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In this work we initiate an integrability-based approach to multipoint conformal blocks for higher
dimensional conformal field theories. Our main observation is that conformal blocks for N -point
functions may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us
with a complete set of differential equations that can be used to evaluate multipoint blocks.
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1. INTRODUCTION

Conformal quantum field theories (CFTs) play an im-
portant role for our understanding of phase transitions,
quantum field theory and even the quantum physics of
gravity, through Maldacena’s celebrated holographic du-
ality. Since they are often strongly coupled, however,
they are very difficult to access with traditional per-
turbative methods. Polyakov’s famous conformal boot-
strap program provides a powerful non-perturbative han-
dle that allows to calculate critical exponents and other
dynamical observables using only general features such
as (conformal) symmetry, locality and unitarity [1]. The
program has had impressive success in d = 2 dimensions
[2] where it produced numerous exact solutions. During
the last decade, the bootstrap has seen a remarkable re-
vival in higher dimensional theories with new numerical
as well as analytical incarnations. This has produced
many stunning new insights, see e.g. [3] for a review
and references, including record precision computations
of critical exponents in the critical 3D Ising model [4, 5].
Despite these advances, it is evident that significant fur-
ther developments are needed to make these techniques
more widely applicable, beyond a few special theories.

One promising avenue would be to study bootstrap
consistency conditions for N -point correlators with N >
4 fields. Note that the success in d = 2 is ultimately based
on the ability to analyze correlation functions with any
number of stress tensor insertions. But the extension
of the bootstrap constraints in d > 2 beyond 4-point
functions has been hampered by very significant technical
problems, see [6–18] for recent publications. To overcome
these challenges is the main goal of our work.

The central tool for CFTs in general and for the con-
formal bootstrap in particular are conformal partial wave
expansions. These were introduced in [19] to separate
correlation functions into kinematically determined con-
formal blocks (partial waves) [50] and expansion coeffi-
cients which contain all the dynamical information. For
4-point correlators, the relevant blocks are now well un-
derstood in any d, though only after some significant ef-
fort. Here we shall lay the foundations for a systematic
extension to multipoint (MP) blocks. Our approach ex-
tends a remarkable observation in [20] about a relation
between 4-point blocks and exactly solvable (integrable)
Schroedinger problems.

To understand the key challenge in developing a theory
of MP conformal blocks, let us consider a 5-point func-
tion of scalar fields. In more than two dimensions one can
build five independent conformally invariant cross ratios
from N = 5 points. Correlation functions can be evalu-
ated through repeated use of Wilson’s operator product
expansion (OPE). We may picture this process with the
help of an OPE diagram, such as the one shown in Fig.
1. For N = 5 points, any such diagram contains two
intermediate fields. The scaling weights ∆ and spins l of
these intermediate fields provide four quantum numbers.
This is not sufficient to resolve the dependence of the 5-
point function on the five cross ratios. The missing fifth
quantum number is somehow associated with the choice
of so-called tensor structures at the vertices of an OPE
diagram. In the case of the 5-point function in d > 2,
the middle vertex in Fig. 1 gives rise to one additional
quantum number. But what precisely is the nature of
this quantum number and how can it be measured? [51]
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Figure 1: OPE diagram for a 5-point function. The
corresponding 5-point conformal block depends on five

quantum numbers which are measured by four
Casimir operators and one new vertex DO.

In order to describe our answer let us turn to the
most basic description of conformal blocks, the so-called
shadow formalism [23]. The latter provides integral for-
mulas for conformal blocks that are reminiscent of Feyn-
man integrals. Finding analytical expressions in terms of
special functions or even just efficient numerical evalua-
tions requires significant technology. One crucial tool in
the theory of Feynman integrals is to consider them as so-
lutions of some differential equations. In their important
work, Dolan and Osborn followed this same strategy and
characterized shadow integrals as eigenfunctions of a set
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of Casimir differential operators (DOs) [24]. By study-
ing these differential equations they were able to harvest
decisive new results on the conformal blocks [24, 25].

