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Abstract. On May 28th and 29th, a two day workshop was held virtually, facilitated by the

Beyond Center at ASU and Moogsoft Inc. The aim was to bring together leading scientists

with an interest in Network Science and Epidemiology to attempt to inform public policy in

response to the COVID-19 pandemic. Epidemics are at their core a process that progresses

dynamically upon a network, and are a key area of study in Network Science. In the course

of the workshop a wide survey of the state of the subject was conducted. We summarize

in this paper a series of perspectives of the subject, and where the authors believe fruitful

areas for future research are to be found.
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1. Introduction

1.1. Background and Aims of the Workshop

Reports of a new viral infection with lethal and pandemic potential emerged in the Wuhan

province of China in December of 2019 [1]. It was clear from early reports that this new

virus had severe respiratory complications and could have alarming fatality rates. The virus,

officially designated SARS-CoV-2 by the International Committee on Taxonomy of Viruses,

proceeded to create a localized epidemic in Wuhan, resulting in a severe lock down in an

attempt to control the outbreak. This has subsequently proven to have not controlled the

epidemic of the virus, now commonly known as COVID-19 or Corona Virus, and the world

is faced with the first widespread pandemic since the ‘Spanish Flu’ outbreak of 1918.

The pathology of the disease is significantly higher than seasonal flu [2], and severe symptoms

can terminate in a fatal cytokine release resulting in severe inflammatory response, high fever,

hypoxia and eventually death. Initial indications from studies of the outbreak in Wuhan

indicate that this fatality rate is not evenly spread demographically, with case fatality rates

amongst individuals 80 years and over being estimated between 10% to 18%, whereas rates

at half that age are barely 1% [3]. Regardless, it is clear that COVID-19 is a deadly disease,

and as of July 7th, it has claimed 551, 686 victims, and the initial demographics of morbidity

are however likely to change as the pandemic progresses. Indeed there is strong evidence from

the 1918 Spanish Flu that although the first wave of the infection had enhanced mortality in

elderly people, the second and subsequent waves killed more indiscriminately [4] indicating

that it is possible that the future progress of COVID-19, should there be a second wave, could

have greater impact on the young than hitherto. In Fig. 1 we reproduce statistics from the

Johns Hopkins Coronavirus Resource Center [5] for the ten countries with the largest current

outbreaks. We note that the data on a linear scale underlines that the spread of the disease

is accelerating, and we may be at the beginning rather than substantially into the pandemic.

Public policy response to the pandemic has been a dramatic economic and societal lockdown,

essentially plunging the affected nations into a kind of deep freeze. As evidence emerged that

transmission of the virus was mediated by respiratory exhalation of ‘droplets’ or, via contact,

social distancing was imposed forcing millions to isolate or shelter in place. The economic

impact of this policy has been dramatic. US government data on the effect on the Chinese

economy [6] provides an illustration of what even the short lived lock down of one region

produced, including a 21.2% drop in retail sales for the whole of China, and, a drop in

the use of public transport from 70-80 million trips per day to around 10 million, as the

lockdown was imposed. Around the western world the impact has begun to be felt with for

example, the United Kingdom seeing a decline in GDP of 20.4% in the month of April alone

[7], and some commentators pointing to an economic recession that will be the most severe

in recorded history.
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Figure 1: Cases of COVID-19 for the countries with the top 10 fatality rates. [5]

On the face of it, those in charge of public policy are presented with a choice between public

health and public wealth, although in reality the two objectives are likely interlinked in

complex and unknown ways. There is, however, a common and perhaps overlooked link

between the progression of the disease and the operation of society and the economy.

Underlying the transmission of a disease requiring contact, or at least proximity, is a network

of contacts. Similarly, societal activity requires the mobility of citizens, whether it is to places

of work, education, leisure or the international travel necessary to facilitate the business

of business. It is possible, perhaps, to regard the choice between economic activity and

restricting the progression of the disease as an optimization problem. The dynamics of

epidemics on networks has been well studied [8, 9], and transport networks, for example,

have been well studied using techniques of network science [10]. Given that the transmission

networks for the disease may well be the same as the network over which activity is conducted,

a simple question naturally arises. Is it possible to leverage the well understood dynamic

properties of networks and epidemics thereupon to propose schemes for the partial lifting of

lockdown restrictions that would maximally enable the normal prosecution of an individuals

daily life whilst restricting the spread of the pandemic? As a motivational example of where

this is routinely done, one of the authors has successfully applied techniques from the field of

network science to maximize the operational activity of an impaired communications network

[11].

It was for this reason that on May 28th and 29th, a two day virtual workshop was convened

by the Beyond Center at Arizona State University. The workshop united experts from across

a range of disciplines, with network science being a common thread. In the paper we seek

to summarize the perspectives that were shared at this workshop, and point to where the

participants felt the most promising areas of study currently lie. As such, this paper hopes

to provide a perspective upon the state of the understanding of this extremely important
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problem and motivate further research upon the issues outlined within.

1.2. Outline of this Paper

This paper is a curation of summary reports authored by the speakers at the workshop. In

order to provide a coherent overview of the discussion we have organized the paper into three

major parts. We begin with an overview of the theoretical network models in Sections 2 and

3. Here we cover the latest techniques that are being used to analyze how the standard

epidemic models of such as SIR/SIS are enhanced by the considerations of the structure of

contact networks. It can be shown that this has a dramatic effect on the disease induced

herd immunity (DIHI) threshold, and has important consequences for the management of

the pandemic. Specifically the structural nature of the contact network and the details of

any actions such as lockdowns impacts significantly the procession of the disease.

In Section 4 we discusses novel theoretical questions raised by the modeling of COVID-

19. We will reveal the role of stochasticity and criticality in plateauing time series, which

provides an important additional source of uncertainties too often neglected in modeling

frameworks. Moreover we indicate that network science is the most suitable tool to

theoretically investigate the efficiency of the track and tracing apps at the system level.

In fact the network science approach allows to capture non-linear effects of the spreading

dynamics.

In Section 5 we turn our attention to another important modeling technique, Agent Based

Modeling (ABM), which has been successfully applied to the initial progress of the epidemic

in Australia. This approach permits the detailed use of scenario planning to model, for

example, the effects of social distancing measures. By essentially creating a digital ‘twin’ of

the epidemic this technique accurately predicted many of the features of the early progress

of the disease, incorporating many complex features of the demographics and geography of

the country.

Key to the management of the epidemic has been the use of so-called ‘track and trace’,

whereby the contacts of infected individuals are identified and isolated to prevent further

infection. In Section 6 we give an overview of the technology of contact tracing applications.

In this section, we discuss the requirements for identity systems to support these apps, and

the way that there are common design patterns for how the apps and the identity systems

themselves can be implemented. This has important consequences for various properties of

the systems in terms of protection of privacy with regards to identity, and attributes (“is

infected”) associated with that identity.

In Section 7 a theoretical analysis of the effectives of contact tracing approaches to

epidemic control is explored. Building upon a probabilistic model the conclusion is that

participation in such a control approach needs to be widespread, although the precise degree
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of participation is still not a settled question. What is clear, and discussed in this section,

is that socio-economic factors play an important role in the progress of the disease. Key to

understanding this is the development of advanced algorithms to understand more deeply

the distribution of immune individuals (those that have recovered from the disease), and we

assess in this section Machine Learning approaches to this, and also how ABMs can be used

to understand lockdown reversal strategies.

We end with concluding remarks in Section 8.

2. Network Science and Epidemiology

2.1. Non-Network Compartmental Epidemic Models

The quantitative analysis of epidemiology dates back to the work of Kermack and

McKendrick [12, 13, 14], almost a century ago. Their work evolved into the familiar

“compartmental” models, which explore the dynamics of a population whose individuals

move between the “compartments” or categories of infections. There are a number of variants

of such models that use different compartments, and different schema for the transition of an

individual from between them. As an illustration we will briefly describe one of the better

known variants, the SIR model. Here the compartments are characterized by the time-series

of the numbers of individuals in the population that are susceptible to infection (S), are

infected (I) and have recovered from the disease or have died (R). The time evolution of

the population in each of the compartments is therefore time-dependent, and encodes the

dynamics of the epidemic. The evolution of the epidemics may be described by a system of

Ordinary Differential Equations (ODEs) that can be solved to determine the progress of the

disease.

A central, and very important, assumption of the SIR model is that the population mixes

homogeneously. This means that the probability that a randomly chosen member of the

population is infected (moves from S → R) is uniform, which greatly simplifies the analysis.

Furthermore, an individual in the susceptible population can encounter and be infected by

any member of the infected population, and the only factors that impact the dynamics are

the relative sizes of these populations. This explicitly excludes finer details such as location

factors, where in a particular area susceptible individuals may be present at lower density

compared to the average.

For a population of total size N , the system may be analyzed with three coupled ODEs

[15, 9]
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dS(t)

dt
= −βI(t)

S(t)

N
, (1)

dI(t)

dt
= βI(t)

S(t)

N
− γI(t), (2)

dR(t)

dt
= γI(t). (3)

Here S(t),I(t),and R(t) represent the time varying numbers of the population in each

compartment, β represents the rate a susceptible person is infected and γ the rate at which

an infected individual either recovers or dies. There will be βI(t) infecting encounters in unit

time with the S(t)/N portion of the population available to be infected, and a number γI(t)

of infected individuals either recover and become immune to infection or die. In Section 3

these equations are treated in more depth, and the reader should note that there the symbol

τ is used in place of β. The ratio of the two parameters R0 = β
γ
, is known as the basic

reproductive ratio, and it is widely known by the general public as the key measure of the

severity of the spreading of the disease. A simple interpretation of R0 is the average number

of susceptible persons that are infected by an infected individual. Therefore large values

of R0 are associated with public policy responses such as lockdowns, and the ubiquitous

references to exponential growth and doubling times. Indeed by inspection of Eqs. (1) we

can see that for R0 > 1, that I(t) increases with time, and conversely for R0 < 1 it decreases.

