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ABSTRACT
Self-interacting Dark Matter (SIDM) models have the potential to solve the small-scale prob-
lems that arise in the Cold Dark Matter paradigm. Simulations are a powerful tool for studying
SIDM in the context of astrophysics, but it is numerically challenging to study differential cross-
sections that favour small-angle scattering (as in light-mediator models). Here we present a
novel approach to model frequent scattering based on an effective drag force, which we have
implemented into the N-body code Gadget-3. In a range of test problems we demonstrate that
our implementation accurately models frequent scattering. Our implementation can be used to
study differences between SIDM models that predict rare and frequent scattering. We simulate
core formation in isolated dark matter haloes, as well as major mergers of galaxy clusters. We
find that SIDM models with rare and frequent interactions cannot be mapped onto one another.
In particular, frequent interactions are able to produce larger offsets between the distribution
of galaxies and dark matter in equal-mass mergers.

Key words: dark matter – astroparticle physics – galaxies: haloes – methods: numerical

1 INTRODUCTION

Dark Matter (DM) is an essential component of the standard cosmo-
logical model (ΛCDM), which was introduced to explain a variety
of observations, such as the formation of large-scale structure and
the Cosmic Microwave Background. These observations can be
explained remarkably well under the assumption that DM is cold
and collisionless (e.g. Planck Collaboration et al. 2020). Neverthe-
less, on small-scales, i.e. galactic scales, the predictions of ΛCDM
are in tension with observations. The different aspects in which
the predictions deviate from observations on small spatial scales
could present a challenge to our ΛCDM model. Usually, up to five
small-scale problems are considered. These are: the missing satel-
lites problem, the too-big-to-fail problem, the diversity problem, the
core-cusp problem and the plane-of-satellites problem (for a review
see Bullock & Boylan-Kolchin 2017). Not all of them describe ac-
tual problems of ΛCDM and at least the missing satellites can be
explained within the cosmological standard model (e.g. Kim et al.
2018).

★ Preprint number: DESY 20-227, TTK-20-49
† E-mail: moritz.fischer@uni-hamburg.de (UHH)

In order to resolve the small-scale problems, a number of po-
tential solutions have been proposed. Some of them attempt to mit-
igate the tensions by more accurate subgrid models of the baryonic
physics in cosmological simulations. It has been shown by numer-
ous studies that DM cores can be created by feedback processes
such as outflows from supernovae (Read & Gilmore 2005; Gover-
nato et al. 2012; Pontzen & Governato 2012; Di Cintio et al. 2013;
Cintio et al. 2014; Brooks & Zolotov 2014; Pontzen & Governato
2014; Oñorbe et al. 2015; Tollet et al. 2016; Benítez-Llambay et al.
2019) as well as due to black holes (e.g. Martizzi et al. 2013; Silk
2017; Peirani et al. 2017). Other work shows that tensions can be
reduced by improving the modelling of the internal dynamics of
observed galaxies (Oman et al. 2019).

An alternative to these small-scale problems pointing towards
some deficiency in the modelling of baryons is that they are telling us
something fundamental about the nature of DM. DM that is ‘warm’
(Dodelson & Widrow 1994) or ‘fuzzy’ (Hu et al. 2000) would
change the abundance and internal structure of DM haloes. Along
this line, a promising alternative DM model is Self-Interacting Dark
Matter (SIDM) (for a review see Tulin & Yu 2018), which was

© 2020 The Authors
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2 M. S. Fischer et al.

proposed by Spergel & Steinhardt (2000) as a solution to some of
the small-scale problems.1

More precisely, SIDM is a class of many physics models that
all have in common that DM consists of particles and these particles
interact with each other so strongly that the interaction can alter the
distribution of DM on astrophysical scales significantly, e.g. create
density cores in haloes of DM. From observations, the interesting
range of cross-sections divided by DM mass is of the order of 1
cm2 g−1. In the limit of a negligible cross-section, SIDM behaves
the same way as Cold Dark Matter (CDM).

A range of methods have been proposed to study the effects
of SIDM on cosmic structures. The isothermal Jeans approach
(Kaplinghat et al. 2014, 2016) and the gravothermal fluid model
(Gnedin & Ostriker 2001; Balberg & Shapiro 2002; Balberg et al.
2002; Koda & Shapiro 2011; Pollack et al. 2015) are based on
assuming that self-interactions maintain an equilibrium state, in
which the full phase-space information is not required. However,
in many situations DM is neither collisionless nor fully collisional,
which means that the simplifying assumption of local equilibrium
cannot be made. The most general – but also computationally most
expensive – method to study SIDM is to run N-body simulations.
Here, the Vlasov-Poisson equation with a collision term for DM
self-interactions is solved in six-dimensional phase-space. The scat-
tering of the numerical particles is treated analogously to physical
particles. The first such simulation using a Monte-Carlo scheme
for the scattering angle was performed by Burkert (2000). Modern
schemes used for SIDM only differ from this approach in the way
in which scattering probabilities are computed.

The common approach of explicitly simulating individual scat-
tering events leads to complications when the differential cross-
section favours scattering by small angles. In this case it becomes
necessary to simulate large numbers of scattering events that in-
dividually have negligible impact on the phase-space distribution.
For very frequent scattering events, this becomes prohibitively ex-
pensive (Robertson et al. 2017b) because the required time steps
become too small.

Previous attempts to address this problem have relied on a
number of simplifying assumptions. Kahlhoefer et al. (2014) per-
formed simplistic N-body simulations of mergers by using an ex-
ternal gravitational potential for each halo and sampling the DM
and galaxies with test particles. In this setup the effects of frequent
self-interactions were modelled with an effective drag force. Kum-
mer et al. (2019) combined the heat conduction approach from fluid
models with N-body simulations, which assumes that the system
is in local equilibrium such that a well defined temperature exists.
Consequently, this approach is limited in its versatility, and, for
instance, cannot be applied to merging systems.

In this paper we present a novel method designed for the fre-
quent scattering regime, which enables general astrophysical sim-
ulations of frequent self-interacting Dark Matter (fSIDM). Our
method employs a fundamentally different formulation of the col-
lision term compared to the state-of-the-art schemes for rare self-
interacting Dark Matter (rSIDM) and makes use of the fact that the
effect of frequent scattering events in fSIDM can be described by
an effective drag force (Kahlhoefer et al. 2014).

In fSIDM, a DM particle travelling through a space filled with
other DM particles would undergo many small-angle scattering
events. Each scattering event leads to a small change of the veloc-

1 Cold Dark Matter with self-interactions was first proposed by Carlson
et al. (1992), but this was in a different context.

ity, but the cumulative velocity change perpendicular to the initial
direction of motion will tend to average out, with an expectation
value: 〈𝛿𝑣⊥〉 = 0. The expected parallel component of the velocity
change is non-zero (〈𝛿𝑣 ‖〉 ≠ 0), which can be interpreted as a drag
force. At the same time one finds 〈𝛿𝑣2

⊥〉 > 0, which can be regarded
as kinetic heating.

Rare self-interactions have a much larger velocity change per
scattering event and thus cannot, in general, be described by a drag
force. Only when the density is very high, an effective drag can oc-
cur (Kim et al. 2017). As we will explore in this paper, the different
effective descriptions of fSIDM and rSIDM lead to significant dif-
ferences in the predicted DM distributions in astrophysical systems.
In particular systems far away from equilibrium, such as ongoing
major mergers of galaxy clusters respond in different ways to fre-
quent and rare self-interactions. Indeed, we find that the effects for
fSIDM can be substantially larger than those previously found for
rSIDM.

This paper has several aims: First, we present a new numerical
scheme to simulate frequent self-interactions of DM, which is de-
scribed in Section 2. Second, in Section 3 we validate our scheme
and its implementation in the 𝑁-body code Gadget-3 using a num-
ber of test problems. We then study core formation in an isolated
Hernquist halo (see Section 4) and compare the effects of fSIDM
and rSIDM. Finally, we explore differences between fSIDM and
rSIDM in equal-mass mergers. In Section 5, we simulate a merger
of DM haloes with parameters typical of galaxy clusters. In Sec-
tion 6, we elaborate on various technical aspects of our code and
discuss the physical implications of our results. Finally, we sum-
marise and conclude in Section 7. Additional details are provided
in the appendices.

2 NUMERICAL METHOD

In this section, we first describe the key aspects of our method to
simulate frequent scatterings. We then explain its implementation
in the 𝑁-body code Gadget-3, which contains a description of the
parallelisation. Finally, we point out differences between state-of-
the-art schemes for rSIDM and our formulation of fSIDM.

In 𝑁-body codes, the phase-space distribution of DM is repre-
sented by numerical particles. These particles each represent phase-
space patches consisting of many physical particles. They are as-
signed a velocity and to smooth the represented matter distribution
in configuration space a kernel is employed. Such a Lagrangian
description has some advantages over a Eulerian approach, such as
Galilean invariance. But there are also disadvantages, for instance
when it comes to the parallelisation (see below).