Shadow integral representations for MP blocks are also
known. In order to evaluate these, one may want to fol-
low very much the same strategy that was used for 4-
point functions. It is indeed relatively straightforward to
write down MP generalizations of the Casimir operators
of [24]. In the case of 5-point functions in d > 2 there
are four of them. Their eigenvalues measure the weight
and spin of the intermediate fields. But as we explained
above, this is not sufficient. We need one more DO that
commutes with the four Casimir operators to measure
a fifth quantum number. This appears to set the stage
for some integrable system and indeed, as we shall show
below, the four Casimir operators along with the fifth
missing one can be constructed as commuting Hamilto-
nians of the famous Gaudin integrable model [26, 27], in
a certain limit. The statement may be established more
generally but the 5-point function of scalar fields is the
first case for which we have worked out these DOs ex-
plicitly.

Let us now outline the content of this short note. In
the next section we review how to construct shadow in-
tegral representations for MP functions with a particular
focus on the choice of tensor structures at the vertices.
We introduce a novel basis of 3-point tensor structures
that enables us to characterize the shadow integral, and
hence the blocks, as common eigenfunctions of a set of
five commuting DOs. In section 3, we explain how these
operators can be constructed systematically from Hamil-
tonians of the Gaudin integrable model by taking a spe-
cial limit. Four of the five DOs are Casimir operators
while the fifth one measures the choice of tensor struc-
ture. We conclude with an outlook on our forthcoming
paper [28], extensions and applications to the higher di-
mensional conformal bootstrap.

2. MULTIPOINT SHADOW INTEGRALS

In order to state our results precisely, we shall briefly
review some basics of the shadow integral formalism. The
shadow formalism turns the graphical representation of a
conformal block, such as that of Fig. 1, into an integral
formula. Just as in the case of Feynman integrals, the
‘shadow integrand’ is built from relatively simple building
blocks that are assigned to the links and 3-point vertices
in the associated OPE diagram. For a scalar 5-point
function, the most complicated vertex contains one scalar
leg and two that are carrying symmetric traceless tensor
(STT) representations. In order to write this vertex, we
shall employ polarization spinors z ∈ Cd (see [29–32]) to
convert spinning operators in STT representations into
objects of the form

O∆,l(x; z) = Oν1...νl

∆,l (x)zν1 ...zνl
≡ Oν∆,l(x)zν . (1)

The usual contraction of the STTs can be re-expressed
as an integral over Cd as follows [33]

Oν(x)O′ν(x′) =
∫
Cd

d2dz δ(z2)ρ(z̄·z)O(x; z̄)O′(x′; z), (2)

ρ(t) =
(

2
π

)d−1 (16t)1−d/4

Γ(d/2− 1)K(d/2−2)(2
√
t), (3)

where O and O′ are fields of equal spin and K is the
modified Bessel function of the second kind. In building
shadow integrands, the function ρ plays a role analogous
to the propagator in Feynman integrals. Having now con-
verted field multiplets into functions, the 3-point vertex
with one scalar leg and two STT legs takes the form

Φtacb(x; z) = 〈O∆a,la(xa; za)O∆c
(xc)O∆b,lb(xb; zb)〉 =

(Xbc;a · za)la(Xca;b · zb)lb

(X2
ab;c)

−∆c
2 (X2

ca;b)
lb−∆b

2 (X2
bc;a) la−∆a

2

t (X) , (4)

if la− lb ∈ 2Z and vanishes otherwise. Here we have used
the standard notation

Xµ
ij;k :=

xµik
x2
ik

−
xµjk
x2
jk

= −Xµ
ji;k, X

2
ij;k =

x2
ij

x2
ikx

2
jk

, (5)

with xij = xi − xj , and we have dubbed X the unique
independent cross-ratio that can be constructed from
(xa, xb, xc; za, zb),

X = 1
2x4

ab

zaµ
(
x2
abδ

µν − 2xµabxνab
)
zbν

(za ·Xbc;a)(zb ·Xca;b)
. (6)

To a large extent, the function t(X) that appears in the
3-point vertex is left undetermined by conformal symme-
try. The only constraints come from the action of the
SO(d − 1) subgroup that stabilizes three points in Rd,
as well as the parity operator in O(d). For parity-even
vertices, the function t(X) belongs to the space W+

t of
polynomials of order at most min(la, lb). Parity-odd ver-
tices with a single scalar leg only exist in d = 3. In
this case, the function t(X) ∈ W−t must be chosen such
that t(X)/

√
X(1−X) is a polynomial of order at most

min(la, lb) − 1. In total, the admissible functions t(X)
span a vector space of dimension

nab =
∑
±

dimW±t =
{

2min(la, lb) + 1, d = 3,
min(la, lb) + 1, d > 3. (7)

The integer nab counts the number of 3-point tensor
structures [32]. Note that nab = 1 if either la = 0 or
lb = 0 which means that t is a constant factor if there are
two or three scalar legs. We shall therefore simply drop
the corresponding vertex factors t when using formula
(4) for vertices with two scalar legs.