For R0 > 1 the epidemics is in the supercritical regime and the epidemics outbreak will affect

a finite fraction of the population. For R0 < 1 the epidemics is in the subcritical regime and

the epidemics outbreak dies out affecting only an infinitesimal fraction of the population. For

R0 = 1 the epidemics is in the critical regime and is the epidemics starts with a single infected

individual it will infect an infinitesimal fraction of the population however the epidemics will

be affected strongly by stochastic effect and the size of the outbreak is difficult to predict

and can have very wide fluctuations.

The simplistic SIR model is problematic for many reasons, not least of which is that it is not

possible in general to assess the value of R0 at a given point in time; it is generally inferred

retrospectively using historical data. Indeed the model assumes that R0 as defined as the

ratio of β to γ is fixed in time, and of course as measures are taken to combat an epidemic

this is not generally true. Instead we can refer to R as a point in time reproduction rate,

which is possible to determine in many ways using historical data. One such method is to

use macroscopic parameters such as the doubling time and the average duration tc between

an individual becoming infected and going on to infect another person. This requires certain

assumptions regarding the distribution of macroscopic parameters, and to an extent the

underlying epidemic model, but it allows for an empirical estimation of the value of R [16].

For example, if we define r as the growth rate of an infection in a unit time (number of new

cases per day for example), in the most naive linear model R = 1 + rtc, which relies upon

the assumption that tc is constant. Alternatively is we apply a simple multiplicative growth
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model, it is possible to show that

R = exp (rtc). (4)

The values of R obtained using these two different models can be very different. This

hopefully serves to illustrate that the actual value of R is very much dependent upon

assumptions implicit in the underlying model. In short its use is problematic in isolation as

a guide to the severity and progress of an epidemic.

2.2. Introducing Networks into Epidemic Models

Infections require a physical mechanism of transmission between infected and susceptible

individuals. This does not have to be physical contact (as in the case of sexually transmitted

diseases), but can arise when individuals are within close enough proximity for sufficient time

that an airborne pathogen can pass from one individual to another. The precise biological

mechanism for the transmission of the disease is assumed to be encoded in the parameters

of model operating on these networks.

One is naturally led to the concept of contact networks, where one represents individuals

(or places) as nodes, and the links represent individuals coming into contact. Starting

with a number of infected nodes the epidemic then proceeds by transmission via the links

according to a certain transmission probability. Clearly the structure of this network can

have a profound effect upon the progress of the disease, as the degree of a node (number of

links) represents the number of people available to be infected by that individual. When the

phrase breaking the chain of infection is used, this translates into isolating infected nodes

by severing these links, being the basis of quarantine measures.

Models of real world networks are extremely well studied, and it has been known for some

time that many of them possess the “small world” property [17], whereby non-locality in

the connectivity of nodes in the network creates shortcuts in the network, which has an

important effect on the propagation of an epidemic.

An important property of real world networks, such as contact graphs, is their degree

distribution P (k) of nodes, which quantifies the probability of a randomly selected node

having k links. Real world networks are often scale-free, i.e. they have a power-law degree

distribution of the form P (k) ∝ k−α, with values of α typically in the range 2.0 < α < 3.0 [15].

Examples range from citation graphs to transport networks, however other social networks

such as the mobile-phone contact indicating close friends might display much larger power-

law exponent α ' 8 [18] while contacts in schools, hospital or workplaces might have a more

homogeneous degree distribution [19, 20, 21].

In a much cited result, the power law distribution was shown to be a natural outcome of the
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preferential attachment model [10], where networks evolve by new nodes linking preferentially

to popular or high degree nodes. There are of course many different randomly-generated

networks, but the success of the preferential attachment hypothesis was the clear connection

it provided between a physical model of network growth and the measured properties of real

networks.

In spite of the overall success of network models applied to the real world, the adaptation

of such models to epidemics is in fact non-trivial, and can lead to some surprising results

[22, 23]. For example, consider the application of scale-free networks to epidemiology, which

began with the so-called degree class approximation of Pastor-Satorras and Vespignani [24].

This approach assumes that all nodes of a given degree are statistically equivalent, and

applies a variant of the SI model (nodes are designated to be either susceptible or infected)

to each cohort of nodes sharing the same degree. It is possible to solve these equations

using an underlying assumption of the degree distribution, and obtain an expression for the

characteristic time for the spread of the infection τSI in terms of the moments of k:

τSI =
〈k〉

β(〈k2〉 − 〈k〉)
. (5)

The value τSI enters into the dynamics as a time-scale factor. If ik is the fraction of nodes

of degree k that are infected, it can be shown that dik/dt ∝ ket/τSI . As 〈k2〉 → ∞ for scale

free graphs this has the very surprising consequence that the characteristic spreading time

for the disease is zero. In essence, the disease propagates extremely fast affecting rapidly a

large fraction of the network, because of the presence of hubs in the network, which allow

an infected individual to rapidly infect a large fraction of network of contacts.

The SIR model can be mapped to link percolation which can then be used to predict the

expected size of an outbreak as a function of the trasmissibility of the disease T [25, 8]. In

this approach the nodes of the network represent single individuals and the links represent

the social contacts of an individuals providing the possible routes for the transmission of

the disease. The transmission of the diseases from an infected to a neighbour susceptible

individual occurs with a probability T called ’transmissibility’, which is dependant upon the

length of time an individual is infectious τ , and the rate β at which an individual infects one

of its contact. Assuming that the rate β is independent on time, the transmissibility can be

expressed as

T = 1− e−βτ . (6)

Therefore the SIR outbreak can be represented as a network in which the route of

transmission is indicated by the “occupied’ links’, where each link is occupied with probability

T . Therefore the sub-graph connected only the occupied links, indicates the infected cluster

of individuals. As a function of T this cluster can be very small, affecting an infinitesimal

fraction of all the node of the networks or very large, or giant if it includes a finite fraction
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of all the nodes. In this latter case the infected cluster corresponds to the giant component

(GC) of the network [26]. The GC is the connected sub-graph of a network which includes

a finite fraction of all the nodes. The probability of a random node being a member of

the GC does not evolve smoothly, but instead exhibits critical behavior describing a phase

transition as a function of the control parameter T . For T smaller than the critical value

Tc the largest connected cluster involves only an infinitesimal fraction of the nodes of the

network, implying that for these value of the transmissibility the epidemic dies out before

becoming widely spread in the population. However for T larger than the critical value Tc
a GC emerges indicating that the outbreak affects a finite fraction of the population (here

modelled by its corresponding contact network).

Very interestingly there is an important effect of the degree distribution on the critical

properties of the SIR model. The critical value Tc of the transmissibility , called the epidemic

threshold, on a random network with given degree distribution is given by [22, 23]

Tc =
〈k〉

〈k2〉 − 〈k〉
. (7)

This result implies that if the network has a homogeneous degree distribution, with a finite

second moment of the degree distribution (i.e. with 〈k2〉 < ∞) the epidemic threshold

Tc is finite. Therefore if the transmissibility T is smaller that the epidemic threshold Tc
the outbreaks does not affects significantly the population. However for scale-free networks

having diverging second moment of the degree distribution (i.e. with 〈k2〉 → ∞) the epidemic

threshold vanishes Tc → 0 as the number N of the nodes of the network diverge, i.e. N →∞.

This means that also epidemics with very small transmissibility can become pandemics.

This result implies that globalized societies are very prone to pandemics as the air-travel

connections are well known to be described by scale-free networks.

An important network property of disease spreading is the fact that the nodes of the network

are not equally likely to get the infection. In particular nodes of high degree are more likely

to get the infection of nodes with lower degree. Therefore it comes as no surprise that people

with many contacts including politicians and bus drivers have been more likely to be infected

in the first wave of COVID-19.

This result is rather intuitive as if we assume that each connection of an individual is equally

likely to be route for transmission of the disease, an individual with more connections will

be more likely to get the disease than an individual with less connections.

2.2.1. Herd Immunity and the Friendship Paradox The Herd Immunity (HI) threshold is the

percentage of the population which, if immune, prevents the number of infected individuals

from growing due to the scarcity of susceptible individuals. A classic result from non-network



Beyond COVID-19: Network science and sustainable exit strategies 10

models [27] states HI in terms of R0 as

h = 1− 1

R0

. (8)

This is straightforward to derive by noting that for compartmental models a non-growing

epidemic requires that R0(1 − h) = 1. With an estimate of R0 for COVID-19 of between

2.0 − 3.0, we arrive at a value of h between 50% and 66% needed for the epidemic to peak

in absence of containment measures. This is a very important value as the lower it is, the

more likely that the epidemic will naturally abate, but for reference at the time of writing

only 2% of US population is currently infected.

In addition to HI, there is a related concept Disease Induced Herd Immunity (DIHI) that

can occur as the natural result of the first wave of infection, and is not dependent upon

intervention measures. In essence this relies upon the disease spreading quickly through the

more highly connected nodes early in the epidemic, such that if any intervention such as

lockdown is eased the network of contacts is sufficiently disrupted to prevent further spread.

Using the mapping of the SIR model to percolation, it is rather intuitive that the removal

of links or nodes from the contact graph can reduce the GC through which the epidemic

preferentially progresses, and would at a certain point prevent the growth of the epidemic.

This removal of links or nodes is represented in the public health domain by immunization

or social distancing measures. In fact immunized individuals or individuals in quarantine

are nodes of the network that cannot spread the epidemics any more. Critically, for scale-

free networks, the behavior of the size of the GC as nodes are removed is different from

other random networks [28, 26]. Targeted measures that remove nodes of high degree would

collapse the GC more quickly than would random removal (by immunization or isolation).

The foregoing important insight is readily understandable in terms of the so-called friendship

paradox, first introduced by Scott Feld [29]. It follows from the simple observation that on

average your friends have more friends that you do. Because your friendly friends have

more contacts they are more likely to be immunized by targeted immunization, leading to

an improved efficiency of targeted immunization than of random immunization in scale-free

networks.

