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We review the current status of baryogenesis with emphasis on electroweak baryogene-
sis and leptogenesis. The first detailed studies were carried out for SU(5) GUT models
where CP-violating decays of leptoquarks generate a baryon asymmetry. These GUT
models were excluded by the discovery of unsuppressed, B+L violating sphaleron pro-
cesses at high temperatures. Yet a new possibility emerged, electroweak baryogenesis.
Here sphaleron processes generate a baryon asymmetry during a strongly first-order
phase transition. This mechanism has been studied in detail in many extensions of the
Standard Model. However, constraints from the LHC and from low-energy precision
experiments exclude most of the known models, leaving composite Higgs models of elec-
troweak symmetry breaking as an interesting possibility. Sphaleron processes are also
the basis of leptogenesis, where CP-violating decays of heavy right-handed neutrinos
generate a lepton asymmetry which is partially converted to a baryon asymmetry. This
mechanism is closely related to the one of GUT baryogenesis, and simple estimates based
on GUT models can explain the order of magnitude of the observed baryon-to-photon
ratio. In the one-flavour approximation an upper bound on the light neutrino masses
has been derived which is consistent with the cosmological upper bound on the sum of
neutrino masses. For quasi-degenerate right-handed neutrinos the leptogenesis temper-
ature can be lowered from the GUT scale down to the weak scale, and CP-violating
oscillations of GeV sterile neutinos can also lead to successfull leptogenesis. Signifi-
cant progress has been made in developing a full field theoretical description of thermal
leptogenesis, which demonstrated that interactions with gauge bosons of the thermal
plasma play a crucial role. Finally, we discuss recent ideas how the seesaw mechanism
and B−L breaking at the GUT scale can be probed by gravitational waves.
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I. INTRODUCTION

The current theory of particle physics, the Standard
Model (SM), is a low-energy effective theory, valid at
the Fermi scale of weak interactions, ΛEW ∼ 100 GeV.
Theoretical ideas beyond the SM extend up to the scale
of grand unified theories (GUTs), ΛGUT ∼ 1015 GeV,
possibly including new gauge interactions at intermedi-
ate scales and supersymmetry. Once quantum gravity
effects are relevant, also the Planck scale and the string
scale enter. At the LHC, the SM has been tested up to
TeV energies, with no hints for new particles and inter-
actions. So far the only evidence for physics beyond the
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SM are non-zero neutrino masses which are deduced from
neutrino oscillations, and which can be explained by ex-
tensions of the SM ranging from the weak scale to the
GUT scale. Moreover, there is evidence for dark matter
and dark energy which, however, might have a purely
gravitational origin.

During the past 40 years impressive progress has been
made in early-universe cosmology, closely related to par-
ticle physics. This led to a standard model of cosmol-
ogy with the key elements inflation, baryogenesis, dark
matter and dark energy. However, the associated energy
scales are very uncertain. The energy density during the
inflationary phase can range from the scale of strong in-
teractions to the GUT scale, dark matter particles are
considered with masses between 10−22 eV and 1018 GeV,
dark energy may just be a cosmological constant con-
strained by anthropic considerations and also the energy
scale of baryogenesis can vary between the scale of strong
interactions and the GUT scale.

This review is concerned with a single number, the
ratio of the number density of baryons to photons in
the universe, which has been measured most precisely in
the cosmic microwave backgound (CMB) (Akrami et al.,
2018),

ηB ≡
nB
nγ

= (6.12± 0.04)× 10−10 , (1)

being consistent with the most recent analysis of primor-
dial nucleosynthesis (except for the ‘lithium problem’)
(Fields et al., 2020). Since the existence of antimatter in
the universe is excluded by the diffuse γ-ray background
(Cohen et al., 1998), the ratio ηB is also a measure of the
matter-antimatter asymmetry,

nB − nB̄
nγ

=
nB
nγ

= ηB . (2)

From the seminal work of Sakharov (Sakharov, 1967) we
know that the baryon asymmetry can be generated by
physical processes and that it is related to the violation
of CP, the product of charge conjugation (C) and space
reflection (P), and to baryon-number violation in the fun-
damental theory.

Our knowledge about the early universe rests on only
a few numbers: the abundances of light elements (ex-
plained by nucleosynthesis), amplitude and slope of the
scalar power spectrum of density fluctuations and the
tensor-to-scalar ratio (determined by the CMB), and the
contributions of dark energy, matter and baryonic mat-
ter to the energy density of the universe which, nor-
malized to the critical energy ρc = 3H2

0/(8πG), read1:

1 The Hubble parameter is determined as H0 = (67.36 ±
0.54) km s−1 Mpc−1 ≡ h×100 km s−1 Mpc−1 (Aghanim et al.,
2018); in a flat universe, as predicted by inflation, one has
ΩΛ + Ωm = 1.

ΩΛ = 0.6847 ± 0.0073, Ωmh
2 = 0.1428 ± 0.0011 and

Ωbh
2 = 0.02237 ± 0.00015 (Aghanim et al., 2018), with

ηB = 2.74× 10−8 Ωbh
2 (Fields et al., 2020). One can al-

ways make a theory for a single number like ηB . Hence,
in order to make progress, it is important to develop a
consistent picture of the evolution of the universe, which
correlates the few available numbers, in the framework
of a theoretically consistent extension of the Standard
Model. In the review we shall emphasize this point of
view, following the work of Sakharov.

This review focuses on electroweak baryogenesis
(EWBG) (Kuzmin et al., 1985) which is tied to the Higgs
sector of electroweak symmetry breaking, and on lepto-
genesis (Fukugita and Yanagida, 1986) which is closely
related to neutrino physics. An attractive feature of
EWBG is that in principle all ingredients are already
contained in the SM. However, our knowledge of the elec-
troweak theory implies that a more complicated Higgs
sector is needed for EWBG, and the stringent constraints
from the LHC and low-energy precision experiments have
led to extended models where scales of electroweak sym-
metry breaking are considered well above a TeV. On
the other hand, leptogenesis originally started out at the
GUT scale. But the desire to probe the mechanism at
current colliders led to the construction of models where
the energy scale of leptogenesis is lowered down to the
weak scale. A further interesting mechanism is Affleck-
Dine barogenesis (Affleck and Dine, 1985), which makes
use of the coherent motion of scalar fields in extensions
of the SM with low-energy supersymmetry. In the ab-
sence of any hints for supersymmetry at the LHC we will
not further discuss the Affleck-Dine mechanism in this
review.

In the following, we first recall the theoretical foun-
dations of baryogenesis in Section II: Sakharov’s condi-
tions, sphaleron processes and some elements of thermo-
dynamics in an expanding universe. We then move on to
electroweak baryogenesis in Section III. We first review
the electroweak phase transition and the charge trans-
port mechanism, and we illustrate the current status of
the field with a number of representative examples, cor-
responding to weakly coupled as well as strongly coupled
models of electroweak symmetry breaking. Section IV
deals with leptogenesis. After recalling basics of lepton-
number violation and kinetic equations, we consider ther-
mal leptogenesis at different energy scales and also lep-
togenesis from sterile-neutrino oscillations. We then de-
scribe interesting recent progress towards a complete de-
scription of the nonequilibrium process of leptogenesis
on the basis of thermal field theory. Finally, we discuss
an example where by correlating inflation, leptogenesis
and dark matter one arrives at a prediction for primor-
dial gravitational waves emitted from a cosmic string net-
work. After a brief discussion of other models of baryo-
genesis in Section V, we present summary and outlook in
Section VI. Different aspects of the theoretical work on
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baryogenesis over 50 years have previously been described
in a number of comprehensive reviews, see, for example
(Buchmuller et al., 2005b; Dine and Kusenko, 2003; Kolb
and Turner, 1990; Rubakov and Shaposhnikov, 1996).

II. THEORETICAL FOUNDATIONS

A. Sakharov’s conditions for baryogenesis

A. Sakharov (Sakharov, 1967) wrote his famous paper
on baryogenesis two years after the discovery of CP viola-
tion in K0-decays (Christenson et al., 1964) and one year
after the discovery of the cosmic microwave background
(Penzias and Wilson, 1965) that had been predicted as
remnant of a hot phase in the early universe 20 years
earlier (Gamow, 1946).

Sakharov’s paper contains three necessary conditions
for the generation of a matter-antimatter asymmetry
from microscopic processes:

(1) Baryon-number violation. As we know today, after
an inflationary phase one cannot have B 6= 0 as an
initial condition of the hot early universe, and if
baryon number were conserved a state with B = 0
could not evolve into a state with B 6= 0.

(2) C and CP violation. If the fundamental interac-
tions were invariant under charge conjugation (C)
and the product of parity and charge conjugation
(CP) the reaction rate for two processes, related by
the exchange of particles and antiparticles, would
be the same. Hence, no baryon asymmetry could
be generated.

(3) Departure from thermal equilibrium. Sakharov
considered an initial state of the universe at high
temperature. Thermal equilibrium would then
mean that the system is stationary, so an initially
vanishing baryon number would always be zero. A
departure from thermal equilibrium defines an ar-
row of time. In a non-thermal system this can be
provided by the time evolution of scalar fields, as
in Affleck-Dine baryogenesis.

Sakharov considered a concrete model for baryogene-
sis. He proposed as the origin of the baryon asymmetry
CP-violating decays of ‘maximons’, hypothetical neutral
spin-zero particles with mass of order the Planck mass
MP ∼ 1019 GeV. Their existence leads to a departure
from thermal equilibrium already at an initial tempera-
ture Ti ∼ MP, where a small matter-antimatter asym-
metry is then generated. The CP violation in maximon
decays is related to the CP violation in K0-decays, one
of the motivations for Sakharov’s work, and an unavoid-
able consequence of this model is that protons are un-
stable and decay. The proton lifetime is predicted to be

τp > 1050 years, much longer than in grand unified theo-
ries.

GUTs played an important role in the development
of realistic models of baryogenesis (Dimopoulos and
Susskind, 1978; Toussaint et al., 1979; Weinberg, 1979;
Yoshimura, 1978). These theories naturally provide
heavy particles, scalar and vector leptoquarks, whose de-
cays violate baryon and lepton number and can there-
fore be the source of a baryon asymmetry. However, the
simplest GUT models based on SU(5) conserve B−L,
the difference of baryon and lepton number. Hence,
leptoquark decays can only create a B+L asymmetry,
with a vanishing asymmetry for B−L. As emphasized
by Kuzmin, Rubakov and Shaposhnikov (Kuzmin et al.,
1985), at temperatures above the electroweak phase tran-
sition B+L violating sphaleron processes are in ther-
mal equilibrium. Hence, any non-zero B+L asymme-
try is washed out. The simplest GUT beyond SU(5)
is based on SO(10), which includes right-handed neu-
trinos and a B−L gauge boson. With B−L broken
at the GUT scale, right-handed neutrinos with masses
below the GUT scale are ideal agents for generating a
B−L asymmetry, and therefore a baryon asymmetry,
again because of the sphaleron processes. This is the lep-
togenesis mechanism proposed by Fukugita and Yanagida
(Fukugita and Yanagida, 1986).

Electroweak baryogenesis is a process far from thermal
equilibrium, with a strongly first-order phase transition,
nucleation and propagation of bubbles, CP-violating in-
teractions on the wall separating broken and unbroken
phase, and a crucial change of the sphaleron rate across
the wall. On the contrary, leptogenesis is a process close
to thermal equilibrium, the departure being a deviation
of the density of the right-handed neutrinos from their
equilibrium distribution. Hence, the time evolution of
the nonequilibrium process is well under control and a
full quantum field theoretical treatment is possible. Suc-
cessful electroweak baryogenesis imposes constraints on
masses and couplings of Higgs bosons, whereas successful
leptogenesis is connected with properties of neutrinos.

B. Sphaleron processes

In the Standard Model both baryon and lepton num-
ber are conserved according to the classical equations
of motion. However, quantum effects give rise to the
chiral anomaly and violate baryon number conserva-
tion (’t Hooft, 1976),

∂µJ
µ
B =

nf
32π2

g2F aµν F̃
aµν , (3)

where nf = 3 is the number of families, F aµν is the weak

SU(2) field strength and F̃ aµν ≡ (1/2)εµνρσF aρσ. In (3)
we have neglected the U(1) hypercharge gauge field con-
tribution (see below). The same relation holds for the
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lepton number current JµL , so that B −L is conserved in
the Standard Model.

The change of baryon number is thus linked to the
dynamics of gauge fields,

B(t)−B(0) = nfQ(t) , (4)

with

Q(t) ≡
∫ t

0

dt′
∫
d3x

g2

32π2
F aµν F̃

aµν . (5)

Due to the coupling constants in Eq. (5), a change of
baryon number of order unity must be accompanied by
a large gauge field. In particular, such processes do
not show up in a weak-coupling expansion and are non-
perturbative in nature.

Baryon number changing processes are closely con-
nected to the topology of the SU(2) gauge plus Higgs
fields. To see this, note that the integrand of Eq. (5) can
be written as a total derivative ∂µK

µ, with

Kµ =
1

32π2
εµνρσg2

(
F aνρA

a
σ −

1

3
gεabcAaνA

b
ρA

c
σ

)
. (6)

An Abelian gauge field requires non-zero field strength
to obtain non-vanishing Kµ. This is not the case for the
non-Abelian field due to the second term in Eq. (6). If
one can neglect the integral

∫
d3x∇·K, e.g. with periodic

boundary conditions or if K vanishes at spatial inifinity,
then

Q(t) = NCS(t)−NCS(0) , (7)

with the Chern-Simons number

NCS =

∫
d3xK0. (8)

In the vacuum, the Higgs field can be chosen to be con-
stant and at the minimum of its potential Aµ is a pure
gauge. In Aa0 = 0 gauge, NCS is the gauge field winding
number which is an integer. It is invariant under ‘small’
gauge transformations, i.e., gauge transformations conti-
nously connected to the identity. To change NCS by ±1,
one has to go over an energy barrier. Fig. 1 shows the
the minimal static energy of the gauge-Higgs fields as a
function of NCS (Akiba et al., 1990). The minima of the
energy differ by large gauge transformations and all de-
scribe the vacuum state. A vacuum-to-vacuum transition
along this path would change baryon and lepton number
by a multiple of nf (’t Hooft, 1976). The barrier is given
by a static solution to the equations of motion, the so-
called sphaleron (Klinkhamer and Manton, 1984), which
has half integer NCS, and an energy of order mW /αW ,
αW = g2/(4π). Thus at low energies an NCS-changing
transition can only occur via tunneling. The amplitude
of such a process is proportional to exp(−16π2/g2) which
is tiny and has no observable consequences.

Emin

NCS

FIG. 1 Minimal field energy for given value of the Chern-
Simons number NCS (figure from (Akiba et al., 1990)). The
energy approaches the minima with non-zero slope (Akiba
et al., 1988).

However at high temperatures there can be thermal
fluctuations which take the system over the sphaleron
barrier. Then baryon number is no longer conserved,
and the value of B will relax to its equilibrium value
Beq.2 For sufficiently small deviation from equilibrium,
this is determined by a linear equation (without Hubble
expansion),

d

dt
B = −γ(B −Beq) . (9)

The dissipation rate γ only depends on the temperature
and on the value of conserved charges like B−L. Fur-
thermore, at a first-order electroweak phase transition it
depends on whether one is in the symmetric or in the
broken phase. When the dissipation rate γ is larger than
the Hubble parameter, baryon number is in equilibrium.

The dissipation rate γ can be related to the proper-
ties of thermal fluctuations of baryon number around its
equilibrium value Beq: If B−Beq has made a fluctuation
to a non-zero value, this will tend to zero at the rate γ.
Therefore the time dependent correlation function of the
fluctuation reads

〈[B(t)−Beq][B(0)−Beq]〉 = 〈[B −Beq]2〉e−γ|t| , (10)

which implies

〈[B(t)−B(0)]2〉 = 2〈[B −Beq]2〉
(

1− e−γ|t|
)
. (11)

For t� γ−1 this approximately grows linearly with time,

〈[B(t)−B(0)]2〉 ' 2〈[B −Beq]2〉γ|t| . (12)

The mean square fluctuation on the right-hand side is
determined by equilibrium thermodynamics, and is pro-
portional to the volume of the system V . It has to be
evaluated at fixed B−L. The leading order computation
is straightforward but requires some care (Khlebnikov
and Shaposhnikov, 1996). In the temperature range be-
tween the electroweak transition and the equilibration

2 When B−L is non-zero, Beq does not vanish.
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temperature of the right-handed electron Yukawa inter-
action it takes the value

〈[B −Beq]2〉 = V T 3 2nf (5nf + 3Ns)

3(22nf + 13Ns)
, (13)

where Ns is the number of Higgs doublets. At lower
temperatures one has to take into account a non-zero
Higgs expectation value, and at higher temperature there
are additional conserved charges, which reduces the size
of the fluctuation (Rubakov and Shaposhnikov, 1996).

Due to Eq. (3) the left-hand side Eq. (12) is determined
by the dynamics of gauge fields,

〈[B(t)−B(0)]2〉 = n2
f

〈
Q2(t)

〉
. (14)

For Eqs. (12) and (14) to be consistent, Q in Eq. (7) must
satisfy

〈
Q2(t)

〉
= ΓsphV |t|. (15)

This can be easily visualised with the help of Fig. 1. Most
of the time the system sits near one of the minima, but
every once in a while there is a thermal fluctuation which
lets it hop to a neighbouring one. This gives rise to a ran-
dom walk leading to the behavior (15). Γsph, the number
of transitions per unit time and unit volume, is known
as the Chern-Simons diffusion rate or sphaleron rate. It
can be estimated as

Γsph ∼ t−1
tr `
−3, (16)

where ttr is the time of a single transition, and ` is the
spatial size of the corresponding field configuration. The
U(1) hypercharge gauge field does not contribute to the
diffusive behavior (15), so we may neglect it here.

The linear growth with time can only be valid on time
scales large compared to ttr. On the other hand, it can
only be valid on time scales small compared to γ−1. If
there is a time window in which Eqs. (12) and (15) are
both valid, which will be checked a posteriori, then one
can match the two expressions to determine γ, which
gives

γ =
n2
fΓsphV

2〈[B −Beq]2〉 . (17)

Using 〈[B − Beq]2〉 ∼ V T 3 one can therefore estimate
γttr ∼ (`T )−3. Hence, the window exists if the size of the
relevant field configurations is large compared to T−1.

At low temperatures the NCS-changing transitions still
proceed through tunneling. The probability for ther-
mal transitions over the sphaleron barrier is proportional
to exp(−Esph/T ) (Kuzmin et al., 1985). They become
dominant when Esph/T <∼ 1/g2. The energy and the size
of a sphaleron are of order Esph ∼ v/g and `sph ∼ 1/(gv),
respectively. Therefore, the size of the sphaleron is larger
than T−1 when the thermal activation dominates, and

140 150 160 170 180
T / GeV

0

0.2

0.4

0.6

0.8

1

v
2
(T

) 
/ 

T
2

multicanonical

standard

perturbative

FIG. 2 Higgs expectation value squared versus temperature
in the Standard Model (from (D’Onofrio et al., 2014)). The
points are results of lattice simulations. The observable
v2 = 2〈φ†φ〉 can become negative, because it is ultraviolet
divergent and is additively renormalized. At large v, a spe-
cial multicanonical method is used for the simulation, so that
an exponentially small sphaleron rate can be measured. The
perturbative result is obtained by minimizing a 2-loop effec-
tive potenial (Kajantie et al., 1996b) (see Sec. III.A).

the assumptions leading to Eq. (17) are valid in this case.
For field configurations with k ∼ `−1 <∼ T , the occupa-
tion number, given by the Bose-Einstein distribution, is
large, fB(k) ' T/k >∼ 1, so that such fields can be treated
classically.

The Higgs expectation value decreases with increasing
temperature (see Fig. 2 and Sec. III.A). Therefore the
exponential suppression already disappears near the elec-
troweak phase transition or crossover. The prefactor of
the exponential corresponds to a one-loop computation of
the fluctuations around the sphaleron contribution. The
bosonic part was computed in (Arnold et al., 1997), the
fermionic contributions were obtained in (Moore, 1996).

In the symmetric phase the Higgs expectation value
vanishes and there is no sphaleron solution.3 The length
scale for NCS-changing field configurations can now be
easily determined. When the energy of a field config-
uration is dominated by the electroweak magnetic field
B = D×A, it can be estimated as

E ∼ `3B2 ∼ `A2 . (18)

Using E ∼ A/ttr, the change of Chern-Simons number is
then given by

Q ∼ g2ttr`
3E ·B ∼ g2`2A2 . (19)

3 Nevertheless, Γsph in the symmetric phase is usually referred to
as hot sphaleron rate.
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If we require Q ∼ 1, and E <∼ T to avoid Boltzmann
suppression, we obtain ` >∼ (g2T )−1. But (g2T )−1 is
the length scale beyond which static non-Abelian mag-
netic fields are screened. Time-dependent fields can be
screened on even shorter length scales. Therefore the
relevant length scale for NCS-changing transitions in the
symmetric phase is (Arnold and McLerran, 1987)

` ∼ 1

g2T
. (20)

The corresponding gauge field is of order A ∼ gT . There-
fore both terms in the covariant derivative D − igA are
of the same order of magnitude, and the second term
can not be treated as a perturbation. This leads to the
breakdown of finite temperature perturbation theory at
this scale (Linde, 1980). Standard Euclidean (imaginary
time) lattice methods are not capable of computing real
time dynamics. However, since the relevant fields have
large occupation numbers they can be approximated as
classical fields, and Γsph can be computed by solving clas-
sical field equations of motion (Ambjorn et al., 1991),
where some care is needed to use the correct equations
of motion.