Having described the vertex, we can now write down
(shadow) integrals for any desired N -point function in
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the so-called comb channel, in which every OPE includes
at least one of the external scalar fields. For N = 5
external scalar fields of weight ∆i, i = 1, . . . , 5 the shadow
integrals read

Ψ(∆1,...,∆5)
(∆a,∆b;la,lb;t)(x1, ..., x5) = (8)

=
∏
s=a,b

∫
Rd

ddxs
∫
Cd

d2dzsδ(z2
s)ρ(z̄s · zs)Φ12ã(x1, x2, xa; z̄a)

× Φta3b(xa, x3, xb; za, zb)Φb̃45(xb, x4, x5; z̄b) .

Here the tilde on the indices of the first and third vertex
means that we use eq. (4) for two scalar legs but with ∆a

and ∆b replaced by d−∆a and d−∆b, respectively.
After splitting off some factor Ω that accounts for the

nontrivial covariance law of the scalar fields under con-
formal transformations,

Ψ(∆i)
(∆a,∆b;la,lb;t)(xi) = Ω(∆i)(xi)ψ(∆12,∆3,∆45)

(∆a,∆b;la,lb;t)(u1, ..., u5),

Ω(∆i)(xi) := (X2
23;1)

∆1
2

4∏
i=2

(X2
i+1,i−1;i)

∆i
2 (X2

34;5)
∆5
2 ,

with ∆ij = ∆i − ∆j as usual, the shadow integral (8)
gives rise to a finite conformal integral that defines the
conformal block ψ as a function of five conformally in-
variant cross ratios ui. These integrals depend on the
choice of (∆a, la), (∆b, lb) and the function t(X). Our
goal is to compute this uninviting looking integral.

The strategy we have sketched in the introduction is
to write down five differential equations for these blocks.
Four of these are given by the eigenvalue equations for
the second and fourth order Casimir operators for the
intermediate channels,

Dspψ
(∆12,∆3,∆45)
(∆a,∆b;la,lb;t)(u) = Cspψ

(∆12,∆3,∆45)
(∆a,∆b;la,lb;t) , (9)

where p = 2, 4 and Csp denotes the eigenvalue of the p-th
order Casimir operator in the representation (∆s, ls) for
s = a, b. The explicit form of the DOs Dsp can be worked
out and the resulting expressions resemble those in [24].

But we are missing one more differential equation
which we shall construct in the next section. It will turn
out that shadow integrals are eigenfunctions of a fifth
DO provided we prepare a very special basis tn(X), n =
1, . . . , nab, in the space of 3-point tensor structures. We
can characterize these functions tn(X) as eigenfunctions
of a particular fourth order DO

H(d,∆i,li) = h0(X)+
4∑
q=1

hq(X)Xq−1(1−X)q−1∂qX , (10)

where hq = h
(d,∆i,li)
q are polynomials of order at most

three, see Supplemental Material at [URL] for concrete
expressions. The operator H, which has several remark-
able properties, appears to be new. For our discussion
it is most important to note that H leaves the two sub-
spaces W±t invariant whenever both la and lb are integer.

Consequently, it specifies a special basis tn of functions
t(X) in the space of tensor structures,

H(d,∆i,li)tn(X) = τntn(X) , n = 0, . . . , nab . (11)

Explicit formulas for the eigenvalues τn and the eigen-
functions tn(X) can be worked out, and it is this basis of
3-point tensor structures that we will use to write down
differential equations for the associated shadow integrals.

3. MULTIPOINT BLOCKS AND GAUDIN
HAMILTONIANS

Our goal now is to characterize the shadow integrals
through a complete set of five differential equations.
These will take the form of eigenvalue equations for a set
of commuting Gaudin Hamiltonians. In order to state
precise formulas we need a bit of background on Gaudin
models [26, 27]. Let us begin with a central object, the
so-called Lax matrix,

L(w) =
N∑
i=1

T (i)
α Tα

w − wi
= Lα(w)Tα . (12)

Here, wi are a set of complex numbers, Tα denotes a basis
of generators of the conformal Lie algebra in d dimensions
and Tα its dual basis with respect to an invariant bilinear
form. The object T (i)

α is the standard first order DO that
describes the behavior of a scalar primary field O(xi) of
weight ∆i under the conformal transformation generated
by Tα.