Note however that the efficiency of this targeted immunization on a scale-free network

strongly depends on two parameters, the power-law exponent α of the power-law degree

distribution and the minimum degree of the nodes. Let us assume T = 1 let us consider a

scale-free network with degree distribution P (k) = Ck−α with m ≤ k ≤ 1000. For α = 2.5

and minimum degree m = 2 in order to suppress the epidemics it is necessary to perform a

targeted immunization over a fraction of a population given by f ' 20% but this fraction

increases to f ' 45% for m = 4 and f ' 59% for m = 6. Therefore the efficiency of

the targeted immunization strategy is very sensitive to the minimum degree in the network
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(corresponding to the minimum number of connections of the nodes in the population).

Assuming that the epidemics gives a sufficiently long immunity, different waves of COVID-

19 might act as effective targeted immunization of the population. Indeed since the first

wave will affect more likely the hubs of the network, the first wave might act as targeted

immunization [30]. However the shielding effect of this self-immunization phenomenon

depends strongly on the network topology and in particular on the minimum degree of

the nodes. Moreover this self-immunization phenomenon and the implied threshold for herd

immunity depends sensitively on the presence of heterogeneity, a topic that we take up in

Section 3.

Using these models, estimates of DIHI range from 20% to 60%, with the lower range having

profound implications for public policy if it were to be the applicable to COVID-19. It should

however be stressed that these approaches involve toy models, and rely upon the transmission

network being scale free, which is a questionable assumption. Consider, for example, the

effect of public transport. The daily commute brings together disjoint sub-populations in

conditions ideal for disease transmission. This has the effect of homogenizing the contact

graphs of the commuters and altering any prediction of DIHI based upon scale freedom.

In conclusion it is evident that the fine details of the contact graphs have an important role

in the dynamics of epidemics. However, small changes in the structure of these graphs can

have a dramatic effect on the predictions for DIHI with obvious and important consequences

for public policy. As such their use in isolation is probably not advisable, but they are

nevertheless an important tool in the management of epidemics. In the next two sections we

will consider further important consequences of contact networks and the models that are

built upon them.

3. Overview of Network Based Epidemic Models

The transmission of a disease depends not only on the intrinsic characteristics of the pathogen

that causes it, but, equally importantly, on the network of disease-transmitting contacts

within the population. If this contact structure is ignored and homogeneous random mixing

is assumed then it is well known that if a fraction 1 − 1/R0 of the population cannot

be infected (e.g. vaccinated preventively or already infected) then the residual susceptible

population can no longer sustain an epidemic. Instead, a recent observation [31] is that, by

taking into account heterogeneities in the population (to be understood in the broadest

sense but here captured as heterogeneities in contacts), this threshold can be crossed

when far fewer individuals have been infected. This is because the disease acts like a

targeted vaccine, preferentially ‘immunizing’ higher-risk individuals who play a greater role

in transmission. Therefore, a controlled ‘first wave’ may leave behind a residual population

that can no longer sustain a ‘second wave’ once interventions are lifted. This concept of
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exploiting heterogeneities is often overlooked but it has a profound impact on the outcome

of an epidemic and should be considered for policy making decisions. In light of this, we

systematically analyze a number of well-known mean-field models for networks and we

consider the question of herd-immunity induced by a disease spreading on networks with

different characteristics.

Mean-Field models play a major role in the formulation of epidemic models on Networks,

with many results following from the mathematical analysis of these [32, 33, 34, 35]. Such

models might not inform policy making directly, but they remain useful to gain insights on

the epidemic process itself, while remaining mathematically tractable. Before investigating

the impact of contact heterogeneities on herd immunity levels, we briefly describe the mean-

field models that we use. We order models by their relative complexity, corresponding to

gradually incorporating more features of the underlying network.

3.1. Exact equations

The exact ODE system for the SIR model describes the evolution for the expected number

of nodes in given statuses. A formal derivation from the exact system is given in [9]. The

system of equation is:
˙[S] = − τ [SI],

˙[I] = τ [SI]− γ[I],

˙[R] = γ[I],

(9)

where [SI] is the expected number of links between susceptible and infected nodes. This

system is not closed: to solve it we need an expression for the evolution of the expected

number of S − I links (expected number of pairs), which in turn requires us to describe the

system at the level of triples, and so on. Mean-field models curtail this expansion at some

level, by expressing higher order quantities in terms of lower order ones. These methods are

also known as closures since they lead to a self-consistent system of differential equations.

Such closure are often found by taking into account the network structure up to a certain

level (e.g. mean-degree, degree distribution and clustering for example).
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3.2. Homogeneous Mean-field model

The simplest mean-field model incorporates solely the average degree 〈k〉 of the network,

and it can be described by the following equations

˙[S] = − τ 〈k〉
N

[S][I],

˙[I] = τ
〈k〉
N

[S][I]− γ[I],

˙[R] = γ[I].

(10)

The intuition behind this closure is to consider all the nodes as having the same degree 〈k〉.
There are [S] susceptible nodes with 〈k〉[S] stubs connecting them to their neighbors. We

assume that infected nodes are distributed randomly on the network, so that the probability

that a neighbor is infected is [I]
N

. The expression for [SI ] is then given by

[SI] ∼ 〈k〉[S]
[I]

N
.

3.3. Degree-based mean-field model

In the homogeneous mean-field model (10), the system is closed by two approximations:

each node has the same degree and infected nodes are uniformly distributed on the network.

The degree-based mean-field model (also called Heterogeneous Mean Field [33]) improves the

closure by removing the first approximation, i.e. by incorporating the degree distribution in

the system. We denote with [S]k(t) the expected number of susceptible nodes with degree k

at time t, similarly for [I ]k and [R]k. We define [S] =
∑∞

k=1[S]k, similarly [I] and [R]. As in

the homogeneous mean-field model, we average the infection pressure across all the infected

nodes. The resulting ODEs are
˙[Sk] = − τk[Sk]πI ,

˙[Ik] = τk[Sk]πI − γ[Ik],

˙[Rk] = γ[Ik],

πI =

∑M
`=1 `[I`]∑M
`=1 `N`

, (11)

where N` = Pn,p(`)N is the number of nodes with degree `, and Pn,p(l) is the negative

binomial or versions of it used later to simulate degree distributions with different

heterogeneities. This system keeps track of the degree distribution and hence the

heterogeneity in it, but mixing between nodes of different degrees happens at random but

proportionally to degree [33, 9]. In reality, correlations build up: if a node has a neighbor

infected, it is more likely to be infected itself than if it were randomly selected among the

susceptible nodes. Hence, better models are required, which results in closures at the level

of triples.
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3.4. Heterogeneous pairwise model

In the heterogeneous pairwise model, we also consider the expected number of links

connecting a node of degree k in state A to a node of degree ` in state B [36, 9], that

is [AkB`]. To include these quantities into anode system, we need to write an expression

for triples of the form [AkB`Cm]. By doing so, we are effectively including the correlations

between nodes in the same state. The closure is done at the level of triples (i.e. triples are

approximated by singles and pairs), and hence an approximation for the triples are needed.

In this framework we also consider clustering (i.e. the propensity with which two neighbors

of a node are themselves connected). The closure in this case is:

[AkB`Cm] =
`− 1

`

(
(1− ϕ)

[AkB`][B`Cm]

[Bj]
+ ϕ

[AkB`][B`Cm][CmAk]

[Ak][B`][Cm]

)
, (12)

where ϕ is the global clustering coefficient in the network. For the un-clustered case we

simply set ϕ = 0. The derivation of this can be found in [36], for example. The resulting

ODEs are,
˙[Sk] = − τ

∑
`

[SkI`],

˙[Ik] = τ
∑
`

[SkI`]− γ[Ik],

˙[Rk] = γ[Ik],

˙[SkI`] = − γ[SkI`] + τ

(∑
α

[SkS`Iα]−
∑
α

[IαSkI`]− [SkI`]

)
,

˙[SkS`] = − τ ([SkS`I] + [ISkS`]) ,

˙[IkI`] = − 2γ[IkI`] + τ

(∑
α

[IαSkI`] +
∑
α

[IkS`Iα] + [SkI`] + [IkS`]

)
, (13)

where triples are closed using equation (12). This system includes t both the full degree

distribution of the network and the evolution of the [SI ] pairs. The number of equations

in the heterogeneous pairwise model grows very large if the network has degrees of many

different types (since there is an equation for ˙[SkI`] for every k, ` pair).

3.5. Model for disease induced herd immunity

The main focus here is to investigate the impact of degree-heterogeneity and clustering on

herd immunity induced by the first wave of the epidemic, also known as disease induced herd

immunity (DIHI) [31]. In networks with heterogeneous degrees, the epidemic typically finds

the high-risk groups first and thus ‘removes’ important individuals or risk groups. In line

with [31, 37], we exploit this fact and consider different levels of degree-heterogeneity using

the degree-based mean-field and heterogeneous pairwise models to explore what happens in
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Figure 2: The three degree distributions that constitute the benchmark. 〈k〉 = 10 in all

the panels, where the variace is tuned by the parameter p in (14) to be, from left to right,

σ2 = 1, σ2 = 30 and σ2 = 300, respectively.

the wake of a lockdown period when some level of spreading is possible. For illustrative

purposes, we set the degree distribution of the network to be a negative binomial of the form

Pn,p(k) =

(
k + n− 1

n− 1

)
pn(1− p)k. (14)

The reason for this choice is that we want to highlight how heterogeneities in the contact

structure play a central role in determining the DIHI. To illustrate this point, we typically

consider three different degree distributions of increasing heterogeneity. An example of this

is shown in Fig. 2 with 〈k〉 = n(1− p)/p = 10, while the variance is tuned using the second

free parameter.

We consider a SIR outbreak on a fixed population of size N = 6.65 · 106 (in line with many

western countries, such as the UK). We arbitrarily set the recovery rate γ = 1
14

and the per-

contact rate of infection and average degree are given in the figure captions. We initialize

the outbreak by infecting I0 = 5 nodes at random in one of the compartments and let the

epidemic run until 0.5% of the population gets infected. Then, a lockdown policy of duration

T reduces τ → τ̃0 = ατ . Afterwards, lockdown is lifted and τ returns immediately to its

pre-lockdown value.

