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Summations of large logarithms by parton showers
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We propose a method to examine how a parton shower sums large logarithms. In this method, one
works with an appropriate integral transform of the distribution for the observable of interest. Then,
one reformulates the parton shower so as to obtain the transformed distribution as an exponential
for which one can compute the terms in the perturbative expansion of the exponent.
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I. INTRODUCTION

Parton shower event generators provide a way to ap-
proximately sum large logarithms in QCD. Consider an
infrared safe observable labelled by J in hadron-hadron,
lepton-hadron, or lepton-lepton collisions at a large en-
ergy scale µH. Suppose that one is interested in a cross
section σ̂J (v) for the observable to take the value v.

The observable is characterized by a scale Q̂2
J(v), such

that the σ̂J (v) is not sensitive to parton splittings at a

scale smaller than Q̂2
J(v). For instance, one might be

interested in the k⊥ distribution in the Drell-Yan pro-
cess in hadron-hadron collisions. Then v = k⊥ and
Q̂2

J(v) ∼ k
2
⊥. If Q̂

2
J(v) ∼ µ2

h, one can use straightforward
QCD perturbation theory to calculate σ̂J(v). However,

if Q̂2
J(v) ≪ µ2

h, the perturbative expansion for σ̂J (v) will

contain large logarithms, log(µ2
h/Q̂

2
J(v)).

Often, one can analyze these logarithms by taking an
appropriate integral transform of σ̂J (v). Then one cal-
culates a cross section σJ (r) depending on a variable or
variables r. The cross section σJ (r) contains logarithms
L(r) that are large when r approaches a limit. For in-
stance, one might take the Fourier transform, with trans-
verse position b, of the Drell-Yan k⊥ distribution. In this
example, r stands for b, the limit is b

2 → ∞, and the
logarithm is L = log(b2µ2

h). Typically the cross section
then has the form

σJ (r) = c0

{

1 +

∞
∑

n=1

2n
∑

j=0

c(n, j)αn
s (µ

2
h)L

j(r)

}

. (1)

The logarithms Lj(r) arise in QCD from the soft and
collinear singularities of the theory. These same soft and
collinear singularities are contained in the splitting func-
tions of a parton shower algorithm. Thus running a par-
ton shower event generator to calculate σJ (r) will pro-
duce an approximation to the series in Eq. (1). That

∗ Zoltan.Nagy@desy.de
† soper@uoregon.edu

is, the parton shower approximately sums the large log-
arithms. The object of this paper is to investigate the
form of the result of this summation.1

To exhibit the summation of logarithms, we rearrange
the parton shower algorithm so that it is specialized to
calculate just σJ (r) and so that it expresses σJ (r) di-
rectly in terms of an exponential

T exp

(

∫ µ2

h

µ2

f

dµ2

µ2
SY(µ

2; r)

)

. (2)

The integral of SY(µ
2; r) in the exponent has an expan-

sion

∫ µ2

h

µ2

f

dµ2

µ2
SY(µ

2; r) =

∞
∑

n=1

αn
s (µ

2
h)

2n
∑

j=0

e(n, j)Lj(r) . (3)

The operator SY(µ
2; r) is determined by the parton split-

ting operator S(µ2) in the original shower. This gives one
direct access to the coefficients e(n, j). With this repre-
sentation, one has the potential to prove that e(n, j) = 0
for j > n + 1. The terms with j = n + 1 are called
leading-log (LL) terms and the terms with j = n are
called next-to-leading-log (NLL) terms. One also has the
potential to prove that e(n, j) for j = n+1 and for j = n
are what is expected in full QCD if a full QCD result is
known.
Our plan in this paper is to develop the general theory

behind the representation (2) along the lines of Ref. [1].
In this exposition, we also present the main steps of the
construction of Ref. [1] in a form that, in our opinion,
makes these steps more transparent. In a companion pa-
per [2], we apply the representation (2) to an important
example, the thrust distribution in electron-positron an-
nihilation. We consider just the thrust distribution and

1 The analysis applies not just when σJ (r) represents an integral
transform of some other distribution, but also whenever the op-
erator OJ(r) that we use to measure σJ (r) after the shower has
an inverse. That is, OJ (r) must have no eigenvalues equal to
zero.
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not other distributions involving large logarithms. How-
ever, we look in some detail at how the exact form of the
shower algorithm affects the results.

II. PARTON SHOWER FROM PERTURBATION

THEORY

The starting point is the perturbative cross section for
an infrared safe observable in hadron-hadron collisions.
We describe this briefly here. A more detailed explana-
tion can be found in Ref. [1].
The parton shower is described using operators on

a vector space, the “statistical space,” that describes
the momenta, flavors, colors, and spins for all of the
partons created in a shower as the shower develops.
The colors and spins are quantum variables and are de-
scribed using a density matrix. We use this descrip-
tion in the parton shower event generator Deductor

[3–10]. The general theory includes parton spins, so we
include spins here even though Deductor simply av-
erages over spins. With m final state partons plus two
initial state partons with labels “a” and “b,” the partons
carry labels a, b, 1, 2, . . . ,m. The partons have momenta
{p}m = {pa, pb, p1, . . . , pm} and flavors {f}m. We take
the partons to be massless: p2i = 0. For color, there are
ket color basis states |{c}m〉 and bra color basis states
〈{c′}m|. We use the trace basis, as described in Ref. [3].
For spin, there are ket basis states |{s}m〉 and bra basis
states 〈{s′}m|. Then the m-parton basis states for the
statistical space are denoted by |{p, f, c, c′, s, s′}m). A
vector |ρ) in the statistical space is a linear combination
of the basis states.