Let us first look at the interaction of two phase-space patches,
i.e. two numerical particles, which we assume to have equal mass. If
the scattering is elastic, we can derive the post-scattering velocities
of the particles from energy and momentum conservation: 𝐸 ′

𝑖
+𝐸 ′

𝑗
=

𝐸𝑖 + 𝐸 𝑗 and p′
𝑖
+ p′

𝑗
= p𝑖 + p 𝑗 .

We divide the scattering process into two steps: The first one
applies a drag force and the second one re-adds the energy lost in the
first step. The latter is done in a random direction but perpendicular
to the direction of motion to model kinetic heating. We indicate the
intermediate state between the two steps by the superscript ∗. The
velocity of the two numerical particles can be expressed as follows:

v∗𝑖 = v𝑖 − Δvdrag , v∗𝑗 = v 𝑗 + Δvdrag , (1)

v𝑖 ′ = v∗𝑖 + Δvrand , v 𝑗
′ = v∗𝑗 − Δvrand . (2)

MNRAS 000, 1–17 (2020)



N-body simulations of fSIDM 3

Here Δvdrag denotes the velocity change due to the effective drag
force. Δvrand denotes the velocity which is added to ensure en-
ergy conservation, while momentum conservation is guaranteed as
velocity changes are symmetric for the two particles.

2.1 First Step: Apply drag force

We introduce the relative velocity Δv𝑖 𝑗 = v𝑖 − v 𝑗 and use it to
express the velocity change Δvdrag due to the drag force,

Δvdrag = |Δvdrag | ·
Δv𝑖 𝑗
|Δv𝑖 𝑗 |

. (3)

Next, |Δvdrag | can be written as:

|Δvdrag | =
𝐹drag
𝑚

· Δ𝑡 . (4)

The drag force is given by 𝐹drag and Δ𝑡 denotes the time step.
To derive the drag force, we start from the same assumptions

as made by Kahlhoefer et al. (2014). They derived the deceleration
rate (𝑅dec ≡ 𝑣−1

0 d𝑣 ‖/d𝑡) of an individual physical DM particle
travelling with velocity 𝑣0 through a background density 𝜌 𝑗 and
found:

𝑅dec =
𝜌 𝑗 𝑣0 𝜎T̃

2𝑚𝜒
. (5)

Here 𝑚𝜒 denotes the mass of a DM particle and

𝜎T̃ = 4𝜋
∫ 1

0

d𝜎
dΩcms

(1 − cos 𝜃cms)d cos 𝜃cms (6)

denotes the momentum transfer cross-section.2 In the regime of
isotropic scattering, this definition is a factor of two smaller than
the one commonly used in studies of rSIDM.

To apply this calculation to our simulations we interpret the
background density 𝜌 𝑗 as the density of a single phase-space patch
represented by a numerical particle. Moreover, we need to consider
the scattering of many particles and their total momentum change,
which can be written as:

d𝑝 ‖ =
∫

𝑛𝑖 𝑚𝜒 d𝑣 ‖d𝑉 =

∫
𝜌𝑖 d𝑣 ‖d𝑉 . (7)

Here, the number density of physical DM particles belonging to
phase-space patch 𝑖 is given by 𝑛𝑖 = 𝜌𝑖/𝑚𝜒 , where 𝜌𝑖 denotes the
mass of the numerical particle multiplied by the kernel: 𝜌𝑖 (x) =

𝑚𝑖 ·𝑊 ( |x − xi |, ℎ𝑖) with ℎ𝑖 being the kernel size (see below). The
physical density can then be obtained by summing over all numerical
particles at a given position.

Using the deceleration rate from Eq. (5) we can therefore ex-
press the resulting drag force acting on a phase-space patch as

𝐹drag =
1
2
|Δv𝑖 𝑗 |2

𝜎T̃
𝑚𝜒

∫
𝜌𝑖 𝜌 𝑗 d𝑉 . (8)

Using the kernel 𝑊 ( |x − xi |, ℎ𝑖), we can express the drag force as:

𝐹drag =
1
2
|Δv𝑖 𝑗 |2

𝜎T̃
𝑚𝜒

𝑚𝑖 𝑚 𝑗

·
∫

𝑊 ( |x − x𝑖 |, ℎ𝑖) ·𝑊 ( |x − x 𝑗 |, ℎ 𝑗 ) dx . (9)

2 Note that if the differential cross section is invariant under the exchange
𝜃 → 𝜋 − 𝜃 (as in the case of the scattering of identical particles), this
definition is equivalent to the one advocated by Robertson et al. (2017b);
Kahlhoefer et al. (2017): 𝜎T̃ = 2𝜋

∫ 1
−1

d𝜎
dΩcms

(1 − | cos 𝜃cms |)d cos 𝜃cms.

Note that we do not consider interactions between particles belong-
ing to the same phase-space patch, as they have parallel trajecto-
ries. Furthermore, we assume 𝜎T̃ to be velocity independent in the
present work.

2.2 Second Step: Re-add energy

In the second step, we re-add the energy Δ𝐸 that is lost due to the
drag force. It can be written as:
2Δ𝐸
𝑚

= |Δvdrag |
(
|Δv𝑖 𝑗 | − |Δvdrag |

)
. (10)

To ensure that the local velocity distribution evolves towards thermal
equilibrium, the added velocity Δvrand needs to be perpendicular to
the relative velocity Δv∗. We then find that

|Δvrand | =
√︂

2Δ𝐸
𝑚

. (11)

The direction of Δvrand is chosen randomly in the plane orthogonal
to Δv𝑖 𝑗 . Once the velocity change due to the random component
has been computed, we can update the velocity according to Eq. (2)
and continue with the next particle pair.

Note, that the post-scattered velocities v′ are treated as pre-
scattered velocities v for any subsequent pair computations in the
same time-step. This implies that the result depends on the exact
order in which the particle pairs are considered. However, this is
an effect which is only relevant at the level of individual particle
trajectories. It has no meaning for the statistical properties of the
DM distribution. Treating particle pairs in a different order would
lead to a different N-body representation of the same distribution,
as would different random directions for the re-added energy.

2.3 Kernel

The drag force computation is based on a kernel function repre-
senting the DM density distribution of a numerical particle in con-
figuration space. Here, we will discuss the use of kernel functions,
describe how we compute the overlap and explain how we choose
the kernel size.

The application of kernel functions in the present work is
quite different from the one in smoothed-particle hydrodynamics
(SPH), where they are used to compute derivatives and therefore
need to be differentiable. For the scheme presented here, we only
need to integrate the kernel functions as described in Section 2.1.
We have tried a number of different kernel functions and found
that they all perform similarly well in the context of the first test
problem presented in sec. 3.1. In the end, we choose the spline
kernel introduced by Monaghan & Lattanzio (1985), which is very
popular in SPH. For our studies, we use a scaled version such that
it becomes zero for 𝑟 ≥ ℎ, where ℎ denotes the kernel size:

𝑊 (𝑟, ℎ) =


8

𝜋 ℎ3

[
1 − 6 (𝑟/ℎ)2 (1 − 𝑟/ℎ)

]
if 0 ≤ 𝑟/ℎ < 0.5

16
𝜋ℎ3 [1 − (𝑟/ℎ)]3 if 0.5 ≤ 𝑟/ℎ < 1

0 if 1 ≤ 𝑟/ℎ.
(12)

Using this kernel, we can calculate the overlap Λ𝑖 𝑗 of the
particles 𝑖 and 𝑗 , which corresponds to the integral of Eq. (9):

Λ𝑖 𝑗 =

∫
𝑊 ( |x − x𝑖 |, ℎ𝑖) ·𝑊 ( |x − x 𝑗 |, ℎ 𝑗 ) dx . (13)

Details on how this integral is calculated in practice, are given in
Appendix A.

MNRAS 000, 1–17 (2020)
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The kernel size should be chosen adaptively to reach a high
resolution in regions with a large particle number density. Simulta-
neously, the kernel size needs to be large in low-density regions to
ensure that each particle has a sufficient number of neighbours to
interact with. We use the common method to set the kernel size to a
length such that the kernel includes a given number of neighbouring
particles 𝑁ngb.

2.4 Time step

Our implementation of frequent scattering does not introduce an ad-
ditional time step constraint. This is because for our simulations the
gravitational time step is smaller than what is required for the fre-
quent self-interactions. However, for different applications it is con-
ceivable that the gravitational time step becomes larger than what is
needed for the scattering, for example in the phase of gravothermal
collapse of a DM halo. Let us therefore briefly outline how the time
step requirements depend on the relevant quantities.