Fig. 3 shows results based on the heterogeneous pairwise model without clustering for

networks with increasing levels of degree heterogeneity (from left to right). Similar results

(not shown) hold for the degree-based mean-field models [38], with generally higher epidemics

in the latter. In each case, we find the optimal α (a simple down scaling of the transmission

rate without change to the network) and report the number of infections required to achieve

DIHI (i.e. total number of infected and recovered nodes at the end of lockdown such that the
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Figure 3: Optimal α (see legend) and DIHI in delta-like (left), normal-like (centre) and scale-

free-like (right) networks using the heterogeneous pairwise model with ϕ = 0. Continuous

curves indicate [I ](t), while dashed curves indicate [R](t). The two vertical curves represent

the beginning and the end of the lockdown. Horizontal lines and the corresponding

percentages are the cumulative prevalence at the end of lockdown for the optimal strategy.

Here, 〈k〉 = 10 and τ = 0.03.

Figure 4: (left) Difference between control acting on un-clustered networks (continuous lines)

and clustered networks (dashed lines), with clustering coefficient ϕ = 0.5. Vertical lines are

at the beginning (continuous) and end (dashed) of control. The blue continuous curve is

optimal control for ϕ = 0, the dashed brown is optimal control for ϕ = 0.5. For comparison,

the continuous brown is the optimal control for ϕ = 0 when applied to a network with

ϕ = 0.5, the dashed blue line vice-versa. (right) Impact of variance in degree distribution on

DIHI hd, for different pairwise models with different values of ϕ (see the legend). Control

duration is 100 days from the moment I(t) +R(t) ≥ 0.025. For both figures, average degree

is 6 and τ = 0.04. The variance of the degree distribution used for the left panel is 15,

corresponding to the second point on the x-axis in the right panel.
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epidemic after lockdown is subcritical). Increasing degree heterogeneity leads to consistently

lower DIHI levels meaning that fewer highly connected nodes play a more marked role in

the transmission. Hence, loosely speaking as degree heterogeneity increases, it is enough to

de-activate the most highly connected nodes in order to prevent a second wave.

It is interesting to notice that, aggressive control (low value of α) leads always to a sustained

second wave. Conversely, if lockdown is not strict enough (high value of α) the epidemic

will run its course during the first wave with some reduction in the final size. Hence, there

is an optimal value of α for which the final epidemic size is smallest and the epidemic post-

lockdown is subcritical.

If we include a clustering coefficient bigger than 0 in the analysis, Fig. 4, we generally observe

longer durations of the epidemic and smaller peak prevalence, compared to the unclustered

case (see also [39]), with an overall smaller final size. This suggests that, all else being

equal, it is possible to achieve the same herd immunity level with less aggressive lockdown

measures, if the network is clustered. It is worth noting that the final epidemic size is also

smallest at the optimal α value (see also [31]).

Opting for the more accurate heterogeneous pairwise model, the level of DIHI is plotted for

increasing values of variance in the degree distribution and for different clustering levels, see

Fig. 4. It is clear that higher variance can drive DIHI levels to as low as 30%. The impact of

clustering tends to lower the DIHI, but its effect is negated if the variance is high. This shows

the non-trivial interactions between network properties where clustering has biggest impact

in sparse networks and where high levels of degree heterogeneity can washout the effect

of clustering. Furthermore, the same plot shows the DIHI levels based on the degree-based

mean-field model. The trend is in line with results based on the heterogeneous pairwise model

albeit with somewhat higher DIHI levels. However, the DIHI-levels are is sharp contrast,

that is being much smaller, compared to 1− 1/R0 ' 0.76 (R0 = 〈k〉τ/γ ' 3.36).

Finally, a note of remark goes to model selection. In the right panel of Fig. 4 we see that the

same epidemic on different network models (and across different mean-field approximations)

lead to DIHI levels that range from a minimum of 30% to a maximum 60%. This dramatic

variation in the outcome of our analysis invites modelers to remain cautious when claiming

that some results apply to real epidemics, as relying on approximating models might be

misleading.

Several other observations can be made. First, heterogeneity here has been considered in

contacts but similar effects will be obtained if heterogeneity in susceptibility is modeled

or even if a continuum rather than a discrete range of heterogeneity is used. Second,

contact heterogeneity is intrinsically linked to super-spreading but in case of COVID-19

the super spreading is linked to events/opportunities/context rather than individuals as it

is the case for sexually transmitted infections. For example, COVID-19 super spreading

between members of a choir or abattoir workers is more about the context and environment
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rather that the characteristics of an individual. Of course, some individuals are more likely

than others to play a part in such events but it is more difficult to map out who the super

spreaders may be. Thirdly, in reality during control/lockdown the network itself changes and

this is not considered in the models presented here. Instead, here we kept the same network

and reduced the rate of transmission across the same links. This can be very different from

what happens in reality where the network changes due to school and workplace closures,

for example. In [38] this has been considered and it was found that when the network

during lockdown changed, DIHI levels were higher compared to the case when the network

during lockdown was fixed. This was strongly dependent on the amount of community versus

household links. Finally, disease-induced herd immunity levels coming from various models

are still high to be considered a viable way to control the course of the current pandemic

and hence we should not be lulled into a false sense of security by such results and indeed

we should all play a major part in observing and complying with any measure that limit

transmission.

4. Criticality and Network Effects on Epidemic Containment Measures

4.1. The challenge of modelling COVID-19

The theoretical interpretation of the data on the COVID-19 epidemics has proven to be

very challenging. The data quality, the testing policies and the methodology to record

fatalities varies widely among different countries. These effects are very significant and

allow a true comparison of the time series of infected individuals only within a country.

Among different countries, despite the fact that comparisons based on infected individuals

are done routinely by news outlets, only the comparison based on excess deaths data seem

to provide an unbiased measure of the global impact of the epidemics in the society. Also

if we neglect the challenges connected with the data quality modelling COVID-19 need

to face important other factors. As the first pandemics in a global and connected human

society, different factors play their role in determining the efficiency of forecasting algorithms

including containment measures, adaptive behavior of the populations and opinion dynamics.

Consequently, for scientists working on epidemic spreading, predicting the evolution of the

pandemic is a continuous effort of including data about human contacts and behavior into

the model, inform the governments and the population, and then adapt again the model

to the novel adaptive response of the population resulting in a “weather forecast” of the

epidemic spreading. This type of research is quite suitable for Agent-Based-Models and

Network Science models [40] at the meta-population level which include a compartmental

description of the society and the mobility of the populations across different spatial regions.

Another challenge posed by the COVID-19 pandemics is that COVID-19 is a airborne

disease. This implies that the spreading routes are strongly affected by spatial proximity



Beyond COVID-19: Network science and sustainable exit strategies 19

as encountered in urban settings. These include public transport (underground, urban

trains, buses) social activities (pubs, gyms, theatres, clubs, choruses), work places (major

companies, universities, banks) healthcare spots (hospitals, surgeries, clinics).

Spatial proximity has been investigated in experiments recording face-to-face contacts such

as in SocioPattern experiments [19, 20, 21], however typically the contacts modelled by

network science have focused on interactions characterizing social ties, such as friendships

or acquaintances. Consequently, most of the realistic attempts to describe the pathways of

the epidemic spreading of COVID-19 consider coarse grained and aggregated information

rather than existing models of social networks formulated to capture social ties. The most

relevant exception to this rule is the modelling and the treatment of automated tracing data

and the resulting tracking of the epidemics, which provide a solid benchmark for modelling

frameworks [41].

In the following paragraph we highlight important theoretical insights that can help clarify

important aspects of the models used. Specifically we touch on the problem of modelling

epidemic plateaux and of using network theory for predicting the efficiency of track and

tracing apps.

4.2. Containment measures, plateauing time-series and criticality

At the onset of the COVID-19 pandemics the time series of infected individuals and deaths

clearly followed exponential growth at each epidemic focus. The doubling time of these

exponentials ranged between two and three days in Europe at the onset of the epidemics

providing evidence for a similar spreading dynamics well captured by the SIR dynamics

in well-mixed populations. To ”flatten the curve” of the number of infected individuals

two types of containment measures were adopted. The first one, includes the lock down and

focuses on reducing the number of contacts of each individuals. The second one implies a fast

detection of cases and includes efficient track and tracing strategies [42, 43]. After the first

stages of the evolution of the epidemics, when containment measures have been implemented,

epidemic time series started to show characteristic plateaux not typically encountered in

epidemic models [43]. The typical SIR evolution of an epidemics with constant infectivity

R0 includes an exponential onset of the number of infected individuals, and an epidemic peak

marking the characteristic time at which the infection has spread to a large fraction of the

population, producing herd immunity and causing the reduction of the number of infected

individuals in time. This is the scenario expected in the SIR dynamics when we are in the so

called supecritical regime with infectivity R0 > 1. In this case the epidemic spreading result

in the infection of a finite fraction of the population, leading to many fatalities if containment

measures are not put in place to control the spread of the virus. A particular feature of the

SIR time series in this supercritical regime is that the peak is well defined and not plateauing

as long as R0 > 1. In Ref. [44] an explicit calculation shows that plateauing time-series are
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generated only if the epidemics is nearly critical with R0 ' 1 and the population is far from

herd immunity. The critical regime of epidemic spreading has been investigated in statistical

physics and mathematical biology starting from a single initial seed [45, 46]. In the context

of COVID-19 the critical regime however Ref. [44] points out that the critical regime can

be reached dynamically with containment measures at the later stage of the epidemics when

the number n0 of infected individuals is greater than one, i.e. n0 > 1. This critical SIR

dynamics is characterized by a power-law growth of the number of removed individuals

reported in several countries at the later stage of the epidemics [47, 48] and is strongly

affected by fluctuations, which make predictions of the duration of the outbreak and their

size very challenging. For this reason in this regime it is crucial to abandon deterministic

modelling of epidemics and embrace a full stochastic modelling of the epidemic spread [44].