A. Perturbative cross section

If the QCD matrix element is calculated up to a given
order, αK

s , the cross section is

σJ (r) =
(

1
∣

∣OJ(r)F0

∣

∣ρ(µ2
r)
)

+O(αK+1
s ) +O

(

Λ2
QCD/Q

2
J(r)

)

.
(4)

Here the renormalized perturbative QCD density oper-
ator is represented by a vector in the statistical space
|ρ(µ2

r)). It is based on the exact matrix elements and
contains all the possible partonic final states at order K.
The density operator is already renormalized, typically
in the MS scheme, thus it is independent of the renor-
malization scale, µ2

r, up to the desired order

µ2
r

d

dµ2
r

∣

∣ρ(µ2
r)
)

= O
(

αK+1
s

)

. (5)

The next factor in Eq. (4) is the operator of the bare
parton distribution functions (PDFs),

F0 =
[

Fr(µ
2
r) ◦ K(µ2

r) ◦ ZF (µ
2
r)
]

. (6)

Here the circles, a ◦ b, represent convolutions in the mo-
mentum fraction variables. The renormalized PDF oper-
ator for the hadron-hadron initial state is Fr(µ

2
r). The

corresponding MS subtraction of initial state singulari-
ties is done by the ZF (µ

2
r) operator, which contains fac-

tors 1/ǫn in dimensional regularization. As described in
Ref. [1], one should typically use something other than
the MS scheme to define the parton distribution functions
used internally in the shower. The factor K(µ2

r) trans-
forms to the shower scheme for the parton distribution
functions Fr(µ

2
r). The bare PDF is scale independent,

µ2
r

d

dµ2
r

[

Fr(µ
2
r) ◦ K(µ2

r) ◦ ZF (µ
2
r)
]

= O
(

αK+1
s

)

. (7)

This equation leads to the proper evolution equation of
the renormalized PDFs.
The next factor in Eq. (4) is the operator OJ(r) repre-

senting an infrared (IR) safe measurement, characterized
by a set of parameters r.
After applying these operators, we have a sum and

integral over basis states |{p, f, c, c′, s, s′}m). Finally, we
multiply by the statistical bra vector (1| and obtain a
cross section after performing the integrations using
(

1
∣

∣{p, f, c, c′, s, s′}m
)

=
〈

{c′}m
∣

∣{c}m
〉〈

{s′}m
∣

∣{s}m
〉

.
(8)

(The spin states |{s}m〉 are orthogonal and normalized,
but the color states |{c}m〉 in the trace basis that we use
are not orthogonal and some of them are not normalized
exactly to 1 [3].)
If the calculation includes perturbative contributions

up to αK
s , then there is an error termO(αK+1

s ) in Eq. (4).
The formula is based on standard QCD factorization for
infrared safe observables. This has power suppressed cor-
rections of order Λ2

QCD/Q
2
J(r) where Q

2
J(r) is the lowest

scale that the measurement operator OJ (r) can resolve.
In the rest of this paper, we mostly omit explicit mention
of these error terms.
The expression in Eq. (4) simplifies substantially in

electron-positron annihilation. In this case, we can re-
place the operator F0 by 1.
We point out that Eq. (4) is valid only in d = 4 − 2ǫ

dimensions. It is not directly useful for practical calcula-
tions.

B. IR singular operator

To define a good subtraction scheme for a fixed or-
der calculation one can use the IR singular operator
D(µ2

r, µ
2
s ) [1]. This operator has a perturbative expan-

sion

D(µ2
r, µ

2
s ) = 1 +

∑

n≥1

[

αs(µ
2
r)

2π

]n

D(n)(µ2
r, µ

2
s ) . (9)

The operators D(n)(µ2
r, µ

2
s ) are key to defining a par-

ton shower algorithm in a general framework. For a



3

first order shower, one uses only D(1)(µ2
r, µ

2
s ), but in

a general framework we consider D(n)(µ2
r, µ

2
s ) for any

n. This operator describes the IR singularity struc-
ture of partonic states |ρ(µ2

r)). When D(n)(µ2
r, µ

2
s ) acts

on a state
∣

∣{p, f, c, c′, s, s′}m
)

it produces new states
∣

∣{p̂, f̂ , ĉ, ĉ′, ŝ, ŝ′}m̂
)

with m ≤ m̂ ≤ m + n such that the
IR singularities of

(

{p̂, f̂ , ĉ, ĉ′, ŝ, ŝ′}m̂
∣

∣D(n)(µ2
r, µ

2
s )
∣

∣{p, f, c, c′, s, s′}m
)

match the singularities of nth order QCD Feynman dia-
grams that connect these two states. Here the singular-
ities include the factors 1/ǫ from virtual loop diagrams
and they include the singular behavior of the diagrams
when any two or more momenta p̂ become collinear or
some of the p̂ become soft.
The operator D(n)(µ2

r, µ
2
s ) depends on two scales, the

standard renormalization scale µ2
r and the shower scale

µ2
s . The shower scale acts as an ultraviolet (UV) cutoff

that separates the IR and UV regions. All IR singulari-
ties are included, but only regions near the singularities
with scales k2 satisfying k2 < µ2

s are included. There is,
of course, some freedom in choosing how the division be-
tween IR and UV is defined. Different prescriptions lead
to differences in the shower ordering prescription in the
parton shower algorithm produced by D(n)(µ2

r, µ
2
s ).

The singular operator is based on the MS renormalized
matrix elements and is independent of the renormaliza-
tion scale. Thus we have

µ2
r

∂

∂µ2
r

D(µ2
r, µ

2
s ) = O

(

αK+1
s

)

. (10)

This allows us to choose the renormalization scale con-
veniently.
In order to avoid large logarithms of µ2

r/µ
2
s , it is useful

to relate the renormalization scale to the shower scale.
We define

µ2
r = κrµ

2
s . (11)

Then we can avoid large log(κr) factors by choosing κr

of order 1.
The singular operator is perturbative and we can al-

ways define its perturbative inverse operator,

D(µ2
r, µ

2
s )D

−1(µ2
r, µ

2
s ) = 1 , (12)

by working order by order in the perturbative expansion.