For the derivation of a time step criterion one can start from
the drag force:

𝐹drag =
1
2
|Δ𝑣 |2

𝜎T̃
𝑚𝜒

𝑚2 Λ , (14)

where 𝑚 denotes the simulation particle mass and we have dropped
the subscripts 𝑖, 𝑗 . This equation implies a velocity change of

Δ𝑣drag =
𝐹drag
𝑚

Δ𝑡 =
1
2
|Δ𝑣 |2

𝜎T̃
𝑚𝜒

𝑚ΛΔ𝑡 . (15)

For a conservative estimate we replace 𝑚Λ with �̃� , which is in-
versely proportional to 𝑁ngb:

�̃� =
3𝑚

4𝜋 ℎ3 ∼ 𝜌

𝑁ngb
. (16)

The time step should scale with the inverse of the relative velocity
change. Thus, we derive the following proportionality:

1
Δ𝑡

∼ |Δ𝑣 |
𝜎T̃
𝑚𝜒

𝜌

𝑁ngb
. (17)

One finds that a smaller time step is required whenever the
relative velocities, i.e. the velocity dispersion, increases or when the
self-interaction cross-section becomes large. Moreover, a smaller
time step is reasonable in dense regions. From Eq. (17), we also
obtain a dependence on the number of neighbours, choosing a larger
value can relax the time step constraint.

2.5 Implementation in Gadget-3

We implement the DM self-interactions in Gadget-3, which is an
updated version of the N-body code Gadget-2 (Springel 2005).3
Here, we will describe our implementation in the simulation code.
We begin by describing how to find pairs of particles that should
interact. Then, we comment on adaptive time-stepping. Lastly, we
explain how we deal with the largest challenge posed by the paral-
lelisation.

3 Recently, the latest version Gadget-4 has been published (Springel et al.
2020).

2.5.1 How to find interacting particles?

In Gadget-3 a tree structure is used in the gravity calculation,
and we use this same tree to find neighbouring particles that will
scatter with one another. Defining the distance between particles
𝑖 and 𝑗 as 𝑑𝑖 𝑗 , we use the tree to find all particle pairs for which
𝑑𝑖 𝑗 < ℎ𝑖 + ℎ 𝑗 . For all pairs of particles that fulfil this relation, we
compute the effect of the frequent self-interactions and apply the
velocity changes. Note, that for particles separated by more than the
sum of their kernel sizes the overlap expressed by Eq. 13 vanishes.

2.5.2 Adaptive time-stepping

Gadget-3 uses an adaptive time-stepping scheme, where individual
time steps are assigned to each particles, with a power-of-two hierar-
chy of time-step lengths. Our scheme for frequent self-interactions
is not based on individual particles, but on pairs of particles. Con-
sequently, we need to compute a time step for a pair.

The adaptive time-stepping scheme assigns particles to time
step bins, which leads to active and passive particles. The details can
be found in the Gadget-2 paper (Springel 2005). In consequence,
a pair consists of one active particle and one which is active or
passive. For an active-active-pair, the time step of the pair is given
by

Δ𝑡 =
min(Δ𝑡𝑖 ,Δ𝑡 𝑗 )

2
, (18)

where we divide by two because active-active pairs are considered
twice per time step (i.e. particle 𝑖 finds particle 𝑗 as a neighbour and
vice versa). In the active-passive case, the pair is considered only
once per time step. Assuming that the active particle has the index
𝑖, the time-step can be written as:

Δ𝑡 = Δ𝑡𝑖 . (19)

We wish to point out that the time step of the active particle is always
shorter than that of the passive one. The time step Δ𝑡 computed as
described above is used to compute the change in velocity due to
the drag force using Eq. (4).

2.5.3 Parallelisation

The parallelisation of our scheme for frequent self-interactions
is more complicated than for classical gravity or hydrodynamic
schemes. The difficulties arise from the fact that one cannot treat
the velocity change due to the particle-particle self-interactions cu-
mulatively. Rather the computation of a scattering event requires
the information from previous scatterings. Consequently, we can-
not send one particle to multiple processes (execution instances of a
computer program) simultaneously to make sure that each particle
is only used by one process at a time. In addition, when sending
particles to other processes it needs to be ensured that they are not
needed locally (by the sending process) to scatter with particles
received from other processes. This is ensured by allowing only
half of the processes to send particles at a time, while the other
half only receives particles. Consequently, only the processes that
receive particles compute the scattering, while the other half of the
processes wait.

The communication between the processes is done in multiple
sub-steps. We allow every process to communicate with all the other
processes, but only one per sub-step. Given 𝑁 processes we have
𝐵 = 𝑁 − 1 sub-steps. In each of these sub-steps, we create pairs
of processes and the two processes of a pair communicate with

MNRAS 000, 1–17 (2020)



N-body simulations of fSIDM 5

each other, i.e. exchange particle data. The pairs of a sub-step do
not have common members, i.e. they are disjoint sets. In practice,
we have 2𝐵 sub-steps, i.e. every pair is considered twice. The first
𝐵 sub-steps are used for sending particles to the process of a pair
that has the larger ID (a unique number for identification) and in
the second 𝐵 sub-steps data is sent to the process with the smaller
ID. Theoretically, sending particles to only one process of a pair
could be enough, i.e. having 𝐵 sub-steps. But in practice, it is more
complicated than the exchange in both directions due to the use
of adaptive time stepping. The local process 𝑝 given a sub-step 𝑏

communicates with 𝑐 = 𝑝 ⊕ 𝑏. Here, 𝑏 ∈ [1, 𝐵] and ⊕ denotes
the XOR operator. This scheme has the advantage that it can be
easily implemented. However, it does not give the best performance
theoretically possible because half of the processes are waiting while
the non-local scattering is computed and also because symmetries
are not exploited, i.e. each process pair is considered twice per
time step. Nevertheless, the parallelisation leads to a large speed-
up of the computations and thus allows us to run reasonably large
simulations.

This parallelisation scheme can also be used for infrequent
large-angle scattering. It allows overcoming the problem of ‘bad
scatterings’ observed by Robertson et al. (2017a). Our implemen-
tation of rare scattering is described in Appendix B.

2.6 Differences to numerical modelling of infrequent
scattering

To conclude the presentation of our numerical method let us discuss
the differences to the common Monte-Carlo scheme for large-angle
scattering. The modelling of such infrequent scattering events with
the N-body method has similarities to our approach described above
in the sense that both methods are based on the same numerical
representation, but they are not identical. In the following, we point
out differences referring to the scheme used by Rocha et al. (2013).

First of all, the scheme for infrequent scattering computes a
probability that two particles with a separation smaller than the
kernel size scatter. This is in contrast to the presented scheme for
frequent interactions, where a drag force acts on all particle pairs
with a sufficiently small separation, i.e. overlapping kernel func-
tions.

Furthermore, the two schemes differ in the magnitude and the
direction of the velocity change. For the infrequent scattering the
post scattering velocity of particle 1 interacting with particle 2 can
be expressed as

v1
′ = v1 − Δv + |Δv| · e𝑟 with Δv =

v1 − v2
2

, (20)

where e𝑟 is a random direction. The corresponding equation for the
frequent scattering scheme is given by:

v1
′ = v1 − Δvdrag + |Δvrand | · e 𝑓 , (21)

where e 𝑓 denotes a random direction perpendicular to Δvdrag. Cru-
cially, |Δvdrag |, |Δvrand | � |Δv|, i.e. the velocity of the scattering
particles change only slightly in fSIDM, while the differences can
be of order unity in rSIDM.

Besides, the rSIDM scheme provides a more general descrip-
tion of self-interactions and is also capable of describing highly
anisotropic cross-sections, when e𝑟 is chosen according to the dif-
ferential cross-section. But for those cross-sections favouring small-
angle scattering, it would require a very large number of individual
scattering events, which would cause a problem in terms of run
time.

3 VERIFICATION TESTS

To test that our numerical scheme works properly and that the im-
plementation accurately models frequent self-interactions, we use
several test-problems, which we present in this section. The first
problems study purely self-interactions. In contrast, the last prob-
lem, where we simulate an isolated DM halo, is motivated by astro-
physics and includes gravity.

3.1 Deceleration Problems

In our first test problem we study a particle travelling through a
background density, which is sampled by particles at rest. Here, we
only consider the drag force and neglect the random component.
Due to the drag force the test particle, which has a non-zero initial
velocity, is decelerated by the background particles. We compare
the trajectory of the test particle to the exact solution, obtained from

¥𝑥 = −1
2
¤𝑥2 𝜌

𝜎T̃
𝑚𝜒

. (22)

We make use of two different initial conditions. First, we con-
sider a constant density and second, we introduce a density gradient.
For both we use 104 particles. They have a total mass of 1010 M� .
A self-interaction cross-section of 𝜎T̃/𝑚 = 200 cm2 g−1 is used for
the test simulations and the time step is set to Δ𝑡 = 0.02 Gyr. Be-
sides, 𝑁ngb = 64 is used to determine the size of the spline kernel,
which is used to compute the drag force.