In Fig. 5 we show two examples of stochastic time series of the SIR critical dynamics showing

the important effect of stochasticity and providing evidence that plateauing time series can

spontaneously occur for critical SIR dynamics with non-trivial initial condition.

In order to describe the observed COVID-19 plateauing time series many modellers presently

consider adaptive models that consist in increasing and decreasing the infectivity R0 in time.

It is possible that human adaptive behavior can be modelled in this way, however this is not

a necessary assumption to obtain plateauing time series. Moreover most of these ad hoc

models might still strongly underestimating the role of fluctuations as long as they rely on

deterministic models.

4.3. The network effects in automated track and trace

Determining what is the fraction of adoption of tracing apps that would guarantee a good

efficiency of the technology and the control of the epidemic spreading is a fundamental

problem in COVID-19 research activity.

Despite the problem is a inherently network problem most of the attempts to address this

problem rely exclusively on linear dynamics [50, 51].

Network theory can provide an important contribution by allowing to capture non-linear

effects of the epidemic spreading thanks to the mapping of this process to percolation

[52, 53, 54].

In a recent paper [49] the mathematical framework to fully capture the role that automated

tracing app have on epidemic spreading has been proposed. In this model every

node/individual of the network is assigned a variable indicating whether the node has adopted

or not the app. Infected individuals transmit the disease to a susceptible neighbours with

probability T , called the transmissibility of the epidemic unless they have the app and they

have been infected by individuals with the app (see Fig. 6). This theoretical model fully

capture all the non-linear nature of the spreading process and can be solved on real networks
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Figure 5: Epidemic time series generated by the stochastic SIR model at criticality starting

from non-trivial initial conditions. Panel (a,c) show two time series of the number of infected

individuals while panels (b,d) show the corresponding time series of removed individuals.

All time series correspond to a population of N = 106 individuals and an initial number of

infected individuals given by n0 = 128.Despite the panels (a,b) and (c,d) are generated using

the same model with the same parameters the resulting two SIR dynamics are significantly

different. In particular the outbreak size and the outbreak duration are very different in the

two simulations due to stochastic effects.

using message passing techniques. This model indicates that also a moderate adoption of

the tracing app can have a significant impact in slowing down the spread of the epidemics

[49].

5. Agent-based modeling

Stochastic agent-based models (ABM) have been successfully used for modeling the COVID-

19 pandemic, evaluating non-pharmaceutical intervention strategies, as well as providing

timely policy advice [55, 56]. For example, the ABM approach to tracing and controlling
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Figure 6: Automated tracking and tracing can be modelled by mapping the SIR to

percolation capturing the non-linear effects of the spreading dynamics. In this model each

individual is assigned two states: the first label indicate if the individual is infected or

susceptible, the second label indicates if the individual has or does not have the tracing app.

The epidemics spreads from each infected individual to a neighbour susceptible individual

with probability T called the transmissibility unless the infected individual has the app and

has been infected by another individual with the app as discussed in Ref. [49].

the pandemic in Australia [56] compared several mitigation and suppression strategies,

and pinpointed an actionable transition across the levels of social distancing compliance,

in the range between 70% and 80% levels. Specifically, a compliance at any level below

70% was shown to be insufficient to reduce incidence and prevalence, for any duration of

social distancing, even when coupled with effective mitigation (i.e., case isolation, home

quarantine), and international travel restrictions. In contrast, under the same mitigation and

border control conditions, a compliance at the 90% level was found to control the disease

within 13–14 weeks. In addition, this ABM accurately predicted key features of the first

wave in Australia: the peaks of incidence and prevalence in late March and early April 2020

respectively, and the range of cumulative incidence attained after the suppression period at

the end of June 2020. It also identified formation of the second wave in early July 2020,

once the suppression strategy is relaxed [56] .

This predictive accuracy was achieved by utilizing a high-resolution individual-based

computational model calibrated to both demographic features of the Australian population

(based on the Australian census data) and key characteristics of the COVID-19 pandemic.

The demographic component was validated previously, in context of pandemic influenza

modeling [57, 58, 59, 60], while the COVID-19 epidemiological component was validated in a

now-casting mode in March 2020. Furthermore, the model was cross-validated by a genomic

analysis of COVID-19 activity in New South Wales (NSW), the most populous state of

Australia [61], focused on locally acquired clusters in the state. In particular, the fractions

of local transmissions inferred by the ABM were compared against the genomic sequencing

of SARS-CoV-2, carried out during February–March 2020 in a subpopulation of infected
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patients. During this period, the confirmed cases in NSW comprised 44.5% of all cases

detected nationally. Only a quarter of sequenced cases were identified as locally acquired.

This was in a good agreement with the traces obtained from the ABM: the transmissions

across households and household clusters amounted to 18.6% (std. dev. 2.9%), and the

upper bound including, in addition, all the transmissions across local government areas was

estimated at 34.9% (std. dev. 8.2%) [61].

The capacity of ABMs to represent commuting patterns and interactions within and across

multiple mixing contexts, ranging from households to local areas to workplaces, is one of

their strengths. This quality is shared by ABMs and network-based approaches to epidemic

modeling [8, 62], as both types of models attempt to capture fine-grained interactions

and contextualized transmission contexts — unlike canonical compartmental models which

essentially assume a fully mixed contact topology. Nevertheless, these models describe the

context dependence and interventions differently. In ABMs, heterogeneous social mixing

is modeled by explicitly specifying the categories, e.g., households, workplaces, schools,

etc., following a relevant pandemic maxim: “same storm, different boats”. Consequently,

various social distancing interventions are described with the corresponding macro- and

micro-distancing parameters, e.g., 80% of agents comply with social distancing by reducing

the intensity of their interactions (and hence, the transmission probability) by 100% at

the workplace and by 50% within the local community. In network-based models, each

edge typically represents a specific transmission route, and the interventions are modeled

by topological changes, aiming to reduce the diversity of interactions [63, 64]. Thus, both

model classes enable analysis of both time- and context-dependent interventions, which may

also include counter-factual and hypothetical scenarios.

The high-resolution spatial and temporal representations adopted by ABMs and network-

based models offer another strength: the capacity to comprehensively examine the space of

“control” parameters and identify the corresponding phase transitions (tipping points) [65].

For example, critical regimes have been previously identified in epidemic models, which

interpreted an epidemic spread as percolation through a complex network [66, 8, 67, 68, 69].

Similarly, as pointed out by Chang et al. [56], the transition across the levels of social

distancing compliance can be seen as an example of a percolation transition in a forest-fire

model with immune trees [70].

The benefits of high-resolution modeling and comprehensive exploration of the relevant

phase-spaces come at a price: the relatively high computational burden of ABMs relying

on detailed datasets, the need to carefully calibrate the numerous ABM input parameters

across various mixing contexts, or the necessity to specify detailed network interactions,

while varying network topologies. Nevertheless, most of these drawbacks can be addressed

by an ever-increasing computational power of high-performance computing and modern data

science. In addition, some of the actionable results, e.g., phase transitions, may be obtained

in simplified settings which concisely capture the most salient features of the modeling
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problems.

There are several practical modeling questions that present immediate challenges for both

ABMs and network models. Most of these are related to difficulties in accounting for the

human factor: how to infer friendship networks which affect social interactions; how to

account for human mobility, including long-distance travel, under various local lockdown

regimes; what are the best ways to estimate in-hospital and in-quarantine transmissions;

how to realistically model contact tracing under capacity constraints, and so on.

However, an emerging understanding shared by the COVID-19 modeling community is that

there is a pressing need to start developing “pro-active”, rather than “reactive”, models. In

other words, the COVID-19 modelers must aim at the issues that the society is likely to

face in the near- to mid-term. The much anticipated variety of new vaccines and treatments

brings the need to optimize, while satisfying complex immunization priorities, over complex

regimes. These integrative regimes may combine several pharmaceutical interventions, such

as vaccination and targeted antiviral prophylaxis [71, 72, 60]. Some intervention policies

may innovate with “interaction substitution”, e.g., “shield immunity”, in which recovered

individuals are deployed at focal points of essential services [73], or with controlled human

infection trials [74], bringing about logistical, social and ethical challenges. The novel

coronavirus may develop genetic variations, increasing the risk of endemic transmissions

of SARS-CoV-2 and its variants, which in turn may interact with existing coronaviruses

and emerging zoonotic diseases [75, 76]. Concurrently with health risks, the diverse regional

and international impacts of the pandemic create complex dynamics of reconfiguring trade

networks and emergent travel bubbles [77, 78]. All these challenges will continue to unfold

in presence of worsening systemic socioeconomic vulnerabilities and overstressed healthcare

systems. To address these questions, we need to close a significant gap in the understanding

of systemic risks in complex social systems with nonlinear dynamics, while focusing on

identifying early precursors for tipping points and critical transitions [79].

In summary, no single modeling approach will provide all the answers, nor is there a

single clever exit strategy. Our models and crisis management frameworks must start

adapting faster than the virus, offering pro-active and “smart” interventions. This should be

complemented by tailored disease surveillance and public communication policies, generating

broad social engagement with the approaches.

6. Overview of Contact Tracing Apps

6.1. Introduction

Identity services [80] are used to uniquely distinguish a specific person from others (who

are you?). This allows the association of that unique person with attributes, establishing
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credentials to accessother services (what is it to me?). In this way such services afford

entitled rights to individuals.

Digital identity systems replace, or enhance, traditional paper documents (such as passports,

identity cards) with largely online computer based solutions. There can be a separation of

the foundational system that provides the first step, from a functional identity system, that

serves a specific application or purpose (e.g. voting, tax, health, driving, age verification etc

etc), or they could both be combined. Such digital identity systems can potentially make

rights more readily and affordably available to more people.

We elaborate here on one aspect of the implementation of digital identity systems and Covid

apps, namely where do we choose to place the system, and why we might make different

choices of that design decision. Two key considerations are resilience and security. Since

identity underpins so many other systems in society, it behoves us to be clear about those

considerations and the assumptions about trustworthiness that lie behind them.