C. Fixed order cross section

We can make Eq. (4) more useful by inserting 1 in the
form DD−1,

σJ (r) =
(

1
∣

∣OJ (r)F0

×D(µ2
r, µ

2
s )D

−1(µ2
r, µ

2
s )
∣

∣ρ(µ2
r)
)

,
(13)

We notice that the expression D−1(µ2
r, µ

2
s )|ρ(µ

2
r)) is well

defined in d = 4 dimensions since the inverse of the sin-
gular operator removes all the IR poles of |ρ(µ2

r)). Ac-
cordingly, we define the subtracted hard matrix element
by

∣

∣ρh(µ
2
r, µ

2
s )
)

= lim
ǫ→0

D−1(µ2
r, µ

2
s )
∣

∣ρ(µ2
r)
)

. (14)

This gives us

σJ (r) =
(

1
∣

∣OJ (r)F0D(µ2
r, µ

2
s )
∣

∣ρh(µ
2
r, µ

2
s )
)

. (15)

We will use Eq. (15) to explore parton showers. First,
however, suppose that we are interested only in the fixed
order cross section. Then we can choose the scale µ2

s

small enough that the measurement operator OJ (r) does
not resolve parton momentum scales of order µ2

s . Then
OJ(r) commutes with F0D(µ2

r, µ
2
s ), giving us

σJ (r) =
(

1
∣

∣F0D(µ2
r, µ

2
s )OJ (r)

∣

∣ρh(µ
2
r, µ

2
s )
)

. (16)

One can calculate (1|F0D(µ2
r, µ

2
s ) in d = 4 − 2ǫ dimen-

sions. The operator D(µ2
r, µ

2
s ) creates singularities, but

the initial state singularities are removed by the opera-
tor ZF (µ

2
r) in F0 and the final state singularities cancel

after we multiply by (1| and integrate over the parton
variables. Thus we obtain a finite result in the ǫ → 0
limit.

D. Operators V and X1

The operators D(µ2
r, µ

2
s ) and F0 are defined only in

d = 4 − 2ǫ dimensions and are singular as ǫ → 0 and
as parton momenta become soft or collinear. However,
we have noted that (1|F0D(µ2

r, µ
2
s ) is finite in d = 4

dimensions. It will prove useful to introduce an oper-
ator, V(µ2

r, µ
2
s ), that is finite in four dimensions, does

not change the number of partons, leaves the parton mo-
menta and flavors {p, f}m unchanged, and satisfies

(

1
∣

∣V(µ2
r, µ

2
s ) = lim

ǫ→0

(

1
∣

∣F0D(µ2
r, µ

2
s )F

−1
r (µ2

r) . (17)

The operator V(µ2
r, µ

2
s ) leaves {p, f}m unchanged, but

it can act non-trivially on the color and spin space.
Eq. (17) does not fully define the color and spin con-
tent of V(µ2

r, µ
2
s ). We discuss the definition further in

Sec. IV, but for now, we need only Eq. (17).
Using V(µ2

r, µ
2
s ) we define a singular operator

X1(µ
2
r, µ

2
s ) as

X1(µ
2
r, µ

2
s ) = F0D(µ2

r, µ
2
s )F

−1
r (µ2

r) V
−1(µ2

r, µ
2
s ) , (18)

so that
(

1
∣

∣X1(µ
2
r, µ

2
s ) =

(

1
∣

∣ . (19)

The “1” subscript distinguishes the operator X1 from the
operator X used in Ref. [1] and suggests the normaliza-
tion condition (19).
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With V and X1, the cross section in Eq. (15) can be
written as

σJ (r) =
(

1
∣

∣OJ(r)X1(µ
2
r, µ

2
s )

× V(µ2
r, µ

2
s )Fr(µ

2
r)
∣

∣ρh(µ
2
r, µ

2
s )
)

.
(20)

This form will be useful to help us define a parton shower.
Before we continue with the discussion of the parton

shower cross section we introduce a more compact nota-
tion for operators with renormalization scale dependence.
According to Eq. (11) the renormalization scale is always
related to the shower scale, thus we can define

D(µ2) ≡ D(κrµ
2, µ2) ,

X1(µ
2) ≡ X1(κrµ

2, µ2) ,

V(µ2) ≡ V(κrµ
2, µ2) ,

∣

∣ρh(µ
2)
)

≡
∣

∣ρh(κrµ
2, µ2)

)

.

(21)

The PDF operator depends only on the renormalization
scale and in this case the convention is a little different,

F(µ2) = Fr(κrµ
2) . (22)

The functions specified above then depend on κr, but we
do not display this dependence. With this more compact
notation, Eq. (20) is written as

σJ (r) =
(

1
∣

∣OJ(r)X1(µ
2)V(µ2)F(µ2)

∣

∣ρh(µ
2)
)

. (23)

E. Operator U and parton shower

The formula for the cross section σJ given in Eq. (23) is
of limited usefulness if the scale Q2

J(r), representing the
lowest scale that the measurement operator OJ(r) can
resolve, is much smaller than the scale µ2

h of the hardest
momentum transfer in

∣

∣ρh(µ
2)
)

. When that happens, σJ

will contain logarithms log(µ2
h/Q

2
J(r)) that need to be

summed by looking for the most important terms at all
orders of perturbation theory. To that end, one can use
a parton shower algorithm.
To provide a parton shower, first set the scale µ2 in

Eq. (23) to µ2
h. Then define a scale µ2

f that is certainly
smaller than Q2

J(r). Typically, one chooses µ2
f on the

order of 1 GeV2. Finally, insert 1 = X1(µ
2
f )X

−1
1 µ2

f ) into
Eq. (23), giving

σJ (r) =
(

1
∣

∣OJ (r)X1(µ
2
f )X

−1
1 (µ2

f )X1(µ
2
h)

× V(µ2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

.
(24)

Since µ2
f < Q2

J(r), the operator OJ (r) does not resolve
partons at the scale µ2

f . Thus OJ(r) commutes with
X1(µ

2
f ), giving us

σJ (r) =
(

1
∣

∣X1(µ
2
f )OJ (r)X

−1
1 (µ2

f )X1(µ
2
h)

× V(µ2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

.
(25)

With the use of Eq. (19), this is

σJ (r) =
(

1
∣

∣OJ(r)X
−1
1 (µ2

f )X1(µ
2
h)

× V(µ2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

.
(26)

The operator X−1
1 (µ2

f )X1(µ
2
h) is of special importance.