The time evolution of the fields responsible for the
sphaleron transitions is influenced by plasma effects
(Arnold and McLerran, 1987; Arnold et al., 1997). The
time-dependent gauge field has non-vanishing electric
field E, which induces a current because the plasma is
a good conductor. The relevant charges are the weak
SU(2) gauge charges. The current is carried mostly by
particles with hard momenta of order T which are not
described by classical fields. Therefore the classical field
equations are not appropriate for computing Γsph. How-
ever, one can use effective classical equations of motion
which should properly include the effect of the high mo-
mentum particles. The mean free path of the particles is
smaller than the length scale `. Therefore the current can
be written as σE with a conductivity of SU(2) charges
σ,4

σ =
4π

3

m2
D

Ng2T

1

log(1/g)
∼ T

log(1/g)
, (21)

where N = 2 for SU(2) and m2
D = (4N + 2Ns +

NF )g2T 2/12 is the Debye mass squared for NF chiral
fermions and Ns scalars in the fundamental representa-
tion. In A0 = 0 gauge E = −Ȧ. Therefore the current
gives rise to a damping term in the equation of motion
for A. Estimating D×B ∼ σE gives

ttr ∼ σ`2 ∼ [g4 log(1/g)T ]−1, (22)

4 In QCD the analogous quantity is called color conductivity.

which is much larger than `. Thus the gauge field is
strongly damped, and one can neglect Ė in the equation
of motion which becomes (Bodeker, 1998)

D×B = σE + ζ . (23)

ζ is also part of the current of high-momentum particles.
It is due to thermal fluctuations of all field modes with
momenta larger than g2T , and it is a gaussian white noise
which carries vector and group indices. It satisfies

〈ζia(x)ζjb(x′)〉 = 2Tσδijδabδ(x− x′) , (24)

so that Eq. (23) is a Langevin equation. Then the esti-
mate (16) gives

Γsph ∼ g10 log(1/g)T 4 . (25)

The numerical coefficient can be computed by solving
Eq. (23) on a spatial lattice and determining Γsph from
Eq. (15). The result can be conveniently written as

Γsph = κ
2πT

3σ
α5T 4 (26)

with κ = 10.8±0.7 (Moore, 2000d), and σ from Eq. (21).
The mean free path of hard particles is short com-
pared to ` only by a relative factor log(1/g). Nev-
ertheless, Eq. (26) is still valid at next-to-leading log-
arithmic order if log(1/g) in Eq. (21) is replaced by
log(mD/γ) + C, where γ = (Ng2T/4π) log(mD/γ), and
C ' 3.041 (Arnold and Yaffe, 2000; Moore, 2000c).

Close to the electroweak phase transition or crossover,
the thermal Higgs mass can become small, so that the
Higgs field can affect the dynamics at the scale g2T . The
effective theory described by Eq. (23) has been extended
to include the Higgs field (Moore, 2000c). Then κ also
depends on the Higgs self-coupling and thus on the Higgs
mass. In the Standard Model, just above the crossover
temperature one finds (D’Onofrio et al., 2014) Γsph/T

4 =
(8.0±1.3)×10−7 ≈ (18±3)α5

W . In the last form, factors
of lnαW have been absorbed in the numerical constant.
Without the Higgs field the rate is Γ ≈ (25 ± 2)α5

WT
4

(Moore, 2000a; Moore et al., 1998).
Beyond logarithmic accuracy, the current is not simply

a local conductivity times the electric field. To go beyond
this approximation one has to solve the coupled equations
for the gauge fields and the high-momentum particles.
Here also fields with k ∼ gT are important because they
mediate the scattering of the high-momentum particles,
which is small-angle scattering that changes the charge
of the particles. For these modes one can not neglect
the term Ė, which leads to ultraviolet divergences in the
simulation prohibiting a continuum limit (Bodeker et al.,
1995) .

When the Higgs expectation value is sufficiently large,
the sphaleron rate becomes exponentially suppressed,
and one can perform a perturbative expansion around
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FIG. 3 The Standard Model sphaleron rate computed on
the lattice and the fit to the broken phase rate, Eq. (27),
shown with a shaded error band (D’Onofrio et al., 2014).
The perturbative result (Burnier et al., 2006) is the one-loop
approximation to an expansion around the sphaleron solution.
Pure gauge refers to the rate in hot SU(2) gauge theory. The
sphalerons freeze out when Γ crosses the appropriately scaled
Hubble parameter, shown with the almost horizontal line.

the sphaleron solution. The signal in lattice simula-
tions, on the other hand, becomes very small which re-
quires a special multicanonical method (Moore, 1999).
The current knowledge of the sphaleron rate in the Stan-
dard Model is summarized in Fig. 3. In the temperatur
range 130 GeV < T < 159 GeV it can be parametrized
as (D’Onofrio et al., 2014)

log(Γsph/T
4) = (0.83± 0.01)

T

GeV
− (147.7± 1.9) ,

(27)

which is the fit shown in Fig. 3. The rate computed on
the lattice is larger than perturbative results (Burnier
et al., 2006), but consistent within errors. The corre-
sponding values of the Higgs expectation value are de-
picted in Fig. 2.

At very high temperatures, the sphaleron rate again
becomes smaller than the Hubble parameter, which hap-
pens at T >∼ 1012 GeV (Rubakov and Shaposhnikov,
1996).

In theories with an extended Higgs sector, it is not
obvious how to determine the freeze-out condition from
the SM results, because the sphaleron solution can be
different. In the symmetric phase this is somewhat eas-
ier. New particles interacting with the SU(2) gauge fields
would increase the Debye mass mD appearing in Eq. (21),
thus decreasing the hot sphaleron rate. On the other
hand, new particles would increase the Hubble parame-
ter. Therefore the SM freeze-out temperature is an upper
bound for the temperature below which γ > H.

In QCD with vanishing quark masses, the axial quark
number is classically conserved, but it is also violated
by the chiral anomaly. This process plays a role both
in electroweak baryogenesis and leptogenesis. At finite
temperature the Chern-Simons number of the gluon field
can diffuse as in the electroweak theory in the symmetric
phase, and the rate for anomalous axial quark number
violation is again proportional to the Chern-Simons dif-
fusion rate which is then referred to as strong sphaleron
rate. At very high temperatures the QCD coupling αs is
weak, and the dynamics of the gluon fields is described
by Eqs. (21)-(24) for SU(3) instead of SU(2). At the
electroweak scale αs appears to be too large for the weak
coupling expansion to be valid. Using a different method,
the strong sphaleron rate at this scale was computed as
Γstrong sphal ' 1.4× 10−3T 4 (Moore and Tassler, 2011).

Strong sphalerons are most likely the only sphalerons
that can be created in experiments. It has been argued
that they could lead to observable signals in relativistic
heavy ion collisions through the chiral magnetic effect
(Kharzeev, 2014): In the simultaneous presence of a chi-
ral imbalance and a magnetic field there is an electric vec-
tor current in the direction of the magnetic field. Such a
current separates electric charges and could lead to mea-
surable charge asymmetries. The required imbalance of
left- and right-handed (anti-) quarks can be caused by
random strong-sphaleron transitions. Furthermore, if the
collision of the heavy ions is not head-on, the remnants
of the projectiles produce very strong magnetic fields.
There are ongoing experimental efforts to search for the
chiral magnetic effect in heavy ion collisions. A dedi-
cated run has been performed at the Relativistic Heavy
Ion Collider colliding Ru on Ru and Zr on Zr (results are
expected in 2021). These two nuclei are isobars, i.e., they
have the same number of nucleons, but different number
of protons (Z = 44 for Ru and Z = 40 for Zr). Thus the
magnetic field is larger for Ru so that the charge asym-
metries in Ru collisions should be larger than the ones of
Zr. (Kharzeev and Liao, 2021; Wen, 2018).

C. Baryon and lepton asymmetries

Quarks, leptons and Higgs bosons interact via Yukawa
and gauge couplings and, in addition, via the non-
perturbative sphaleron processes. In the temperature
range 100 GeV < T < 1012 GeV, which is of inter-
est for baryogenesis, gauge interactions, including the
sphaleron interactions, are in equilibrium, i.e., their rate
is larger than the Hubble parameter. On the other hand,
Yukawa interactions are in equilibrium only in a more re-
stricted temperature range that depends on the strength
of the Yukawa couplings. Thus in different temperature
ranges there are different sets of charges that are con-
served, which leads to ‘flavour effects’ to be discussed in
Sec. IV.C.2. The corresponding partition function can
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be written as

Z(µ, T, V ) = Tr exp
{
β
(∑

i

µiQi −H
)}

, (28)

where β = 1/T , and H is the Hamiltonian. For each of
the quark, lepton and Higgs fields, there is an associated
chemical potential µi, the corresponding charge opera-
tor is denoted by Qi. In the Standard Model, with one
Higgs doublet φ and nf families one has 5nf +1 chemical
potentials µi.

5

The processes which are in thermal equilibrium, the so-
called spectator processes, yield constraints between the
various chemical potentials (Harvey and Turner, 1990).
The NCS-changing transitions (see Sec. II.B) change
baryon and lepton numbers in each family by the same
amount. They affect only the left-handed fermion fields,
so that

∑

i

(3µqi + µli) = 0 . (29)

One also has to take the SU(3) Quantum Chromodynam-
ics (QCD) sphaleron processes into account (Mohapatra
and Zhang, 1992). They change the chiral quark number
(number of right-handed minus number of left-handed
quarks) for each quark flavor by the same amount, so
that

∑

i

(2µqi − µui − µdi) = 0 . (30)

The Yukawa interactions which are in equilibrium yield
relations between the chemical potentials of left-handed
and right-handed fermions and the Higgs,

−µqi + µdj = µqi − µuj = −µli + µei = µφ . (31)

The remaining independent chemical potentials are sub-
ject to another condition, valid at all temperatures, which
arises from the requirement that the total hypercharge of
the plasma vanishes.

In a weakly coupled plasma, the asymmetry between
particle and antiparticle number densities is given by

ni − nī = − ∂

∂µi

T

V
lnZ(µ, T, V ) . (32)

When computing the derivative in Eq. (32), all µi have
to be treated as independent. For massless particles one
obtains

ni−nī =
giT

3

6

{
βµi +O

(
(βµi)

3 )
, fermions ,

2βµi +O
((
βµi
)3 )

, bosons ,
(33)

5 In addition to the Higgs doublet, the two left-handed doublets qi
and `i and the three right-handed singlets ui, di, and ei of each
family each have an independent chemical potential.

where gi denotes the number of internal degrees of free-
dom. The following analysis is based on these relations
for small chemical potentials, βµi � 1.

Using Eq. (33) and the known hypercharges one can
write the condition for hypercharge neutrality as

∑

i

(µqi + 2µui − µdi − µli − µei) = 2µφ , (34)

and the baryon-number and lepton-number densities can
be expressed in terms of the chemical potentials,

nB =
T 2

6

∑

i

(2µqi + µui + µdi) , (35)

nLi =
T 2

6
(2µli + µei) . (36)

Consider now temperatures at which all Yukawa inter-
actions are in equilibrium, which is the case for T < 85
TeV (Bodeker and Schröder, 2019), but still above the
electroweak transition. Then quark chemical potentials
are family-independent, µqi = µq, µui = µu, µdi = µd,
and the asymmetries Li −B/nf are conserved. For sim-
plicity, we assume that they are all equal, so that the lep-
ton chemical potentials are family-independent as well,
µli = µl, µei = µe. Using the sphaleron relation and
the hypercharge constraint, one can express all chemical
potentials, and therefore all asymmetries, in terms of a
single chemical potential that may be chosen to be µl,

µe
µl

=
2nf + 3

6nf + 3
,
µd
µl

= −6nf + 1

6nf + 3
,
µu
µl

=
2nf − 1

6nf + 3
,

µq
µl

= −1

3
,
µφ
µl

= − 4nf
6nf + 3

. (37)

The corresponding baryon and lepton asymmetries are

nB = −4nf
3

T 2

6
µl , nL =

14n2
f + 9nf

6nf + 3

T 2

6
µl . (38)

This yields the important connection between the B, B−
L and L asymmetries (Khlebnikov and Shaposhnikov,
1988)

B = cs(B − L) , L = (cs − 1)(B − L) , (39)

where cs = (8nf + 4)/(22nf + 13). Near the electroweak
transition the ratio B/(B − L) is a function of 〈φ〉/T
(Laine and Shaposhnikov, 2000).

The relations (39) between B-, (B−L)- and L-number
suggest that B−L violation is needed6 in order to gen-
erate a baryon asymmetry at high temperatures where

6 In the case of Dirac neutrinos, which have extremely small
Yukawa couplings, one can construct leptogenesis models where
an asymmetry of lepton doublets is accompanied by an asym-
metry of right-handed neutrinos such that the total L-number
is conserved and the (B−L)-asymmetry vanishes (Dick et al.,
2000).
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sphaleron processes are in thermal equilibrium. Because
the B−L current has no anomaly, the value of B−L at
time tf , where the leptogenesis process is completed, de-
termines the value of the baryon asymmetry today,

B(t0) = cs(B − L)(tf ) . (40)

On the other hand, during the leptogenesis process the
strength of (B−L)-, and therefore L-violating interactions
can only be weak. Otherwise, because of Eq. (39), they
would wash out any baryon asymmetry. As we shall see
in the following, the interplay between these conflicting
conditions leads to important constraints on the proper-
ties of neutrinos.

The situation is different for electroweak baryogenesis.
Here B − L = 0 and the change of the sphaleron rate
across the bubble wall in a first-order phase transition is
essential for the generation of a baryon asymmetry.

III. ELECTROWEAK BARYOGENESIS

Electroweak baryogenesis is a sophisticated nonequi-
librium process at the electroweak phase transition (Co-
hen et al., 1993). We first describe the nature of the
phase transition and the basic idea of the charge trans-
port mechanism. We then illustrate the status of elec-
troweak baryogenesis by some representative examples,
corresponding to a weakly as well as a strongly interact-
ing Higgs sector. Special emphasis is placed on the impli-
cations of recent stringent upper bounds on the electron
electric dipole moment.

A. Electroweak phase transition

Electroweak baryogenesis requires a first-order phase
transition to satisfy the Sakharov condition of nonequi-
librium. It has to be strongly first-order meaning that
in the low temperature phase the sphaleron rate is suffi-
ciently suppressed and the just created asymmetry is not
washed out (see Sec. III.B).

At zero temperature the electroweak symmetry is bro-
ken by the vacuum expectation value of the Higgs field
φ, giving mass to the electroweak gauge bosons and to
fermions. At high temperature the Higgs expectation
value vanishes. The symmetry which is broken by the ex-
pectation value is a gauge symmetry, and not a symmetry
transforming physical states. Therefore it is not guaran-
teed that there is a phase transition associated with the
change of 〈φ〉. (Nevertheless, it is common nomencla-
ture to speak about a symmetry-broken and a symmetric
phase.)

The expectation value of φ is obtained by minimiz-
ing the effective potential Veff which can be defined as
Veff(φ) ≡ −P (φ), where P (φ) is the pressure in the pres-
ence of a constant classical value φ of the Higgs field. It

includes the tree-level Higgs potential Vtree. To first ap-
proximation it is given by the difference of Vtree and the
pressure of an ideal gas Pideal. When the temperature is
much bigger than the particle mass M , the pressure of
an ideal gas is, according to standard thermodynamics,

Pideal = T 4

(
a− bM

2

T 2
+ c

M3

T 3
+O

(
M4/T 4

))
, (41)

with positive constants a, b. The O(M2/T 2) contribution
is negative because a non-zero mass reduces the momen-
tum of a particle with a given energy and thus the pres-
sure. If the particle masses are proportional to the value
of the Higgs field, then smaller φ leads to larger pressure.
Then a phase with smaller φ will push out one with larger
value of the Higgs, so that the Higgs expectation value
becomes zero. Therefore at high temperature the elec-
troweak symmetry is unbroken.7 The region where this
happens can be expected to be of order of the weak gauge
boson mass.

Beyond the ideal gas approximation one can compute
the effective potential as follows. One integrates out all
field modes with non-zero momentum in the imaginary-
time path integral,

e−βV Veff (φ) =

∫ ′
DΦ exp {−SE [Φ]} , (42)

with the Euclidean, or imaginary-time action (t = −iτ)

SE = −
∫ β

0

dτ

∫
d3xL . (43)

Φ denotes the set of all fields of our system, and
the prime indicates that the integration over the zero-
momentum modes φ is omitted. The partition function
Z = exp(βV P ) is then obtained by integrating (42) over
φ. This is done in the saddle point approximation, which
gives the minimum condition for Veff(φ). In the one-loop
approximation Eq. (42) gives −Veff as difference of Pideal

and the T = 0 contribution to the effective potential
(Coleman and Weinberg, 1973).8

For illustration, consider first the case of a single real
scalar field ϕ with the Lagrangian

L =
1

2
∂µϕ∂

µϕ− Vtree(ϕ) (44)

and the potential

Vtree(ϕ) =
µ2

2
ϕ2 +

λ

4
ϕ4 , (45)

7 There are models where some mass decreases when some scalar
field is increased. In this case it is possible that a symmetry gets
broken at high temperature (Weinberg, 1974).

8 The effective potential defined through (42) is gauge-fixing de-
pendent. Physical quantities, like the pressure, and thus the
value of Veff at the minima are gauge-fixing independent.
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FIG. 4 Effective potential giving rise to a first-order phase
transition. The value at ϕ = 0 is subtracted.

with µ2 < 0, so that the minima of the potential are
at ϕ = ±v = ±

√
−µ2/λ, spontaneously breaking the

symmetry ϕ → −ϕ. Now the mass of a particle in the
constant ‘background’ field ϕ is M2(ϕ) = V ′′tree(ϕ) = µ2+
3λϕ2. Then Eq. (41) gives

Veff(ϕ) =
1

2

(
µ2 +

λ

4
T 2

)
ϕ2 +

λ

4
ϕ4 +O(M3/T ) , (46)

where we have omitted the ϕ-independent terms. At fi-
nite temperature there is a positive contribution λT 2/4
to the coefficient of the quadratic term, the so-called ther-
mal mass (squared). It drives the expectation value to
smaller values. When T � 2

√
−µ2/λ, the expectation

value vanishes and the symmetry is restored.

One may worry that at small ϕ, with decreasing tem-
perature, M2(ϕ) becomes zero and eventually negative,
so that the O(M3/T ) term in Eq. (46) would give an
imaginary part to the effective potential. However, it
turns out that the loop-expansion parameter is λT/M
(Arnold and Espinosa, 1993). Therefore perturbation
theory breaks down when M becomes too small, and is
thus not reliable to determine the details of the phase
transition. It is, in fact, second order, and the value of ϕ
changes continously from zero above the critical temper-
ature Tc to a non-zero value below Tc.

Next consider the SM with one Higgs doublet φ. The
tree-level potential is written as in Eq. (45) with ϕ =√

2φ†φ. Now all SM species contribute to the pres-
sure and thus to Veff . There is a qualitatively new ef-
fect compared to the previous example. Since the elec-
troweak gauge bosons obtain their mass from the Higgs
field and have no tree level mass term, they contribute
with M2 ∼ g2φ†φ in Eq. (41). Then the M3/T term in
Eq. (41) gives rise to a cubic term in the effective poten-

tial,9

Veff(ϕ) =
A

2

(
T 2 − T 2

b

)
ϕ2 − B

3
ϕ3 +

λ

4
ϕ4 + · · · (47)

This potential would give a first-order phase transition
as illustrated in Fig. 4. At the critical temperature Tc
there are two degenerate minima. Tb ≡

√
−µ2/A is the

temperature below which the potential barrier vanishes
and the local minimum at ϕ = 0 disappears.

In the SM B is very small. Therefore the symme-
try breaking minimum ϕc is small, and so is the effec-
tive gauge boson mass M . The loop-expansion param-
eter g2T/M is again large so that perturbation theory
cannot be trusted. Using non-perturbative methods it
was shown that for Higgs masses larger than about 70-
80 GeV, and thus in the SM, there is no electroweak
phase transition but a smooth crossover (Buchmuller
and Philipsen, 1995; Csikor et al., 1999; Kajantie et al.,
1996a). The Higgs expectation value changes continously
with temperature as shown in Fig. 2. Hence, during the
transition, the system stays very close to thermal equi-
librium and Sakharov’s third condition is not satisfied.

A strongly first-order phase transition is only possi-
ble in extensions of the SM. Since large field values im-
ply large M2(ϕ), the effective potential can be computed
perturbatively. However, one may not be able to use the
high-temperature expansion described above, in which
case even the one-loop effective potential can not be writ-
ten in a simple analytic form. A comprehensive discus-
sion of the theoretical uncertainties has recently been
given in (Croon et al., 2020).