The principle choices involve where we find key identity data. Both functional and

foundational identity systems can be implemented in a number of ways. Two of the key

categories of systems are centralized and decentralized

Decentralized Identity Systems [81] and decentralized contact tracing [82]. Each

person creates and curates their own data. There is no external service (deemed self

sovereign). If someone wants to found out who I am and what I can do, they ask me.

Data still needs to be somehow ratified by some authority in the first instance, but from

then on you are your own authority. You can vouch for yourself.

Centralized Identity Systems [83] and centralized contact tracing [84]. Everyone

places his or her data in a server; colloquially sometimes referred to as putting all your

eggs in one basket. A weakness in this is that if you drop the basket, or someone takes

the basket, you have no eggs.

For centralized systems, not just for identity services, in general we usually combine a

number of technologies to provide assurances against certain problems such as the loss of

confidentiality. For example, services such as Authentication, Access control, Authorization

support, and we hope encrypt the data at rest, in transit, and during processing. Modern

systems can also run servers in Secure Enclaves, e.g. using Intel’s SGX or ARM’s Trustzone

or similar, which provide for hardware enhancements to improve resistance against attacks on

privacy. One can also employ software techniques such as Fully Homomorphic Encryption

(FHE) to carry out the lookups, without decrypting the query or response or data being

queried. In addition, Differential Privacy techniques permit you to control how much is

revealed by a query to a central system. in some cases, for example when the querier wants

to learn aggregate statistics, access is permitted, but is denied for a specific identity/attribute

pair which can reveal personal data, (e.g. “this person is over 21”).
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Centralized systems may serve entire nations (e.g. for passports, birth certificates etc). To

provide credentials (foundational id and functions like visas for travel), you need to federate

these nationally centralized systems. Federation takes a set of two or more national services,

and turns them into a distributed service. You might expect this type of federation to offer

less functional services than each of its component, national system. Of course, decentralized

systems also need to be federated at scale to be useful - after all, no one is an island.

For distributed identity systems different users’ foundational identity is created and stored

in different servers. Different users’ functional identity services may be served from different

servers. You can also use secure multiparty computations (MPC) to look up identity data

that is split across server sites.

Of course distributed identity systems can also be federated. If you seek to identify groups

of people, or combine multiple functional attributes for one or more individuals, you will

need to access multiple servers. Of course you can also have hybrid identity systems

where you do not keep all the data in one place (known as data minimization), but rather

federate/shard/distribute/ and decentralize the service.

Distribution, in turn, adds complexity. Fully centralized and decentralized systems will

necessarily be simpler. Centralized and distributed systems can offer higher availability, by

virtue of replication and load balancing. Replication of data services for slow changing data

is, in fact, very simple. Hybrid systems may combine decentralized systems with central

or distributed purely for the purpose of increasing availability so that if a users device is

unreachable, broken or stolen, they are not deprived of identity services. Replicated services

may also better resist denial of service attacks.

Some of the debate around the choice between these approaches stems from security concerns.

As outlined above, some simple attacks can be mitigated by a range of privacy enhancing

technologies. Certain threats may be inherently easier to resist with some implementation

patterns than with others.

Apps may or may not have identity needs. In some cases, we can replace actual, foundational,

identity with tokens that act as randomized proxies for id.

Symptom reporting No need for id, but needs uniqueness of reports - inherently it is

about medical stats at a given time ...token are more than good enough. There’s never

any need to re-link a report to an individual.

Contact tracing Centralized and may require id, as the reason for centralized systems

may be to combine health status with other factors (age, gender, ethnicity) for

epidemiological studies and then relink to other ids to see if if there is any variation in

infections between different groups. Indeed, one can also uncover immunity expiry (e.g.

via re-infection, if and when that occurs).
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Decentralized apps often only have a token as their design goal to enforce the anonymity

between an index case and exposed individuals (who may be unknown to the index

case, e.g. someone who happened to be on same bus or in same bar). Similarly

this anonymity between exposed people and the health service provider, and other

stakeholders, is desirable to prevent the abuse of compliance rules for observing self-

isolation. An unfortunate consequence of this is that there is no store of data to carry

out epidemiological statistics, as asymptom reporting app can.

Immunity passporting May need id, if required e.g. as a visa to accompany a real

passport to allow for travel: can be centralized, or could be decentralized where each

user holds immunity status and just has to show it associated with a foundational id to

verify.

6.2. Design choice - driven by threats?

Threats exist to the correct and trustworthy operations of Identity Systems (and apps). What

are the threats, and from whom do they originate? This is not an exhaustive list, but to

illustrate the range of considerations that might impact on the cost of various implementation

patterns for id or a health app.

The Human level • Fool the system (e.g that I am under 21, or I am immune).

• Fool or coerce people to register/deregister ( commonly known as a masquerade),

or require immunity passport to return to work, e.g. avoiding cost of providing a

safe workplace..

• Fool or coerce people to verify credentials on behalf of someone, i.e. spoofing.

• Run spoof service, so people give biometric, and other info, to a fake interface.

The Technology level • Does the system actually provide minimal answers (e.g. “is

over 21 not is 24)? Can the user have confidence that the system only displays an

anodyne yes or no, and only the client knows what was queried (for example “is

your age over 21)?

• Exploit vulnerabilities in service to do the above individually

• Id theft, masquerade, prevention of service, etc

• DDoS service across a wide range of servers...

• Indirect attacks (e.g. on network & power infrastructures)

The Organizational level (insider attacks, state actors etc) • Surveillance of use

(and meta data use e.g. what id is used when & where)
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• Surveillance of register/deregister (set membership attacks)

• Isolation of subgroups by attribute, for differential treatment...

What would make ‘id-as-service’ more trustworthy? Consider the following. A client presents

a key, and gets one or more values back. An example key is a biometric (e.g. pass phrase,

fingerprint, iris, face, palm, etc) plus a possible additional parameter (e.g. age verify, bank

account number). The response value is returned: “is over 21”, bank a/c, “is entitled to

NHS care” etc. In some system designs, what is returned is a token (or collection of tokens)

that have a sole purpose of authentication and are of no use or meaning to anyone else.

The client side should run with security, up to and possibly including client user context

,such as knowing who can see the display or know the location etc. The network should

at least implement basic security such as Transport Layer Security (TLS). The server side

should ensure and keep all data encrypted. It is possible to run the server in an enclave (SGX,

Trustzone etc). However, a problem that can occur is if these are subsequently compromised,

but we continue to use anyway (i.e. confidential cloud) with relatively low performance

penalty. Enclaves also potentially provide attestation (e.g. of integrity), which can also be

useful but might depend on a single authority that has to be trusted and trustworthy. We

could run the server key/value lookup using FHE. In this case the problem is performance,

look up rate could have a pretty low throughput. However, see this service which claims

otherwise:- http://privatebiometrics.com/index.html .

We could run the server with data sliced or sharded (that is disaggregated), and use MPC

to do match key to value. This has some latency challenges, but is not computationally

pathological, and scales out well. Note others have built solutions to privacy in this space

too, e.g. https://cryptpad.fr/

We could distribute data over many cloud services and federate. Alternatively, it is possible

to run a fully distributed bespoke system (possibly non virtualized/not cloud. The simplest

would be to put the key/value store on a P2P Chord/Distributed Hash Table like Kademlia.

This basically mimics regular password file (hash onto a file, but in this case, has onto a

node in Kademlia). Kademlia also supports resilience/node failure recovery and has high

performance. There is no access control inherently, but it could be added.

Another candidate for this is a distributed ledger system (DLT), such as Ethereum or

Hyperledger, with one added benefit that this has high integrity, and is effectively tamper

proof. Ledgers can be fully peer to peer (p2p), and therefore permission-less, or depend

upon an access control system that itself could be distributed or centralized (permissioned).

Mutable data has to be kept off chain, or some new construct applied. DLT also support

computation, as part of transactions, and IBM hase proposed adding MPC as part of these

computations.

There is a slight circularity here, in that the sign on for a permissioned system itself requires

http://privatebiometrics.com/index.html
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authorization. So, if the permissioned blockchain is supporting id-as-a-service, who provides

the id for the sign-on? Note the entities using the service are as likely to need Id-as-a-service

as the subjects (the bank manager is a person too). Permissioned systems also mainly use

authorization for write/append access. We would need to enforce read access permissions

(and see differential privacy and the argument below for the so-called trawl problem).

Self sovereign systems completely decentralize the Id service. Fully decentralized systems

have a problem with trust and require another component/service to provide that e.g. proof

of work, stake, community etc. These are all known to have scaling or stability and risk

challenges and no convincing solution is as of yet known. It is worth remarking that If they

are not good enough for currency, why should we trust them for Id systems?

6.3. Analytics Services

Systems operators or customers may wish to carry out statistical analyses to audit the proper

operations of identity systems. These operations need not be privileged. Differential Privacy

is one mechanism to provide privacy with respect to an individual’s data in a set. i.e. if

someone is doing queries that return aggregates, this only returns results as if the individual

record was not there.

Applications that use id might also need analytics, for example public health researchers

want to look at contact tracing statistics to determine infection rates between users and

different classes of user (age, gender etc).

So this might be useful here, but note this has to be for authorized users only (role based

access control may be needed), and there is a limit/quota on number of queries, that is

“budget” must be traded off against precision.

Decentralized systems can be coupled with randomness to provide prevention of trawling,

with accurate lookups provided by the model run on users own device and data. But see

above for risk problem with decentralized.

For different organizations and nations, trust assumptions may vary - eg. do you trust a

health service provider, government, a bank, a set of individuals, an infrastructure, hardware,

operating systems etc Depending on the answer, a different mix of choices from the menu

above may be appropriate.