We give it the name

U(µ2
f , µ

2
h) = lim

ǫ→0
X−1

1 (µ2
f )X1(µ

2
h) . (27)

This is the shower operator. It generates a parton shower
starting at the scale µ2

h and ending at the scale µ2
f . Be-

cause of Eq. (19), the shower operator is probability pre-
serving

(

1
∣

∣U(µ2
f , µ

2
h) =

(

1
∣

∣ . (28)

Using the notation U(µ2
f , µ

2
h), the cross section is

σJ (r) =
(

1
∣

∣OJ(r)U(µ
2
f , µ

2
h)V(µ

2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

. (29)

We have perturbatively calculated matrix elements with
their IR divergences subtracted in

∣

∣ρh(µ
2
h)
)

. Then the op-

erator F(µ2
h) supplies parton distribution functions. The

factor V(µ2
h) serves to sum threshold logarithms [1, 11].

An approximation to this factor is contained in Deduc-

tor although it is lacking in other current parton shower
event generators. Next, the operator U(µ2

f , µ
2
h) generates

the parton shower and the operator OJ (r) measures the
desired observable in the multiparton state created by
the shower. Finally, we multiply by (1| and integrate to
get the desired cross section. We discuss U(µ2

f , µ
2
h) and

V(µ2
h) in more detail in Secs. V and VI.

III. OBSERVABLE DEPENDENT SHOWER

EVOLUTION

The operator OJ(r) in Eq. (29) could represent any
infrared safe observable. In this paper, we have a partic-
ular sort of operator in mind. Consider, for example, the
transverse momentum distribution of a Z boson produced
in the Drell-Yan process. The operator that measures the
transverse momentum k⊥ of the Z boson is defined as

ÔZ(k⊥)
∣

∣{p, f, c, c′, s, s′}m
)

= (2π)2δ(2)
(

k⊥ − kZ({p}m)
)∣

∣{p, f, c, c′, s, s′}m
)

,
(30)

where kZ({p}m) is the transverse momentum of the ob-
served Z boson. The standard method for summing log-
arithms of k2

⊥/M
2
Z is to start with the Fourier transform

of the k⊥ distribution. To measure this with a parton
shower event generator, we can use the measurement op-
erator

OZ(b)
∣

∣{p, f, c, c′, s, s′}m
)

=

∫

dk⊥

(2π)2
eib·k⊥ (2π)2δ(2)

(

k⊥ − kZ({p}m)
)

×
∣

∣{p, f, c, c′, s, s′}m
)

= eib·kZ({p}m)
∣

∣{p, f, c, c′, s, s′}m
)

.

(31)
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We letOZ(b) serve as an example of the observableOJ(r)
that we consider in this paper. There are many other
similar examples. We will need one property of the ob-
servable OJ(r) beyond infrared safety: we assume that
the operator OJ(r) has an inverse O−1

J (r).
To analyze the cross section σJ (r), we start with the

representation (23) with µ2 = µ2
h,

σJ (r) =
(

1
∣

∣OJ(r)X1(µ
2
h)V(µ

2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

. (32)

Define an operator Y(µ2; r) that is finite in d = 4 dimen-
sions, leaves the number of partons and their momenta
and flavors unchanged, and is related to X1 by

(

1
∣

∣Y(µ2; r) =
(

1
∣

∣OJ (r)X1(µ
2)O−1

J (r) . (33)

Then define a new version of X1 that depends on the
measurement parameters r by

X1(µ
2; r) = OJ(r)X1(µ

2)O−1
J (r)Y−1(µ2; r) . (34)

This gives us

(

1
∣

∣X1(µ
2, r) =

(

1
∣

∣ (35)

and

OJ(r)X1(µ
2) = X1(µ

2, r)Y(µ2; r)OJ(r) . (36)

Then our cross section is

σJ (r) =
(

1
∣

∣X1(µ
2
h, r)

× Y(µ2
h; r)OJ(r)V(µ

2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

.
(37)

With the use of Eq. (35), and commuting OJ(r) past
V(µ2

h) and F(µ2
h), which do not change the partonic state,

this becomes

σJ (r) =
(

1
∣

∣Y(µ2
h; r)V(µ

2
h)F(µ2

h)OJ(r)
∣

∣ρh(µ
2
h)
)

. (38)

Here we measure OJ (r) at the hard state
∣

∣ρh(µ
2
h)
)

, ob-
taining typically a very simple result. Then we measure
OJ(r) inside the operator Y(µ2

h; r). This operator has
the potential to sum large logarithms.
We can also relate Y(µ2; r) to the shower operator

U(µ2
f , µ

2) with a small final scale µ2
f . From Eq. (33),

we have

(

1
∣

∣Y(µ2; r)OJ(r) =
(

1
∣

∣OJ (r)X1(µ
2) . (39)

Insert 1 = X1(µ
2
f )X

−1
1 (µ2

f ) and use X−1
1 (µ2

f )X1(µ
2) =

U(µ2
f , µ

2) from Eq. (27):

(

1
∣

∣Y(µ2; r)OJ (r) =
(

1
∣

∣OJ(r)X1(µ
2
f )U(µ

2
f , µ

2) . (40)

Since µ2
f < Q2

J(r), the operator OJ (r) does not resolve
partons at the scale µ2

f . Thus OJ(r) commutes with
X1(µ

2
f ), giving us

(

1
∣

∣Y(µ2; r)OJ (r) =
(

1
∣

∣X1(µ
2
f )OJ(r)U(µ

2
f , µ

2) . (41)

Recall from Eq. (19) that (1|X1(µ
2) = (1|. This gives us

(

1
∣

∣Y(µ2; r)OJ(r) =
(

1
∣

∣OJ (r)U(µ
2
f , µ

2) . (42)

That is, we compare two calculations. In the first cal-
culation, we generate a parton shower down to a very
small scale starting with any statistical state at a scale
µ2. Then we measure OJ(r) inclusively using (1|OJ(r).
In the second calculation, we first operate with OJ (r) on
the state at scale µ2 then measure Y(µ2; r) inclusively
using (1|Y(µ2; r). These two calculations give the same
result.