Without density gradient

First, we choose a constant background density with an average
density of 4.46 · 107 M� kpc−3. In Fig. 1 (upper panel) we show
the velocity (blue) and position (black) of the test particle. For the
velocity we find only minor deviations which should be negligible.
For the particle position, the deviation is the integral of the minor
deviations in the velocity. Here we find a larger deviation at the
end of the simulations. However, we do not expect this numerical
error to be of a problematic size. Later we comment on the accuracy
and argue that we expect a higher accuracy for typical astrophysical
simulations.

With density gradient

Second, we choose a linear background density. The density is zero
at the initial location of the test particle and increases linearly along
its path. The simulation results are shown in Fig. 1 (lower panel).
The exact solution is computed numerically using a Runge–Kutta
fourth–order method. Compared to the problem without density
gradient (Fig. 1, upper panel) we find even smaller deviations from
the exact solution.

It is worth mentioning that in a typical astrophysical simulation
of fSIDM the relevant self-interaction cross-sections are smaller
than the one simulated here by at least one order of magnitude, while
the typical DM densities are comparable. Moreover, in astrophysical
simulations the time steps will usually be much smaller because
of the gravity constraints. Both will increase the accuracy of the
modelling of frequent interactions.
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Figure 1. A particle is travelling through a constant background density (up-
per panel) or a linear background density with positive gradient (lower panel)
and is decelerated through DM self-interactions. A velocity-independent
cross-section of �T̃/� = 200 cm2 g−1 is applied. The desired number of
neighbours is set to 64.

3.2 Thermalisation Problem

In this test problem, we study a periodic box that contains randomly
distributed particles. Initially, all particles have the same absolute
velocity but with random orientation. The system is not in equilib-
rium but is expected to evolve towards an equilibrium state. The
velocity distribution should become Maxwellian due to the self-
interactions.

For the simulation we used 104 particles representing a total
mass of 1010 M� within a cubic box of a side length of 10 kpc, the
corresponding density is 107 M� kpc−3. Initially, the absolute ve-
locity of all particles is set to 2 kpc Gyr−1. We use a self-interaction
cross-section of �T̃/� = 10 cm2 g−1, a time step of Δ� = 0.012 Gyr
and �ngb = 64.

In Fig. 2 we show our results for this test problem. We simu-
lated the test problem with rare and frequent self-interactions. Our
implementation of rare scattering is described in appendix B. In-
deed, for both fSIDM and rSIDM we ultimately obtain a Maxwellian
velocity distribution which is stable over time (lower panel). How-
ever, the shapes of the intermediate velocity distributions (upper and
middle panels) are quite different for the two cases. The velocity
distribution peak of rare self-interactions at 2 kpc Gyr−1 is mainly

Figure 2. The velocity distributions for the thermalisation problem are
shown. The initial distribution is given in black. The evolution for rare (red)
and frequent (green) self-interactions is shown for � = 1 Gyr (upper panel),
10 Gyr (middle panle) and 50 Gyr (lower panel). The plots demonstrate that
the system evolves towards a Maxwell-Boltzmann distribution. The expected
Maxwellian is plotted as well. In total 10000 particles were simulated with
a cross-section of �T̃/� = 10 cm2 g−1.

due to unscattered particles. The sharp cut at large velocities after 1
Gyr (upper panel) can be explained by the maximum velocity that
a particle can gain due to a single scattering event, �max =

√
2 �ini.

The distribution function can become non-zero beyond that limit
only if particles scatter multiple times. The middle panel reveals
that rare self-interactions lead to more particles in the low-velocity
regime, whereas frequent interactions produce more high-velocity
particles.
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3.3 Angular Deflection Problem

Our last test problem that purely studies the frequent self-
interactions deals with a particle travelling through a constant back-
ground density. Along its path, the particle undergoes many small-
angle scattering events and gets deflected. We measure the total
deflection angle of many particles and compare them to the proba-
bility density function of Molière’s theory (Moliere 1948)4.

We are simulating 8000 test particles with an additional 92 000
particles to model the density background. In total the simula-
tion contains a mass of 1010 M� , which resides in a cube with
a side length of 14 kpc. This implies a background density of
� = 3.353 · 106 M� kpc−3. The initial velocity of the test parti-
cles is �init = 2.0 kpc/Gyr, while the background particles are at
rest. For the simulation we use a cross-section of �T̃ = 10 cm2 g−1,
a time step of Δ� = 0.001 Gyr and �ngb = 64. The deflection angle
� of the test particles is defined as the angle between the initial
and the current velocity vectors in the centre-of-mass system of the
scattering physical particles, i.e. where they have the initial velocity
of �init/2. The details about the derivation of the prediction from
Molière’s theory can be found in Appendix C.

In Fig. 3 we show our results for the distribution of the deflec-
tion angles. The left panel shows the distribution after the particles
have travelled 0.01 Gyr within the target and the right one is for
� = 0.1 Gyr. The plots demonstrate that our simulation agrees well
with Molière’s theory. From the test problems studied so far, we
can conclude that we are able to model frequent self-interactions
accurately.

3.4 NFW Halo

To test our scheme for frequent self-interactions in an astrophysical
context including gravity we simulate an isolated DM halo. As ini-
tial condition we choose a halo with a Navarro-Frenk-White (NFW)
profile (Navarro et al. 1996) with �vir = 1015 M� , �s = 300 kpc and
�s = 7.25 ·105 M� kpc−3. The NFW halo is sampled up to the virial
radius (�vir = 1626 kpc). We integrate the Jeans equation to obtain
the velocity dispersion. To sample the initial velocities, we locally
approximate the velocity distribution by a Maxwell-Boltzmann dis-
tribution, i.e. we draw the velocity components randomly from a
Gaussian. The gravitational softening length is set to � = 0.56 kpc
and �ngb = 64 is used. In appendix D we demonstrate the stability
of our initial conditions for a resolution of � = 105 particles when
evolved without self-interactions.

First, we study the energy conservation for three different cross-
sections using a resolution of � = 105 particles. For this purpose
we compute the total energy of the entire halo and divide it by the
absolute value of the initial total energy. Our results are shown in
Fig. 4. The total energy is not perfectly conserved as the formulation
of the Poisson solver does not explicitly conserve energy. This is in
contrast to the formulation of frequent self-interactions, which does
conserve energy explicitly. Nevertheless, the deviation from the
initial energy is small enough that we can consider it as conserved
for our purpose of astrophysical simulations.

Finally, we investigate the convergence of our numerical
scheme. We simulate the DM halo choosing different resolutions
and a self-interaction cross-section of �T̃/� = 10 cm2 g−1. In Fig. 5

4 For a paper written in English on Molière’s theory we refer to Voskresen-
skaya & Tarasov (2014)

Figure 3. The distribution of the total deflection angle after 0.01 Gyr (upper
panel) and 0.1 Gyr (lower panel). The self-interaction cross-section was
chosen as �T̃/� = 10 cm2 g−1. A number of 8000 test particles were used
and in total 100 000 particles were simulated.

Figure 4. We show the evolution of the total energy for simulations of an
initial NFW halo evolved with three different cross-sections. The black curve
corresponds to �T̃/� = 0 cm2 g−1, which is identical to the collisionless
CDM.
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Figure 5. Density profiles for an initial NFW halo simulated with a cross-
section of �T̃/� = 10 cm2 g−1 are shown. Different resolutions were chosen
to demonstrate convergence. The upper panel gives the initial conditions,
the middle panel gives the DM halo after 1.0 Gyr and the lower panel for
4.0 Gyr. For comparison, we show the analytical NFW profile in black.

we show our results, i.e. density profiles at several times for differ-
ent resolutions. The upper panel represents the initial conditions,
the middle and lower panel are for � = 1 Gyr and � = 4 Gyr. We
can see that the density profile converges for increasing resolution,
which confirms that our scheme is suitable for the application to
astrophysical problems.

Fig. 5 shows that initially a constant-density core forms,
whereas at later times the central density increases. This is because
the self-interactions lead to a transport of energy in the outward
direction. This energy loss causes the core to shrink which, even-

tually, leads to a gravothermal core-collapse like in rSIDM (e.g.
Burkert 2000; Kochanek & White 2000; Koda & Shapiro 2011).
This process will be investigated in more detail in the following
section.

4 CORE-SIZE OF DARK MATTER HALOES

In this section, we study the formation and evolution of a DM core
in an isolated halo and compare frequent and rare self-interactions.
We first describe the simulation setup, then explain how we measure
the core-size and finally present our results.

As initial conditions, we take similar ones to Robertson et al.
(2017b). The initial density follows a Hernquist profile (Hernquist
1990) with a mass of � = 2.46 · 1014 M� and a scale radius of
�� = 279 kpc. We sample the halo up to � = 400 �� using � = 107

DM particles.
We explore the same cross-sections as in (Robert-

son et al. 2017b, Fig. 1), chosen as �̂ ∈ {0, 1, 3, 10}
with �̂ = (2�T̃/�) (�/�2

� ), which implies �T̃/� ∈
{0, 0.227, 0.757, 2.272, 7.574} [cm2 g−1].5 We simulate these
cross-sections both as frequent and rare scattering using our re-
spective implementation in Gadget-3, assuming the rare scattering
to be isotropic. This approach allows us to study differences between
fSIDM and rSIDM in the context of core formation. We conduct our
simulations with a gravitational softening length of � = 0.56 kpc
and use �ngb = 64 for the scattering.