Since the high-temperature phase is metastable as long
as there is a potential barrier separating the two minima,
the universe supercools to some T < Tc (cf. Fig. 4). Bub-
bles of the symmetry broken phase form through thermal
fluctuations with a probability which can be computed
using a saddle-point approximation in statistical mechan-
ics (Langer, 1969). The probabilty to form a bubble per
time and volume is A exp(−βSeff [φbubble]), where the ef-
fective potential Veff(φ), see Eq. (42), has been replaced
by the effective action Seff at the bubble configuration
φbubble (Linde, 1981). It is the free energy of a static con-
figuration representing a barrier between the metastable
state and a state with a bubble of the low temperature
phase, similar to the sphaleron barrier (cf. Sec. II.B).
The temperature-dependent prefactor A is due to fluctu-
ations around the saddle point and can be computed per-
turbatively (Morrissey and Ramsey-Musolf, 2012). Non-
perturbative lattice computations of the nucleation rate
find that perturbation theory slightly underestimates the

9 The longitudinal gauge bosons receive a thermal mass, more pre-
cisely the static screening mass, or Debye mass so that they do
not contribute to the cubic term. For simplicity, the resulting
contribution is not shown in (47).
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strength of the phase transition, while overestimating
the amount of supercooling (Moore and Rummukainen,
2001).

Roughly, the bubbles nucleate when the nucleation
rate equals H4, that is when one bubble nucleates per
Hubble volume and time.10 Since around the electroweak
scale H ∼ T 2

c /MPl ∼ 10−17Tc, the rate is extremely
small. Once formed, the bubbles expand and begin to
fill the entire universe with the low-temperature phase.
Important parameters of this process are the velocity vw

of the wall separating the two phases and their thick-
ness `w in the wall frame. The bubble wall velocity is
determined by the pressure difference between the two
phases. The pressure consists of the vacuum contribu-
tion, i.e. −Veff|T=0, and the pressure due to the plasma.
When a particle mass depends on the value of the Higgs
field it changes while the particle passes the wall. There-
fore there is a momentum transfer to the wall giving
a contribution to the pressure. This includes a large
contribution due to the magnetic-scale gauge fields (see
Sec. II.B) which are suppressed in the symmetry broken
phase and get pushed out by the wall (Moore, 2000b). At
the critical temperature the pressure difference between
the two phases vanishes. The system is static and in
thermal equilibrium. Below Tc, the wall moves into the
high-temperature phase, the time dependence prevents
the particle distribution from equilibration, and one has
to deal with a nonequilibrium problem. One has to solve
a set of Boltzmann equations which turns out to be diffi-
cult. The wall velocity is quite model dependent, it can
vary from vw � 1 to vw ∼ 1 in the plasma rest frame.
For the SM11 it was found that vw ∼ 0.4, and `wT ∼ 25
(Moore and Prokopec, 1995), while in the minimal super-
symmetric standard model (MSSM) vw <∼ 0.1 (John and
Schmidt, 2001). Often times the wall velocity is treated
as a free parameter. A relatively simple case is ultra-
relativistic bubbles with γw ≡ (1−v2

w)−1/2 � 1 (Bodeker
and Moore, 2009). The reason is that the wall passes so
fast, that particles start scattering only when the wall has
passed already. There are models in which based on this
analysis the bubble wall can speed up indefinitely. How-
ever, additional radiation off the particles passing the
wall leads to a speed limit (Bodeker and Moore, 2017;
Höche et al., 2020).

B. Charge transport mechanism

When a phase-transition bubble wall sweeps through
the plasma, it affects the motion of the particles therein.
The dominant effect is spin-independent and contributes

10 For a more precise criterion, see e.g. (Bodeker and Moore, 2009).
11 Assuming a small Higgs mass mH < 90 GeV.

to the pressure on the wall as discussed in Sec. III.A. Sub-
leading, but essential for baryogenesis is the CP-violating
separation of particles with different spins. Then on one
side of the bubble wall there are more left-handed (neg-
ative helicity) particles and their (negative helicity) an-
tiparticles than on the other side. In the symmetric phase
electroweak sphalerons are unsuppressed. They act on
left-handed particles and on right-handed antiparticles,
and thus wash out the baryon number BL carried by
the left-chiral fields describing left-handed particles and
right-handed antiparticles. If the weak-sphaleron rate is
sufficiently suppressed on the other side of the wall, a net
baryon number is generated (for a comprehensive review
of charge transport, see (Konstandin, 2013)).

One distinguishes the thin-wall limit `w ∼ T−1 and
the thick-wall limit `w � T−1, i.e., that the de Broglie
wavelength of a typical particle T−1 is small compared
to or of similar size as the wall thickness. In the former
case, the particle-wall interaction is described by quan-
tum reflection and transmission (Joyce et al., 1996a).

In the thick-wall case the effect on the particles can be
described as a semi-classical force (Joyce et al., 1996b),
which depends on their spin (Cline et al., 2000). In-
teractions with the bubble wall give rise to space- and
time-dependent mass terms, which may contain a CP vi-
olating phase. For concreteness consider a single fermion
field ψ with

Lmass = −ψLmψR − ψRm∗ψL , (48)

where m = |m| exp(iθ). Such a term can be due to in-
teractions with varying scalar fields like in Eq. (57) in
combination with the Yukawa interaction, or also due
to varying Yukawa couplings (Bruggisser et al., 2017).
Bubble walls quickly grow to macroscopic sizes and thus
can be approximated as planar. Let the wall move in
z-direction. It is convenient to Lorentz boost to the rest
frame on the bubble so that m only depends on z. One
can expand in derivatives of m, corresponding to an ex-
pansion in (`wT )−1. Keeping the first two terms, one
obtains the semiclassical force12

Fz = −
(
|m|2

)′

2E
+ s

[(
|m|2θ′

)′

2EEz
− |m|

2
(
|m|2

)′
θ′

4E3Ez

]
,

(49)

with E = (p2+|m|2)1/2, Ez = (p2
z+|m|2)1/2, and s = ±1

for spin (as defined in the frame where the momentum
transverse to the wall vanishes) in ±z direction. The
prime denotes derivatives with respect to z. The lead-
ing order term is independent of spin. Due to the chiral

12 The force was computed using the WKB approximation to the
Dirac equation (Fromme and Huber, 2007; Kainulainen et al.,
2002) and from quantum field theory using Kadanoff-Baym equa-
tions (Kainulainen et al., 2002; Prokopec et al., 2004).
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FIG. 5 Sketch of the bubble wall (between the dashed lines),
in the rest frame of the wall. More particles are crossing the
wall from right to left. The force on tops with spin in +z
direction is smaller than the force on anti-tops with spin in
−z direction.

nature of the mass term in Eq. (48) there is a spin de-
pendence, which first appears at second order in Eq. (49).
Note that Eq. (49) holds for all four states of the fermion.

The forces on different (anti-)particles are sketched in
Fig. 5 with top quarks as an example, and with the
square bracket in Eq. (49) assumed to be negative. For
all (anti-)tops the force is positive and pushes them to-
wards the symmetric phase. The spin-dependent term
is negative for left-handed (anti-)tops and decreases the
force acting on them, while it increases the force on right-
handed (anti-)tops. The left-handed tops carry positive
BL, while the right handed anti-tops carry negative BL.
Therefore the force changes the distribution of BL in
space, so that nBL becomes non-zero and z-dependent.

The baryogenesis process is affected not only by the
force, but also by scattering and by the wall velocity. In
Fig. 5 it is assumed that these effects lead to nBL < 0
in the symmetric phase. Without electroweak sphalerons
the total asymmetry vanishes, nB = nBL + nBR = 0. In
the symmetric phase electroweak sphalerons are unsup-
pressed and diminish |nBL | leading to nB > 0. Since elec-
troweak sphalerons are not active in the broken phase,
this baryon asymmetry is frozen in after the phase tran-
sition is completed.

For a quantitative description the force is inserted into
a Boltzmann equation, together with the collision terms
describing particle scattering. For vanishing wall velocity
the plasma is in local thermal equilibrium. Thus for small
wall velocity one can make a fluid ansatz, writing the
phase-space densities as local equilibrium distributions
with slowly varying chemical potentials, plus small per-
turbations δfi, representing deviations from kinetic equi-
librium (Joyce et al., 1996b). Then one takes moments
of the Boltzmann equations, i.e., integrates over momen-

tum with weights 1 and pz/E. The integrals of (pz/E)δfi
represent corrections δvi to the local fluid velocity. One
obtains a network of coupled differential equations for δvi
and µi. One must also include the effect of the weak and
strong sphalerons. The slowest interaction is the weak-
sphaleron transitions. Therefore the equations for the
chemical potentials can be computed assuming baryon-
number conservation, and finally the baryon asymme-
try is computed from them. The resulting asymmetry is
directly proportional to the weak-sphaleron rate in the
symmetric phase. While most works assumed small wall
velocity and expanded in vw, recently baryogenesis with
large vw ∼ 1 was studied (Cline and Kainulainen, 2020).
It was found, contrary to common lore, that baryogenesis
with vw larger than the speed of sound is possible, and
that the generated asymmetry smoothly decreases with
increasing vw.

During the entire process B−L is unchanged because
it is conserved by the sphaleron processes. Therefore the
produced lepton asymmetry is of the same order of mag-
nitude as the baryon asymmetry. If a larger lepton asym-
metry would be observed, this would rule out electroweak
baryogenesis as the sole origin of the baryon asymmetry
of the universe.

C. Perturbative models

In the SM the electroweak transition is just a smooth
crossover but simple extensions allow for a strongly first-
order phase transition. The first example to try is the
two-Higgs-doublet model (2HDM) which has been ex-
tensively studied in the literature (for a review and ref-
erences, see, for example (Branco et al., 2012b)). In
(Dorsch et al., 2017) models of Type II have been thor-
oughly studied, where leptons and down-type quarks cou-
ple to the Higgs doublet Φ1 while up-type quarks couple
to the second Higgs doublet Φ2. The corresponding Z2-
symmetry is softly broken by a complex mass term µ2

and the scalar potential reads

Vtree(Φ1,Φ2) =

−µ2
1Φ†1Φ1 − µ2

2Φ†2Φ2 −
1

2

(
µ2Φ†1Φ2 + H.c.

)
+

+
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+

+λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2

[
λ5

(
Φ†1Φ2

)2

+ h.c.

]
.

(50)

In addition to µ2 the quartic coupling λ5 can be complex
which leads to the complex vacuum expectation values

〈Φ1〉 =
1√
2

(
0

v cosβ

)
, 〈Φ2〉 =

1√
2

(
0

v sinβ eiθ

)
. (51)
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FIG. 6 EDM constraints for parameter benchmarks corre-
sponding to different heavy-Higgs-boson masses in the Type II
2HDM. The dash-dotted line shows the eEDM bound before
the ACME experiment. The black dashed lines indicate the
minimum CP-violating phase necessary for successful baryo-
genesis, with mH0 = 200 GeV and varying mA0 = mH± . The
green area is excluded by neutron EDM bounds and the blue
area is excluded by the electron EDM bound from ACME
(2014). From (Dorsch et al., 2017).

In addition to the observed Higgs boson h0, the model
contains four heavy Higgs bosons, H0, A0 andH±. There
are two field-redefinition-invariant phases that can be
written as

δ1 = Arg[(µ2)2λ∗5] , δ2 = Arg(v1v
∗
2 µ

2λ∗5) . (52)

A benchmark scenario has been studied with mH0
=

200 GeV and mA0 = mH± around 470 GeV. At the cost
of some tuning the masses can be increased by about
100 GeV. The quartic couplings are large, |λi| = O(1),
but satisfy the perturbativity bound |λi| . 2π and tree-
level unitarity, as well as constraints from flavour ob-
servables and the LHC. For these parameters, the phase
transition is strongly first-order, vn/Tn ≥ 1, where vn is
the jump of the Higgs expectation value at the bubble
nucleation temperature Tn. An interesting aspect of the
model is that, due to the large quartic scalar couplings, a
gravitational wave (GW) signal is predicted which would
be observable at LISA13.

An attractive feature of electroweak baryogenesis mod-
els is also the connection between the CP violation
needed for baryogenesis and low-energy precision mea-
surements. Particularly stringent are the upper bounds
on the electron dipole moment (EDM) obtained by the
ACME eperiment (Andreev et al., 2018; Baron et al.,

13 There is an extensive literature on GWs from first-order phase
transitions which lead to signals in the sensitivity range of LISA
(Caprini et al., 2020).

2014):

ACME (2014) : |de| < 8.7× 10−29 e · cm ,

ACME (2018) : |de| < 1.1× 10−29 e · cm .
(53)

The ACME bound from 2014 is indicated in Fig. 6 as
the blue line, the lower boundary of the blue region.
It is consistent with all theoretical and phenomenolog-
ical constraints on the described model. The uncolored
region represents the allowed parameter region at that
time. The present ACME bound from 2018 improves
this upper bound by a factor 8.7. Clearly, this excludes
the parameter space of the model entirely.

For many years electroweak baryogenesis has also been
studied in supersymmetric 2HDM models (MSSM). In
this case the quartic scalar couplings are determined by
gauge couplings. These models are now excluded due to
the lower bounds on superparticle masses obtained at the
LHC. These bounds and further theoretical constraints
are described in detail in Ref. (Cline, 2018), together with
a discussion of some non-supersymmetric extensions of
the Standard Model.

As an alternative to 2HDM models one can also con-
sider a Higgs sector with one SU(2)-doublet Higgs Φ and
an additional light SM-singlet s, which is partially moti-
vated by composite Higgs models. Electroweak baryoge-
nesis for such a setup has been studied in (Espinosa et al.,
2012) (see also (Bian et al., 2019; Carena et al., 2019a;
Cline and Kainulainen, 2013)). The renormalizable part
of the effective scalar potential reads

Vtree = V even + V odd , (54)

with

V even = −µ2
h|Φ|2 + λh|Φ|4

− 1

2
µ2
ss

2 +
1

4
λss

4 +
1

2
λms

2|Φ|2,

V odd =
1

2
µms|Φ|2 + µ3

1s+
1

3
µ3s

3 .

(55)

The SU(2) doublet Φ contains the physical Higgs scalar
h. The potential V even is invariant with repect to the Z2

symmetry

s→ −s , (56)

which is softly broken by the potential V odd. The vacuum
expectation value of H implies mass mixing between s
and h.

An appropriate choice of quartic couplings and mass
parameters µi ∼ 100 GeV lead to a strongly first-order
phase transition accompanied by baryogenesis. The re-
quired CP violation is provided by a dimension-5 opera-
tor (see Fig. 7),

LtHs =
s

f
Φq̄L3(a+ ibγ5)tR + h.c. , (57)
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FIG. 7 Large contribution to the electron EDM from top loop
and singlet-doublet mixing. From (Espinosa et al., 2012).

which couples the top-quark to the scalars Φ and s. Dur-
ing the phase transition both scalars aquire an expecta-
tion value and the profile of s provides the CP-violating
top-quark scatterings. The compositeness scale has to be
low, f/b ∼ 1 TeV, so that strongly interacting resonances
would be expected in the LHC range. For the light singlet
s, a mass is predited comparable to the Higgs mass.

The mass mixing between h and s also generates an
electron EDM (see Fig. 7). The analysis in (Espinosa
et al., 2012) has been carried out assuming the upper
bound (Hudson et al., 2011)

de < 1.05× 10−27 e · cm . (58)

Again the improvement of this bound by two orders of
magnitude by the ACME experiment (53) excludes the
model in its original form. A possible way out is to tune
the parameters of the model such that a two-step phase
transition occurs, with s 6= 0 during baryogenesis and
s = 0 in the zero-temperature vacuum (Kurup and Perel-
stein, 2017). At zero temperature the Z2 symmetry is
then unbroken and the contribution to the electron EDM
vanishes. Choosing ms > mh/2, the Higgs-boson decay
width is unchanged, and one obtains a ‘nightmare sce-
nario’ that is very difficult to test at the LHC (Curtin
et al., 2014). For EWBG a new source of CP viola-
tion is needed, for instance, CP violation in a dark sec-
tor, which is transfered to the visible sector via a new
light vector boson (Carena et al., 2019b). However, such
a construction eliminates one of the main motivations
for electroweak baryogenesis, the connection between CP
violation measurable at low energies and the matter-
antimatter asymmetry.

One may wonder whether EWBG can be more easily
realized in models with more scalar fields. An interest-
ing example is the split Next-to-Minimal Supersymmet-
ric Standard Model (sNMSSM) (Demidov et al., 2016),
which contains two Higgs doublets, Hu and Hd, and an
additional singlet N . The corresponding superpotential
reads

W = λNHuHd +
1

3
kN3 + µHuHd + rN . (59)
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FIG. 8 Electron EDM versus the lightest chargino mass in
the Split NMSSM for two parameter sets (Setup 1: red dots,
Setup 2: green dots). The dotted line denotes the ACME
(2014) upper bound |de| < 8.7 × 10−29 e · cm. We have
added the dashed line which indicates the ACME (2018) up-
per bound |de| < 1.1 × 10−29 e · cm. From (Demidov et al.,
2016).

Scalar quarks and leptons are removed from the low-
energy spectrum but gauginos have electroweak-scale
masses. The dominant role in EWBG is played by scat-
tering of charginos. At one-loop order they also lead to
an EDM for the electron. According to the analysis in
(Demidov et al., 2016), a strongly first-order phase tran-
sition and EWBG are compatible with the ACME (2014)
bound on the electron EDM. Fig. 8 shows the electron
EDM as function of the lightest chargino mass for two
parameter benchmarks. However, as the figure demon-
strates, the stronger ACME (2018) bound again excludes
this model.

The connection between EWBG and electron EDM
has also been analyzed in a setup with the same particle
content as the sNMSSM but without the relations be-
tween the Yukawa couplings implied by supersymmetry
(Fuyuto et al., 2016). As in the singlet-doublet model,
a strongly first-order phase transition is possible, and
EWBG is driven by higgsino and singlino scatterings with
masses mH̃ and mS̃ , respectively. At two-loop order an
electron EDM is generated which depends on the hig-
gsino masses. In Fig. 9 a region of successful EWBG is
shown in the (mH̃ ,mS̃) plane for representative higgsino
couplings. The orange area on the left is excluded by the
ACME (2014) bound, leaving a large range of viable hig-
gsino and singlino masses. However, the ACME (2018)
bound again excludes this region. The electron EDM re-
ceives contributions from two graphs which have charged
and neutral gauge bosons in the loop, respectively. Fine-
tuning couplings, the contributions can cancel each other
which would, however, eliminate the connection between
low-energy CP violation and EWBG.

The upper bound on the electron EDM placed by the
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FIG. 9 Contours of ηB/η
observed
B = 1 (full lines), 0.1 (dashed

lines)) in the (mH̃ ,mS̃) plane. The orange area is excluded
by the ACME (2014) bound. The orange dashed line corre-
sponds to the anticipated sensitivity |de| = 1.0× 10−29 e · cm
that essentially agrees with the ACME (2018) bound. From
(Fuyuto et al., 2016).

ACME experiment is an impressive achievement. The
experiment uses a heavy polar molecule, thorium monox-
ide (ThO). In an external electric field it possesses states
whose energies are particularly sensitive to the electron
EDM. Moreover, the magnetic moment of these states
is small, which makes the experiment relatively imper-
vious to stray magnetic fields. A cryogenic beam source
provides a high flux of ThO molecules. In 2014 these
techniques led to an upper bound on the electron EDM
more than one order of magnitude smaller than the best
previous measurements (Baron et al., 2014). Four years
later the upper limit could be further improved by a fac-
tor 8.7 (Andreev et al., 2018).

Studies of electroweak baryogenesis with two Higgs
doublets began in the early nineties (McLerran et al.,
1991; Turok and Zadrozny, 1991), followed by other mod-
els with an extended Higgs sector. Over the years the in-
creasing lower bound on the Higgs mass, and finally the
discovery of a 125 GeV Higgs boson, as well as bounds
on the heavier Higgs boson masses from flavour observ-
ables and the LHC strongly constrained these models.
Much progress was made in understanding the challeng-
ing dynamics of electroweak baryogenesis, and the in-
triguing possible connection to gravitational waves in the
LISA frequency range was explored. In a complementary
way, upper bounds on dipole moments played an increas-
ingly important role, since generic models of electroweak
baryogenesis connect low-energy CP violation with the
baryon asymmetry of the universe. As described above, it
appears that finally these bounds have become so strong
that they essentially exclude all models of electroweak
baryogenesis that can be treated perturbatively. These

developments over thirty years represent an impressive
example how the interplay of theory and experiment can
guide us in our search for physics beyond the Standard
Model.

D. Strongly interacting models

So far we have considered EWBG in perturbatively de-
fined renormalizable extensions of the SM. However, it is
also possible that the observed Higgs boson is a light state
in a strongly interacting sector of dynamical electroweak
symmetry breaking. This would qualitatively change the
electroweak phase transition as well as EWBG, which can
be treated by means of an effective field theory (Grojean
et al., 2005). The light Higgs boson could emerge from
the spontaneous breaking of a global symmetry, such
as SO(5) → SO(4), together with a dilaton as pseudo-
Nambu-Goldstone boson from broken conformal symme-
try in a strongly coupled hypercolour theory with partial
compositeness (for a review, see, for example (Panico and
Wulzer, 2016)). In such a framework EWBG has been
studied in (Bruggisser et al., 2018a,b), based on an ef-
fective Lagrangian with a minimal set of couplings and
masses (Chala et al., 2017; Giudice et al., 2007). The
analysis is based on the effective potential for the Higgs
h and the dilaton χ,

Veff[h, χ] =

(
gχ
g?
χ

)4(
α sin2

(
h

f

)
+ β sin4

(
h

f

))

+ Vχ(χ) + ∆VT (h, χ) ,

(60)

where

α[y] = cα

Nf∑

i=1

g2
?

Ncy
2
i [χ]

(4π)2
, yi[χ] ' y0,i

(
χ

χ0

)γi
,

β[y] = cβ

Nf∑

i=1

g2
?