IV. THE OPERATOR MAPPING P

In Sec. II D we defined an operator V(µ2) which is
to obey Eq. (17),

(

1
∣

∣V(µ2) =
(

1
∣

∣F0D(µ2)F−1(µ2). In

Sec. III, we defined an operator Y(µ2; r) in the same
way. In each case, we start with a singular operator A
and we want to define a second, nonsingular, operator B
with the property

(

1
∣

∣B =
(

1
∣

∣A . (43)

When the operator B acts on an m-parton basis state
∣

∣{p, f, c, c′, s, s′}m
)

, it is to leave the number of partons,
their momenta, and their flavors unchanged. It may,
however, act non-trivially on the colors and spins.
These requirements do not fully specify B. We can

be somewhat more definite by requiring that there be a
linear mapping A → B, which we write in the form

B =
[

A
]

P
. (44)

This mapping must satisfy
(

1
∣

∣

[

A
]

P
=
(

1
∣

∣A (45)

and [A]P must leave m and {p, f}m unchanged,

[

A
]

P

∣

∣{p, f, c, c′, s, s′}m
)

=
∑

{ĉ,ĉ′,ŝ,ŝ′}m

A({p, f}m)
{c,c′,s,s′}m

{ĉ,ĉ′,ŝ,ŝ′}m

×
∣

∣{p, f, ĉ, ĉ′, ŝ, ŝ′}m
)

.

(46)

The requirement (43) is then a restriction on the spin
and color matrix A,

(

1
∣

∣A
∣

∣{p, f, c, c′, s, s′}m
)

=
∑

{ĉ,ĉ′,ŝ,ŝ′}m

〈

{ĉ′}m
∣

∣{ĉ}m
〉〈

{ŝ′}m
∣

∣{ŝ}m
〉

×A({p, f}m)
{c,c′,s,s′}m

{ĉ,ĉ′,ŝ,ŝ′}m

.

(47)

We can place another requirement on [· · ·]P: if A has
the property that it leaves m and {p, f}m unchanged,
then

[

A
]

P
= A . (48)
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One consequence of this is that [[A]P]P = [A]P.
These requirements do not fully specify the mapping

[· · ·]P. For this paper we do not need to be more specific.
However in Ref. [2] we provide an example (without spin)
that is useful for the analysis of a first order shower.
We will find that the combination A − [A]P appears

frequently in formulas. It useful to define an operation
[· · ·]1−P by

[

A
]

1−P
= A−

[

A
]

P
. (49)

V. GENERATOR OF SHOWER

We now turn to a more detailed study of the operator
U(µ2

f , µ
2
h) that creates a parton shower between a hard

scale µ2
h and a small, cutoff scale µ2

f . The generator of
this shower evolution is the operator

1

µ2
S(µ2) =

[

X−1
1 (µ2

r, µ
2)

∂

∂µ2
X1(µ

2
r, µ

2)

]

µ2
r
=κrµ2

. (50)

Here, we differentiate with respect to the shower scale.
Because of Eq. (10) (with the use of Eqs. (17) and (18)),
this is the same as

1

µ2
S(µ2) = X−1

1 (µ2)
∂

∂µ2
X1(µ

2) . (51)

Because of Eq. (35),

(

1
∣

∣S(µ2) = 0 . (52)

Eq. (51) gives us a differential equation for U

µ2 ∂

∂µ2
U(µ2

2, µ
2) = U(µ2

2, µ
2)S(µ2) . (53)

We use the notation

U(µ2
2, µ

2
1) = T exp

(

∫ µ2

1

µ2

2

dµ2

µ2
S(µ2)

)

(54)

to represent the solution of this equation. Here T indi-
cates the instruction to order the operators S(µ2) with
the smallest µ2 to the left.

VI. THE THRESHOLD FACTOR

In Sec. II D we have defined an operator V(µ2
r, µ

2
s ).

With our notation in Eq. (21) for the scale dependence
of V , the crucial property given in Eq. (17) can be written

(

1
∣

∣V(µ) =
(

1
∣

∣F0D(µ2)F−1(µ) . (55)

In Eq. (29) or Eq. (38), the perturbative expansion of
V(µ2

h) contains large logarithms [1, 11, 12]. These are
the much studied threshold logarithms [13]. We sum the

threshold logarithms by writing V(µ2
h) as an exponential.

Define

UV(µ
2
2, µ

2
1) = V−1(µ2

2)V(µ
2
1) . (56)

Then V(µ2
h) can be written as

V(µ2
h) = V(µ2

f )UV(µ
2
f , µ

2
h) . (57)

Define a generator operator SV (µ
2) by

1

µ2
SV(µ

2) = V−1(µ2)
dV(µ2)

dµ2
. (58)

Then UV(µ
2
2, µ

2
1) is the solution of the differential equa-

tion

µ2 ∂

∂µ2
UV(µ

2
2, µ

2) = UV(µ
2
2, µ

2)SV(µ
2) . (59)

We write the solution of this equation as

UV(µ
2
f , µ

2
h) = T exp

(

∫ µ2

h

µ2

f

dµ2

µ2
SV(µ

2)

)

. (60)

As long as we expand the running coupling αs in Eq. (60)
to some finite order in αs(µ

2
h), the integral in Eq. (60) is

convergent in the limit µ2
f → 0 [1]. Thus V(µ2) at small

scales is almost the unit operator,

V(µ2
f ) ≈ 1 . (61)

That is

V(µ2
h) ≈ UV(µ

2
f , µ

2
h) . (62)

VII. PERTURBATIVE EXPANSIONS

The operator S(µ2) can be expanded in powers of
αs(µ

2
r) = αs(κrµ

2):

S(µ2) =

∞
∑

n=1

[

αs(κrµ
2)

2π

]n

S(n)(µ2) . (63)

In the general theory from Ref. [1], S(µ2) is constructed
from the singular operator D(µ2

r, µ
2
s ). If we use only the

first order part D(1)(µ2
r, µ

2
s ) of D because that is all we

know, then all we get is S(1)(µ2). However, in a practical
parton shower program (such as the Λ-ordered Deduc-

tor), one often takes a guess at approximate higher order
contributions S(n). The approximate form is obtained by
changing the argument of αs in the splitting functions to
κrk

2
T and, additionally, making a special choice for κr.

Expanding αs(κrk
2
T) in powers of αs(κrµ

2) then produces

contributions S(n)(µ2) for n > 1.
In Deductor, the first order contribution has three

parts [1, 11]:

S(1)(µ2) = S(1,0)(µ2)−
[

S(1,0)(µ2)
]

P
+ iπS

(0,1)
iπ (µ2) .