In order to measure core-sizes, we follow Robertson et al.
(2017b), i.e. we fit a cored Hernquist profile to the radial density
distribution,

�(�) = �

2�
��

(�� + �
�
core)1/�

1

(� + ��)3
. (23)

As free parameters we take the core radius �core, the scale radius ��
and the mass � , while � is kept fixed to � = 4. We then determine
the number of particles �� in several radial bins with boundaries ��
and ��+1 and compare this number to the expected value�� according
to the cored density profile:

�� =
4�
�

∫ ��+1

��

�2�(�) d� , (24)

where � denotes the mass of a simulation particle. To fit the density
profile we maximise a likelihood based on Poisson statistics,

L =
∏
�

�
��

�
�−��

��!
. (25)

In Fig. 6 we show the evolution of the core-size over a time
of 7.2 Gyr. Within the studied range of �̂, we find the time it
takes for the core to grow and collapse to decrease with increasing
self-interaction cross-section. Moreover, the core-formation hap-
pens much faster than the core-collapse. We find that the maximum
core-size is nearly independent of the self-interaction cross-section
for both rSIDM and fSIDM, in agreement with earlier findings for
rare self-interactions, (e.g. Kochanek & White 2000).

When comparing frequent and rare self-interactions with the
same momentum transfer cross-section, the evolution of fSIDM is
a bit faster, i.e. maximum core-size is reached earlier. Nevertheless,

5 We use �T̃ as defined in Kahlhoefer et al. (2014), which is a factor of
two smaller in the regime of isotropic scattering compared to the commonly
used values given in terms of �T.
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Figure 6. The evolution of the core-size for an isolated DM halo is shown.
The halo has initially the shape of an Hernquist profile. The halo was simu-
lated using several cross-sections for frequent and rare self-interacting DM.
The errors correspond to the 16% and 84% levels. They were computed
using the Markov chain Monte Carlo sampling implementation of emcee
(Foreman-Mackey et al. 2013).

there is no big difference between frequent and rare scattering. The
largest deviation is found at late times for a cross-section of �̂ = 3.

In comparison to (Robertson et al. 2017b, Fig. 1) we find a
smaller maximum core-size, but overall a similar evolution. The
differences may be due to slight differences in the initial conditions.
Here we approximated the local velocity distribution of the halo
by a Maxwellian to sample the initial velocities. As one can see in
Fig. 6, at the very beginning of the simulation a core forms. This is
because the initial conditions are not in perfect equilibrium. Even
for a CDM run with flawless initial conditions, the core formation
can not be avoided completely as numerical effects lead to a small
core.

We also note that core-collapse happens much faster in isolated
DM haloes than in cosmological simulations, where the core is
heated up through late-time infall.

5 EQUAL-MASS MERGER

In this section we study the evolution of an equal-mass merger
using frequent and isotropic rare scattering. We investigate several
cross-sections and compare the two types of scattering. This is
interesting because merging systems allow to constrain DM self-
interactions. The scattering does lead to drag-like behaviour under
given circumstances. This decelerates the DM component but does
not affect the galaxies6 and thus leads to an offset between the two.
There have been several studies on merging systems with DM self-
interactions in the literature (e.g. Randall et al. 2008; Kahlhoefer
et al. 2015; Robertson et al. 2017a) as well as discussions on the
size of observed offsets (e.g. Bradač et al. 2008; Dawson et al. 2012;
Dawson 2013; Jee et al. 2015; Harvey et al. 2017; Peel et al. 2017;
Taylor et al. 2017; Wittman et al. 2018). There is also an extensive
literature on how the self-interactions affect the merger evolution

6 Note that we treat galaxies as collisionless test particles in this work as is
mostly done in the literature.

and under which conditions the picture of a drag force is appropriate
(e.g. Markevitch et al. 2004; Kahlhoefer et al. 2014; Harvey et al.
2014; Kim et al. 2017; Robertson et al. 2017b). As the drag-like
behaviour is expected to depend on the shape of the differential
cross-section, merging systems potentially allow for constraining
not only the strength of the self-interactions but also its angular
dependence.

We start with a description of our simulation set-up and then
explain how we analyse the simulation. Finally, we present and
interpret our findings, in particular how the merger leads to offsets
between DM and galaxies. A schematic illustration of the merger
is shown in Fig. 7. The various details shown in this figure will be
discussed in the remainder of this section.

Our initial conditions are chosen similar to the ones of Kim
et al. (2017). We set up two NFW haloes, each with a virial mass
of �vir = 1015 M� . They are separated by 4000 kpc and move
initially with a relative velocity of 1000 km/s along the merger axis
towards each other, such that the impact parameter of the merger is
zero. The two DM haloes are described by the same parameters but
sampled independently. The concentration parameter is � = 3.3 and
the scale radius is �s = 630 kpc. We sample each halo up to a radius
of 2667 kpc using 6 · 106 DM particles for each halo with a particle
mass of �DM = 2 · 108 M� .

In addition we include particles representing galaxies in our
simulations. Each halo has 3 · 104 of these particles with a mass of
�Gal = 8 ·108 M� each. These particles do not represent individual
galaxies (they are more abundant than galaxies in clusters) but they
can be seen as a “smoothed out” galaxy distribution. As in Kim
et al. (2017), we place a particle at the centre of each halo to model
the brightest cluster galaxy (BCG). These particles have a mass of
�BCG = 7 ·1010 M� . This is a very idealised treatment of the BCGs
as we neglect their extension. In appendix D we demonstrate that
the haloes used for the merger simulation are stable when simulated
in isolation without self-scattering.

We simulate the same self-interaction cross-sections as
in Kim et al. (2017) plus some additional ones, i.e.
�T̃/� ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.5, 5.0}[cm2 g−1]. In practice
we match rare and frequent cross-section using �T̃ = �/2 as ap-
propriate for isotropic scattering (see appendix B).7 For the gravi-
tational softening length we use a value of � = 0.56 kpc and employ
�ngb = 64 for the scattering.

5.1 Method of Analysis

Before discussing our results in detail, let us first give an overview
of the various figures that we have produced and the methods used
to obtain them. To analyse the simulations we find the peaks of
the DM and galactic component (see Fig. 8). Several methods for
peak finding can be found in the literature. In this work, we follow
the algorithm described in Kim et al. (2017), i.e. we use a kernel
density estimate (KDE) with a 2D Gaussian smoothing kernel with
a width of 100 kpc, while we project along one axis perpendicular
to the merger axis. As we only study simulations with an impact
parameter equal to zero, we perform the peak search only along
the merger axis, i.e. we take the positions with maximum density
according to the KDE. In order to obtain uncertainties on the peak
position, we bootstrap the galaxy distribution 1000 times and the
much better sampled DM component 10 times.

7 This definition differs from the one in Kim et al. (2017), where �T = �

is used.
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Figure 7. The evolution of an equal-mass galaxy cluster merger for frequent
and rare DM self-interactions is illustrated. We only illustrate the DM (grey
circles) and Galaxy (black spirals) positions as well as their direction of
motion indicated by the arrows. The shape of the DM haloes is not taken
into account. Rare scattering is shown on the left side and frequent scattering
on the right. The time propagates from the top to the bottom. The evolution
we illustrate here is similar to the one we found for a cross-section of
�T̃/� = 1.5 cm2 g−1, but exaggerated. At a) we show the initial state and
at b) we illustrate the infall-phase. The first pericentre passage is displayed
in c) and d) gives a time a little bit later. This is the first time where we
find a significant difference between rSIDM and fSIDM. For the frequent
interactions, the DM is closer to barycentre, but the galaxies behave similarly
implying larger offsets for fSIDM. About the first apocentre passage both
components reach a larger distance from barycentre if the self-interactions
are rare. This is illustrated in e). In f), at a later time we find larger offsets for
fSIDM, although the DM component is closer to barycentre than in rSIDM.
Finally, we illustrate the second pericentre in g).

We then compute offsets between the components as the dis-
tance between their density peaks. Therefore we define the “half”-
separation between two peaks of the same species, i.e. the two DM
peaks, the two galaxy peaks or the two BCGs.

� :=
|1 − 0 |

2
(26)

where x is the x coordinate with respect to barycentre. The offsets
shown in Fig. 9 are the mean offset of the two haloes, with positive
values implying that the galaxies are closer to the barycentre than
the DM and negative values corresponding to the opposite case. In
Fig. 10 we show the maximum positive offset as function of the
self-interaction cross-section. Furthermore, we compute how much
the peaks for fSIDM and rSIDM deviate from each other (Fig. 11).
For this purpose we define a quantity � that is based on the mean of
the two haloes,

� :=
|r,0 − r,1 | − |f,0 − f,1 |

2
. (27)

Here,  denotes the peak position of the DM haloes (0 and 1) for rare
(r) and frequent (f) self-interactions. A positive value of � implies
that the fSIDM peaks are closer to barycentre than the rSIDM peaks
and vice versa.

