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Abstract

We classify Einstein metrics on R
4 invariant under a four-dimensional group of isome-

tries including a principal action of the Heisenberg group. We consider metrics which

are either Ricci-flat or of negative Ricci curvature. We show that all of the Ricci-flat

metrics, including the simplest ones which are hyper-Kähler, are incomplete. By con-

trast, those of negative Ricci curvature contain precisely two complete examples: the

complex hyperbolic metric and a metric of cohomogeneity one known as the one-loop

deformed universal hypermultiplet.
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1 Introduction 3

1 Introduction

It has been recently shown [CST] that all the known homogeneous quaternionic Kähler man-
ifolds of negative Ricci curvature with exception of the simplest examples, the quaternionic
hyperbolic spaces, admit a canonical deformation to a complete quaternionic Kähler man-
ifold with an isometric action of cohomogeneity one. The deformation is a special case of
what is known as the one-loop deformation [RSV]. The simplest example is a deformation
of the complex hyperbolic plane known as the one-loop deformed universal hypermulti-
plet [AMTV]. (The completeness requires the deformation parameter to be non-negative
[ACDM, Proposition 4].) Its isometry group is precisely O(2) ⋉ H, where H is the three-
dimensional Heisenberg group [CST].

In this paper we determine all Einstein metrics which are invariant under the action of
SO(2) ⋉ H on R

4. The symmetry assumption reduces the problem to the solution of a
system of second order ordinary differential equations for a pair of functions a, b, see (12)-
(14). The corresponding metrics are of the form

g = dt2 + a(t)(dz + xdy − ydx)2 + b(t)(dx2 + dy2).

The system admits solutions if and only if the Einstein constant Λ is non-positive.

The Ricci-flat solutions include simple solutions of hyper-Kähler type (Proposition 4.3) as
well as more complicated solutions (Proposition 4.5). They are all incomplete.

The solutions of negative Ricci curvature are described in Proposition 4.11. The stationary
solutions are isometric to the complex hyperbolic plane (Proposition 4.1). The one-loop
deformed universal hypermultiplet corresponds to a particular solution (Proposition 4.8),
interpolating between a stationary solution and another fixed point of the flow defined by
the subsystem (12)-(13).

The main result is that the only complete SO(2) ⋉ H-invariant Einstein metrics on R
4 are

the complex hyperbolic metric and its complete one-loop deformation (Theorem 4.13).
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2 Riemannian metrics with Heisenberg symmetry

In this section we describe the class of metrics for which we will study the Einstein equa-
tion.

2.1 The Heisenberg group

Recall that the Heisenberg group H is the unique simply connected nilpotent Lie group of
dimension 3, up to isomorphism. We choose to realize it as R

3 endowed with the following
product:

(x, y, z) · (a, b, c) = (a+ x, b+ y, c+ z + ya− xb) (1)

The advantage over other natural realizations (e.g. as the group of unipotent upper triangular
matrices of rank 3) is that the group SL(2,R) of unimodular transformations in the (x, y)-
plane acts by automorphisms in these coordinates. This follows from Proposition 2.1 below.
Abbreviating v = (x, y)⊤, we can write (1) more compactly as (v1, z1) · (v2, z2) = (v1 +
v2, z1 + z2 − ω(v1, v2)), where ω = dx ∧ dy. This implies the following.

Proposition 2.1. For any A ∈ GL(2,R) the transformation (v, z) 7→ (Av, z detA) is an
automorphism of H.

From (1) we can immediately read off that the left-invariant parallelization extending the
standard basis at the neutral element is given by

e1 = ∂x + y∂z, e2 = ∂y − x∂z, e3 = ∂z, (2)

with non-trivial structure constants determined by [e1, e2] = −2e3 or, equivalently, by de3 =
2e1 ∧ e2 in terms of the dual frame (ei) = (e∗i ).

Proposition 2.2. The isometry group Isom(H, g) of any left-invariant metric g on H is
conjugate to O(2)⋉H in Aut(H)⋉H.