(64)
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The operator S(1,0)(µ2) describes parton splitting, chang-
ing an m parton state to an m+1 parton state. The op-
erator [S(1,0)(µ2)]P leaves m and {p, f}m in an m parton
state unchanged, although it can modify the color state.2

In a leading color parton shower, the color is unchanged
and the eigenvalue of this operator then gives the or-
der αs contribution to the integrand in the exponent of
the Sudakov factor that represents the probability not to

split between two scales. The final operator, S
(0,1)
iπ (µ2),

leaves m and {p, f}m unchanged. It gives the imaginary

part of virtual graphs [1, 11] and obeys (1|S
(0,1)
iπ (µ2) = 0.

The operator SV(µ
2) has a perturbative expansion

SV(µ
2) =

∞
∑

n=1

[

αs(κrµ
2)

2π

]n

S
(n)
V (µ2) . (65)

The first order operator S
(1)
V (µ2) has the form [1, 11, 12]

S
(1)
V (µ2) =

[

S(1,0)(µ2)
]

P
+Re S

(0,1)
pert (µ

2)

− [F(µ2) ◦ P(1)]F−1(µ2) .
(66)

Here [S(1,0)(µ2)]P is proportional to the integral of the
first order splitting function over the splitting variables
and appears also in Eq. (64). In the third term, [F(µ2) ◦
P(1)] denotes the convolution of F(µ2) with the first or-
der PDF evolution kernel P(1). In the second term,

1

µ2
S
(0,1)
pert (µ

2) =

[

∂

∂µ2
D(0,1)(µ2

r, µ
2)

]

µ2
r
=κrµ2

(67)

is the derivative with respect to the shower scale of the
singular operator for a one loop virtual graph. It is some-
times assumed that the effect of virtual graphs and PDF
evolution cancels the integral over the splitting variables
of parton splitting [14]. However, this cancellation is not

complete, so that the effect of S
(1)
V (µ2) is quite important

[12, 14].

VIII. GENERATOR OF Y

We now turn to a more detailed study of the operator
Y(µ2; r). This operator sums logarithms, so we want to
write it as an exponential. Define

1

µ2
SY(µ

2; r) = Y−1(µ2; r)
d

dµ2
Y(µ2; r) . (68)

This gives us a differential equation for Y(µ2; r)

µ2 d

dµ2
Y(µ2; r) = Y(µ2; r)SY(µ

2; r) . (69)

2 [S(1,0)(µ2)]P was denoted by [F(µ2) ◦ S̄(1,0)(µ2)]F−1(µ2) in
Ref. [1].

We solve this equation with a boundary condition at the
shower cutoff scale µ2

f :

Y(µ2; r) = Y(µ2
f ; r) +

∫ µ2

µ2

f

dµ̄2

µ̄2
Y(µ2; r)SY(µ

2; r) . (70)

Recall the defining condition Eq. (33) for Y(µ2; r). At
µ2 = µ2

f this condition is

(

1
∣

∣Y(µ2
f ; r) =

(

1
∣

∣OJ(r)X1(µ
2
f )O

−1
J (r) . (71)

The measurement operator OJ (r) is an infrared safe op-
erator that is not sensitive to parton scales below a scale
Q2

J(r). We suppose that µ2
f < Q2

J(r). Then OJ(r) com-
mutes with X1(µ

2
f ) and we can use Eq. (19), which gives

us (1|Y(µ2
f ; r) = (1|. Thus we can define

Y(µ2
f ; r) = 1 . (72)

This allows us to write the solution of Eq. (69) as

Y(µ2; r)− 1 =

∫ µ2

µ2

f

dµ̄2

µ̄2
Y(µ̄2; r)SY(µ̄

2; r) . (73)

We can also write Y(µ2
h; r) as a hardness-ordered expo-

nential,

Y(µ2
h; r) = T exp

(

∫ µ2

h

µ2

f

dµ2

µ2
SY(µ

2; r)

)

. (74)

To find the generator SY(µ
2; r) we start with Eq. (42),

which we write as

(

1
∣

∣Y(µ2; r) =
(

1
∣

∣OJ (r)U(µ
2
f , µ

2)O−1
J (r) . (75)

This applies for U(µ2
f , µ

2) and Y(µ2; r) evaluated at any
order K of perturbation theory, with corrections of or-
der αK+1

s . We can also use Eq. (75) if U(µ2
f , µ

2) is an
approximate shower evolution operator as defined in a
particular parton shower algorithm. In this case, the
shower splitting operator S(µ2) may be based on lowest
order perturbation theory. If U(µ2

f , µ
2) is approximate,

then Eq. (75) defines the corresponding approximate op-
erator Y(µ2; r) and Eq. (68) defines the corresponding
approximate generator SY(µ

2; r).
We can differentiate Eq. (75) with respect to µ2 and

use Eq. (69) for the derivative of Y and Eq. (53) for the
derivative of U(µ2

f , µ
2),

(

1
∣

∣Y(µ2; r)SY(µ
2; r)

=
(

1
∣

∣OJ(r)U(µ
2
f , µ

2)S(µ2)O−1
J (r) .

(76)

We insert 1 = O−1
J (r)OJ(r) to give

(

1
∣

∣Y(µ2; r)SY(µ
2; r)

=
(

1
∣

∣OJ(r)U(µ
2
f , µ

2)O−1
J (r)

×OJ (r)S(µ
2)O−1

J (r) .

(77)
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Using Eq. (75) then gives us
(

1
∣

∣Y(µ2;r)SY(µ
2; r)

=
(

1
∣

∣Y(µ2; r)OJ(r)S(µ
2)O−1

J (r) .
(78)

The operators Y and SY are nonsingular operators that
leave the number of partons and their momenta and fla-
vors unchanged. Thus we can use the mapping [· · ·]P
defined in Sec. IV to write this as

Y(µ2;r)SY(µ
2; r)

=
[

Y(µ2; r)OJ(r)S(µ
2)O−1

J (r)
]

P
.