Given some conformally invariant symmetric tensor κp
of degree p one can construct a family Hp(w) of commut-
ing operators as [34–36]

Hp(w) = κα1···αp
p Lα1(w) · · · Lαp(w) + . . . , (13)

where the dots represent correction terms expressible as
lower degree combinations of the Lax matrix components
Lα(w) and their derivatives with respect to w. For p = 2
such correction terms are absent. The correction terms
are necessary to ensure that the families commute,

[Hp(w) , Hq(w′) ] = 0 , (14)

for all p, q and all w,w′ ∈ C. In the case where d ≥ 3,
the conformal algebra possesses two independent invari-
ant tensors of second and fourth degree [52]. We there-
fore obtain two families of commuting DOs that act on
functions of the coordinates xi.

It is a well-known fact that these families commute
with the diagonal action of the conformal algebra, i.e.

[ Tα , Hp(w) ] = 0 where Tα =
N∑
i=1
T (i)
α . (15)

Hence the commuting families Hp(w) of operators de-
scend to DOs on functions ψ(u) of the conformally in-
variant cross ratios u.
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The functions Hp(w) provide several continuous fam-
ilies of commuting operators. Only a finite set of these
operators are independent. There are many ways of con-
structing such sets of independent operators, e.g. by tak-
ing residues of Hp(w) at the singular points to give just
one example. For the moment, any such set still contains
N parameters wi, i = 1, . . . , N . Without loss of general-
ity we can set three of these complex numbers to some
specific value, e.g. w1 = 0, wN−1 = 1, wN = ∞ so that
we remain with N − 3 complex parameters our Gaudin
Hamiltonians depend on.

Now we adapt the Gaudin model to the study of MP
blocks. In the latter context we insist that the set of
commuting operators we work with allows us to measure
the weights ∆ and spins l of fields that are exchanged in
intermediate channels, as do the MP Casimir operators.
So, in order for the Gaudin Hamiltonians to be of any use
to us, we must ensure that they include all such Casimir
operators. For this to be the case, we are forced to make
a very special choice of the remaining parameters wr and
to consider specific limits of these parameters [53]. Let
us explain this here for N = 5. Setting w2 = $2 and
w3 = $ we can define

H̃p(w) := lim
$→0

$pHp($w) , p = 2, 4. (16)

The new functions H̃p take values in the space of pth order
DOs on cross ratios. They possess singularities at three
points only, namely at w = 0, 1,∞. Let us note that
taking the limit $ → 0 does not spoil commutativity of
these Hamiltonians.

After performing the special limit on the parameters
wr we can now extract the MP Casimir operators rather
easily. In fact, it is not difficult to check that

Dap = lim
w→0

wpH̃p(w) , Dbp = lim
w→∞

wpH̃p(w) (17)

for p = 2, 4. Any additional independent operator we
can obtain from H̃p(w) may be used to measure a fifth
quantum number. One can show that the two second
order Casimir operators Ds2, s = a, b exhaust all the in-
dependent operators that can be obtained from H̃2(w).
The family H̃4(w), on the other hand, indeed supplies
one independent operator in addition to the fourth order
Casimir operators Ds4, s = a, b. We propose to use the
operator V4 defined through

H̃4 (w = 1/2) = 16V4 + . . . , (18)

where the dots represent quadratic terms coming from
the corrections in eq. (13). In the particular limit $ → 0
that we consider here, these corrections can be reex-
pressed in terms of the quadratic Casimirs Ds2, s = a, b,
and can thus be discarded without spoiling commuta-
tivity of V4 with the Casimirs. An explicit computation
then shows that V4 is expressed in terms of the conformal
generators T (i)

α as

V4 = κα1···α4
4 Sα1 · · · Sα4 , Sα = T (1)

α + T (2)
α − T (3)

α .
(19)

The explicit form of V4 as a DO acting on functions ψ(u)
of five cross ratios will be spelled out in our forthcoming
publication [28]. Our central claim is that the 5-point
shadow integrals ψ we discussed in the previous subsec-
tion are joint eigenfunctions of the four Casimir opera-
tors, see eq. (9), and of the vertex operator we defined
through eq. (18),

V4 ψ
(∆12,∆3,∆45)
(∆a,∆b;la,lb;tn)(u) = τn ψ

(∆12,∆3,∆45)
(∆a,∆b;la,lb;tn)(u) , (20)

where the eigenvalues τn coincide with those that ap-
peared in eq. (11) when describing the particular choice of
a basis tn(X) of tensor structures. These five differential
equations characterize the shadow integral completely.