Proof. By [W], the isometry group of (H, g) is Aut(H, g)⋉H, where Aut(H, g) = Aut(H)∩
Isom(H, g). Since every isometric automorphism preserves the center and its orthogonal
complement, we see that, up to conjugation in Aut(H), we have the inclusion Aut(H, g) ⊂
O(2). On the other hand, any orthogonal transformation of the orthogonal complement
of the center extends uniquely to an isometric automorphism. This shows that, up to
conjugation, Isom(H, g) = O(2)⋉H.

2.2 Principal action of the Heisenberg group on R
4

Any complete Riemannian metric g on R
4 invariant under a principal action of the Heisen-

berg group H can be brought to the form

g = dt2 + gt, (3)



2 Riemannian metrics with Heisenberg symmetry 5

where R
4 is identified with R×H by an H-equivariant diffeomorphism and gt is a family of

left-invariant metrics on H. This form is obtained by identifying the H-orbits by means of
the normal geodesic flow, where t corresponds to the arc length parameter along a normal
geodesic.

The action of Aut(H)⋉H on H trivially extends to R
4 = R×H = {(t, x, y, z)}.

Proposition 2.3. An H-invariant Riemannian metric g = dt2+gt on R
4 = R×H is invariant

under SO(2) ⊂ Aut(H) if and only if

gt = a(t)(dz + xdy − ydx)2 + b(t)(dx2 + dy2), (4)

for some positive smooth functions a, b ∈ C∞(R).

Proof. We remark that (2) implies

e1 = dx, e2 = dy, e3 = dz + xdy − ydx. (5)

Recall that, in terms of the coordinates (t, x, y, z), the group SO(2) acts simply by rotations
in the (x, y)-plane. The induced action on H-invariant one-forms on R

4 is by rotations in the
plane spanned by e1, e2, whereas the one-forms e3 and dt are invariant. As a consequence,
gt (and hence g) is SO(2)-invariant if and only of it is of the form (4).

Definition 2.4. SO(2)⋉H-invariant metrics on R
4, as described in Proposition 2.3, will be

called metrics with maximal Heisenberg symmetry.

The main problem studied in this paper is the following.

Problem 2.5. Determine all Einstein metrics on R
4 with maximal Heisenberg symmetry.

The following consequence of Proposition 2.3 is used in the calculations of the connection
and the curvature in the next section. Note also that the map (t, x, y, z) 7→ (t, y,−x, t) is
an isometry (in the group SO(2)), which can be also used for that purpose.

Corollary 2.6. Any metric g with maximal Heisenberg symmetry on R
4 is O(2)-invariant,

that is not only SO(2)-invariant but, in addition, invariant under the involution σ : (t, x, y, z) 7→
(t, y, x,−z). The surface

Σ = (R4)σ = {p ∈ R
4 | σ(p) = p} = {(t, x, x, 0) | t, x ∈ R} (6)

is totally geodesic and induces an H-invariant foliation of R4 by totally geodesic surfaces.
The leaf through a point p0 = (t0, x0, y0, z0) is given by

Σp0 = (x0, y0, z0) · Σ = {(t, x, y, z) | x− y = x0 − y0, z = (y0 − x0)(x− x0) + z0}. (7)
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3 Einstein equation for metrics with maximal Heisenberg

symmetry

In this section we determine the system of ordinary differential equations satisfied by Einstein
metrics with maximal Heisenberg symmetry. First we compute the Levi-Civita connection
and Ricci curvature of such metrics.

Throughout this section

g = dt2 + a(t)(dz + xdy − ydx)2 + b(t)(dx2 + dy2) (8)

denotes a metric with maximal Heisenberg symmetry on R
4.

3.1 Connection and Ricci curvature

Proposition 3.1. The Levi-Civita connection ∇ of a metric (8) with maximal Heisenberg
symmetry is given by

∇∂t∂t = 0, ∇∂t∂z =
1

2
(ln a)′∂z, ∇∂z∂z = −1

2
a′∂t,

∇∂t∂x =
y

2

(

ln
b

a

)′
∂z +

1

2
(ln b)′∂x, ∇∂t∂y =

x

2

(

ln
a

b

)′
∂z +

1

2
(ln b)′∂y,

∇∂z∂x =
1

2
a′y∂t −

a

b
x∂z +

a

b
∂y, ∇∂z∂y = −1

2
a′x∂t −

a

b
y∂z −

a

b
∂x,

∇∂x∂x = −1

2
(a′y2 + b′)∂t + 2

a

b
xy∂z − 2

a

b
y∂y,

∇∂y∂y = −1

2
(a′x2 + b′)∂t − 2

a

b
xy∂z − 2

a

b
x∂x,

∇∂x∂y =
1

2
a′xy∂t +

a

b
(y2 − x2)∂z +

a

b
y∂x +

a

b
x∂y.