When the peak separation is small the peak identification be-
comes inaccurate and biased towards the barycentre (as can be seen
in Fig. 8). This is why we do not show offsets and peak deviation
for separations less than the scale radius (�� = 630 kpc). We also do
not consider these values for the subsequent analysis.

5.2 Results

The upper panel of Fig. 8 shows how the density peaks of all compo-
nents evolve with time for frequent scatterings with a cross-section
�T̃/� = 1.5 cm2 g−1. The DM component coalesces earlier than
the galactic component due to the self-interactions. Similar to Kim
et al. (2017), we find long-lasting oscillations of the BCG particles.
The same plot for several other runs can be found in appendix E.
From these plots, we can see that the galaxies and BCGs behave
differently, depending on the type of DM self-interaction. An exag-
gerated illustration of the merger evolution for rSIDM and fSIDM
inspired by simulations with a cross-section of�T̃/� = 1.5 cm2 g−1

is shown in Fig. 7.
In general, we find that larger cross-sections lead to shorter

merger times for both rSIDM and fSIDM. This is shown in the
lower panel of Fig. 8, where we show the evolution of the DM peak
position for selected merger simulations. Furthermore, the distance
of the DM peaks at first apocentre passage shrinks with increasing
cross-section. The evolution of the DM peaks for rSIDM and fSIDM
is similar but not identical. For the shown simulations the largest
difference occurs in our run with a self-interaction cross-section
of �T̃/� = 1.5 cm2 g−1. For large cross-sections the differences
vanish since the two haloes coalesce on contact.

Next, we study galaxy–DM and BCG–DM offsets for fSIDM
and rSIDM, which are shown in Fig. 9. In general, we find the
offsets to be larger for fSIDM when comparing to the same rSIDM
momentum transfer cross-section. Also, the offsets of the BCG
particles are larger than the offsets of the galactic component. This
is probably a consequence of modelling them as point-like instead
of treating them as extended objects. For �T̃/� = 1.5 cm2 g−1

the offsets are zero when the galaxies are roughly at apocentre,
but before and afterwards they are non-zero with different signs.
Compared to the first apocentre passage the point in time when
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the sign of the offsets changes becomes earlier with decreasing
cross-section. For the early offsets, the DM component is closer to
barycentre (i.e. the offset is negative), but for the late offsets, the
DM is more distant from the barycentre than the galaxies (i.e. the
offset becomes positive). It is worth mentioning that the difference
between fSIDM and rSIDM in the offsets shortly after the first
pericentre passage are mainly due to different peak positions of the
DM as we explain below. But for the later offsets it is the other
way around because then the offsets are caused by differences in
the galaxy peak positions. Note, here we only considered offsets
before the second pericentre passage. For even later offsets the sign
potentially changes again, but typically the offsets are smaller.

In the literature, the early offsets, e.g. for the Bullet Cluster,
have been studied, which arise directly after the first pericentre pas-
sage. In contrast, we will mainly focus on a later stage of the merger
evolution. In Fig. 10 we compare the maximum size of the offsets
in the stage where the galaxies are closer to barycentre. We find the
largest offset for fSIDM in the simulation with �T̃/� = 1.0 cm2 g−1

and for rSIDM in the simulation with �T̃/� = 1.5 cm2 g−1. The
largest fSIDM offset is more than a factor of two larger than the
largest rSIDM offset. In other words, frequent self-interactions
can cause much larger offsets (when the galaxies are closer to
barycentre) than rare self-interactions. For smaller cross-sections
(�T̃/� � 1.0 cm2 g−1), the maximum offset decreases, but there
are still difference of more than a factor of two between fSIDM
and rSIDM. The larger offsets of fSIDM at small cross-sections
(�T̃/� ∼ 0.5 cm2 g−1) are particularly interesting as they could
potentially be observable.

For large cross-sections (�T̃/� � 1.5 cm2 g−1), the maximum
offsets decrease with increasing cross-section and so does the dif-
ference between simulations of rare and frequent scattering. For
�T̃/� � 5.0 cm2 g−1 the DM haloes coalescence on contact and
the type of offsets we discuss here no longer occurs. We note that
measuring offsets with our peak finding method could be inaccurate
for some cross-sections, i.e. for �T̃/� ∈ {2.0, 2.5, 3.5}[cm2 g−1],
since we neglect the offsets for small halo separations as the peaks
are biased towards barycentre.

Finally, we compare the peak positions in rSIDM and fSIDM.
In Fig. 11 we show the quantity � defined in Eq. 27 and find that �
increases with �T̃/� in the regime of small cross-sections. Of par-
ticular interest is the evolution between the first pericentre passage
and the second one, which occurs ∼ 1.9 Gyr after the first one for
�T̃/� = 0.5 cm2/g and for larger cross-sections earlier. The DM
peaks of the fSIDM run are found to be closer to the barycentre
than for the corresponding rSIDM run, corresponding to � > 0
(solid lines). The same is true for the galaxies (dashed lines) and
the BCGs (dotted lines). Shortly after the pericentre passage, � is
smaller for the galaxies than for the DM component because only
the DM and not the galaxies are affected by the self-interactions.
However, the deviation of the galaxy peaks grows subsequently and
becomes larger than the one for DM well before the first apocentre
(�T̃/� = 0.5 cm2 g−1) or at a somewhat later time around the first
apocentre (�T̃/� = 1.5 cm2 g−1). This is a consequence of how the
galaxies respond to differences in the DM distribution via gravita-
tional interaction. This response leads to a greater difference in the
galaxy distribution and creates the larger offsets for frequent scat-
tering compared to rare scattering shown in Fig. 10. In appendix F,
we provide further details on this amplification mechanism.

Overall, we found that the phenomenology of fSIDM differs
significantly from the one of rSIDM. In particular, frequent self-
interactions can lead to much larger offsets than rare scattering.

Figure 8. Upper panel: The density peak distance to barycenter for various
components of a merger is shown as a function of time. Two NFW haloes
were merged using frequent self-interacting DM with a cross-section of
�T̃/� = 1.5 cm2 g−1. We measure the density peak for each of the two
haloes. We do this separately for the DM and galaxies. Each halo contains
one particle to model the BCGs. For the plot we simply use the position of
that particle. The plot shows the distance to the barycentre along the merger
axis. Lower panel: The plot is similar to the upper one. Here, we show
the DM component only, but for several merger simulations with different
self-interaction cross sections.

Consequently, it should be possible at least in principle to distin-
guish between the two types of DM self-interactions using detailed
observations of merging galaxy clusters.

6 DISCUSSION

In this section, we first discuss technical issues concerning the nu-
merical scheme, its implementation and the analysis of our simula-
tion. Then we elaborate on the physical implications of our results.

6.1 Technical Aspects

From a technical perspective, there are several interesting direc-
tions for future extensions and improvements. An obvious next step
would be to include an angular dependence in the rSIDM scheme

MNRAS 000, 1–17 (2020)
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Figure 9. Offsets between DM and galaxies (upper panels) or BCGs (lower panels) are shown as function of time. Here we measure the time with respect to the
first pericentre passage (�fpc = 1.87 Gyr). We display results for several self-interaction cross-sections. The left panels give the offsets for rare self-interactions
and the right panels for frequent scattering. The galaxy offsets before the first pericentre passage are mainly due to the uncertainty in the galaxy peaks (compare
upper and lower panels).

(Robertson et al. 2017b). It should then be possible to simulate arbi-
trary differential cross-sections, including those that have significant
scattering probabilities in both the rare and the frequent scattering
regime. For this purpose one could for example introduce a cut-off
angle that distinguishes between the two cases, such that small-
angle scattering is treated in the frequent regime while large-angle
scattering is simulated explicitly in the scheme for rare scattering.
To validate this approach one needs to confirm that results do not
depend on the precise value of the cut-off angle.

Another important extension will be to model velocity-
dependent differential cross-sections, which appear to be preferred
by observational data (e.g. Sagunski et al. 2020; Correa 2020) and
have been investigated in several �-body studies (e.g. Colin et al.
2002; Vogelsberger et al. 2012; Banerjee et al. 2020). In fact such
a velocity dependence is very natural from the particle physics per-
spective, in particular for frequent DM scatterings induced by light
mediator exchange, see e.g. Buckley & Fox (2010); Loeb & Weiner
(2011); Bringmann et al. (2017). Such a velocity dependence can be
easily implemented in our code, for both rSIDM as well as fSIDM.
Furthermore, one could abandon the assumption that scattering is

elastic and also model dissipative scattering processes within the
N-body method (Huo et al. 2020).