Before we conclude, let us briefly sketch how the above
exposition extends to the comb channel of N -point func-
tions in arbitrary dimension d. In this case, the Lax
matrix (12) of the Gaudin model depends on N complex
parameters wi. We can set three of these to the values
w1 = 0, wN−1 = 1 and wN = ∞ before scaling the re-
maining ones as wi = $N−i−1, i = 2, . . . , N − 2 in terms
of a single complex parameter $ that we send to zero.
Generalizing our construction of the commuting families
of operators in eq. (16) we now introduce

H̃[r]
p (w) := lim

$→0
$(N−r−2)pHp($N−r−2w), (21)

where p = 2, 4, . . . enumerates the different (Casimir)
invariants of the d-dimensional conformal algebra and
w ∈ C is the spectral parameter. Through the label
r ∈ {1, . . . , N − 2} we characterize different ways to per-
form the scaling limit of the original Gaudin Hamiltoni-
ans. It is not difficult to show that the resulting family
of commuting Hamiltonians includes all the Casimir op-
erators that are needed to measure the weight and spin
of intermediate fields, similarly to eq. (17). The other
Hamiltonians extracted from the families (21) then pro-
vide additional commuting operators characterizing the
vertices in the N -point conformal block (note that the
range of our index r indeed allows us to enumerate these
vertices). One thereby expects to complete the full set of
Casimir operators into a system of independent commut-
ing operators that suffices to characterize the dependence
of N -point comb channel blocks on all conformal cross
ratios, for arbitrary dimension d and arbitrary choice of
representations for external fields. We have checked this
claim for various choices of N and d.

For d = 3, an N -point function with scalar external
fields involves 3N − 10 cross ratios. The intermediate
fields in the comb channel OPE diagram are characterised
by 2N − 6 Casimir operators, of degree two and four. In
addition, each of the N −4 internal vertices is associated
with an operator V [r]

4 , extracted similarly to V4 in eq.
(18) as

H̃[r]
4 (w = 1/2) = 16V [r]

4 + . . . , (22)

where r ∈ {2, . . . , N − 3} [54]. The spectrum of these
N − 4 operators is independent of r and is still given by
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the eigenvalues τn we introduced in section 2. With the
additional index r ∈ {2, . . . , N − 3} on the left hand side
of the vertex eigenvalue equation (20), we obtain enough
differential equations to characterize 3-dimensional N -
point blocks in the comb channel.

4. CONCLUSIONS AND OUTLOOK

In this work we initiated a systematic construction
of MP conformal blocks in d ≥ 3. Our advance re-
lies on a characterization of MP conformal blocks as
wave functions of Gaudin integrable models, which ex-
tends a similar relation between 4-point blocks and in-
tegrable Calogero-Sutherland models uncovered in [20].
More specifically, we have explained that for a very spe-
cial choice of tensor structures at the 3-vertices Φ in the
shadow integrand of eq. (8), the corresponding shadow
integral becomes a joint eigenfunction of a complete set
of commuting DOs. The latter are Hamiltonians of spe-
cial limits of the Gaudin model.

While we have explained the main ideas within the ex-
ample of 5-point functions, the strategy and in particular
the relation with Gaudin models is completely general,
i.e. it extends to N > 5 and even spinning external op-
erators, with appropriate changes (see for instance the
end of section 3 for the comb channel case). Starting
from six points, there exist topologically distinct chan-
nels that can include vertices in which all three legs carry
spin, such as the so-called snowflake channel for N = 6
[12]. Such vertices involve functions t of several variables
and hence the choice of basis in the space of tensor struc-
tures needs to be extended. As we increase the dimen-
sions d, links can carry new representations beyond STT.
Treating more generic links only requires us to consider
higher order Casimir operators. Through the relation to
Calogero-Sutherland models [20], their solution theory is
well known, see e.g. [43]. In this sense, links do not pose
a significant new complication for the construction of MP
blocks in any d.