(79)

The expansion of Y in powers of αs starts at Y = 1+ · · · ,
so a useful way to write this is

SY(µ
2; r) =

[

Y(µ2; r)OJ(r)S(µ
2)O−1

J (r)
]

P

− {Y(µ2; r)− 1} SY(µ
2; r) .

(80)

Now we can use Eqs. (80) and (73) recursively to gen-
erate SY and Y in powers of αs. We write

SY(µ
2; r) =

∞
∑

n=1

[

αs(κrµ
2)

2π

]n

S
(n)
Y (µ2; r) ,

Y(µ2; r) =

∞
∑

n=0

[

αs(κrµ
2)

2π

]n

Y(n)(µ2; r) .

(81)

with

Y(0)(µ2; r) = 1 . (82)

For SY , Eq. (80) gives

S
(n)
Y (µ2; r)

=
[

OJ (r)S
(n)(µ2)O−1

J (r)
]

P

+

n−1
∑

j=1

[

Y(n−j)(µ2; r)OJ(r)S
(j)(µ2)O−1

J (r)
]

P

−

n−1
∑

j=1

Y(n−j)(µ2; r)S
(j)
Y (µ2; r) .

(83)

This gives us S
(n)
Y if we know S

(j)
Y for j < n and Y(k) for

k < n.
For Y we use Eq. (73), in which an integration over an

intermediate scale µ̄2 appears. We can expand αs(κrµ̄
2)

in powers of αs(κrµ
2) in the form

[

αs(κrµ̄
2)

2π

]k

=

∞
∑

n=k

γ(k, n; µ̄2/µ2)

[

αs(κrµ
2)

2π

]n

, (84)

with coefficients γ derived from the QCD β-function. Us-
ing this expansion in Eq. (73), we obtain

Y(n)(µ2; r) =

∫ µ2

µ2

f

dµ̄2

µ̄2

n
∑

j=1

n−j
∑

k=0

γ(k + j, n; µ̄2/µ2)

× Y(k)(µ̄2; r)S
(j)
Y (µ̄2; r) .

(85)

This gives us Y(n) if we know Y(k) for k < n and S
(j)
Y for

j ≤ n.

These recursion relations successively generate S
(1)
Y ,

Y(1), S
(2)
Y , Y(2), . . . . The first order terms are

S
(1)
Y (µ2; r) =

[

OJ (r)S
(1)(µ2)O−1

J (r)
]

P
(86)

and

Y(1)(µ2; r) =

∫ µ2

µ2

f

dµ̄2

µ̄2

[

OJ (r)S
(1)(µ̄2)O−1

J (r)
]

P
. (87)

IX. USING Y

We now outline how the operator Y(µ2; r) can be used.
This operator is the key to calculating an observable cross
section σJ(r) according to a parton shower algorithm.
The operator OJ (r) that defines this cross section must
be infrared safe. That is, there is a scale Q2

J(r) such
that σJ (r) does not resolve parton splittings at scales
µ2 smaller than Q2

J(r). In order to define Y(µ2; r), the

inverse operator O−1
J (r) must exist. The anticipated

use case is that there is a distribution of direct inter-
est that involves large logarithms and the logarithms can
be summed analytically by taking an integral transform
of the distribution that depends on parameters r. Then
σJ (r) represents the value of this integral transform. In a
companion paper [2], we examine an important example,
the thrust distribution in electron-positron annihilation.
Then one uses the Laplace transform of the thrust dis-
tribution and r is the Laplace parameter ν.
In the applications that we have in mind, the pertur-

bative expansion of σJ (r) contains powers of a large log-
arithm L(r) when the parameter or parameters r ap-
proach some limit. Typically, we have

σJ (r) = c0

{

1 +

∞
∑

n=1

2n
∑

j=0

c(n, j)αn
s (µ

2
h)L

j(r)

}

. (88)

In favorable cases, there is an analytical formula that
sums these logarithms in the form

σJ (r) = c0 exp

(

∞
∑

n=1

n+1
∑

j=0

d(n, j)αn
s (µ

2
h)L

j(r)

)

. (89)

It is crucial here that the maximum power of L at or-
der αn

s is j = n + 1, not 2n. We can say that a σJ (r)
with this property exponentiates. One never knows all
of the coefficients d(n, j), but when the coefficients for
j = n+ 1 are known, we can say that the formula sums
the logarithms at the leading-log (LL) level. When the
coefficients for j = n are also known, we can say that the
formula sums the logarithms at the next-to-leaadng-log
(NLL) level.
In some important cases, the color space for the par-

tons involved in the hard scattering process is trivial. For
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instance, for shape observables in electron-positron anni-
hilation, there is only one color basis vector for the qq̄
state in e+e− → qq̄. Then the coefficients d(n, j) are
numbers. The initial partonic state in hadron-hadron
scattering has a nontrivial color structure. Then the co-
efficients d(n, j) may be integrals of matrices in the par-
ton color space, with some specification for the ordering
of noncommuting matrices in the exponent.
What does a parton shower algorithm say about

σJ (r)? Different parton showers can give different an-
swers, so we should have a particular parton shower al-
gorithm in mind.
We have seen that there are two ways to express σJ (r)

as given by a parton shower. First, we can use Eq. (29),

σJ (r) =
(

1
∣

∣OJ(r)U(µ
2
f , µ

2
h)V(µ

2
h)F(µ2

h)
∣

∣ρh(µ
2
h)
)

. (90)

Typically the splitting operator S in U(µ2
f , µ

2
h) is based

on lowest order perturbation theory, as discussed at the
beginning of Sec. VII. Additionally, V(µ2

h) is present in
Deductor, but for many parton shower algorithms V =
1. Equation (90) says to run the parton shower to its
cutoff scale and then measure the observable by applying
(1|OJ(r). The perturbative expansion of this result has
the form (88), but not directly the form (89). One can
run the corresponding parton shower event generator to
obtain a numerical result with statistical errors and other
numerical errors. Even with errors, it is possible [2, 15] to
use numerical results from Eq. (90) to check these results
against a known QCD analytic result.
The second way to express σJ(r) as given by a parton

shower is contained in Eq. (38),

σJ (r) =
(

1
∣

∣Y(µ2
h; r)V(µ

2
h)F(µ2

h)OJ(r)
∣

∣ρh(µ
2
h)
)