In addition to the scattering process, one could improve the
treatment of the galactic component in our simulations. In the
present study we have treated galaxies as collisionless particles,
which may be inaccurate to some extent (Kummer et al. 2018).
Moreover, galaxies are extended objects and their size may be too
large to be approximated by point masses. Especially the trajectory
of BCGs could be affected in relevant ways.

As mentioned in the description of the implementation, the
parallelisation of the frequent scattering is presently not optimal.
One can envision a better scheme that exploits symmetries and does
not cause large latency times, even though such a scheme could
not make use of the infrastructure (e.g. tree algorithm, domain
decomposition) that Gadget-3 provides. However, for our purpose
the current parallelisation is sufficient to complete our simulations in
reasonable times. For example, consider the simulations presented
in sec. 5, which were executed using MPI parallelisation only on
64 logical cores. The computation of the frequent scattering took
∼ 80% of the computing time, out of which a quarter was spent on

MNRAS 000, 1–17 (2020)



N-body simulations of fSIDM 13

Figure 10. We show the maximum offset as function of self-interaction
cross-section. We consider the distance between DM peaks and the peak
of the galactic component or the BCG as shown in Fig. 9. The offsets
are shown for both, frequent and rare self-interactions. It should be men-
tioned that we only consider offsets where the DM component is more
distant to the centre of mass than the galaxies. The shown results for
�T̃/� ∈ {2.0, 2.5, 3.5} [cm2 g−1 ] are likely inaccurate due to the peak
finding method.

Figure 11. The deviation (�, see Eq. (27)) of peaks between the fSIDM
and rSIDM runs is shown as function of time. We measure the time with
respect to the first pericentre passage (�fpc = 1.87 Gyr). A positive value
of � implies that the peak of the fSIDM simulation is closer to barycentre
than the rSIDM one. We compare DM and galaxy peaks as well as the
positions of the BCGs. Results are plotted for �T̃/� = 0.5 cm2 g−1 (green)
and �T̃/� = 1.5 cm2 g−1 (orange). Note, the peak deviation is only shown
when the distance of the peaks is larger than the scale radius (630 kpc). We
also apply this to the BCGs. The first apocentre passage (which is very similar
for rSIDM and fSIDM) is indicated by an arrow for each cross-section.

the scattering itself. The rest of the time was used for other parts of
the calculation, such as the neighbour search and the parallelisation
overhead. In comparison the scheme for rare self-interactions is less
complicated and needs less computation time.

The robustness of our implementation could be increased by
using an additional time step constraint for the self-interactions.

This would make the simulation code more capable of handling
situations like gravothermal core-collapse of DM haloes. For the
simulations we presented here, we only relied on the gravitational
time step, which is small enough for the situations we considered.

Finally, for our merger simulations, we used an algorithm to
find peaks of the DM and the galactic component based on KDEs.
Unfortunately, the results are biased towards the barycentre for small
peak separations, which limits the conclusion that can be drawn.
Other methods may perform better, for example finding the most
tightly bound particle.

6.2 Physical Considerations

In our various simulations we found that fSIDM and rSIDM lead
to different effects even when using the same momentum transfer
cross-section. One may wonder whether this is simply the result of
an incorrect matching, i.e. whether for each fSIDM cross-section
one can find an rSIDM cross-section that produces the same be-
haviour. Indeed, Fig. 6 suggests that core formation simply proceeds
a bit faster in fSIDM than in rSIDM and it should be possible to
improve the matching by using slightly larger cross sections for rare
scattering.

Nevertheless, when we go beyond relaxed systems we find
that the two types of self-interactions lead to qualitatively different
effects. This can be seen most clearly in Fig. 10, where the largest
offsets found in fSIDM cannot be reproduced for any cross section
in rSIDM. In other words, frequent and rare self-interactions cannot
be matched by a simple rescaling of the cross-section.

Furthermore, we have found that the difference between fre-
quent and rare self-interactions results in an amplified difference in
the galactic component, i.e. the maximum � is larger in the galaxy
distribution than for DM. Large offsets are easier to detect and their
existence or non-existence has the potential to distinguish between
frequent and rare scattering. Hence the amplification process for
fSIDM provides an important handle for determining the nature of
DM.

Finally, we emphasize that we have adopted a simplified and
idealised setup in our simulations. For instance, we do not include
baryons which could affect our results (Zhang et al. 2016). For a de-
tailed comparison with observations, more realistic simulations will
be required. As mentioned above, such future simulations should
also investigate in more detail the case of non-isotropic and velocity-
dependent self-interactions, which has been found to have a signif-
icant impact on the offsets in merging galaxy clusters (Robertson
et al. 2017b) for rSIDM.

7 SUMMARY AND CONCLUSIONS

In this paper, we have presented a novel method for modelling
frequent self-interactions of DM within the framework of the N-
body method. Our numerical scheme conserves energy and mo-
mentum explicitly. Moreover, it does not rely on equilibrium or
quasi-equilibrium states but is capable of treating typical astro-
physical initial conditions. We introduced several test problems to
demonstrate the accuracy of our numerical scheme. Furthermore,
we performed several simulations of isolated haloes and mergers us-
ing frequent and rare self-interactions. Our main results from these
simulations are:

• Frequent self-interacting dark matter can be modelled accu-
rately within N-body simulations.
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• Rare and frequent interactions lead to similar core-formation in
DM haloes. When considering the same momentum transfer cross-
section, the evolution is slightly faster for fSIDM than for rSIDM.

• We found that fSIDM produces larger DM – galaxy offsets
than rSIDM in equal-mass mergers.

• This effect can be traced back to an amplification in the dis-
placement of the galactic component for the case of fSIDM.

• In conclusion, the phenomenology of rSIDM and fSIDM is
different in the sense that for a given strength of frequent self-
interactions one cannot in general find a rare self-interaction cross-
section that gives the same effects.

This paper only constitutes the first steps towards exploring the
astrophysical phenomenology of frequently self-interacting DM, in
the sense that it provides the numerical methods for further inves-
tigations. Future simulations of various astrophysical setups may
provide deeper insights into the phenomenology of fSIDM and al-
low for a detailed comparison with observations.
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APPENDIX A: KERNEL OVERLAP

In this appendix we discuss the computation of the kernel overlap
Λ𝑖 𝑗 , which arises from the integral of Eq. (9). To exploit symmetries,
we express the integral in cylindrical coordinates,

Λ𝑖 𝑗 = 2𝜋
∫ ∞

−∞

∫ ∞

0
𝑊

(√︁
𝑧2 + 𝑟2, ℎ𝑖

)
× 𝑊

(√︁
(𝑧 − 𝑑)2 + 𝑟2, ℎ 𝑗

)
𝑟 d𝑟 d𝑧 . (A1)

In order to simplify the notation we have introduced the distance
𝑑 = |Δx| between the two particles. We have also integrated directly
over the angle of the cylindrical coordinates, remaining only with
two integrals over 𝑟 and 𝑧. Using the assumption that the kernel
function becomes zero beyond ℎ, we can place tighter integration
limits. For this purpose, we introduce 𝛾𝑖 =

√︃
ℎ2
𝑖
− 𝑧2 and 𝛾 𝑗 =√︃

ℎ2
𝑗
− (𝑧 − 𝑑)2, such that

Λ𝑖 𝑗 = 2 𝜋
∫ min(ℎ𝑖 ,ℎ 𝑗+𝑑)

max(−ℎ 𝑗 ,−ℎ 𝑗+𝑑)

∫ min(𝛾𝑖 ,𝛾 𝑗 )

0
𝑊

(√︁
𝑧2 + 𝑟2, ℎ𝑖

)
× 𝑊

(√︁
(𝑧 − 𝑑)2 + 𝑟2, ℎ 𝑗

)
𝑟 d𝑟 d𝑧 . (A2)

For a given kernel function 𝑊 (𝑟, ℎ) values for Λ are tabulated
in advance and then interpolated to obtain Λ for given ℎ𝑖 , ℎ 𝑗 and
𝑑. Although Λ depends on three variables, we need only a two-
dimensional table for this purpose, as one variable can be interpreted
as a scaling factor. To make this explicit, we introduce ℎmin =

min(ℎ𝑖 , ℎ 𝑗 ) and ℎmax = max(ℎ𝑖 , ℎ 𝑗 ) and scale all variables with
ℎmin, i.e. we introduce 𝑑′ = 𝑑/ℎmin and ℎ′ = ℎmax/ℎmin. The
scaled version of Λ can then be written as

Λ′
𝑖 𝑗 (𝑑

′, ℎ′) = 2𝜋
∫ 𝑧′max

𝑧′min

∫ 𝑟 ′max

𝑟 ′min

𝑊

(√︁
𝑧′2 + 𝑟 ′2, 1

)
× 𝑊

(√︁
(𝑧′ − 𝑑′)2 + 𝑟 ′2, ℎmax

)
𝑟 ′ d𝑟 ′ d𝑧′ (A3)

with 𝑟 ′ = 𝑟/ℎmin and 𝑧′ = 𝑧/ℎmin. The unscaled version of Λ is

then obtained from

Λ𝑖 𝑗 =
Λ′
𝑖 𝑗

ℎ3
min

. (A4)