Ncy
2
i [χ]

(4π)2

(
y

g?

)pβ
.

(61)

The functions yi[χ] connect left- and right-handed
fermions, Nc = 3 is the number of QCD colours, Nf
is the number of quark flavours, γi are anomalous di-
mensions, f = 0.8 TeV is the value of the condensate
breaking SO(5), g∗ and gχ are the couplings of heavy
resonances and dilaton, respectively, and cα and cβ are
free parameters. The effective potential has a discrete
shift symmetry, h → h + 2πf , reflecting the Goldstone
nature of the Higgs field, and it is invariant w.r.t. scale
transformations, up to soft breaking terms contained in
Vχ, finite-temperature corrections in ∆VT and the effect
of non-zero anomalous dimensions γi. The underlying
strongly interacting theory has N hypercolours. The ef-
fective couplings of glueball-like and meson-like bound
states are, respectively,

gχ =
4π

N
(glueball-like), g∗ =

4π√
N

(meson-like). (62)
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FIG. 10 Schematic shape of the free energy as function of the
dilaton expectation value χ. Red: hot region with gχχ . T .
Blue: cold region with gχχ & T . From (Bruggisser et al.,
2018b).

Heavy resonances have masses m∗ = g∗f . The dilaton
can be glueball-like or meson-like, depending on the re-
alization of conformal symmetry. At high temperatures
both, Higgs and dilaton expectation values vanish, and
the free energy is determined by the number of hyper-
colours,

F |χ=0 ' −
π2N2

8
T 4 . (63)

Fig. 10 shows a sketch of the free energy together with
the zero-temperature dilaton potential14 . Around the
critical temperature

Tc ' 2

(
g2
?

4πgχN

)1/2

(2γεcχ)1/4f (64)

the confinement and symmetry breaking phase transi-
tions take place which, due to the approximate confor-
mal symmetry, can be strongly first-order. EWBG takes
place by the scattering of quarks at the bubble wall,
where the CP violation is enhanced by varying Yukawa
couplings (Bruggisser et al., 2018a). The model can ac-
count for the observed baryon asymmetry and it predicts
a GW signal that will be probed by LISA (Bruggisser
et al., 2018b).

The CP-violating imaginary parts of quark-Yukawa
couplings lead to an electron EDM. Hence, the exper-
imental EDM bounds constrain the viable parameter
space of the model. Fig. 11 shows contours of constant
imaginary part for the top quark in case of a glueball-
like dilaton as well as a meson-like dilaton. The most
stringent bounds from the ACME experiment read

ACME (2014) : Im[δλt] . 2 · 10−2 ,

ACME (2018) : Im[δλt] . 2 · 10−3 .
(65)

For a large number of hypercolours, N = 12, corre-
sponding to resonance masses m∗ & 3 TeV, a meson-like

14 Note, that this figure does not give a quantitative description of
the two regions, in particular the phase transition that connects
them.
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FIG. 11 Contours of the CP-violating imaginary part of the
top-Yukawa coupling in the (mχ,m?) plane. The dashed lines
correspond to a meson-like dilaton, the full lines to a glueball-
like dilaton. From (Bruggisser et al., 2018b).

(glueball-like) dilaton has to be heavier than 200 GeV
(400 GeV). Both scenarios can therefore be probed at
the LHC. Note that the effect of the ACME EDM bound
on the Higgs sector can be efficiently described by means
of an effective field theory (Panico et al., 2019).

The strong constraints from the LHC and the elec-
tron EDM give rise to the question whether EWBG can
be decoupled from low-energy physics. Extending the
scalar sector of the theory, it is indeed possible to break
the electroweak symmetry at a scale much higher than
the Fermi scale (Baldes and Servant, 2018; Glioti et al.,
2019; Meade and Ramani, 2019). In this way, CP vi-
olation in EWBG is decoupled from low-energy CP vi-
olation. On the other hand, the need to connect the
high-scale vacuum expectation value to the Fermi scale
requires additional light scalars which are in reach of the
LHC. Similarly, additional light singlet fermions can lead
to electroweak symmetry non-restoration at high temper-
atures. This can significantly relax the upper bound from
successful baryogenesis on a light dilaton in composite
Higgs models (Matsedonskyi and Servant, 2020).

E. Summary: electroweak baryogenesis

Electroweak baryogenesis is an appealing idea since
it would allow to connect the cosmological matter-
antimatter asymmetry with physics at the LHC and,
moreover, with gravitational waves. The electroweak
phase transition and sphaleron processes are by now well
understood. Since in the Standard Model the phase
transition is a smooth crossover, extensions such as
two-Higgs-doublet models or doublet-singlet models are
needed for electroweak baryogenesis. Results from the
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LHC strongly constrain such models. Moreover, recent
stringent upper bounds on the electron electric dipole
moment exclude most of the known models. This led to
the construction of models, where CP violation in baryo-
genesis and low-energy CP violation are decoupled, and
the electroweak phase transition takes place at tempera-
tures well above a TeV. On the other hand, in strongly
coupled composite Higgs models electroweak baryogene-
sis is still possible, compatible with all constraints from
the LHC and low-energy precision experiments. This
underlines the importance to search for new heavy res-
onances and deviations from SM predictions for Higgs
couplings in the next run of the LHC.

IV. LEPTOGENESIS

In this section we first give an elementary introduc-
tion to the basics of leptogenesis, namely lepton-number
violation and kinetic equations. We then review ther-
mal leptogenesis at the GUT scale as well as the weak
scale. Sterile-neutrino oscillations even allow leptogen-
esis at GeV energies. Subsequently, we discuss recent
progress towards a full quantum field theoretical descrip-
tion of leptogenesis. GUT-scale leptogenesis is closely
related to neutrino masses and mixings and, on the cos-
mological side, it is connected with inflation and gravi-
tational waves.

A. Lepton-number violation

The Standard Model (SM) contains only left-handed
neutrinos, and B−L is a conserved global symmetry.
Hence, in the SM neutrinos are massless. However, neu-
trino oscillations show evidence for non-zero neutrino
masses. These can be accounted for by introducing
right-handed neutrinos that can have Yukawa couplings
with left-handed neutrinos. After electroweak symmetry
breaking these couplings lead to B−L conserving Dirac
neutrino mass terms. As SM singlets, right-handed neu-
trinos can have Majorana mass terms whose size is not
constrained by the electroweak scale. In the case of three
right-handed neutrinos, the global B−L symmetry can
be gauged such that the Majorana masses result from
the spontaneous breaking of B−L. As in the SM, all
masses are then generated by the spontaneous break-
ing of local symmetries, which is the natural picture in
theories that unify strong and electroweak interactions.
Since no B−L gauge boson has been observed so far, the
scale of B−L breaking must be significantly larger than
the electroweak scale.This leads to the seesaw mechanism
(Gell-Mann et al., 1979; Minkowski, 1977; Ramond, 1979;
Yanagida, 1979) as a natural explanation of the smallness
of the observed neutrino mass scale, which is a key ele-
ment of leptogenesis.

Let us now consider an extension of the Standard
Model with three right-handed neutrinos, whose masses
and couplings are described by the Lagrangian (sum over
i, j),

L = lLii��DlLi + eRii��DeRi + νRii�∂νRi (66)

−
(
heijeRj lLiφ̃+ hνijνRj lLiφ+

1

2
MijνRjν

c
Ri + h.c.

)
,

where��D denotes SM covariant derivatives, νcR = Cν̄TR , C

is the charge conjugation matrix and φ̃ = iσ2φ
∗. The vac-

uum expectation value of the Higgs field, 〈φ〉 = vEW , gen-
erates Dirac mass terms me = hevEW and mD = hνvEW

for charged leptons and neutrinos, respectively. Integrat-
ing out the heavy neutrinos νR, the light-neutrino Majo-
rana mass matrix becomes

mν = −mD
1

M
mT
D . (67)

The symmetric mass matrix is diagonalized by a unitary
matrix V ,

V TmνV =



m1 0 0
0 m2 0
0 0 m3


 , (68)

where m1, m2 and m3 are the three mass eigenvalues. In
the following we shall mostly consider the case of nor-
mal ordering (NO), where m1 < m2 < m3. A recent
global analysis finds for the largest and smallest splitting
(Esteban et al., 2019):

matm ≡
√
|m2

3 −m2
1| = (49.9± 0.3) meV ,

msol ≡
√
|m2

2 −m2
1| = (8.6± 0.1) meV .

(69)

The Majorana mass matrix M can be chosen diagonal,
such that the light and heavy Majorana neutrino mass
eigenstates are

ν ' V T νL + νcLV
∗ , N ' νR + νcR . (70)

In a basis where the charged lepton matrix me and the
Majorana mass matrix M are diagonal, V is the PMNS-
matrix in the leptonic charged current. V can be written
as V = Vδ diag(1, eiα, eiβ) where Vδ contains the Dirac
CP-violating phase δ and α,β are Majorana phases.

Treating in the Lagrangian (66) the Yukawa coupling
hν and the Majorana masses M as free parameters, noth-
ing can be said about the values of the light neutrino
masses. Hence, it is remarkable that the right order of
magnitude is naturally obtained in GUT models. The
running of the SM gauge couplings points to a unification
scale ΛGUT ∼ 1015 GeV. At this scale the GUT group
containing U(1)B−L is spontaneously broken and large
Majorana masses are generated, M ∝ vB−L ∼ 1015 GeV.
As in the SM, all masses are now caused by spontaneous
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FIG. 12 Tree-level and one-loop diagrams contributing to heavy neutrino decays

symmetry breaking. With Yukawa couplings in the neu-
trino sector having a similar pattern as for quarks and
charged leptons, the largest values being O(1), one ob-
tains for the largest light neutrino mass,

m3 ∼
v2

EW

vB−L
∼ 0.01 eV , (71)

which is qualitatively consistent with the measured value
matm.

The tree-level decay width of the heavy Majorana neu-
trino Ni reads

Γ0
Ni = Γ0(Ni → lφ) + Γ0(Ni → l̄φ̄) =

1

8π
(hν†hν)iiMi ,

(72)
and the CP asymmetry in the decay is defined as

εi =
Γ(Ni → lφ)− Γ(Ni → l̄φ̄)

Γ(Ni → lφ) + Γ(Ni → l̄φ̄)
. (73)

We will often be interested in the case of hierarchical Ma-
jorana masses, M2,3 �M1 ≡M . One can then integrate
out N2 and N3, which yields an effective Lagrangian for
N1 ≡ N ,

L =
1

2
Ni�∂N − hνi1NTClLiφ−

1

2
MNTCN

+
1

2
ηij l

T
LiφClLjφ+ h.c. ,

(74)

where η is the dimension-5 coupling

ηij =
∑

k=2,3

hνik
1

Mk
hνTkj . (75)

Using this effective Lagrangian has the advantage that
vertex- and self-energy contributions to the CP asym-
metry in the heavy neutrino decay are obtained from a
single Feynman diagram (see Section IV.F).

A non-vanishing CP asymmetry in Ni decays arises at
one-loop order. From the graphs shown in FIG. 12 one
obtains (Covi et al., 1996; Flanz et al., 1995),

εi = − 1

8π

∑

i 6=k

Im
(
hν†hν

)2
ik(

hν†hν
)
ii

F

(
M2
k

M2
i

)
. (76)

In the case of hierarchical heavy neutrinos one obtains

F

(
M2
k

M2
i

)
' −3

2

Mi

Mk
, (77)

and the CP asymmetry can be written as

εi = − 3

16π

Mi

v2
EW

(
hν†hν

)
ii

Im
(
hν†mνh

ν∗)
ii
. (78)

For small mass differences, |Mi −Mk| � Mi + Mk, the
CP asymmetry is dominated by the self-energy contribu-
tion15 in Fig. 12 and enhanced (Covi et al., 1996),

F

(
M2
k

M2
i

)
' − MiMk

M2
k −M2

i

. (79)

Once mass differences become of the order of the decay
widths, one reaches a resonance regime (Covi and Roulet,
1997; Pilaftsis, 1997) where resummations are necessary.

So far we have considered the seesaw mechanism with
right-handed neutrinos, often referred to as type-I see-
saw. Alternatively, light neutrino masses can result from
couplings to heavy SU(2) triplet fields (Lazarides et al.,
1981; Mohapatra and Senjanovic, 1980, 1981; Wetterich,
1981), which is referred to as type-II seesaw. In this case
the complete light-neutrino mass matrix reads

mν = −mD
1

M
mT
D +mtriplet

ν . (80)

Such matrices are obtained in left-right symmetric ex-
tensions of the Standard Model (for a review, see, for ex-
ample (Mohapatra and Smirnov, 2006)). Furthermore,
one can consider the exchange of heavy SU(2) triplet
fermions, which is referred to as type-III seesaw (Foot
et al., 1989).

In addition to the Majorana mass matrix M also the
charged lepton mass matrix me = hevEW can be cho-
sen diagonal and real without loss of generality. The
Dirac neutrino mass matrix mD is then a general com-
plex matrix with 9 complex parameters and therefore 9
possible CP-violating phases. Three of these phases can
be absorbed into the lepton doublets lL and hence 6 CP-
violating phases remain physical. These are known as
high-energy phases and the CP asymmetries εi in Ni de-
cays depend on these phases. The light neutrino mass

15 The self-energy part in FIG. 12 is part of the inverse heavy-
neutrino propagator matrix. Unstable particles are defined as
poles in S-matrix elements of stable particles whose residues
yield their couplings. Such a procedure confirms the results
(77) and (79) to leading order in the couplings (Buchmuller and
Plumacher, 1998).
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matrix is symmetric, with 6 complex parameters. As
before, three of the phases can be absorbed into the lep-
ton doublets lL, so that 3 phases are physical: the Dirac
phase δ that is measured in neutrino oscillations, and two
Majorana phases α1,2 that affect the rate for neutrino-
less double-β decay (Bilenky et al., 1980; Schechter and
Valle, 1980). There is no direct link between the high-
energy and the low-energy CP-violating phases, but in-
teresting connections exist in particular models (Branco
et al., 2012a).

B. Kinetic equations

Thermal leptogenesis is an intricate nonequilibrium
process in the hot plasma in the early universe which
involves decays, inverse decays and scatterings of heavy
Majorana neutrinos N , left-handed leptons l and l̄, com-
plex Higgs scalars φ and φ̄, gauge bosons and quarks. A
key role is played by weakly coupled heavy Majorana neu-
trinos. In the expanding universe they first reach thermal
equilibrium and then fall out of thermal equilibrium, such
that CP- and lepton-number violating processes lead to
a lepton asymmetry and, via sphaleron processes, also to
a baryon asymmetry.

The main ingredients of the nonequilibrium process
can be understood by considering a simple set of Boltz-
mann equations, neglecting the differences between Bose-
Einstein and Fermi-Dirac distribution functions, as in
classical GUT baryogenesis (Harvey et al., 1982; Kolb
and Turner, 1990; Kolb and Wolfram, 1980). Relativis-
tic corrections and a full quantum field theoretical treat-
ment will be discussed in Section IV.F. For simplicity, we
restrict ourselves in the following to hierarchical heavy
neutrinos where the lightest one (N) with mass M dom-
inates leptogenesis. We also sum over lepton flavours in
N decays (one-flavour approximation).

Let us assume that at large temperatures T �M , the
heavy neutrinos are in thermal equilibrium, i.e.,

nN =
3

4
nγ , (81)

where nγ is the photon number density, and the factor
3/4 reflects the difference of Bose and Fermi statistics.
The heavy neutrinos decay at a temperature Td which is
determined by ΓN ∼ H(Td), where ΓN and H are decay
width and Hubble parameter, respectively. For leptoge-
nesis one has Td . M and the number density nN (Td)
slightly exceeds the equilibrium number density. This de-
parture from thermal equilibrium, together with the CP
violating partial decay widths (see Eq. (73)), leads to the
lepton asymmetry

nl − nl̄
nγ

= ε
nN
nγ
∼ 3

4
ε . (82)

More realistically, one has to include inverse decays
lφ, l̄φ̄→ N in the calculation of the asymmetry. In gen-

eral, the time evolution of a system is governed by re-
action densities, the number of reactions a + b + . . . →
c+ d+ . . . per time and volume,

γ(a+ b+ . . .→ c+ d+ . . .) = (83)∫
dΦfa(pa)fb(pb) . . . |M(a+ b+ . . .→ c+ d+ . . .)|2,

where in first approximation M is a zero-temperature
S-matrix element and

dΦ =
d3pa

(2π)32Ea
. . . (2π)4δ4(pa + . . .− pc − . . .) (84)

is the phase space volume element. Important thermal
and quantum corrections to Eq. (83) will be discussed in
Section IV.F.

It turns out that in the considered scenario, kinetic
equilibrium is a good approximation. In this case the
distribution functions differ from the corresponding equi-
librium distribution functions just by the normalization,

fa(p) =
na
neq
a
f eq
a (p) , (85)

and reaction densities are proportional to equilibrium re-
action densities, e.g.,

γ(N → lφ) =
nN
neq
N

γeq(N → lφ) . (86)

Taking the expansion of the universe into account, one
then obtains for the change of the heavy neutrino number
density with time,

ṅN + 3HnN =− nN
neq
N

(γeq(N → lφ) + γeq(N → l̄φ̄))

+ γeq(lφ→ N) + γeq(l̄φ̄→ N) . (87)

The reaction densities for neutrino decays into CP-
conjugate final states differ by the CP asymmetry ε,

γeq(N → lφ) =
1 + ε

2
γN ,

γeq(N → l̄φ̄) =
1− ε

2
γN ,

(88)

and reaction densities for decays and inverse decays are
related by CPT invariance,

γeq(l̄φ̄→ N) = γeq(N → lφ) ,

γeq(lφ→ N) = γeq(N → l̄φ̄)) .
(89)

Together with Eq. (87), this yields the kinetic equation
for the heavy neutrino number density,

ṅN + 3HnN = −
(
nN
neq
N

− 1

)
γN . (90)

Integrating Eq. (90) yields the time dependence of the N -
number density which is determined by the expansion of
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FIG. 13 Decays and inverse decays of heavy neutrinos, ∆L =
2 processes with virtual intermediate heavy neutrinos, and
∆L = 1 scattering processes.

the universe and the departure from thermal equilibrium.

The lepton asymmetry is generated by heavy neutrino
decays and inverse decays as well as 2→ 2 processes (see
FIG. 13), with reaction densities such as

γ(lφ→ l̄φ̄) =

∫
dΦfl(p1)fφ(p2)|M̂(lφ→ l̄φ̄)|2 . (91)

Here M̂ is the matrix element for lφ → l̄φ̄, from which
the contribution of N as real intermediate state (RIS)
has been subtracted, since this is already accounted for
by decays and inverse decays. Neglecting the effects of
Fermi and Bose statistics the distribution functions can
be approximated as

fl,φ(p) =
nl,φ
neq
l,φ

f eq
l,φ(p) ' nl,φ

neq
l,φ

e−β(E(p)−µl,φ) , (92)

where µl and µφ are the chemical potentials of lepton and
Higgs, respectively. The change of the lepton-number
density with time is given by

ṅl + 3Hnl =
nN
neq
N

γeq(N → lφ)− nl
neq
l

γeq(lφ→ N)

+
nl̄
neq

l̄

γeq(l̄φ̄→ lφ)− nl
neq
l

γeq(lφ→ l̄φ̄).
(93)

The corresponding equation for nl̄ is obtained by inter-
changing l, φ and l̄, φ̄. An important property of the de-
cay and scattering processes in the plasma is the unitarity

of the zero-temperature S-matrix,
∑

i

(|M(lφ→ i)|2 − |M(i→ lφ)|2) = 0 . (94)

For i = l′φ′, l̄φ̄, with El+Eφ = El′ +Eφ′ = El̄+Eφ̄, this
implies16,

∑

lφ,l̄φ̄

(|M(lφ→ l̄φ̄)|2 − |M(l̄φ̄→ lφ)|2) = 0 . (95)

Expressing the lepton-number densites in terms of the
B−L number density17,

nl = neq
l −

1

2
nB−L , nl̄ = neq

l +
1

2
nB−L , (96)

one obtains from Eqs. (93) and (95) the kinetic equation
for the B − L density,

ṅB−L + 3HnB−L = −ε
(
nN
neq
N

− 1

)
γN −

1

2

nB−L
neq
l

γN .

(97)
The generation of the B−L asymmetry is driven by the
departure of the heavy neutrinos from equilibrium and
the CP asymmetry ε, and inverse decays also cause a
washout of an existing B−L asymmetry. Note that only
the reaction density for N decays enters in Eq. (97), the
reaction density for the two-to-two process in Eq. (93)
drops out.

An important part of the B−L washout are the ∆L =
2 processes ll → φφ and lφ → l̄φ̄ with RIS subtracted
reaction densities18

γeq
sub(lφ→ l̄φ̄) = γ∆L=2,+ +

1

2
εγN ,

γeq
sub(l̄φ̄→ lφ) = γ∆L=2,+ −

1

2
εγN ,

γeq(ll→ φ̄φ̄) = γeq(l̄l̄→ φφ) = γ∆L=2,t .

(98)

Including the ∆L = 2 washout processes, the kinetic
equation for the B − L asymmetry becomes

ṅB−L + 3HnB−L =− ε
(
nN
neq
N

− 1

)
γN

− nB−L
neq
l

(
1

2
γN + γ∆L=2

)
,

(99)

16 This also holds for the RIS subtracted matrix elements.
17 Here we follow the usual treatment and ignore sphaleron pro-

cesses during the generation of the lepton-asymmetry. Sphaleron
effects are then included by relating the final L- or (B −
L)-asymmetry to the baryon asymmetry using Eq. (39) (see
Eq. (104)). This amounts to neglecting “spectator processes”
which can be taken into account in a more complete treatment
(Buchmuller and Plumacher, 2001; Garbrecht and Schwaller,
2014; Nardi et al., 2006a).