, (91)

with Y(µ2
h; r) given by Eq. (74) as an exponential of a

generator SY

Y(µ2
h; r) = T exp

(

∫ µ2

h

µ2

f

dµ2

µ2
SY(µ

2; r)

)

. (92)

The operator SY is obtained from the shower generator
S using Eqs. (83) and (85). This second expression for
σJ (r) gives exactly the same σJ (r) as given by Eq. (90).
However, now the logarithms L appear in the exponent
in SY . Thus we have a representation that is very close
to the representation in Eq. (89).
The exponent in Y is3

I(r) =

∫ µ2

h

µ2

f

dµ2

µ2
SY(µ

2; r) . (93)

If we use the perturbative expansion of SY , this is

I(r) =

∞
∑

n=1

∫ µ2

h

µ2

f

dµ2

µ2

[

αs(κrµ
2)

2π

]n

S
(n)
Y (µ2; r) . (94)

3 This includes, possibly, ordering of operators or matrices in the
exponential. For simplicity, we ignore questions of ordering here.

For S
(n)
Y we have

S
(n)
Y (µ2; r) =

[

OJ (r)S
(n)(µ2)O−1

J (r)
]

P

+∆S
(n)
Y (µ2; r) .

(95)

Here
[

OJ(r)S
(n)(µ2)O−1

J (r)
]

P
is the first term in

Eq. (83) and is the only term for n = 1. For n > 1,

∆S
(n)
Y (µ2; r) is everything else in Eq. (83).

We can now expand I(r) in powers of αs(µ
2
h). The

perturbative coefficients will contain powers of the large
logarithm L(r). Let us divide I(r) into two pieces

I(r) = I0(r) + ∆I(r) , (96)

where

I0(r) =
∞
∑

n=1

∫ µ2

h

µ2

f

dµ2

µ2

[

αs(κrµ
2)

2π

]n

×
[

OJ (r)S
(n)(µ2)O−1

J (r)
]

P
,

∆I(r) =
∞
∑

n=2

∫ µ2

h

µ2

f

dµ2

µ2

[

αs(κrµ
2)

2π

]n

∆S
(n)
Y (µ2; r) .

(97)

If we use just I0(r), we put just one shower splitting S
into the exponent. This is the candidate for the summa-
tion of logarithms L(r) as given by the shower. Its lowest
order contribution, proportional to αs(µ

2
h), will normally

contain two powers of L after integrating over µ2. One
power comes from integrating over a momentum fraction

z inside S
(1)
Y (µ2; r) and the second power comes from in-

tegrating over µ2. Thus we have a LL contribution α1
sL

2.
We also generate terms with higher powers of αs(µ

2
h),

both from expanding the factor αs(κrµ
2) inside the inte-

gral and from using S(n)(µ2) for n > 1. With appropriate
choices for the algorithm that constitutes S(µ2), one may
be able to generate a whole series of terms αn

s (µ
2
h)L

n+1

and αn
s (µ

2
h)L

n that match a known QCD result at the
LL and NLL levels.
Suppose that I0(r) gives the expected QCD result for

the summation of logarithms at the NLL level. What,
then, does the complete shower algorithm give? For
this, we must examine ∆I(r). We need to ask whether

∆S
(n)
Y (µ2; r) is sufficiently small that it does not ruin the

result from I0(r). If ∆I(r) contains no nonzero contribu-
tions proportional to αN

s (µ2
h)L

j(r) with j > N +1, then
the logarithms L exponentiate. If there are no nonzero
contributions with j ≥ N + 1, then the shower sums the
logarithms at the LL level. If there are no nonzero contri-
butions with j ≥ N , then the shower sums the logarithms
at the NLL level.
Eqs. (96) and (97) provide a way to check how accu-

rately the parton shower algorithm sums the large loga-
rithms L(r). Suppose that we wish to check whether the
shower sums the logarithms at NLL accuracy. The best
method is to prove analytically that ∆I(r) meets the re-
quirement for log summation at NLL accuracy. A second
approach is to calculate the perturbative terms in ∆I(r)
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as numerical integrals and check how many powers of
L(r) they contain. Although one can never check every
term in ∆I(r), this method has the advantage that if the
check for NLL summation fails for any one contribution,
then we know that NLL summation fails.
In Ref. [2], we present the analysis of I(r) in a form

that is somewhat less general than the analysis of this pa-
per but is better adapted to practical applications. Then
we analyze I(r) analytically and numerically for the trust
distribution in electron-positron annihilation.

X. CONCLUSIONS

It is, we think, of some importance to understand how
accurately a parton shower algorithm sums large loga-
rithms in an observable σ̂J (v).
In analytical approaches to summing such logarithms,

one typically defines an integral transform of the original
distribution so that one considers a cross section σJ (r)
that depends on parameters r. Then the perturbative
expansion of σJ (r) contains large logarithms L(r).
Sometimes, one can compare the results of the shower

for σJ (r) to the results in full QCD by writing the same
differential equations as for full QCD but applying the

differential operators to the shower approximation rather
than full QCD [16, 17]. This method has he disadvantage
that one needs a separate and quite elaborate analysis for
each observable to be studied.
An alternative is to calculate the observable σ̂J (v) nu-

merically with the parton shower event generator of in-
terest and to compare the result with a known QCD re-
sult [2, 15]. This method can work, at least for electron
positron annihilation, but presents significant numerical
challenges.
We have presented a reformulation of the calculation

of σJ (r) according to a parton shower so that the large
logarithms appear directly as an exponential. The ex-
ponent can be expanded perturbatively. This gives us a
path to an analytical understanding the summation of
these logarithms in the parton shower. It also provides
a simple way to test this summation numerically. In a
companion paper, we find interesting results [2] for the
thrust distribution in electron-positron annihilation.
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