APPENDIX B: IMPLEMENTATION OF RARE
SELF-INTERACTIONS

𝑁-body simulations of DM with rare self-interactions employing
an isotropic cross-section are well established. There exists a va-
riety of schemes, which differ in the way scatter probabilities are
computed (e.g. Burkert 2000; Rocha et al. 2013; Vogelsberger et al.
2012). Rocha et al. (2013) introduced a scheme where the scattering
probability arises from the kernel overlap. We follow this approach
because we already compute overlaps for our fSIDM scheme. By
using the total cross-section 𝜎 and the physical particle mass 𝑚𝜒

we can derive the scattering probability of a numerical particle pair.
Similar to the drag force we start from a microparticle travelling
through a constant density 𝜌. The particle has the velocity 𝑣 and
travels for the time 𝑡. The probability that it scatters with another
particle is given by

𝑃scatter =
𝜎

𝑚𝜒
𝜌 𝑣 𝑡 . (B1)

Note, this is valid only for 𝑃scatter � 1. Now we consider two
overlapping phase-space patches as represented by our numerical
particles with densities 𝜌𝑖 and 𝜌 𝑗 . The expected number of scatter-
ing events is given as

〈𝑁〉 =
∫

𝜌𝑖

𝑚𝜒
𝑃scatter d𝑉 . (B2)

Here, 𝑃scatter denotes the probability that a microparticle of 𝑖 scatters
with one of 𝑗 . We multiply by the microparticle mass and obtain
the expected value for the mass per phase-space patch that scatters:

〈𝑀〉 = 𝜎

𝑚𝜒
|Δv𝑖 𝑗 | Δ𝑡

∫
𝜌𝑖𝜌 𝑗d𝑉 , (B3)

where Δv𝑖 𝑗 = v𝑖 − v 𝑗 is the relative velocity and Δ𝑡 is the simu-
lation time step. The kernel overlap Λ𝑖 𝑗 is computed as described
in appendix A. We can then express the scattering probability of 𝑖
representing a mass of 𝑚𝑖 as

𝑃𝑖 =
〈𝑀〉
𝑚𝑖

=
𝜎

𝑚𝜒
𝑚 𝑗 |Δv𝑖 𝑗 | Δ𝑡 Λ𝑖 𝑗 . (B4)

For our implementation we use numerical particles that have
the same mass 𝑚, such that 𝑃𝑖 𝑗 = 𝑃𝑖 = 𝑃 𝑗 . The time step Δ𝑡 is
kept small enough such that the scattering probability is well below
unity. To determine whether two particles scatter during a given
time step we take a random number 𝑥 from the interval [0, 1] and
let the particles scatter if 𝑥 ≤ 𝑃𝑖 𝑗 . The scattering process can be
described as follows:

v′𝑖 = vcms +
|Δv𝑖 𝑗 |

2
e (B5)

and

v′𝑗 = vcms −
|Δv𝑖 𝑗 |

2
e . (B6)

Here, vcms = (v𝑖 + v 𝑗 )/2, i.e. the centre-of-mass velocity. The
vector e is a normalised vector that points into a random direction.
Here we assume the cross-section to be isotropic, but anisotropic
cross-sections can also be implemented (Robertson et al. 2017b).
Our rSIDM implementation uses the same time-steps as for fSIDM
(see section 2.5.2) and the same parallelisation (see section 2.5.3).
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APPENDIX C: MOLIÈRE’S THEORY

In section 3.3 we use Molière’s theory to predict the result of the
angular deflection test problem. Here, we give further details on
how to derive the prediction. The probability density distribution of
the deflection angle, assuming scattering about small angles, was
derived by Moliere (1948) and can be written as


 (�) = 2 �

�2
exp

(
− �2

�2

)
. (C1)

To compute the distribution of the scattering angle � one needs �2,
which is given as

�2 = 2� 	0 �

∫
d�
dΩ

�3 d� . (C2)

Here 	0 denotes the particle number density. It can be expressed
as 	0 = �/�� , where � is the matter density and �� the physical
particle mass. The distance travelled by a particle through the target
is given by �. Eq. (C2) is not directly applicable for us as we only
know the momentum transfer cross-section �T̃/�� . But we can
rewrite Eq. (C2) using the definition of the momentum transfer
cross-section as given in Kahlhoefer et al. (2014).

�T̃ = 4�
∫ 1

0

d�
dΩ

(1 − cos �) d cos � (C3)

= −4�
∫ 0

�/2

d�
dΩ

sin � (1 − cos �) d�

≈ 2�
∫ �/2

0

d�
dΩ

�3 d�. (C4)

In the final step we have assumed that d�/dΩ is strongly peaked at
small angles, such that we can approximate sin � (1−cos �) ≈ �3/2.
We therefore find

�2 ≈ 2 	0 � �T̃ = 2 � �
�T̃
��

. (C5)

APPENDIX D: STABILITY OF INITIAL CONDITIONS

Here, we show that the NFW haloes used for our simulations in
sec. 3.4 and 5 are stable when evolved without DM self-interactions.

For the simulations presented in section 3.4 we used an initial
NFW halo. The halo has a virial mass of �vir = 1015 M� and is
resolved by � = 105 particles. In the upper panel of Fig. D1 we
demonstrate the stability of these initial conditions.

In the lower panel of Fig. D1 we demonstrate that the haloes we
use for our merger simulations (section 5) are stable when simulated
without self-interactions. One can only see minor changes of the
density profile. The largest difference occurs in the centre of the
halo.

APPENDIX E: ADDITIONAL MERGER PLOTS

Here we show additional plots of our merger simulations, which are
presented in section 5. In particular, we show for peaks of all com-
ponents the distance to barycentre as a function of time for cross-
sections of �T̃/� = 0 cm2 g−1 (Fig. E1), �T̃/� = 1.5 cm2 g−1

(Fig. E2) and �T̃/� = 5 cm2 g−1 (Fig. E3).

Figure D1. We show the evolution of an initial NFW halo as used for our
test simulations in section 3.4 (upper panel) and our merger simulations
in section 5 (lower panel). The haloes were simulated without DM self-
interactions, i.e. consistent with CDM. Here, we display the density profile
at several times.

Figure E1. The same as in Fig. 8 but for collisionless DM.
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Figure E2. The same as in Fig. 8 but for rare self-interactions. A self-
interaction cross-section of �T̃/� = 1.5 cm2 g−1 was employed.

APPENDIX F: AMPLIFICATION PROCESS

As we mentioned in section 5.2 the positions of BCGs and galaxy
density peaks do not reflect the differences between rSIDM and
fSIDM dark matter peaks one-to-one. The deviation in BCGs and
galaxies is larger than for the DM distribution when considering
the maximum value of � as shown in Fig. 11. In the following, we
investigate this observation in more detail.

For this purpose we compute the projected 1D density along
the merger axis using a KDE with a 1D Gaussian smoothing kernel
with a width of 50 kpc. From this, we obtain the normalised density
as shown in Fig. F1. We also compute the difference between fSIDM
and rSIDM, which is shown in Fig. F2.

The key observation is that the central region close to the
barycentre has a higher projected density for fSIDM than for rSIDM.
Although this could be a projection effect and does not necessarily
imply that the actual density at the interaction point is larger for
fSIDM, it clearly demonstrates that the distribution of DM, and
hence the gravitational potential, differs for the two cases shortly
after the collision. This observation is readily understood in terms of
the underlying differences between the two self-interaction schemes.
In fSIDM all DM particles are decelerated and deflected, i.e. some
energy from the forward motion is redirected into the perpendicular
direction. In rSIDM, on the other hand, most DM particles are
unaffected by self-interactions, while some particles scatter and
experience a strong deflection.

In rSIDM the DM halo therefore travels further after pericentre
passage than in fSIDM. The deceleration of the DM component in
fSIDM leads to a larger galaxy–DM offset. The galaxies hence ex-
perience a stronger gravitational pull in fSIDM, which amplifies the
differences in the galactic component between rSIDM and fSIDM.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure E3. The same as in Fig. 8. The upper panel shows the evolution
with frequent self-interactions and the lower panel displays the simulation
with rare self-interactions. But for a cross-section of �T̃/� = 5 cm2 g−1.
Interestingly, the BCG peak distance at second apocentre is larger than at
the first one. This is a consequence of the DM relaxation time. A flatter
gravitational potential allows the BCG’s to reach a larger distance at the
second apocentre.
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Figure F1. The normalised projected density along the merger axis is shown.
We compare the density of the galactic and DM component for frequent and
rare self-interactions. All three panels belong to the same cross-section
(�T̃/� = 1.5 cm2 g−1) and give the density for several times at pericentre
passage and shortly afterwards.

Figure F2. The relative projected density difference between fSIDM and
rSIDM from Fig. F1, but for several cross-sections. A positive value implies
that fSDIM is denser than rSIDM.
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