18 The RIS subtraction is a delicate issue. The original, widely used
prescription given in (Harvey et al., 1982; Kolb and Wolfram,
1980) turned out to be incorrect, as observed in (Giudice et al.,
2004). A detailed discussion can be found in Appendix A of
(Buchmuller et al., 2005a).
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where γ∆L=2 = 2γ∆L=2,+ + 2γ∆L=2,t. Note that the
full Boltzmann equation for the number density nB−L
also depends on the number densities of charged lep-
tons, quarks and Higgs, which satisfy their own Boltz-
mann equations. The corresponding chemical potentials
are all coupled by the sphaleron processes. A discussion
of such ‘spectator processes’ can be found in Sec. IV.F
and in (Buchmuller and Plumacher, 2001; Garbrecht and
Schwaller, 2014; Nardi et al., 2006a). They can affect the
final B−L asymmetry by a factor O(1).

Early studies of leptogenesis were partly motivated by
trying to find alternatives to electroweak baryogenesis,
which did not seem to produce a big enough asymme-
try. Several extensions of the Standard Model with hier-
archical heavy neutrino masses were found which could
explain the observed value of the baryon asymmetry
(Gherghetta and Jungman, 1993; Langacker et al., 1986;
Luty, 1992). At this time models with keV-scale light
neutrinos were still considered. After washout processes
were correctly taken into account, it was realized that
for hierarchical mass matrices inspired by SO(10) GUTs
neutrino masses below 1 eV were favoured (Buchmuller
and Plumacher, 1996). Subsequently, atmospheric neu-
trino oscillations were discovered, which led to a strongly
rising interest in leptogenesis and a large number of in-
teresting models (for reviews and references, see, for
example (Altarelli and Feruglio, 2010; Mohapatra and
Smirnov, 2006)). The minimal seesaw model for lepto-
genesis contains two right-handed neutrinos (Frampton
et al., 2002). This class of models has recently been re-
viewed in Ref. (Xing and Zhao, 2020).

C. Thermal leptogenesis

1. One-flavour approximation

In order to understand the nonequilibrium process of
thermal leptogenesis one has to compare the reaction
rates per particle with the Hubble parameter as func-
tion of temperature or, more conveniently, z = M/T .
The decay and washout rates are obtained by dividing
the reaction densities by the relevant equilibrium num-
ber densities,

ΓN =
1

neq
N

γN , ΓW =
1

neq
l

(
1

2
γN + γ∆L=2

)
. (100)

At low temperatures, z > 1, decays and inverse decays
dominate N production and B−L washout, whereas at
high temperatures, z < 1, 2 → 2 scatterings with rate
ΓS are equally important (see Fig. 13, and Sec. IV.F for
details). All rates have to be evaluated as functions of
z by performing a thermal average over the correspond-
ing matrix elements (Biondini et al., 2018; Luty, 1992;
Plumacher, 1997). They are compared with the Hubble
parameter in the upper panel of Fig 14. For z < 1, all

FIG. 14 Top: Decay, scattering and washout rates normalized
to the Hubble parameter at z = 1, compared with the Hubble
parameter H(z); the two branches of ΓW at z � 1 represent
approximate upper and lower bounds. Bottom: evolution of
N1 abundance and B−L asymmetry for both thermal and zero
initial abundance. Neutrino parameters: M1 = 1010 GeV,
m̃1 = 10−3 GeV, m̄ = 0.05 GeV. From (Buchmuller et al.,
2002b).

processes are out of thermal equilibrium, ΓD,W,S < H.
Around z ∼ 1, the various processes come into thermal
equilibrium. Heavy neutrinos now decay, and since their
number density slightly exceeds the equilibrium number
density, a B−L asymmetry is generated in these de-
cays. As long as washout processes are in equilibrium,
the asymmetry is partly washed out again. At z > 1,
N production is kinematically suppressed, eventually the
washout processes get out of equilibrium at some zL, and
the B−L asymmetry is frozen in.

In the kinetic equations Eqs. (90) and (99) the Hubble
parameter appears. It is convenient to separate the time
dependence of the leptogenesis process from the expan-
sion of the universe. This can be achieved by considering
the ratio of a number density nX to the entropy density,
YX = nX/s, or the product of nX and the comoving vol-
ume occupied by one particle, for instance a photon, i.e.,
NX = 2nX/nγ , at some time before the onset of leptoge-
nesis. For the Standard Model in the high-temperature
phase, assuming one relativistic heavy neutrino species,
one has s = 217π4/(90ζ(3))nγ (Kolb and Turner, 1990),
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and therefore

YX(z) =
45ζ(3)

217π4
NX(z) , z < 1 . (101)

Changing variables and defining the rescaled reaction
rates D = ΓN/(Hz) and W = ΓW /(Hz) the kinetic
equations (90) and (99) take the simple form

dNN
dz

= −D(NN −N eq
N ) ,

dNB−L
dz

= −εD(NN −N eq)−WNB−L .
(102)

The maximal B − L asymmetry to which leptogenesis
can lead is determined by the CP asymmetry in N decays
out of equilibrium, as described by Eq. (82). The cou-
pling of the heavy neutrinos to the thermal bath implies a
suppression of the final asymmetry N f

B−L = NB−L(z �
1), which is conveniently expressed in terms of an effi-
ciency factor κ (Barbieri et al., 2000),

N f
B−L = −3

4
εκf , (103)

where the factor 3/4 is due to Fermi statistics. During
the evolution of the universe the B−L asymmetry in a
comoving volume element remains constant whereas the
number of photons increases. The measured baryon-to-
photon ratio at recombination is then given by

ηB =
nB
nγ

=
3

4

cs
f
εκf ' ηB ' 0.96× 10−2εκf . (104)

Here cs is the fraction of B−L asymmetry converted into a
baryon asymmetry by sphaleron processes (see Eq. (39)),
and the dilution factor f is the increase of the number of
photons in a comoving volume element. In the Standard
Model with one heavy neutrino one has cs = 28/79 and
f = 2387/86.

In the upper panel of Fig. 14 decay and washout
rates are depicted for a representative choice of neutrino
masses, and the lower panel shows solutions of the ki-
netic equations (102) for the same mass parameters and
two different choices of initial conditions, namely ther-
mal and zero initial N abundance. For thermal initial
abundance the number NN always exceeds the equilib-
rium value N eq

N , and the asymmetry |NB−L| continuously
increases towards its final value. For zero initial abun-
dance NN − N eq

N is first negativ. It changes sign just
above z = 1 where also |NB−L| passes through zero. For
the chosen neutrino mass parameters the final B−L asym-
metry is almost independent of the initial condition. The
value of the baryon-to-photon ratio ηB ∼ 0.01N f

B−L is in
agreement with observation.

The generated B−L asymmetry strongly depends on
neutrino parameters, and it is highly remarkable that
for masses and mixings consistent with neutrino oscil-
lations the observed baryon-to-photon ratio is naturally

obtained. The robustness of the leptogenesis mechanism
is largly due to the fact that for neutrino masses below
0.1 eV the B−L asymmetry is essentially determined just
by decays and inverse decays. The heavy neutrinos decay
at z > 1, such that scattering processes are unimportant,
and for small neutrino masses also ∆L = 2 washout pro-
cesses are suppressed (Buchmuller et al., 2005a). More-
over, relativistic corrections are small. In the case where
a summation of the lepton flavours in the final state is
performed, the efficiency factor only depends on m̃1 and
Mm̄2, where the effective light neutrino mass m̃1 and the
absolute neutrino mass scale m are defined as

m̃1 =
(hν†hν)11v

2
EW

M1
, m =

√
m2

1 +m2
2 +m2

3 . (105)

For m . 0.1 eV and M . 1014 GeV, the efficiency factor
κf only depends on m̃1. As the left panel of Fig. 15 il-
lustrates, there are two regimes, with ‘weak’ and ‘strong’
washout, corresponding to

m̃1 < m∗ , m̃1 > m∗ , (106)

respectively, where m∗ is the equilibrium neutrino mass,

m∗ =
16π5/2√g∗

3
√

5

v2

MP
' 1.08× 10−3 eV . (107)

The ratio m̃1/m∗ = ΓD(z = ∞)/H(z = 1) ≡ K has
previously been introduced in GUT baryogenesis (Kolb
and Wolfram, 1980). In the weak washout regime κf(m̃1)
strongly depends on the initial conditions (thermal vs
zero initial abundance) and on the rate for ∆L = 1 scat-
tering processes (hatched area in Fig. 15). On the con-
trary, in the strong washout regime the efficiency factor
is universal, with an uncertainty of about 50%,

κf = (2± 1)× 10−2

(
0.01 eV

m̃1

)1.1±0.1

. (108)

Moreover, the dependence of the final B−L asymme-
try on some other initial B−L asymmetry, independent
of leptogenesis, is significantly suppressed in the strong
washout regime. It is very remarkable that the neutrino
mass range indicated by solar and atmospheric neutrinos
lies inside the strong washout regime where the generated
B−L asymmetry is essentially determined by decays and
inverse decays and therefore largely independent of initial
conditions and theoretical uncertainties.

In the case of hierarchical heavy neutrinos the maximal
CP asymmetry in N decays reads (Davidson and Ibarra,
2002; Hamaguchi et al., 2002)

εmax =
3

16π

Mmatm

v2
' 10−6

(
M

1010 GeV

)
. (109)

Knowing the maximal efficiency factor, this implies a
lower bound on the smallest heavy neutrino mass M .
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FIG. 15 Left: Efficiency factor κf as function of the effective neutrino mass m̃1; the hatched region represents the theoretical
uncertainty due to ∆L = 1 scattering processes, the dashed lines indicate analytical results and the circled line is a power-law
fit. Right: Upper and lower bounds on the heavy neutrino mass M1 (the weaker lower bound corresponds to thermal initial
conditions); the dotted line is a lower bound on the initial temperature Ti; the gray triangle is exluded by theoretical consistency
and the circled lines represent analytical results. In both panels the vertical lines indicate the range (msol,matm) (see text).
From (Buchmuller et al., 2005a).

From Fig. 15 one reads off κmax ∼ 1 and κmax ∼ 0.1
for thermal and zero initial abundance, respectively. A
baryon-to-photon ratio ηB ∼ 10−9 then requires a heavy
neutrino mass M & 108 GeV and M & 109 GeV for the
two different initial conditions, respectively. The precise
dependence of the lower bound on m̃1 is shown in the
right panel of Fig 15.

The ∆L = 2 washout term leads to an upper bound on
heavy neutrino masses and also to an important upper
bound on the light neutrino masses (Buchmuller et al.,
2002a). An analysis of the solution of the kinetic equa-
tions (102) shows that in the strong washout regime,
which is defined by m̃1 & m∗, the B−L asymmetry is
produced close to zB(m̃1) ∼ 2m∗/(m̃1κf(m̃1)), and the
complete efficiency factor is given by

κ̄f(m̃1,Mm2) '

κf(m̃1) exp

[
− ω

zB

(
M

1010 GeV

)(
m

eV

)2
]
,

(110)

where ω ' 0.2. Clearly, for too large values of M and
m, the generated B−L asymmetry is too small compared
to observation. A quantitative analysis yields for M the
upper bound shown in Fig. 15, and for the light neutrino
masses one finds mi < 0.12 eV. Assuming m̃1 = O(mi),
successfull leptogenesis then implies for the light neutri-
nos the optimal mass window

10−3 eV . mi . 0.1 eV . (111)

It is very remarkable that the cosmological bound on the
sum of neutrino masses (Aghanim et al., 2018), which

became more and more stringent during the past two
decades, is consistent with this mass window. Note, how-
ever, that the upper bound on the light neutrino masses
only holds in type-I seesaw models. In type-II models,
where a triplet contribution appears in the neutrino mass
matrix, as in left-right symmetric models, the direct con-
nection between neutrino masses and leptogenesis is lost
(Antusch and King, 2004; Hambye and Senjanovic, 2004).

The maximal CP asymmetry (109), and therefore the
lower bound on the heavy neutrino mass M1, depends
on the measured value of matm. What can one say with-
out knowing the result from atmospheric neutrino oscilla-
tions? In this case the Planck mass and the Fermi scale
still yield the neutrino mass scale m∗ (see Eq. (107)),
which determines the normalization of m̃1 in the effi-
ciency factor κf (108). From the full efficiency factor
(110) one can then determine the maximal baryon as-
symetry as function of m̃1 and m3, which is reached at
m̃1 ' 2 × 10−3 eV, i.e., in the strong washout regime
(Buchmuller et al., 2004). This leads to the upper and
lower bounds m3 . 250 eV and M1 & 2 × 106 GeV,
respectively.

It is remarkable that in GUTs with hierarchical heavy
right-handed neutrinos, M1 � M2 � M3 ∼ vB−L ∼
1015 GeV, a simple estimate yields the right order of mag-
nitude for the baryon-to-photon ratio (Buchmuller and
Plumacher, 1996; Buchmuller and Yanagida, 1999). To
understand this, consider the CP asymmetry ε1 as given
in Eq. (78), assume normal ordering and keep the largest
contribution proportional to the light neutrino mass m3.
With hνi1/

√
(hν†hν)11 ∝ δi3, and using Eq. (71), one ob-
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tains

ε1 ∼ 0.1
m3M1

v2
EW

∼ 0.1
M1

M3
. (112)

For a heavy neutrino mass hierarchy similar to the hi-
erarchies in the quark and charged lepton sectors, i.e.,
M1/M3 ∼ 10−5 . . . 10−4, and an efficiency factor κf ∼
10−2 . . . 10−1, the baryon-to-photon ratio is given by (see
Eq. (104)),

ηB ∼ 10−2 ε1κf ∼ 10−10 . . . 10−8 , (113)

in agreement with observation.
The ∆L = 2 washout terms play a crucial role in ob-

taining upper bounds on light and heavy neutrino masses.
Correspondingly, a discovery of lepton-number violating
di-lepton events at the LHC could be used to falsify lepto-
genesis since the production cross section of these events
is directly related to a ∆L = 2 washout term which, if
large enough, would erase any baryon asymmetry. This
has been demonstrated in the context of left-right sym-
metric models (Frere et al., 2009) as well as in a model-
independent approach (Deppisch et al., 2014).

2. Flavour effects

So far we have discussed leptogenesis in the ‘one-
flavour approximation’, where one sums over lepton
flavours in the final state. This approximation is only
valid at very high temperatures where lepton-Higgs in-
teractions in the thermal plasma can be neglected. In
general, flavour effects can have an important impact on
leptogenesis (Abada et al., 2006; Barbieri et al., 2000;
Blanchet et al., 2007; Endoh et al., 2004; Nardi et al.,
2006b).

Let us first consider the simplest case where the lightest
heavy neutrino N1 ≡ N couples to a particular combi-
nation of lepton flavours given by the Yukawa couplings
hνi1 (see Eq. (74)),

|l1〉 =
∑

i=e,µ,τ

C1i|li〉 , C1i =
hνi1√

(hν†hν)11

. (114)

As the universe expands, Hubble parameter and Yukawa
rates decrease as H ∼ T 2/MP and ΓY ∼ g2

Y T , respec-
tively. Hence, with gτ ∼ 5× 10−3, left- and right-handed
τ -neutrinos are in thermal equilibrium for temperatures
below the temperature Tτ , where

Γτ (Tτ ) ∼ g2
τ

4π
Tτ ∼ 10−6 Tτ ∼ H(Tτ ) , (115)

which implies Tτ ∼ 1012 GeV. Below Tτ interactions
with τ leptons in the thermal bath destroy the coherence
of the lepton state produced in N decay. Hence, one

has to consider Boltzmann equations for the components
parallel and orthogonal to τ separately. With

pτ = |C1τ |2 , pτ⊥ = 1− |C1τ |2 , 〈τ |τ⊥〉 = 0 , (116)

one obtains

dNN
dz

= −D(NN −N eq
N ) ,

dNττ
dz

= εττD(NN −N eq)− pτWNττ ,

dNτ⊥τ⊥

dz
= ετ⊥τ⊥D(NN −N eq)− pτ⊥WNτ⊥τ⊥ .

(117)

For the produced B−L asymmetry these equations yield
the flavour structure

NB−L ∝
(
εττ
pττ

+
ετ⊥τ⊥

pτ⊥τ⊥

)

∝ εττ
(

1

pττ
− 1

1− pττ

)
. (118)

A complete expression for the B−L asymmetry in the
two-flavour regime is given in Ref. (Blanchet and Di Bari,
2009). For temperatures far below Tτ all three lep-
ton flavours have to be taken into account. Instead
of Eqs. (117) one then obtains an involved system of
Boltzmann equations or, depending on the temperature
regime, of kinetic equations for the lepton density matrix
(Blanchet et al., 2013).

Flavour effects, together with tuning of the parameters
of the seesaw mass matrix, can be used to lower the lep-
togenesis temperature significantly below T ∼ 1010 GeV,
which was considered in the previous section (Blanchet
and Di Bari, 2009). Recently, a detailed study of this
type has been carried out in (Moffat et al., 2018) where
masses and mixings of all three light and heavy Ma-
jorana neutrinos were taken into account. A code to
solve these Boltzmann equations has been published in
Ref. (Granelli et al., 2020). Two sets of neutrino pa-
rameters, fitted to measured neutrino parameters and to
the observed baryon asymmetry, are shown in Table I.
The two sets S2 and S3 correspond to normal hierarchy
for the light neutrinos and to a mild mass hierarchy for
heavy neutrinos. Mixing angles and mass ratios of the
light neutrinos are essentially fixed by observation. In
both cases the smallest neutrino mass lies in the mass
window (111) whereas Dirac phase and Majorana phases
vary significantly. Correspondingly, the flavour depen-
dence of the B−L asymmetry is very different in the
two cases. The dependence on the mixing parameters of
the heavy neutrinos is not listed. An important aspect of
the flavour effects is the mass scale of the heavy neutrinos
which lies significantly below the lower bound derived in
the one-flavour approximation.

It is interesting to compare the evolution of the B−
L asymmetry in Fig. 16 with the one shown in Fig. 14,
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FIG. 16 Evolution of the B−L asymmetry for each lepton flavour as function of z = M1/T for two sets of neutrino masses and
phases (left: S2, right: S3) listed in Table I. From (Moffat et al., 2018).

δ(◦) m1 (eV) M1 (GeV) M2 (GeV) M3(GeV)

S2 88.26 0.079 106.5 107 107.5

S3 31.71 0.114 106.5 107.2 107.9

TABLE I Two sets of neutrino masses and phases consistent
with the observed B-L asymmetry (only 5 out of 14 parame-
ters are listed). From (Moffat et al., 2018).

where M1, the smallest heavy neutrino mass, is three or-
ders of magnitude larger than in the parameter sets S2,
S3. In Fig. 14 the generated asymmetry before ther-
mal equilibrium of N1 is about the same as the final
B−L asymmetry, whereas in Fig. 16 there is a difference
by about one order of magnitude. The flavour compo-
sition of the B−L asymmetry is significantly different
for S2 and S3. Such a behaviour can occur due to can-
celations between positive and negative contributions to
the asymmetry around z ≈ 1, as discussed in Ref. (Buch-
muller et al., 2005a). Moreover, fine tuning between tree-
level contributions and one-loop corrections to the light
neutrino mass matrix is needed. On the whole the to-
tal B−L asymmetry is rather sensitive to fine tuning
of parameters, which is the price one pays for lowering
the heavy neutrino mass scale compared to the simple
one-flavour approximation, allowing for a low reheating
temperature.

A particularly important aspect of the flavour depen-
dence of leptogenesis is the effect on upper and lower
bounds on light neutrino masses. It is clear that the ef-
fect can be significant, but so far it has not been possible
to obtain a complete picture in a model independent way.
According to current estimates, it is possible to relax up-
per and lower bounds in Eq. (111) by about one order
of magnitude, baring fine tuning (Blanchet and Di Bari,

2012; Davidson et al., 2008; Dev et al., 2018b). Moreover,
spectator effects have to be taken into account (Buch-
muller and Plumacher, 2001; Garbrecht and Schwaller,
2014; Nardi et al., 2006a).

Our discussion of flavour effects has been limited to
the case where leptogenesis is dominated by the lightest
heavy neutrino N1. An interesting alternative is domi-
nance by the next-to-lightest heavy neutrino N2 (Di Bari,
2005; Vives, 2006). More possibilities are reviewed in
(Dev et al., 2018b). The treatment of flavour effects
based on Kadanoff-Baym equations (Beneke et al., 2011)
will be described in Section IV.F.

Continuous and discrete flavour symmetries play an
important role in restricting lepton masses and mixings,
and in this way they strongly effect leptogenesis. This
has been extensively discussed in the literature and com-
prehensive overviews are given in (Altarelli and Feruglio,
2010; Mohapatra and Smirnov, 2006).