6.4. Immunity passports

Here, we provide a brief summary of motivations, concerns and proposals relating to

immunity passports. We do not intend this to provide the reader with a complete overview,

only to inform them of some of the basics.
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The concept of “immunity passports” has been considered, and even implemented, by many

stakeholders from governments to private companies [85][86], as a method to assist in the

return to some sort of societal normality. Whether this is to revive an economy, allow

workforces to return, or allow the service industry to function at increased capacity, the goal

of immunity passports is, at a high level, the same: to reduce the need for social distancing

by reducing the risk of transmission of the virus.

It has been suggested the name “immunity passport” is misleading [87, 88], instead “antibody

certificates”, “immunity licenses” and “health passports” have been highlighted as more

appropriate names. Moreover, as the scientific evidence on the level and longevity of

immunity is fast changing so is the scope of immunity passports. At present however the

process is broadly as follows: a test for antibodies is administered and a person is declared

immune or not based on the results, the ramifications of having, or not having, an immunity

passport is then determined by a government, local authority or employer.

In a similar manner to contact tracing, it is interesting to look at immunity passports from the

perspective of identity. An immunity passport can be considered to be a functional identity

with at least one mandatory attribute: immunity status, note this is often combined with a

photo or other piece of binding information to allow the holder of the passport to prove the

claim they are making about their immunity status. Herein lies the major concern of such

systems however: that they will be inherently discriminatory. Those with immunity will

be granted access to post lockdown life, while those without will continue to be restricted.

Moreover, the binary nature of the immunity status attribute could highly incentivize a

user of the system to act maliciously in order to obtain a passport with “immune” status.

Consequently, any immunity passporting system must be robust to such behavior. Before

we consider some of the proposed systems, we note it has been suggested [5] that it is not

necessary to bind immunity passports to people and thus reduce the level of discrimination.

Such a system, however, while decreasing the level of discrimination would likely have far

reduced effectiveness. It does highlight an interesting debate in the context of identity

however, namely where does the trade-off lie between discrimination and net positive benefit

to society?

To the best of our knowledge there have been two academic proposals for immunity passports.

First, Eisenstadt et al. [89] propose a privacy-preserving scheme that combines W3C-

standard “verifiable credentials”‘[90], the “Solid” platform [91] and a federated consortium

blockchain. The authors propose that the hash of each users certificate (passport) is stored

in a consortium blockchain which is checked each time that an authentication between a

user and verifier takes place. Second, Hicks et al.‘[87] present SecureABC: a decentralized,

privacy-preserving system, as a solution to the problem. Here a cryptographically signed

credential is issued to a user by the healthcare provider and can then be verified by a service

provider at any time without the issuers (or healthcare providers) knowledge.
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We also highlight two industry based centralized systems. At a national level, Estonia’s

system [92] enables people to share their so-called immunity status with a third-party using

a temporary QR-code that is generated after authentication. Commercially, CoronaPass [93]

also propose a centralized immunity passport solution where service providers verify each user

passport against a central database. Whilst security and legal measures can be put in place

in both these solutions, to deter the central authority from misusing the data they hold, it

nonetheless represents an avoidable risk and a central point of failure. Moreover, employing

a central party to participate in each authentication risks large-scale user tracking and the

possibility of feature creep. The (de)centralized debate in this context is not as nuanced as in

the context of contact tracing and therefore we conclude that a decentralized (or blockchain)

based approach is likely preferable.

In conclusion, immunity passports offer a method for society to begin to return to normality.

Systems have been proposed that provide an effective solution to the passporting problem,

and in the case of the academic solutions we have a good understanding of their guarantees

and limitations regarding a users security and privacy. The implementation of such a system

however comes at a cost not only to a persons privacy but to society; for any such system

to have a marked effect in benefiting society it needs to be somewhat discriminatory. As a

result we feel a public debate around the level of discrimination we are prepared to tolerate

and the associated trade-offs is paramount if such a technology is to be widely implemented.

7. Measuring efficacy and impact of COVID-19 mitigation methods

7.1. Efficacy of Automated Contact Tracing

Given the spread of the ongoing SARS-CoV-2 pandemic, automated contact tracing has been

suggested as an effective means of containing the spread of the virus while enabling a society

to reopen its economy safely. Consequently, a more detailed and rigorous examination of

the efficacy of automated contact tracing is required given the distinct difference in the

prevalence of this pandemic from the ones in the recent past and the different modes of

transmission of the pathogen.

Manual contact tracing, used more traditionally, has been observed to be effective in previous

epidemics caused by the Ebola virus, SARS-CoV and MERS-CoV [94, 95, 96, 97, 98]. Manual

contact tracing is not very effective against pathogens that spread like the influenza virus but

is more effective for containing smallpox and SARS-CoV [99]. The viral shedding patterns

of SARS-CoV and MERS-CoV are similar [100, 101] and show almost no pre-symptomatic

transmission [51], while Ebola is known to be transmitted through the bodily fluids of

infected individuals after the onset of symptoms [102]. On the other hand, influenza shows a

significant rate of viral shedding in the pre-symptomatic stage [103]. The spreading pattern

of SARS-CoV-2 is similar to influenza and quite different from Ebola or SARS-CoV.
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To assess the real-world applicability of automated contact tracing, we suggest a model

that includes the effects of finite sampling of the population under the assumptions that

enrollment in automated contact tracing and reporting on their health condition via the

contact tracing service will be voluntary. Not subscribing to the service will not only remove

an individual from the pool that is being notified, but it also removes them from the pool

of individuals that are reporting while not reporting one’s health condition will cause only

the latter. In our model, the variabilities in the efficacy of automated contact tracing can

be quantified as follows:

• Let N be the number of individuals in a population and fi the fraction of the population

that is infected, regardless of whether they know it or not. Therefore, the true number

of infected individuals is fiN .

• If testing is conducted only when mild or severe symptoms are seen (i.e. excluding

testing of asymptomatic cases), the number of confirmed cases is rcfiN with rc being

the fraction of the infected that will be confirmed as infected by testing.

• We define fe as the fraction of the population that is enrolled for automated contact

tracing and fc as the fraction of the users that will confirm that they have been

diagnosed positive. Hence, the number of individuals that have tested positive, are

using automated contact tracing and will confirm that they are sick is fcfercfiN .

• We define ac as the average number of contacts per person in the period of time t0 who

are at risk of being infected due to proximity with a sick individual and is assumed to

be greater than 0.

Using these quantities, we can estimate the number of individuals that can be traced as

fcfercfiN × ac × fe, i.e. (the number of reported positive tests) × (the fraction of contacts

that will be notified per the report). For automated contact tracing to work effectively,

this number should be greater than or equal to the number of individuals that need to be

quarantined or isolated since they are now at risk of being infected from coming in contact

with a sick person. For the evaluation, we define the following.

• Since pt is defined as the probability of transmission of infection within the proximity

radius r0 being exposed for a time greater than t0, the number of individuals at risk is,

at most ptfiNac, i.e., pt× (number of contacts of the group of infected individuals).

• Finally, we define fT as the fraction of the individuals at risk of being infected that

needs to be successfully quarantined to quell the spread of the pathogen.

Therefore, the number of individuals that should be quarantined is fTptfiNac. For

automated contact tracing to slow down the spread of the virus effectively, we have,

f 2
e fcrcfiNac ≥ fTptfiNac. (15)
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Note that ac, the average number of contacts, drops out of the inequality. Hence, the

inequality is independent of the population density of the region. This is because eq. (15)

is in terms of fraction of the population and not the absolute number of individuals. This

simply implies that in a region of denser population a larger number of people need to be

contacted and quarantined but leaves fe independent of the population density. Since the

right-hand side is the minimum fraction of the population that needs to be traced we arrive

at:

fmine =

√
fTpt
fcrc

. (16)

The fraction fmine is the minimum fraction of the population that needs to be enrolled in

automated contact tracing for it to be effective as a means of slowing down the spread of

the pandemic.

Let us examine the limit pt = fc = rc = 1. This is the limit where every significant contact

is assumed to be at risk, everyone who is enrolled in the automated contact tracing program

reports sick when tested positive and every sick individual can be successfully identified by

testing. Then we arrive at the relation fmine =
√
fT . Since fT is the fraction of contacts that

need to be successfully isolated, it can be extracted from the abscissa of Fig. 3 of ref. [50].

For example, if 100% of the confirmed infected cases can be isolated, then for a change in the

epidemic growth rate by −0.1, one needs fT ∼ 60% and hence fmine ∼ 77%. It is intuitive

that fmine scales as the square root of fT since both the infected and the contact at risk need

to be enrolled and the probability that each are enrolled is fe leading to fT ∝ f 2
e . It gives

the threshold which fmine cannot exceed for any given fT . Several scenarios of the parameter

sets are studied in ref. [104].

7.1.1. Assisted contact tracing The necessary scale of implementation of automated contact

tracing is too large for it to be considered by itself an effective measure to slow down the

ongoing pandemic. For automated contact tracing to be a viable option, fmine has to be as

low as possible. A closer look at the parameters reveals the following:

• Both fT and pt depend on the dynamics of the disease spread. The fraction of traced

cases that need to be quarantined to stop the spread of the disease, fT , can be reduced

by extensive monitoring of the disease to make sure sick cases are isolated as soon as

possible and their contacts are traced. Even a day or two of delays can increase fT
making automated contact tracing ineffective [50].

• Variations in pt can be caused by several factors some of which are controllable. Since pt
depends on the contagiousness of the disease and any protective measures taken against

the spread of the infection, pt can be reduced by measures of limited social distancing,

the use of PPE and raising public awareness about the contagiousness of COVID-19.

This can pose a significant challenge in densely populated regions and regions with poor
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living conditions and might lead to the breakdown of the applicability of automated

contact tracing.

• fc is somewhat more difficult to control assuming the reporting of those who are

confirmed sick is voluntary. This can only be increased by increasing the population’s

willingness to contribute to automated contact tracing.

• rc is the parameter that is least under control since without very large-scale testing,

asymptomatic and mildly symptomatic cases will be difficult to find. This is especially

true if the infection can spread by means other than proximity alone as might be the

case for SARS-CoV-2 [105, 106, 107].