In forthcoming work [28] we will explain in detail how
to construct the vertex DOs, both for the shadow inte-
grand and the shadow integral, and we shall spell out
explicit formulas for all five DOs that characterize the
shadow integrals for 5-point functions. This can then
serve as a starting point to evaluate 5-point blocks ex-
plicitly, e.g. through series expansions or Zamolodchikov-
like recursion formulas, similar to those used for 4-point
blocks [25, 43–47].

Obviously, it would be very interesting to extend these
constructions of DOs to 6-point blocks, to develop an
evaluation theory and to initiate a MP bootstrap for
d > 2. As we have argued in the introduction, tak-
ing bootstrap constraints from MP correlation functions
seems like a good strategy. Key examples for initial
studies include the O(n) Wilson-Fisher fixed points with
n = 2, 3 that describe the λ-point in Helium or the fer-

romagnetic phase transition, respectively. The current
state-of-the-art for n = 2 was set recently in [48, 49],
using 4-point mixed correlator and analytic bootstrap.
Since 6-point functions of a single scalar field contain the
information of infinitely many mixed 4-point functions,
the MP bootstrap for N = 6 can be expected to provide
significantly stronger bounds.

While we were completing this letter Vieira et al. is-
sued the paper [18] in which they initiate a MP light-
cone bootstrap. With the techniques we propose here, it
should be possible to study light-cone blocks along with
systematic corrections in the vicinity of the strict light-
cone limit and for any desired channel. We will come
back to these topics in future work.
Acknowledgements: We are grateful to Gleb Aru-
tyunov, Aleix Gimenez-Grau, Mikhail Isachenkov,
Madalena Lemos, Pedro Liendo, Junchen Rong, Jo-
erg Teschner and Benôıt Vicedo for useful discussions.
This project received funding from the German Research
Foundation DFG under Germany’s Excellence Strategy
– EXC 2121 „Quantum Universe” – 390833306 and from
the European Union’s Horizon 2020 research and inno-
vation programme under the MSC grant agreement No.
764850 “SAGEX”.

Appendix A: The Vertex Operator H

Since it might be of interest for some readers we list
all the coefficients hq(X) of the Hamiltonian (10) that is
used to define our basis tn of 3-point tensor structures.
Except for a constant term in h0 which depends a bit
on the precise choice of the fifth Gaudin Hamiltonian we
extract, all coefficients are symmetric w.r.t. exchange of
a and b. Hence we will split them as

h(∆a,la;∆c;∆b,lb)(X) = χ(∆a,la;∆c;∆b,lb)(X) + a↔ b

and display the polynomials χ(X) instead of h(X). De-
spite its relevance for representation theory, we have not
found the fourth order operator (10) in the existing liter-
ature on orthogonal polynomials, except for some special
cases.

χ4 = 8 ,

χ3 = 32X (la − 2)− 4 (4la + 2∆c − d− 8) ,

χ2 = 16X2
(
l2a + 2lalb − 9la + 7

)
−4X

(
4l2a + 8lalb + 2la (2∆c − d− 18)

+2∆a∆b − 2d∆a − (4 + d)∆c + d2 + 2d+ 28
)

+2
(

(la + lb)2 + 2la (2∆c − 2d− 4)

−2∆2
a + ∆2

c + 2∆a∆b − 2(d+ 2)∆c + 6d+ 4
)
,
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χ1 = 16X3 (la − 1) (lb − 1) (la + lb − 2)

−2X2
(

24l2a(lb − 1) + 2lalb(2∆c − 24− d) + (4la − 2)(2∆a∆b − d(∆a + ∆b + ∆c) + 18 + d2) + 12
)

+2X
(

2l2a (4lb − d− 2) + 4lalb (∆c − d− 3) + 2la
(
4∆a∆b − 2d(∆a + ∆b + ∆c − 3) + d2 + 4

)
+(d− 2)(2∆2

a −∆2
c)− 4∆a∆b − 2d(d− 4)∆a + d2∆c − 8d

)
+(d− 2)

(
(la + lb)2 + 4la(∆c − 2)− 2∆2

a + ∆2
c + 2∆a∆b − 4∆c + 4

)
,

χ0 = −8X2 la (la − 1) lb (lb − 1) + 4Xlalb
(

2lalb − 4la + 2∆a∆b − 2d∆a − (d− 2)∆c + d2 − d+ 2
)

+ const .
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