3. Resonant leptogenesis

The standard temperature scale of thermal leptogene-
sis, T & 1010 GeV, can be significantly lowered by flavour
effects. A much more dramatic effect occurs when mass
differences between the heavy neutrinos are comparable
to the heavy neutrino decay widths, a case referred to as
resonant leptogenesis (Pilaftsis and Underwood, 2004).
In this case leptogenesis temperatures of order TeV are
possible which implies the intriguing possibility to test
thermal leptogenesis at high-energy colliders (Pilaftsis
and Underwood, 2005). Such models can be realized
in extensions of the Standard Model where the quasi-
degeneracy of the heavy neutrinos is a consequence of ap-
proximate symmetries, as for instance in supersymmetric
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FIG. 17 Resonant leptogenesis: lepton asymmetry ηL, with L = Lτ , computed in a density matrix formalism for different initial
conditions (full lines), compared to ηL obtained in a flavour-diagonal approximation (dashed lines). The model parameters are
specified in the table. From (Bhupal Dev et al., 2015).

models where soft supersymmetry breaking terms can be
much smaller than the heavy neutrino mass terms (see,
for example (Chen and Mahanthappa, 2004; D’Ambrosio
et al., 2003; Grossman et al., 2003; Hambye et al., 2004)).

The formalism to treat this resonant regime has been
developed in resummed perturbation theory (Pilaftsis
and Underwood, 2004), on the basis of Kadanoff-Baym
equations (Garny et al., 2013) and using a density ma-
trix formalism (Bhupal Dev et al., 2015) (for a review,
see (Dev et al., 2018a)). In resummed perturbation the-
ory one computes the decay rates of heavy neutrinos Nα
to leptons l and Higgs,

Γαl = Γ(Nα → lφ) , ΓCαl = Γ(Nα → lφ) , (119)

in terms of resummed Yukawa couplings h
ν

lα (Pilaftsis
and Underwood, 2004). The CP asymmetries are defined
as usual,

δαl ≡
Γαl − ΓCαl∑

l=e,µ,τ

(
Γαl + ΓCαl

)

=

∣∣hνlα
∣∣2 −

∣∣hνClα
∣∣2

(
h
ν†

h
ν)
αα

+
(
h
νC†

h
νC)

αα

.

(120)

For quasi-degenerate heavy neutrinos they show the typ-
ical resonant enhancement, and for two heavy neutrinos
one has obtained the result19 (Pilaftsis and Underwood,

19 The calculation of the CP asymmetry in the resonance regime
is subtle. For a thorough discussion see, for example (Anisimov
et al., 2006; Brdar et al., 2019; Garny et al., 2013).

2004)

δαl ≈
Im
[
(hν†αlh

ν
lβ ) (hν†hν )αβ

]

(hν†hν )αα (hν†hν )ββ

×
(m2

Nα
−m2

Nβ
)mNα Γ

(0)
Nβ

(m2
Nα
−m2

Nβ
)2 +m2

Nα
Γ

(0)2
Nβ

.

(121)

A numerical example is shown in Fig. 17. The lep-
ton asymmetry is all in the τ flavour. It is remark-
able that the mass of the three heavy neutrinos can be
lowered down to mN = 400 GeV. The price is the ex-
treme fine tuning of mass differences, ∆M1/mN = (M1−
mN )/mN ∼ 10−5 and ∆M2/mN = (M2 −M3)/mN ∼
10−9, with mN = (M2 +M3)/2. As in the case discussed
in the previous section (see Fig. 16), the final asymmetry
|δL| is much smaller than the asymmetry |δL| before the
equilibrium of the heavy neutrinos, indicating the sensi-
tivity with respect to fine tuning of parameters.

Some special parameter region of resonant leptogenesis
can be probed at the LHC (Deppisch et al., 2015). At
zero temperature the four real degrees of freedom of the
complex doublet φ become the physical Higgs H and the
longitudinal components of W - and Z-bosons. The heavy
neutrinos can decay into these bosons and leptons with
decay rates related to Eq. (119),

Γαl = Γ(Nα → l−lL+W+)+Γ(Nα → νlL+Z,H) . (122)

To obtain a sufficiently large cross section for heavy neu-
trino pair production it is necessary to extend the Stan-
dard Model by an additional U(1) gauge group and a cor-
responding Z ′ gauge boson. The produced heavy neutri-
nos then decay into l±LW

∓ or νLZ,H. This leads to inter-
esting like-sign (l+l+) and opposite-sign (l+l−) di-lepton
events (see Fig. 18). The decay amplitude is proportional
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FIG. 18 Left: Heavy neutrino pair production and decay in an extension of the Standard Model with additional Z′ boson.
Right: Contours in the plane of neutrino mixing |VlN | and neutrino mass mN ; the dashed red lines correspond to different
branching ratios BR(µ→ eγ), the blue lines correspond to two distances between displaced vertices at the LHC. From (Deppisch
et al., 2015).

to the light-heavy neutrino mixing, |VlN | ∼
√
mν/mN =

O(10−6). Hence, the lifetime of the decaying heavy neu-
trino N is very long. This leads to displaced vertices
in the detector with a displacement length in the range
LLHC ∼ 1 mm . . . 1 m, which is in the reach of the LHC
detectors (see Fig. 18). Complementary to Z ′-models,
also TeV-scale left-right symmetric models with quasi-
degenerate heavy neutrinos can be probed at the LHC
(Bhupal Dev et al., 2019). Moreover, TeV-scale leptoge-
nesis can be realized in left-right symmetric models with
a B−L breaking phase transition (Cline et al., 2002; Sahu
and Yajnik, 2005).

D. Sterile-neutrino oscillations

Thermal leptogenesis with out-of-equilibrium decays
of heavy Majorana (sterile) neutrinos can work down to
masses around the electroweak scale once the CP asym-
metries in their decays are resonantly enhanced. Lep-
togenesis with even lighter sterile neutrinos that have
masses O(GeV) is possible via CP-violating oscillations
among sterile neutrinos (Akhmedov et al., 1998). In this
scenario the neutrino Yukwawa couplings are so small
that at least one sterile neutrino flavor never reaches ther-
mal equilibrium before sphaleron freeze-out. Recently
it was demonstrated that the regimes of resonant lep-
togenesis and of leptogenesis through oscillations are in
fact connected and allow for a unified description (Klarić
et al., 2020).

The time evolution is described by kinetic equations
for the matrix of sterile-neutrino phase space densities ρN

(Sigl and Raffelt, 1993), oftentimes referred to as density
matrix, and the chemical potentials µα for B/3 − Lα
(Asaka et al., 2005; Canetti et al., 2013a,b). Without
Hubble expansion they read

i
dρN
dt

=[H, ρN ]− i

2
{ΓN , ρN − ρeq}+

i

2
µαΓ̃αN , (123)

i
dρN̄
dt

=[H∗, ρN̄ ]− i

2
{Γ∗N , ρN̄ − ρeq} − i

2
µαΓ̃α∗N , (124)

and

i
dµα
dt

=− iΓαLµα + itr
[
Γ̃αL(ρN − ρeq)

]

− itr
[
Γ̃α∗L (ρN̄ − ρeq)

]
. (125)

The SM particles are assumed to be in kinetic equilib-
rium. ρeq is the equilibrium density matrix, ρN and
ρN̄ correspond to ‘particles’ and ‘antiparticles’ defined
in terms of the Ni helicities, H is the dispersive part of
the finite temperature effective Hamiltonian, ΓN , ΓαL, and
Γ̃αL are rates accounting for various scattering processes
(see Sec. IV.F), and α = e, µ, τ labels the lepton flavour.
The equations describe thermal sterile neutrino produc-
tion, oscillations, freeze-out and decay, and have been
refined and extended in (Bodeker and Schröder, 2020;
Ghiglieri and Laine, 2017; Hernández et al., 2015, 2016).
Above the sphaleron freeze-out temperature TEW ∼ 130
GeV, a lepton asymmetry, partially concerted to a baryon
asymmetry, is generated in CP-violating oscillations of
the sterile neutrinos which are thermally produced but
do not all equilibrate. With decreasing temperature the
oscillations become more and more rapid. Eventually
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FIG. 19 Constraints on mass and mixing for N1 making up
all of dark matter. The colored regions are excluded. A lep-
ton asymmetry affects the proton-to-neutron ratio during big
bang nucleosynthesis (BBN), which gives rise to an upper
limit on the lepton asymmetry. The BBN limit given by the
solid black line holds if all of the input lepton asymmetry is
only in the muon flavor. The dashed line corresponds to the
BBN limit if the lepton asymmetry is split equally onto all
three flavors. Large mixing angles are excluded because too
much dark matter would be produced, or becauseX-rays from
the decay N1 → νγ would have already been detected. Addi-
tional constraints (not shown) come from structure formation
(Schneider, 2016). From (Bodeker and Klaus, 2020).

the off-diagonal elements of the density matrix effectively
vanish in the mass basis, and the oscillations come to an
end. Below TEW the baryon asymmetry is frozen, while
lepton number still continues to evolve.

A much studied scenario is an extension of the SM
by three sterile neutrinos in which the two heavier ones,
N2,3, can generate the baryon asymmetry, and the light-
est, N1, is available as a dark matter candidate (the
νMSM). It is remarkable that such a minimal extension
might indeed account for neutrino oscillations, baryoge-
nesis and dark matter (Asaka et al., 2005; Asaka and
Shaposhnikov, 2005). The observed baryon asymmetry
requires lepton chemical potentials µα/T ∼ 10−10 at
T ∼ TEW. Below TEW, the sphaleron processes are inef-
fective, so that a change of the lepton chemical potential
no longer affects the baryon asymmetry. Eventually, N2

and N3 decay and thereby increase the lepton asymme-
try. Now large lepton chemical potentials are needed to
generate, resonantly amplified, the observed amount of
dark matter, µα/T & 8 · 10−6 at T ∼ 100 MeV. The
lightest sterile neutrino N1 provides dark matter. It has
a mass in the range 1 keV < M1 . 50 keV and tiny
mixings, 10−13 . sin2(2θα1) . 10−7, such that the decay
rate is very small and it survives until today. Various
constraints are shown in Fig. 19. Moreover, the scenario
predicts that the lightest neutrino mass effectively van-
ishes, m1 ' 0. This scenario requires a very high mass de-

f.t.
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FIG. 20 Mixing U2
µi of heavy neutrinos Ni with leptons lµ

as function of the heavy neutrino mass Mi. The grey region
is excluded by direct searches of heavy neutral leptons and
the lines show the expected sensitivities for the ongoing ex-
periments T2K, NA62, Belle II, LHCb, ATLAS and CMS.
The parameter f.t. measures the amount of fine tuning for
Yukawa couplings needed for successful leptogenesis. From
(Abada et al., 2019).

generacy of the heavier sterile neutrinos, (Canetti et al.,
2013a,b)

|M2 −M3|/|M2 +M3| ∼ 10−11 . (126)

It is an intriguing possibility that the predicted
monochromatic X-ray line produced by N1 dark mat-
ter decays corresponds to an unidentified observed X-ray
line around 3.5 keV (Boyarsky et al., 2014; Bulbul et al.,
2014). This identification has been challenged by blank-
sky observations (Dessert et al., 2020) but is still under
discussion (Boyarsky et al., 2020).

The extreme fine tuning of the masses in Eq. (126) is
no longer needed if one does not require the generation
of lepton asymmetry for the resonant production of N1.
When processes connecting active and sterile neutrinos
with different helicities are taken into account one finds
that a 10% splitting is sufficient (Antusch et al., 2018).

Models with three GeV-scale sterile neutrinos (Drewes
and Garbrecht, 2013), none of which contribute to the
dark matter, have a rich phenomenology. Depending on
the parameters, there can be resonant enhancement due
to medium effects. In this case only O(1) tunings for
sterile neutrino masses and mixings are required (Abada
et al., 2019). Some results of a parameter scan are shown
in a mixing-mass plane for sterile neutrinos in Fig. 20,
where Uαi ≡ θαi = (mDM

−1
M )αi. There successful lep-

togenesis is possible with sterile neutrino masses in the
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Grand unification GUT-scale leptogenesis

fermion representations of SM connection between B and L in GUTs

gauge coupling unification (large GUT scale) small neutrino masses (GUT-scale seesaw)

proton decay Majorana neutrinos

relations between Yukawa couplings relation between B and L asymmetries

proton decay branching ratios neutrino masses and mixings

TABLE II Comparison between qualitative and quantitative aspects of GUTs and leptogenesis, respectively.

range (0.1, 50) GeV.20 It is encouraging that mixings and
masses with successful leptogenesis can be probed by a
number of ongoing experiments. Further possibilites to
test GeV-scale leptogenesis are discussed in (Chun et al.,
2018).

E. Leptogenesis - piece of a puzzle

In its original version leptogenesis was based on a
GUT-scale seesaw mechanism with hierarchical heavy
Majorana neutrinos. Since their masses are far above col-
lider energies one may wonder whether GUT-scale lepto-
genesis is at all experimentally testable. In the following
we therefore illustrate with a few examples some current
hints and conceivable future evidence for leptogenesis at
the GUT scale. Both, long-baseline neutrino-oscillation
experiments and cosmology can be expected to play an
important role.

It is instructive to compare possible tests for leptogen-
esis and GUTs. Intriguing hints for grand unification are
the fact that quarks and leptons form complete represen-
tations of SU(5), the simplest simple group containing
the Standard Model gauge group. Moreover, the gauge
couplings of strong and electroweak interactions unify at
a large energy scale (GUT scale), approximately with-
out supersymmetry, and rather precisely with supersym-
metry. A generic prediction of GUTs is proton decay.
Relations between Yukawa couplings are model depen-
dent. Together with proton decay branching ratios they
contain important information about the theory at the
GUT scale.

In a similar way there are qualitative and quantitative
hints for GUT-scale leptogenesis (see Table II). Interac-
tions in GUTs change baryon and lepton number, and
the spontaneous breaking of B−L can generate large
Majorana masses for right-handed neutrinos, the basis of
leptogenesis. If Yukawa couplings in the neutrino sector
are similar to Yukawa coupling for quarks and charged
leptons, the seesaw formula (67) automatically yields the

20 For larger masses the sterile neutrinos would be non-relativistic
at TEW, in which case the computational method of (Abada
et al., 2019) does not apply.

right order of magnitude of the neutrino mass scale in
terms of Fermi scale vEW ∼ 100 GeV and the GUT scale
vGUT ∼ 1015 GeV,

m3 ∼
v2

EW

vGUT
∼ 10−2 eV . (127)

A generic prediction of leptogenesis is that also light neu-
trinos are Majorana fermions, which can be probed in
neutrino-less double β-decay. Moreover, GUTs connect
Yukawa matrices in the neutrino sector with those in
the charged lepton and quark sectors. Depending on
the GUT model, this leads to predictions for neutrino
masses and mixings and to relations amoung the phases
that yield the CP violation necessary for leptogenesis.

As an example, consider a pattern of Dirac neutrino
and charged lepton mass matrices which can be obtained
in the context of a Froggatt-Nielsen (FN) U(1) flavour
symmetry (Irges et al., 1998; Sato and Yanagida, 1998),

mν ∼
v2

EW sin2 β

vB−L
η2a



η2 η η

η 1 1

η 1 1


 , (128)

me ∼ vEW cosβ ηa



η3 η2 η

η2 η 1

η2 η 1


 . (129)

The model has two Higgs doublets, Hu and Hd,
which replace φ and φ̃ in Eq. (66), respectively, and
vEW =

√
〈Hu〉2 + 〈Hd〉2. The vacuum expectation value

vB−L ∼ vGUT breaks B − L, and tanβ = 〈Hu〉/〈Hd〉.
η = 1/

√
300 is the hierarchy parameter of the FN model,

and a and a + 1 are the FN charges of the 5∗-plets in
an SU(5) GUT model (Buchmuller and Yanagida, 1999).
mν is determined by the seesaw formula (67) where the
FN charges of the right-handed neutrinos drop out. O(1)
factors in the mass matrices remain unspecified in an FN
model.

In order to find out whether a certain pattern of mass
matrices can describe the measured data it is instruc-
tive to treat O(1) parameters as random numbers and
to perform a statistical analysis (Hall et al., 2000; Sato
and Yanagida, 2000; Vissani, 2001). A detailed study
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FIG. 21 Relative frequency for the leptogenesis parameters m̃1 (left) and ε1 (right). The solid lines denote the position of the
median and the dashed lines are the boundaries of the 68% confidence region. From (Buchmuller et al., 2012a).

taking the two measured neutrino mass-squared differ-
ences and two mixing angles as input was performed in
(Buchmuller et al., 2012a). The parameter scan leads
to a prediction for the ‘most likely’ values of the third
mixing angle and for phases of the light-neutrino mass
matrix. Choosing tanβ ∈ [1, 60], with sinβ ∈ [1/

√
2, 1),

the parameter a ∈ [0, 1] is determined from the nor-
malization of me. The effective B−L breaking scale
v̄B−L = vB−L/(sin

2 β η2a) is determined by the normal-
ization of mν and peaks at v̄B−L = 1 × 1015 GeV, i.e.,
close to the GUT scale. The most interesting quantities
for leptogenesis are the effective light neutrino mass m̃1

(see Eq. (105)), the CP asymmetry ε1 (see Eq. (76)) and
the absolute neutrino mass scale m (see Eq. (105)) or,
equivalently, m1. The statistical analysis (see Fig. 21)
implies normal hierarchy with the neutrino masses

m1 = 2.2+1.7
−1.4×10−3 eV, m̃1 = 4.0+3.1

−2.0×10−2 eV , (130)

and the CP asymmetry

ε1

εmax
= 0.25+0.28

−0.18 , (131)

where the maximal CP asymmetry εmax is given in
Eq. (109). Note that the values for m1 and m̃1 lie inside
the neutrino mass window (111). From Eqs. (104), (108),
(130) and (131) one obtains a lower bound on the mass
of N1, M1/ sin2 β & 3×1011 GeV, in accord with Fig. 15.
Hence, an SU(5) GUT model that successfully describes
the light neutrino masses also naturally explains the ob-
served matter-antimatter asymmetry.

Neutrinoless double-beta decay is sensitive to the ef-
fective mass mee for which one obtains mee = 1.5+0.9

−0.8 ×
10−3 eV. Cosmological observations measure the sum of
neutrino masses, which is predicted as mtot = 6.0+0.3

−0.3 ×
10−2 eV. Similar statistical analyses have been car-
ried out by several groups, see, for example (Altarelli
et al., 2012; Lu and Murayama, 2014). If the condition
det(mν) = 0 is imposed on the light neutrino mass ma-

trix, the statistical analysis is also sensitive on the lep-
tonic Dirac phase δ (Kaneta et al., 2017).

An important ingredient of leptogenesis are the CP-
violating phases in the neutrino mass matrices (Branco
et al., 2012a; Hagedorn et al., 2018). Three low-energy
phases appear in the light-neutrino mass matrix, the
Dirac phase δ and the two Majorana phases α, β (see
Eq. (70)). At present there is evidence for the Dirac neu-
trino phase, δ ≈ 3π/2 (Abe et al., 2020), and the obser-
vation of neutrinoless double-beta decay would constrain
the Majorana phases α and β. In the one-flavour ap-
proximation, phases beyond the measurable low-energy
phases are needed to obtain a non-vanishing CP asym-
metry ε1. It is therefore interesting that flavour effects
can yield a non-zero CP asymmetry even for vanishing
high-energy phases (Blanchet and Di Bari, 2007; Branco
et al., 2007; Nardi et al., 2006b; Pascoli et al., 2007).
This effect has been studied in the two-flavour regime
109 GeV < M1 < 1012 GeV in (Branco et al., 2007), as-
suming that CP violation arises just from the left-handed
neutrino sector. Successful leptogenesis is obtained for
1010 GeV < M1 < 1012 GeV and m1 < 0.1 eV (see
Fig. 22, left panel), and a relation between Dirac phase
and one Majorana phase can be read off from the right
panel of Fig. 22. In some GUT models leptonic CP vio-
lation can indeed be restricted to the left-handed lepton
sector. For instance, in the SU(5) model described above
this is achieved by choosing the Yukawa couplings hν in
the way described in (Branco et al., 2007). Note that
this does not affect CP violation in the quark sector.

The absolute neutrino mass scale plays an important
role for washout processes. In the one-flavour approx-
imation it was shown that the generated lepton asym-
metry becomes rather insensitive to an initial lepton
asymmetry of different origin for light neutrino masses
in the strong washout regime, mi & 10−3 eV (Buch-
muller et al., 2003). However, this lower bound on
neutrino masses is sensitive to flavour processes. In a
range of parameter space where the asymmetry genera-
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FIG. 22 Left: Region of successful flavoured leptogenesis in the (m1,M1) plane for zero and thermal initial N1 abundance.
Right: Correlation between Dirac phase and Majorana phase yielding maximal baryon asymmetry (normal hierarchy). From
(Branco et al., 2007).

FIG. 23 Scatter plot in the (m1,mee)-plane where the
washout of large initial asymmetries is required, N i

B−L =
0.1(red), 0.01(green), 0.001(blue); the vertical lines indicate
the values of m1 in the three cases beyond which 99% of the
scatter points are found; from (Di Bari et al., 2014).

tion is dominated by N2 and washout processes by N1,
respectively, this has been analyzed in (Di Bari et al.,
2014). Some results of a parameter scan are shown for
the (m1,mee)-plane in Fig. 23. Large initial asymme-
tries, N i

B−L = 0.1(red), 0.01(green), 0.001(blue), can be
erased for m1 & 10 meV. This has to be compared with
cosmological bounds on mtot. A combined analysis of
CMB and Lyman-alpha data yields the upper bound
mtot < 0.12 eV (Palanque-Delabrouille et al., 2015),
which is consistent21 with recent Planck data combined

21 Note, however, that based on CMB, BAO, lensing and galaxy

with lensing and BAO data (Aghanim et al., 2018). A
measurement of a total neutrino mass mtot ∼ 100 meV
with an uncertainty of ∼ 10 meV is challenging, but it
would have a strong impact on our understanding of lep-
togenesis.

