition of
$ X involves a characteristic function on base space. This matches with
the locality of the iInteraction d)(z}“' in the original bage space for-

mulation.

In the simplified ')\43" ~model with kernels A that are step funec-
tions (6.62), definitions (6.6c) agree with (6.6b). For this slightly
simplified '}d;l' -model, ocur expansions reduce to & simplified version

of the phase cell cluster expansions of Feldmann, Magnen, Seneor and

Rivasseau q?. Their convergence is known both for the superrenormali-

zable case and for the renormalizeble case.

For the usual choice of free propagator v, A is not exactly a
step function, but .A-(z,x) decays exponentially with the distance of z
from hypercube x¢€ Ai , with decay length on lattice spacing a‘_:l (h). Work
is still in progress ai the time of this writing to extend the results
on convergence to this case. It is clear, however, thal this extension
of convergence proof requires no more than handling tedious technicali-

ties,

The same expansions can be obtained by iterated renormalizaiion
group transformations. In brief, this goes as follows. The effective

vildE

. . . - ) . . .
interacticn Boltzmannisn e 3 , which depends on a field on Aj s 18

obtained in the form of a pclymer representation on A‘&j = A~+...+Aj .
One begins with /\2"5 AN( N in the end}. Through expansich steps
associated with successive renormalizetion group trarsformations, the
polymers and their activitles are constructed by an iterative procedure,
layer by layer. The normalization condition Z{X|0} = 1 is used %o get

rid of finished polymers.

Let me finally give the definition of K(...), assuming eq. (6:6a).
Basically, activities A are given by certain integrals performed with
Gaussian measures. One performs a Taylor expansion with remainder in

the integrands to first order in @ (%), v{x,+). Introduce integer

— o —

variables 4({x}=01 attached to points X€A . Given s, let S-{Xli\ld(’()ﬂ}
Observe that (vg)xw ”SnX and (cbs )xn ¢SAX . Define suxiliary A-depen-

dent Boltzmannians
2, (X v, 6) = & (X[vg,bg)

There will be corresponding partition functions %, and polymer activi-

ties Ay

To construct the polymer activities A associated with the partition
functions 7, one may start with a polymer representation for the Boltz-

mann factors %

2, (Xlv,4) 'xr:';MEB‘(H'""M

Integrate this to get an expression for 24= jr.juv ZA . Bxpressing
the activities A, in terms of the partition functions Z, produces a
representation of the form
A
Ac(‘p[da) - Z Z k AQ(Md""’Mk1¢)
k PeL ‘Mg
Each term depends on A(x) for X€P only. For CCA ,JEA set

a{xy xeC Alxy Xy

B {¥) = { (4an)(x2= 0 othevunse

o otherunte
and

AS -;4 = f" - 134‘4

v
Let T 9 M, and Ce Z:‘Ci . The formula for the desired quantities A

reads

AG G l) = T AA, (M, Mild),

Wi‘un E'.‘ = M{

[The right hand side of this expression vanishes, unless either ( -ZC‘i ,

T, = Mi for a1l i, or k = 1, M, is a monomer, and C = ¢ . In the

1 1

last case it equals 1. This comes about because B, (H lv.‘,,:bY)-S,'“

- ~ - ~ - - - ~ ~ -\ — - -~ - D I U S S
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if M~Y contains an exiremal point, n = No. of peints in M. If scome Mi

are monomers with Ci = @, the truncated expectation value vanishes

unless k = 1.

The restriction in the sum (6.10) to k-tuples Cy -.- Ck

whose convex hulls fill P originates from this fact.]
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