Thus we see that a combination of several measures along with a large participation of

the population in contact tracing would be the optimal solution for avoiding extensive

population-wide social distancing measures and reducing the cost to the economy and well-

being of a nation and also allow for greater freedom of movement during a pandemic. In

the following section, we discuss future studies on other possible measures that can help

in the mitigation of the spread of COVID-19 with particular focus on computational and

algorithmic approach leveraging data science and network theory.

7.2. Intelligent Algorithms, Data-driven Methods and COVID-19

A pandemic is a population-wide crisis, yet it affects individuals at varying degrees of

criticality depending not only on their personal lifestyles but also on the local demographics.

It has a unique way of amplifying what history has created as a lingering effect on the current

socio-economic trajectories of the immediate neighborhood that any individual lives in. In

essence, the effects of and strategies during a pandemic cannot be disentangled from the local

socio-economic conditions and historical fluctuations. This renders any large-scale policy

implementation without considering the local conditions at the county, state or national level

completely ineffective during a pandemic even though the response to it must be population-

wide to sufficiently mitigate it. What is imperative looking forward is a means of analyzing

localized datasets to understand the curation of mitigation procedures during the onset of a

wave of disease spreading. Firstly, data needs to be collected with sufficient granularity to

allow for inferences on local prevalence. Secondly, the spread of the disease has to be studied

vis--vis the local demographics of any neighborhood. Considering the fact that these datasets

will be highly multivariate and have very complex correlation pattern obfuscating the causal

connections between the driver and the driven, advanced modeling methods and statistical

tools are imperative for the understanding of disease spread at a microscopic level of the

socio-economic structure of a nation. We have undertaken a three-fold study of various

aspects of disease spread and containment that will link them to exit strategies through

the mathematical models of curated socio-economic responses and the study of immunity
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Figure 7: Left: distribution of population density in the USA. Right: COVID-19 disease

prevalence per 100,000 individuals in each county. The COVID-19 prevalence distribution

is quite different from the population density distribution. Plots made with the Highcharts

Maps JavaScript library from Highcharts.com with a CC BY-NC 3.0 license.

development in a community. These three parts of the study have a deep underlying link

which adds to the strength of the analysis that we propose. The three parts can be described

as:

(i) A study of the correlations between several socio-economic metrics and geospatial

demographics at the county level and their correlation with COVID-19 prevalence.

(ii) A study of immunity development in a community based on a detailed agent-based

model and the training of a machine learning algorithm to probabilistically assess and

categorize the immunity development in individuals.

(iii) A network-based model of urban areas to understand curated closures of the commercial

and industrial sectors to find an optimal level between uncontrolled disease spread and

damages to the economy.

All three topics tie into a common goal: understanding the socio-economic conditions that

affect the spreading of the pandemic and devising effective exit strategies and mitigating

policies that can allow for the sustenance of economy while allowing for lower footprint

of a pandemic in terms of human lives lost and perturbations to the social norm. These

strategies will be augmented by an understanding of immunity development which is crucial

for increasing mobility within a population and will build tools that will allow for algorithmic

assessments to aid in prioritizing clinical testing for immunity. In what follows, we give some

details of the ideas that we are exploring in these studies.

7.2.1. Socio-Economic conditions and COVID-19 As COVID-19 spreads by contact and

proximity, it is natural to assume that the pandemic will have its worst effects in regions

https://www.highcharts.com/
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that have the highest density of population and the largest mobility within the population.

This effect can even be seen in several nations where, on the surface, the worst-hit regions

were the most densely populated ones. However, Fig. 7 tells a very different story. In the

USA, there seems to be not a very tight correlation nationally between the population density

of a region and the prevalence of COVID-19. Unexpected correlations between the prevalence

of COVID-19 and socio-economic metrics can appear especially in rural areas. Correlation of

COVID-19 prevalence with socio-economic metrics like mobility, unemployment, poverty, the

fraction of population that are migrants, types of professions undertaken, etc. that can be

found in the census data at the county level can be studied. To understand the correlations

better, we are using machine learning tools like boosted decision trees along with feature

importance measures like the Shapley score to understand how the socio-economic metrics

affect the disease spread.

7.2.2. Algorithmic assessment of immunity to COVID-19 In another work we study the

disease spread using an agent-based model [57, 58] and develop a machine learning algorithm

that will be able to identify immune individuals in a data-driven manner. The study requires

a simulation of an agent-based model to create a simulated data-set of immune agents starting

with a small number of sick agents. To set up the rules for the agent-based model there has

to be an understanding of how the disease propagates in real communities affected by the

disease. This requires the gathering knowledge from emerging clinical studies of COVID-19

affected communities. The immunity detection algorithm is trained using the simulated data-

set generated by the agent-based model. This algorithm will evolve into a semi-supervised

machine learning algorithm that will learn the optimal values of the parameters necessary for

inferring on immunity development in individuals. Data obtained in 7.2.1, related to local

infection prevalence, duration of pre-symptomatic and symptomatic stages of the infection,

demographic data on infected individuals, assessment of the prevalence of asymptomatic

cases helps in the design of the simulation which will be used to train the immunity detection

algorithm.

From this we will gain a data-driven understanding of immunity development in a population.

This will act as a starting point when real data is made available with the deployment of

anti-body tests. An assessment of individual immunity based on prior exposure, underlying

health conditions, local disease spread data and mobility history will allow individuals to be

aware of possible immunity development and allow any institution (within the healthcare

system or otherwise) to prioritize immunity tests based on algorithmic assessment. This will

allow for better assessment of the necessity for quarantining individuals and will ease the

requirement for population-wide stay-at-home orders, and can ultimately be a reference to

making policy decision for reopening for COVID-19 as well as future epidemics.
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7.2.3. A network-based analysis for optimized commerce management Exit strategies during

an ebbing pandemic requires special caution so as to not trigger its resurrection as is being

seen in several parts of the world now. A key component is understanding the fraction of

the various commercial sectors that can be opened to sustain the flow of the economy while

optimizing the social contact within the population. There are certain businesses that have

a higher footfall and hence act as transmission hubs like restaurants and supermarkets. If a

fraction of these hubs is closed intermittently, it can reduce the effective pathway for disease

propagation, hence, slowing down the disease spread while it allows keeping the businesses

at a sustainable level. However, this requires accurate large-scale prediction about what

fraction of different business sectors need to be closed. To this end, we are developing

multi-layered network models [108, 109, 110] to represent businesses as nodes with their

interdependence as links in one layer and the pathways of disease spread in another layer.

Utilizing the business interaction network on the first layer, we investigate how the partial

closure of certain businesses affect other businesses that depend on them. Then, we analyze

mobility patterns on the business network by using mobility data collected from Google and

identify hubs associated with high mobility in an urban area. We adopt the agent-based

model discussed in 7.2.2 to simulate the mobility data and tune it with the fraction of open

business on the first layer to reduce the mobility at the hubs. This enables the analysis of

how the intervention on the business network propagates and influence the spread of disease

across the social interaction network on the second layer [111, 112].

8. Concluding Remarks

Since the workshop, the pandemic has significantly worsened, and the policy responses to

upsurges in cases has varied widely from nation to nation, and even state to state. As of

at September 27th, the global cases are approaching 33 million, and sadly deaths now stand

at 995, 583 with a difficult Northern Hemisphere winter to come. The impact of restrictions

on personal liberty and economic activity continue to be manifested in deep recessions,

significant changes in patterns of travel, and increasingly in civil unrest. The importance

of seeking smart solutions to manage the pandemic with minimal disruption is even more

pressing than when the workshop was convened. We hope that the results presented here

will inform both researchers and policy makers.

It is clear that there is much left to be understood regarding the interplay between the

network of contacts and the progression of the epidemic. As was explained in Sections 2-

5 the precise structure of the contact network. However, detailed information about the

network structure is scarce and most of the modeling approaches have been based on coarse-

grained data about the network structure. An exception to this rule is the case in which

data from track and tracing apps is taken into account, but even here, the data includes only

partial information and needs to satisfy the privacy agreement set up with its customers.
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Due the adaptive nature of the human response to COVID-19, making predictions regarding

the unfolding of the epidemics is hazardous. In particular, in the countries where a partial

containment of the spread of the epidemic has been achieved, there remain uncertainties over

the evolution of the disease and policy makers are faced with a delicate situation where the

pandemic can easily spiral out of control.

The computational challenges that underlie these models represent an opportunity for a novel

approach to studying the effects of the network structure. Most of the analytical approaches

require simplification of the network structure, and it is entirely possible that the glossed

over fine details of this structure could have a dramatically alter the conclusions obtained.

This situation could be viewed as similar to that presented by the atomic hypothesis nearly a

century and a half ago. That problem was brilliantly solved by the body of work now known

as statistical physics. Analogous approaches have been adopted in network science, and

it is possible that equally consequential advances are just around the corner, with obvious

implications for more effective containment measures and immunization policies.

A much vaunted approach to managing the disease is automated contact tracing. It is also

clear that in this endeavor there is much to be gained by further study and innovation, for

example, a more complete understanding of the contact network though which COVID-19

spreads. Reliable data will be essential for the application of advanced network science

techniques to predict the spread to the disease.

At the heart of such approaches lies the balance between personal privacy and the health

of the population at large. Advances in the trustworthiness of such systems described in

Sections 6 and 7 could be pivotal in driving the adoption and efficacy of technological

approaches to controlling the pandemic.

Finally it is worth noting that the socio-economic profile of the impact of COVID has laid

bare structural challenges in developed, and developing societies. Hitherto the world has

largely been urbanized or urbanizing, and anecdotally at least this has paused. If, as some

believe, this pandemic heralds a period of recurring pandemics, it seems likely that a new

vision for social and economic progress will be needed. It is, of course, not the place of

scientists to dictate what that vision might be: it is a question for all of society. But we

hope the insights and developments presented in this article will contribute positively to

whatever vision emerges.
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[18] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabási,

“Structure and tie strengths in mobile communication networks,” Proceedings of the national

academy of sciences, vol. 104, no. 18, pp. 7332–7336, 2007.
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