The connection between leptogenesis and GUT models
has been studied in many explicit models. For examples
and references, see (Altarelli and Feruglio, 2010; Mohap-
atra and Smirnov, 2006).

F. Towards a theory of leptogenesis

The description of a nonequilibrium process on the ba-
sis of thermal field theory, and without any adhoc as-
sumptions, is a highly non-trivial problem, even for sim-
pler condensed-matter systems. Due to favourable cir-
cumstances described below, over the years this goal has
essentially been reached for leptogenesis. Hence, this pro-
cess can be expected to be of general interest in statistical
physics, independent of cosmology.

Thermal leptogenesis takes place in an expanding uni-
verse with decreasing temperature. Traditionally it has
been treated using a set of Boltzmann equations contain-
ing S-matrix elements which assume scattering in vac-
uum rather than in a hot plasma. Quantum interference
plays a key role in generating the asymmetry, and it is
important to understand whether and how this is affected
by the presence of the plasma. Furthermore, the role of
gauge interactions has long been unclear, and it turned

counts also evidence for a non-vanishing total neutrino mass has
been claimed, mtot = (0.320 ± 0.081) eV (Battye and Moss,
2014). This result is in tension with leptogenesis.
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out that they can be quite important. As in most of Sec-
tions IV.B and IV.C we shall consider hierarchical heavy
neutrinos in the following and the relevant Yukawa cou-
plings hν are therefore small.

Fortunately, leptogenesis is relatively simple compared
to electroweak baryogenesis since

(1) It is homogeneous.

(2) Very few degrees of freedom are involved. Therefore
most degrees of freedom are in thermal equilibrium.

(3) The neutrino Yukawa couplings are small. There-
fore there is at least one very good set of expansion
parameters, allowing for well controlled perturba-
tive approximations.

Then, given the model, the values of the parameters, and
the initial condition, one can systematically compute the
produced asymmetry in a controlled perturbative expan-
sion.

1. Effective kinetic equations

In the limit of vanishing neutrino Yukawa couplings
hν some key quantities, such as B − L and the phase
space density of sterile neutrinos are covariantly con-
served. Since the hν are small, these quantities change
very slowly. On the other hand, many SM interactions,
the so-called spectator processes, are very fast, leading
to a hierarchy of time scales. Furthermore, the bulk of
the degrees of freedom of the system participates in the
spectator processes, giving rise to a well defined temper-
ature.

The time evolution of the slowly changing quantities
is determined by classical equations. When their values
are sufficiently close to their equilibrium values the equa-
tions are linear. Since the time evolution is slow, only
first time derivatives appear.22 The coefficients in the
equations only depend on the temperature and can be
written in terms of real-time correlation functions eval-
uated at finite temperature, so that all medium effects
are included. For weak coupling these coefficients can be
systematically calculated in perturbation theory.

For illustration, consider the simple case that by the
time the baryon asymmetry is produced, the tempera-
ture is much smaller than the mass of the lightest sterile
neutrino N ≡ N1. Then the sterile neutrinos are non-
relativistic, and their motion can be neglected. Further-
more, assume Mi � M1 for the other sterile neutrinos,

22 A restriction to first order in derivatives is first approximation in
an expansion in derivatves. The corresponding expansion param-
eter is the ratio Γ/ωspec, where Γ is a typical rate at which the
slow variables are changing. Such corrections may be important
in leptogenesis through oscillations (Abada et al., 2019).

so that their density can be neglected. Finally assume
that the temperature is so high that none of the charged
lepton Yukawa interactions are fast. Then the only slow
quantities are the density of the lightest sterile neutrino
nN and B − L, and the non-equilibrium system is de-
scribed by the effective kinetic equations (Bodeker and
Wörmann, 2014)

ṅN + 3HnN =− ΓN (nN − neq
N )

+ ΓN,B−L nB−L, (132)

ṅB−L + 3HnB−L = ΓB−L,N (nN − neq
N )

− ΓB−L nB−L, (133)

while the rest of the degrees of freedom is determined
by the temperature T . The coefficients Γi only depend
on T . Note that Eqs. (132), (133) have the same form
as Eqs. (90) and (99). However, to arrive at Eqs. (132),
(133), no Boltzmann equation or S-matrix was used, the
only ingredient was the separation of time scales. Cor-
respondingly, Eqs. (132), (133) are valid to all orders in
the SM coupling, and the coefficients include the effect
of all possible processes.

While describing the simplest possible case, Eqs. (132),
(133) already display the general structure of all kinetic
equations describing leptogenesis. In general, the sterile
neutrinos must be described by phase-space densities, de-
pending not only on time but also on momentum. This is
because relativistic effects can be important, and because
the rates which change the momenta of sterile neutrinos
are parametrically of the same size as for the change of
number densities, so that one can not always assume ki-
netic equilibrium. Another generalization is that the den-
sities turn into flavour-space matrices of densities, and
that the spin of the sterile neutrinos has to be accounted
for as well.

The rate coefficients can be computed as follows.
Even in thermal equilibrium, physical quantities fluc-
tuate around their equilibrium values, and the fluctu-
ations of slowly varying variables are described by the
same kinetic equations as the deviations from equilib-
rium.23 Therefore one can compute unequal time cor-
relation functions of slow variables using the effective
kinetic equations. By matching the result to the same
correlation function computed in quantum field theory
at frequencies Γi � ω � ωspec one can relate the Γi to
correlation functions of SM operators evaluated at finite
temperature (Bodeker and Laine, 2014).24 The most im-
portant correlation function which one encounters is the

23 The only difference is that the equations for the fluctuations
contain a noise term representing the fluctuations of the fast
variables (see §118 of Ref. (Landau and Lifshitz, 1980)).

24 The condition ω � Γi ensures that one does not need to resum
neutrino Yukawa interactions.
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two-point spectral function of the operator to which the
sterile neutrinos couple in (see Eq. (66)),

ρ̃i(p) ≡
1

3

∫
d4x eip·x

〈{
(φ†li)(x), (li φ)(0)

}〉
, (134)

where the expectation value is taken in an equilibrium
ensemble of Standard Model fields only. For example,
the ∆L = 1 washout rate in the one-flavour regime can
be written as (Bodeker and Laine, 2014)

ΓB−L = |hν |2WΞ−1 (135)

with

W = −
∫

d3p

(2π)3

f ′F(E1)

2E1
tr
{
/p
[
ρ̃(p) + ρ̃(−p)

]}
, (136)

where p0 = E1. Furthermore,

Ξ ≡ 1

TV

〈
(B − L)2

〉
(137)

is the B−L susceptibility. Its value depends on which re-
actions are fast, i.e., which spectator processes are active.
At very high temperatures T � 1013 GeV, where only
SM gauge interactions and the top Yukawa interactions
are fast, the leading order susceptibility is Ξ = T 2/4.
Eq. 135 illustrates the general structure of the rates which
consist of a spectral function, which is a real-time de-
pendent quantity, and an inverse susceptibility, which is
determined by equilibrium thermodynamics. It can be
compared with Eq. (100). When SM interactions are ne-
glected, W is proportional to the rate γN . Furthermore,
Ξ is then proportional to

∫
d3pfF (1 − fF ) where fF is

the Fermi distribution function. Approximating this by
Boltzmann statistics, Ξ is proportional to neq

l .
The rate ΓN in Eq. (132) contains the same spec-

tral function as ΓB−L (Bodeker et al., 2016; Laine and
Schroder, 2012). In fact, for leptogenesis through sterile-
neutrino oscillations, all coefficients in the kinetic equa-
tions can be written in terms of the spectral function in
Eq. (134) (Bodeker and Schröder, 2020; Ghiglieri and
Laine, 2017).

When computing the rates Γi in perturbation theory,
one has to distinguish several temperature regimes. The
non-relativistic case T �M1 is mostly relevant for ther-
mal leptogenesis in the strong-washout regime, while lep-
togenesis through oscillations proceeds entirely in the
ultra-relativistic regime T >∼ M1/g, where g denotes a
combination of electroweak gauge and top Yukawa cou-
pling.

When T <∼ M1, at leading order in the couplings the
rates are determined by decays and inverse decays. In
addition to these ∆L = 1 processes, for the washout rate
ΓB−L one has to take into account ∆L = 2 processes,
even though these are O(hν)4, and thus appear to be
highly suppressed. Nevertheless they play a crucial role

at late times when T � MN1
: Then the ∆L = 1 rates

are Boltzmann suppressed with exp(−MN/T ), while the
∆L = 2 rates are only power-suppressed, so that they
eventually dominate at low T , which causes the kink of
ΓW in Fig. 14 (left). Since it plays a role only at T �M1,
it can be obtained by integrating out the sterile neutrinos.
Then, instead of from Eq. (135) it follows from the two-
point function of the Weinberg operator containing two
Higgs and two lepton fields in Eq. (74) (Sangel, 2016-08-
22).

For T >∼ M1 Eq. (132) is replaced by an equation for
the phase-space density with a momentum dependent
ΓN ,25

ḟN + 3Hp · ∂fN
∂p

= − ΓN (p) (fN − f eq
N ) + · · · (138)

On the other hand, the asymmetry is still described by a
space density because it is carried by SM particles which
are kept in kinetic equilibrium by the fast gauge interac-
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FIG. 24 Number of produced Majorana neutrino per unit
time and unit volume as function of the temperature for
MN = 107 GeV. The dotted curve is the result with ther-
mal masses included but without any soft gauge interactions.
The full line includes an arbitray number of soft gauge in-
teractions as illustrated in Fig. 25. From (Anisimov et al.,
2011b).

25 Eqs. (123)-(125) are obtained by the simplifying assumption that
the sterile neutrinos are in kinetic equlibrium, even though they
only interact through their slow Yukawa interaction. The full
momentum dependence is treated in (Asaka et al., 2012).
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FIG. 25 Self-energy diagram with soft gauge bosons for Ma-
jorana neutrino N , whose imaginary part contributes to lead-
ing order to the N -production rate. From (Anisimov et al.,
2011b).

tions,

ṅB−L + 3HnB−L =

∫
d3p

(2π)3
ΓB−L,N (p) (fN − f eq

N ) + · · · .
(139)

In the ultra-relativistic regime plasma effects have a
profound influence on the rates, and gauge interactions
are dominant. While at T <∼ M1 the 2 → 2 scatter-
ings are higher order, the (inverse) decays are phase
space suppressed when T � M1. Without taking into
account thermal masses, the 2 → 2 scatterings would
be dominant as can be seen in Fig. 14 (left). How-
ever when the thermal masses of the SM particles are
included, both types of processes contribute at leading
order.26 The resulting production rate at vanishing den-
sity, (dnN/dt)nN=0 = 2(2π)−3

∫
d3pΓN (p)f eq

N , is shown
in Fig. 24 (dotted line). At high temperatures the rate
is due to Higgs decays which are made possible by the
large thermal Higgs mass. For small sterile neutrino mass
this could be the main source of the baryon asymmetry
(Hambye and Teresi, 2016). Additional multiple interac-
tions mediated by soft gauge bosons turn out to be of
crucial importance and have to be resummed (Landau-
Pomeranchuk-Migdal (LPM) resummation) (see Fig. 25),
giving rise to the full curve in Fig. 24 (Anisimov et al.,
2011b).27 The same results in the limit T � M1 are
shown in Fig. 26, together with the 2 → 2 scattering
rates. The LPM resummed (inverse) decays and the
2 → 2 give similar contributions, the latter dominate at
higher temperatures. The contributions involving gauge
bosons increase the total rate by almost an order of mag-
nitude compared to the top quark scattering shown in
Fig. 14.

26 Except for scalar particles, thermal masses are not uniquely de-
fined. The ones which are relevant here are the so-called asym-
totic masses, valid for momenta of order T .

27 Note, that after the summation of soft gauge bosons spurious
gaps disappear which are caused by kinematical thresholds due
to thermal masses. Such gaps are present in the treatment of
thermal corrections in (Giudice et al., 2004).
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FIG. 26 Number of produced massless Majorana neutrino per
unit time and unit volume as function of the temperature.
All leading order contributions are shown. 1 ↔ 2 are the
(inverse) decay processes without and with multiple scattering
mediated by soft gauge bosons displayed in Fig. 24. The
2 → 2 scattering contributions involving gauge bosons are
of similar size and dominate at high T , while the top quark
scattering is always subdominant. From (Besak and Bodeker,
2012).

Since all rates for leptogenesis can be written in terms
of finite-temperature correlation functions one can sys-
tematically compute higher order of SM corrections, of
which there are two types. The first are corrections
to the susceptibilities, which are related to the chemi-
cal potentials and the asymmetry densities. These are
relatively simple to compute because they are thermo-
dynamic quantities involving no time dependence. The
corrections to the susceptibilities already start at order g,
and are less than 30% (Bodeker and Laine, 2014; Bodeker
and Sangel, 2015). The occurence of odd powers of the
coupling is typical for infrared effects in thermal field the-
ory, and in this case are due to soft Higgs exchange. The
second type are corrections to spectral functions like in
Eq. (134) which are of order g2. These are more difficult
to compute since they are real-time correlation functions.
For the non-relativistic limit where Eqs. (132), (133)
hold, all rates have been computed at order g2 in a high-
temperature expansion, i.e. ΓN (Laine and Schroder,
2012; Salvio et al., 2011) and the washout rate (Bodeker
and Laine, 2014). The most interesting one ΓB−L,N ,
which is responsible for the asymmetry, is also the most
difficult one to calculate. It is related to the three-point
function of the operators appearing in Eq. (134) (Bodeker
and Sangel, 2017), rather than the two-point function. In
the region where the high-temperature expansion is ap-
plicable, the corrections are a few percent. The NLO
production rate was computed in the relativistic regime
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FIG. 27 The function W appearing in the washout rate in
Eq. (135). Shown are the LO result including thermal masses
(dotted line), the relativistic NLO result and the NLO re-
sult in the non-relativistic approximation (dashed line). Also
shown is the LO LPM-resummed result valid in the ultrarela-
tivistic regime MI <∼ gT (dash-dotted line). From (Bodeker
and Laine, 2014).

T ∼ M1 in (Laine, 2013), and to the washout rate in
(Bodeker and Laine, 2014) (see Fig. 27).

In the strong washout regime (see Eq. (106)) the rel-
ativistic corrections and the radiative corrections to ΓN
affect the produced baryon asymmetry at the level of a
few percent (Bodeker and Wörmann, 2014). The cor-
rections to the ∆L = 1 washout rate ΓB−L, to the asym-
metry rate ΓB−L,N , and to the ∆L = 2 washout rate
(Sangel, 2016-08-22) were not included in this analysis,
but they are of similar size as the corrections to ΓN , and
are not expected to lead to larger corrections to the pro-
duced asymmetry.

2. Kadanoff-Baym equations

Leptogenesis involves quantum interferences in a cru-
cial manner, so that the standard approach by means
of classical Boltzmann equations may appear problem-
atic. Using the Schwinger-Keldysh, or closed-time-path
formalism (Keldysh, 1964; Schwinger, 1961), a full quan-
tum field-theoretical treatment of leptogenesis can be
based on Green’s functions (Buchmuller and Freden-
hagen, 2000). In the Schwinger-Keldysh formalism one
considers Green’s functions ∆ on a complex time contour
starting at some initial time ti (see Fig. 28). They satisfy

Φ−

Φ+

ti = 0
Ret

tf → ∞

FIG. 28 Path in the complex time plane for nonequilibrium
Green’s functions.

Schwinger-Dyson equations with self-energies ΠC ,

(�1 +m2)∆C(x1, x2)+∫

C

d4x′ΠC(x1, x
′)∆C(x′, x2) = −iδC(x1 − x2) .

(140)

It is convenient to consider two particular correlation
functions, the spectral functions ∆−, which contain infor-
mation about the system, and the statistical propagators
∆+, which depend on the initial state at time ti,

∆+(x1, x2) =
1

2
〈{Φ(x1),Φ(x2)}〉 ,

∆−(x1, x2) = i〈[Φ(x1),Φ(x2)]〉 .
(141)

These correlation functions satisfy the Kadanoff-Baym
equations (Baym and Kadanoff, 1961; Berges, 2004)

�1,q∆−q (t1, t2) =−
∫ t1

t2

dt′Π−q (t1, t
′)∆−q (t′, t2) ,

�1,q∆+
q (t1, t2) =−

∫ t1

ti

dt′Π−q (t1, t
′)∆+

q (t′, t2)

+

∫ t2

ti

dt′Π+
q (t1, t

′)∆−q (t′, t2) ,

(142)

where we have assumed spatial homogeneity and �1,q =
(∂2
t1 +m2+q2) is the d’Alembert operator for a particular

momentum mode q.
For leptogenesis one has to consider two Green’s func-

tions, S±Lij(x, x
′) for the lepton doublets, where i, j de-

note lepton flavour, and G±(x, x′) for the heavy Majo-
rana neutrino. The lepton current is given by

jµij(x) = −tr[γµS+
Lij(x, x)]|x′→x . (143)

The nonequilibrium leptogenesis process is a transition
from some initial state to a final state with non-zero
chemical potential in thermal equilibrium. To com-
pare results from Boltzmann equations and Kadanoff-
Baym equations, a simplified case has been considered
in Ref. (Anisimov et al., 2010), focussing on the CP-
violating source term for the asymmetry and ignoring
washout terms and Hubble expansion. This corresponds
to evaluating the initial lepton asymmetry, generated un-
til the heavy neutrino reaches thermal equilibrium, start-
ing from zero initial abundance. Since we consider a spa-
tially homogeneous system, it is convenient to perform
a Fourier expansion. For a momentum mode k diagonal
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FIG. 29 Transformation of the lepton self-energy diagram to a ‘double-blob’ diagram amenable to resummation. From (Depta
et al., 2020).

elements of the charge density matrix can be interpreted
as differences of phase space distribution functions for
leptons and anti-leptons,

Lkii(t, t) = −tr[γ0S
+
Lkij(t, t)]

= fli(t, k)− fl̄i(t, k) .
(144)

Note that, contrary to a system in thermal equilibrium,
the distribution functions are time dependent.

The calculation of the asymmetry starts from a Green’s
function for the heavy neutrino that interpolates between
a free Greens’ function and an equilibrium Green’s func-
tion (Anisimov et al., 2009). The lepton asymmetry
is then obtained from the two-loop diagram (Anisimov
et al., 2011a) on the left in Fig. IV.F.2. In this cal-
culation the effect of soft gauge boson exchange turns
out to be of crucial importance. For the production
of heavy neutrinos they have already been included in
(Anisimov et al., 2011b) (see Figs. 25 and 24). For the
CP asymmetry their effect has been estimated by intro-
ducing phenomenological thermal widths in (Anisimov
et al., 2011a). Recently, the summation over soft gauge
bosons could also be completed for the CP asymmetry
(Depta et al., 2020). The strategy for calculating the
lepton asymmetry is illustrated in Fig. IV.F.2. Integrat-
ing over lepton momenta corresponds to closing the ex-
ternal lepton line, and summation of the gauge-boson
interactions leads to the double-blob diagram. The cor-
responding expression for the lepton asymmetry has been
evaluated using a combination of analytical and numeri-
cal techniques. The result takes the form

nL,ii(t) =

∫
d3k

(2π)3
Lkii(t, t)

' −εiiF (T )
1

ΓN

(
1− e−ΓN t

)
,

(145)

where the momentum dependence of the thermal N -
decay width has been neglected, and F (T ) is given as a
complicated momentum integral. The results for Boltz-
mann equations and Kadanoff-Baym equations with ther-
mal widths have the same form, with different functions
F (T ) (Anisimov et al., 2011a). The generated asym-

metries are compared in Fig. 30 for the different cases.
For t < Γ−1

N ∼ 1 GeV−1, there is a difference in shape
w.r.t. the numerical solution for the full Kadanoff-Baym
equations. This is a consequence of the approximation
ΓN (p) ' ΓN . The generated final lepton asymmetries
differ by factors O(1).

At first sight, the simple time dependence of the asym-
metry (145) may appear surprising. However, it is easily
understood as consequence of the effective kinetic equa-
tions (132), (133) for distribution functions. For con-
stant temperature, the equation for nN has the solution
nN (t) ' neq

N (1−exp(−ΓN t)) (Anisimov et al., 2010) and,
neglecting washout effects, the solution for nB−L sim-
ply inherits this time dependence. Viewed in this way,
solving Kadanoff-Baym equations appears as a way to
calculate coefficients in effective kinetic equations.
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FIG. 30 Comparison of the Kadanoff-Baym computation
including LPM resummed gauge interactions (full), with-
out computing gauge interactions but parametrizing them
with thermal widths (KB), with Boltzmann equation contain-
ing (inverse) sterile-neutrino decays using classical statistics
(B), and quantum statistics (QB). The mass of the lightest
heavy neutrino is 1010 GeV, the temperature is constant at
1011 GeV. This corresponds to the ultra-relativistic regime
T >∼ M/g discussed above. From (Depta et al., 2020).
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The Kadanoff-Baym equations have also been used
to obtain effective equations of motion. This way cor-
rections to the CP-violating parameter were obtained
(Garny et al., 2009, 2010) and the leading-order asym-
metry rate in the relativistic regime T ∼ M1 was com-
puted (Beneke et al., 2010). When lepton Yukawa in-
teraction rates are of similar size as the Hubble param-
eter, these also have to be included in the network of
kinetic equations, and the lepton asymmetries are de-
scribed by matrices in flavour space that can account
for the unflavoured as well as the fully flavoured regime
(Beneke et al., 2011). The case of resonant leptoge-
nesis was considered in Ref. (De Simone and Riotto,
2007) and an approximate analytical solution was given
in Ref. (Garny et al., 2013). Leptogenesis through oscilla-
tions (Sec. IV.D) was treated in (Drewes and Garbrecht,
2013).

G. Leptogenesis, inflation and gravitational waves

Some evidence for GUT-scale leptogenesis may be ob-
tained via the constraints which GUTs impose on neu-
trino masses and mixings and which influence the size of
the lepton asymmetry. Similarly, leptogenesis is part of
the early cosmological evolution and thereby related to
the other two main puzzles in cosmology, dark matter
and inflation. To work out these connections quantita-
tively is important to obtain a coherent and convincing
picture of the early universe.

In this respect it is interesting that, complementary to
thermal leptogenesis, also nonthermal leptogenesis can
be responsible for the baryon asymmetry of the universe.
Here the thermal production of heavy neutrinos is re-
placed by some nonthermal production, such as infla-
ton decays (Asaka et al., 1999, 2000; Hahn-Woernle and
Plumacher, 2009; Lazarides and Shafi, 1991). In super-
symmetric theories the reheating temperature is bounded
from above by the requirement to avoid overproduction
of gravitinos. If the gravitino is the lightest superparticle
(LSP), it can be stable and form dark matter. Otherwise,
LSP dark matter can be produced in gravitino decays
(Gherghetta et al., 1999).

An intriguing possibility is that GUT-scale leptogene-
sis might be probed by gravitational waves (GWs). GWs
from inflation can have a characteristic kink in their spec-
trum indicating the change from an early matter domi-
nated phase to the radiation dominated phase and in
this way allow for a measurement of the reheating tem-
perature (Nakayama et al., 2008a,b) which is related to
the energy scale of nonthermal leptogenesis. In general,
however, the GW signal from inflation is too small to be
observed any time soon. In the following we describe an-
other possibility, GWs from cosmic strings produced in
a U(1)B−L phase transition after inflation (Buchmuller
et al., 2013b). In supersymmetric models leptogenesis

is naturally linked to F-term hybrid inflation (Copeland
et al., 1994; Dvali et al., 1994) if one demands sponta-
neous breaking of B−L. The amplitude of the CMB
power spectrum then requires the B−L breaking scale to
be of order the GUT scale. This leads to a large stochas-
tic gravitational wave background that can be probed by
ground-based interferometers.

A cosmic-string network can form after the sponta-
neous breaking of a U(1) symmetry (Hindmarsh, 2011),
and the resulting GW spectrum has been evaluated for
Abelian Higgs strings (Figueroa et al., 2020, 2013) as
well as Nambu Goto strings (Damour and Vilenkin, 2001;
Kuroyanagi et al., 2012; Siemens et al., 2007). If the
product of this U(1) group and the SM gauge group re-
sults from the spontaneous breaking of a GUT group,
the theory contains magnetic monopoles in addition to
strings (Leblond et al., 2009; Martin and Vilenkin, 1997;
Vilenkin, 1982), and the string network becomes unsta-
ble. Recently, it has been pointed out that GWs from a
metastable network of cosmic strings are quite a generic
prediction of the seesaw mechanism (Dror et al., 2020).
Moreover, it has been shown that for U(1)B−L breaking
combined with hybrid inflation, a GW signal is predicted
that evades the bounds from pulsar timing array (PTA)
experiments, but will be probed by ongoing and future
observations of LIGO-Virgo and KAGRA (Buchmuller
et al., 2020).

The decay of a false vacuum of unbroken B−L is a
natural mechanism to generate the initial conditions of
the hot early universe (Buchmuller et al., 2012c). The
false-vacuum phase yields hybrid inflation and ends in
tachyonic preheating (Felder et al., 2001) (see Fig. 31, left
panel). After tachyonic preheating the evolution can be
described by a system of Boltzmann equations. Decays
of the B−L breaking Higgs field and thermal processes
produce an abundance of heavy (s)neutrinos whose de-
cays generate the entropy of the hot early universe, the
baryon asymmetry via leptogenesis, and dark matter in
the form of the lightest superparticle (Ellis et al., 1984)
(see Fig. 31, right panel).

Let us consider an extension of the supersymmetric
standard model (MSSM) with three right-handed neutri-
nos that realizes spontaneous U(1)B−L breaking in the
simplest possible way by using three SM-singlet chiral
superfields, Φ, S1 and S2,

W =WMSSM + hνij5
∗
in

c
jHu +

1√
2
hni n

c
in
c
iS1

+ λΦ

(
v2
B−L
2
− S1S2

)
+W0 .

(146)

In unitary gauge, S1,2 = S/
√

2 correspond to the physi-
cal B−L Higgs field, Φ plays the role of the inflaton and
the constant W0 is tuned to obtain vanishing vacuum
energy; nci contain the charge conjugates of the right-
handed neutrinos, the SM leptons belong to the SU(5)
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FIG. 31 Left: Hybrid inflation. The time evolution of the inflaton field Φ leads to a tachyonic mass of the waterfall field S
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(R), the gravitinos (G̃) and the B−L asymmetry. Obtained by solving the Boltzmann equations for vB−L = 5 × 1015 GeV,
M1 = 5.4× 1010 GeV and m̃1 = 4.0× 10−2 eV. From (Buchmuller et al., 2013a).

multiplets 5∗ = (dc, `) and 10 = (q, uc, ec), and the two
Higgs doublets are part of the 5- and 5∗-plets Hu and Hd,
respectively. Quark and lepton Yukawa couplings are de-
scribed in the usual way by WMSSM. The flavour struc-
ture is chosen according to (Buchmuller and Yanagida,
1999) and has already been described in Section IV.E.

The B−L breaking part of W is precisely the super-
potential of F-term hybrid inflation (FHI). It was widely
believed that FHI could not account for the correct scalar
spectral index of the CMB power spectrum but the anal-
yses in (Bastero-Gil et al., 2007; Buchmuller et al., 2014;
Nakayama et al., 2010; Rehman et al., 2010) showed that
FHI is viable once the effect of supersymmetry (SUSY)
breaking on the inflaton potential is taken into account.
The parameter range consistent with leptogenesis, infla-
tion and neutralino DM, produced in gravitino decays,
has been analyzed in (Buchmuller et al., 2020). The re-
sult is shown in Fig. 32. For given values of m̃1 and
the gravitino mass m3/2, successful hybrid inflation se-
lects a point in the vB−L –Trh plane. The gray shad-
ing in Fig. 32 indicates the region where leptogenesis
falls short of explaining the observed baryon asymme-
try. Gravitino masses of O (1) TeV or larger point to
a neutralino LSP, which is produced thermally as well
as nonthermally in gravitino decays (Buchmuller et al.,
2012b). Gravitinos are in turn generated in decays of
the B−L Higgs field as well as from the thermal bath
(for a discussion and references, see (Jeong and Taka-
hashi, 2013)). Taking into account that gravitinos must
decay early enough to preserve big bang nucleosynthe-
sis (Kawasaki et al., 2018), as well as the LEP bound on
charginos mLSP & 100 GeV (Tanabashi et al., 2018), a
higgsino or wino LSP can account for the observed DM
relic density in the green-shaded region of Fig. 32. It

is highly nontrivial that neutralino DM and leptogene-
sis can be successfully realized in the same parameter
region. In summary, the viable parameter region of the
described model is given by vB−L ' 3.0 · · · 5.8×1015 GeV
and m3/2 ' 10 TeV · · · 10 PeV.

The considered flavour model corresponds to an em-
bedding of GSM×U(1)B−L into the gauge group SU(5)×
U(1)B−L with the final unboken group GSM × Z2. This
leads to the production of stable cosmic strings in the
U(1)B−L phase transition (Dror et al., 2020). However,
the model can also be embedded into SO(10) (Asaka,
2003). In this case, the final unbroken group is GSM,
and there can be no stable strings (Dror et al., 2020).
Cosmic strings can then decay via the Schwinger pro-
duction of monopole-antimonopole pairs, leading to a
metastable cosmic-string network. The decay rate per
string unit length is given by (Leblond et al., 2009; Monin
and Voloshin, 2008, 2010)

Γd =
µ

2π
exp (−πκ) , (147)

with κ = m2/µ denoting the ratio between the monopole
mass m ∼ vGUT and the cosmic-string tension µ ∼ v2

B−L.
For appropriate values of vB−L < vGUT, the cosmic
strings are sufficiently long-lived to give interesting signa-
tures but decay before emitting low-frequency GWs that
are strongly constrained by PTA experiments.

The network of cosmic strings formed during the B−
L phase transition acts as a source of GWs. Modeling the
evolution and GW emission of a cosmic-string network is
a challenging task, resulting in several competing mod-
els in the literature, see (Auclair et al., 2020) and refer-
ences therein for a comprehensive review. Moreover, for
metastable strings, the GW production from fast-moving
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monopoles requires further investigation (Leblond et al.,
2009; Vilenkin, 1982). The analysis in (Buchmuller et al.,
2020) has been based on the BOS model (Blanco-Pillado
et al., 2014) and for the first time the GW spectrum has
been calculated for a metastable string network. The
GW spectrum reads

ΩGW(f) = ∂ρGW(f)/ρc∂ ln f , (148)

where ρGW and ρc are GW energy density and critical en-
ergy density, respectively. The spectrum is characterized
by a plateau (Auclair et al., 2020),

Ωplateau
GW ' 8.04 Ωr

(
Gµ

Γ

)1/2

, (149)

where Γ ' 50 parametrizes the cosmic-string decay rate
into GWs and Ωr is the energy density in radiation rel-
ative to the critical energy density. The GW spectrum
has a turnover point at the frequency28

f∗ ' 3.0× 1014 Hz e−πκ/4
(

10−7

Gµ

)1/2

. (150)

Fig. 33 shows the GW spectrum obtained by a numerical
evaluation as well as the analytical estimate

ΩGW(f) = Ωplateau
GW min

[
(f/f∗)

3/2, 1
]
. (151)

The shaded regions indicate the power-law-integrated
sensitivity curves of current and planned experi-
ments (Thrane and Romano, 2013). For Gµ = 2× 10−7,
the constraint from the European Pulsar Timing Ar-
ray (EPTA) (Shannon et al., 2015) enforces

√
κ . 8.

In the case of a mild hierarchy between the GUT and
B −L scales, m/vB−L & 6, primordial GWs will be
probed by LIGO-Virgo (Abbott et al., 2019) and KA-
GRA (Akutsu et al., 2019) in the near future.

The general framework behind the described model —
inflation ending in a GUT-scale phase transition in com-
bination with leptogenesis and dark matter in a SUSY
extension of the SM — provides a testable framework for
the physics of the early universe. A characteristic feature
of this framework is a stochastic background of gravita-
tional waves emitted by metastable cosmic strings.

Probing leptogenesis with gravitational waves is an in-
triguing possibility and theoretical work on this subject
is just beginning. For recent work, see (Blasi et al., 2020;
King et al., 2020).

28 The precise value of the turnover point depends on the definition.
A larger frequency f∗ has been obtained in Ref. (Gouttenoire
et al., 2020).
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H. Summary: leptogenesis

Thermal leptogenesis is by now well understood. It
is closely related to neutrino masses, and simple esti-
mates, based on GUT models, yield the right order of
magnitude for the observed matter-antimatter asymme-
try. In the one-flavour approximation successful leptoge-
nesis leads to a preferred mass window for the light neu-
trinos, consistent with the cosmological upper bound on
the sum of neutrino masses, and to a lower bound on the
heavy Majorana neutrino masses. Taking flavour effects
into account, the qualitative picture remains valid, but
quantitatively the neutrino mass bounds are relaxed. For
quasi-degenerate heavy neutrinos the temperature scale
of leptogenesis can be lowered down to the weak scale.
CP-violating oscillations of sterile neutrinos can lead to
successful leptogenesis even for GeV neutrino masses.

Significant progress has been made on the way towards
a full description of leptogenesis on the basis of thermal
field theory. This has been possible because leptogenesis
is a homogeneous process, involving only few dynami-
cal degrees of freedom with small couplings to a large
thermal bath. Effective kinetic equations have been de-
rived, which take the form of ordinary Boltzmann equa-
tions whose kernels can be systematically calculated in
terms of spectral functions of SM correlation functions.
Relativistic and off-shell effects are included in Kadanoff-
Baym equations which have also been used to calculate
the generated lepton asymmetry. In the field theoretical
treatment interactions with gauge bosons of the thermal
bath turn out to be crucial and have to be resummed.
Using these techniques, for the first time an estimate of
the theoretical error of traditional calculations based on
Boltzmann equations has been obtained, which turns out
to be about 50%.

An intriguing new development is the possibility to
probe high-scale leptogenesis with gravitational waves.
This includes the seesaw mechanism and a high scale
of B−L breaking. Theoretical work on this very in-
teresting topic is just beginning, and it is conceivable
that a stochastic gravitational wave background from
B−L breaking will soon be observed by LIGO-Virgo and
KAGRA.

V. OTHER MODELS

In this section we briefly mention some alternative pro-
posals for baryogenesis which could not be described in
detail in the main sections of the review, with emphasis
on the possible effects of light pseudoscalar particles.

An interesting idea is ‘spontaneous baryogenesis’ (Co-
hen and Kaplan, 1987, 1988) where an arrow of time is
singled out not by a departure from thermal equilibrium,
but by the motion of a light pseudo-Goldstone boson of a
spontaneously broken approximate global U(1)B baryon

symmetry. Baryon-number violating interactions can be
in thermal equilibrium, and the observed baryon asym-
metry can be generated for a sufficiently large U(1)B
breaking scale. A related mechanism makes use of ax-
ion oscillations in the presence of rapid lepton-number
violating processes in the thermal plasma, which can be
provided by the exchange of heavy Majorana neutrinos at
high reheating temperatures (Kusenko et al., 2015). Re-
cently, it was pointed out that spontaneous baryogenesis
is a rather general phenomenon in the presence of axion-
like particles, and that already their coupling to gluons is
enough to generate a baryon asymmetry (Domcke et al.,
2020).

Baryogenesis is also possible in a cold electroweak
phase transition (Tranberg and Smit, 2003). A sudden
change of the Higgs mass term at zero temperature leads
to a spinodal instability of the Higgs field, and during
the subsequent tachyonic preheating a non-zero Chern-
Simons number can be generated, with a corresponding
baryon asymmetry. A cold electroweak transition can
occur once the Higgs field is coupled to a dilaton, which
can lead to a delayed electroweak phase transition at the
QCD scale (Servant, 2014). The CP violation needed for
baryogenesis can then be provided by a displaced axion
field, whose relaxation after the QCD phase transition
subsequently solves the strong CP problem. An axion,
solving the strong CP problem and providing dark mat-
ter, can also be combined with the spontaneous break-
ing of lepton number, leptogenesis and Higgs inflation in
a non-supersymmetric extension of the Standard Model
(Ballesteros et al., 2017). The Affleck-Dine mechanism
of baryogenesis can be realized without supersymmetry
by means of a complex Nambu-Goldstone boson carry-
ing baryon number, which can occur for a spontaneously
broken appropriate global symmetry (Harigaya, 2019).
The role of the AD field can also be played by a charged
Peccei-Quinn field containing the QCD axion as a phase
(Co and Harigaya, 2020). Moreover, baryogenesis is pos-
sible at the weak scale, at temperatures below the elec-
troweak transition, where sphaleron processes are not in
thermal equilibrium. The baryon asymmetry is gener-
ated in decays of a singlet scalar field coupled to higher-
dimensional B-violating operators. The mechanism can
be probed by neutron-antineutron oscillations and the
neutron EDM (Babu et al., 2006). At even lower tem-
peratures around 10 MeV the baryon asymmetry can be
explained by B-meson oscillations in an extension of the
Standard Model with exotic B-meson decays (Elor et al.,
2019; Nelson and Xiao, 2019).

In string compactifications one expects moduli fields
in the effective low-energy theory, whose mass depends
on the mechanism and energy scale of supersymmetry
breaking. If they are sufficiently heavy, they can re-
heat the universe to a temperature of order 100 MeV,
so that nucleosynthesis is not affected. In their decays
they can generate the matter-antimatter asymmetry as
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well as cold dark matter as higgsinos or winos. Since
matter and dark matter have the same origin, the simi-
larity of their energy densities can be naturally explained
(Kitano et al., 2008).

So far the curvature of space-time has played no role
in the considered models of baryogenesis. However, the
Ricci scalar of a gravitational background can play the
role of the axion in spontaneous baryogenesis, and its
coupling to the baryon-number current can be the source
of a baryon asymmetry, which is referred to as gravi-
tational baryogenesis (Davoudiasl et al., 2004). Alter-
natively, gravitational waves from inflation can lead to
leptogenesis via the gravitational anomaly of the lep-
ton current (Alexander et al., 2006). Moreover, in the
Standard Model with heavy right-handed neutrinos and
CP-violating couplings, which was considered for ther-
mal leptogenesis in Section IV.C, loop-corrections lead
to a low-energy effective action where the gravitational
field couples to the current of left-handed neutrinos, such
that neutrinos and anti-neutrinos propagate differently in
space-time (McDonald and Shore, 2015). In a quantita-
tive analyses it has been demonstrated that this effect
can indeed account for the observed baryon asymmetry
(McDonald and Shore, 2020; Samanta and Datta, 2020).

VI. SUMMARY AND OUTLOOK

The current paradigm of the early universe includes
inflation at an early stage. Hence, the observed matter-
antimatter asymmetry cannot be imposed as an initial
condition but it has to be dynamically generated after
inflation. This makes baryogenesis an unavoidable topic.
Moreover, fifty years after Sakharov’s paper, baryoge-
nesis has also become an interesting story that is con-
nected to all developments of physics beyond the Stan-
dard Model during the past forty years, including grand
unification, dynamical electroweak symmetry breaking,
low-energy supersymmetry and neutrino masses.

The first important step in the theory of baryogenesis
was made in the context of SU(5) GUT models which nat-
urally provide heavy particles, leptoquarks, whose CP-
violating delayed decays can lead to a baryon asymme-
try. This process was quantitatively understood based on
Boltzmann equations. In these detailed studies it also be-
came clear that leptoquarks are not ideal agents of baryo-
genesis since they have SM gauge interactions which tend
to keep them in thermal equilibrium.

The second important step was the discovery of the
nonperturbative connection between baryon number and
lepton number in the SM, and the associated, unsup-
pressed, sphaleron processes at high temperatures. This
implied that B+L is in equilibrium above the electroweak
phase transition, which ruled out baryogenesis in SU(5)
GUT models. However, a new interesting possibility
emerged, electroweak baryogenesis, the possibility to gen-

erate the baryon asymmetry during a strongly first-order
electroweak phase transition. In principle, the presence
of all necessary ingredients already in the SM is an ap-
pealing feature, yet the electroweak transition turned out
to be just a smooth crossover so that the necessary depar-
ture from thermal equilibrium can not be realized. This
is different in extensions of the SM with additional Higgs
doublets or singlets, where a strongly first-order phase
transition is possible. Such models have been extensively
studied over 30 years, without and with supersymmetry.
In view of the results from the LHC and due to strin-
gent upper bounds on the electric dipole moment of the
electron, today EWBG appears unlikely in weakly cou-
pled Higgs models. On the other hand, EWBG is still
viable in composite Higgs models of electroweak symme-
try breaking. This emphasizes the importance to search
at the LHC for new resonances with TeV masses and for
strong interactions of the light Higgs boson.

Sphaleron processes also led to leptogenesis as a new
mechanism of baryogenesis. Contrary to leptoquarks,
right-handed neutrinos are ideal agents of baryogenesis
since they do not have SM gauge interactions. Their
CP-violating decays lead to a B−L asymmetry that is
not washed out. Right-handed neutrinos are predicted
by grand unified theories with gauge groups larger than
SU(5), such as SO(10). In GUT models the pattern of
Yukawa couplings in the neutrino sector is similar to
quark and charged lepton Yukawa couplings. It is re-
markable, that with B−L broken at the GUT scale,
this leads automatically to the right order of magnitude
for neutrino masses and the baryon asymmetry. How-
ever, this success of leptogenesis is not model indepen-
dent. Rescaling right-handed neutrino masses and neu-
trino Yukawa couplings, successful leptogenesis is also
possible at much lower scales, down to GeV energies. The
corresponding sterile neutrinos can be directly searched
for at LHC, by the NA62 experiment, at Belle II and
at T2K. On the contrary, tests of GUT-scale leptogene-
sis will remain indirect. The determination of the abso-
lute neutrino mass scale and CP-violating phases in the
neutrino sector are particularly important. A new in-
triguing possiblity is to probe the seesaw mechanism and
B−L breaking at the GUT scale by primordial gravita-
tional waves.

Two open questions in particle physics will be crucial
for the further development of the theory of baryogenesis:
First, the discovery of a strongly interacting Higgs sector
would open up new possibilities for electroweak baryo-
genesis. Second, the discovery of supersymmetry would
renew the interest in Affleck-Dine baryogenesis and would
strongly constrain leptogenesis via the properties of the
gravitino. Of course, there can always be surprizes. The
discovery of GeV sterile neutrinos or axions could signif-
icantly change our current view of baryogenesis.
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