Proposition 3.2. The Ricci curvature Ricg =
∑

Rijdx
idxj, of g is given in the coordinates
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(x0, x1, x2, x3) = (t, x, y, z) by

R00 = −
(

1

4
((ln a)′)2 +

1

2
((ln b)′)2 +

1

2
(ln a)′′ + (ln b)′′

)

g00,

R11 = −1

2
(a′′y2 + b′′)− 1

4
(ln a)′b′ + 2

a2

b2
y2 +

y2

4
(ln a)′a′ − 1

2
a′y2(ln b)′ − 2

a

b
,

R22 = −1

2
(a′′x2 + b′′)− 1

4
(ln a)′b′ + 2

a2

b2
x2 +

x2

4
(ln a)′a′ − 1

2
a′x2(ln b)′ − 2

a

b
,

R33 =

(

−a′′

2a
+

(a′)2

4a2
− a′b′

2ab
+ 2

a

b2

)

g33,

R12 =
1

2
a′′xy − (a′)2

4a
xy − 2

(a

b

)2
xy +

1

2
a′(ln b)′xy,

R13 =
1

2
a′′y +

y

4
a′
(

ln
b

a

)′
− 2

(a

b

)2
y +

1

4
a′(ln b)′y,

R23 = −
(

1

2
a′′x+

x

4
a′
(

ln
b

a

)′
− 2

(a

b

)2
x+

1

4
a′(ln b)′x

)

,

R01 = 0 = g01, R02 = 0 = g02, R03 = 0 = g03.

3.2 Einstein equation

Corollary 3.3. A metric (8) with maximal Heisenberg symmetry is Einstein, Ricg = Λg,
with constant Λ if and only if

1

4
((ln a)′)2 +

1

2
((ln b)′)2 +

1

2
(ln a)′′ + (ln b)′′ =

a′′

2a
− (a′)2

4a2
+

a′b′

2ab
− 2a

b2
= −Λ,

1

2

b′′

b
+

1

4
(ln a)′(ln b)′ +

2a

b2
= −Λ.

Corollary 3.4. The metric g is Einstein with constant Λ if and only if the functions λ = (ln a)′

and µ = (ln b)′ satisfy the following overdetermined system of ordinary differential equations:

2λ′ + 4µ′ + λ2 + 2µ2 + 4Λ = 0, (9)

2λ′ + λ2 + 2λµ − 8a

b2
+ 4Λ = 0, (10)

2µ′ + 2µ2 + λµ+
8a

b2
+ 4Λ = 0. (11)

The system is equivalent to

2λ′ = −(λ2 + 2µ2 + 6λµ + 12Λ), (12)

2µ′ = 3λµ+ 4Λ, (13)

0 = µ2 + 2λµ+
4a

b2
+ 4Λ. (14)

Proof. The first system is obtained by substitution of the variables. Adding the equations
(10) and (11) we obtain

2λ′ + 2µ′ + λ2 + 2µ2 + 3λµ+ 8Λ = 0.

Using this equation we eliminate respectively µ′ and λ′ from (9) arriving at (12) and (13).
Finally, comparing (11) with (13) yields (14).
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4 Solutions

4.1 Classification of stationary solutions

We call a solution (a(t), b(t)) of the ode system (12)-(14) stationary if λ′ = µ′ = 0.

Proposition 4.1. The stationary solutions (a, b) of the Einstein equations (12)-(14) are given
by

a = −Λ

6
b2, b = Ceµt, (15)

where µ 6= 0 and C > 0 are constants. The corresponding Einstein manifold (R4, g) is
isometric to the complex hyperbolic plane of Einstein constant Λ = −3

2µ
2 < 0.

Proof. Since λ and µ are constant for stationary solutions, we see from (14) that the function
a/b2 is constant and, hence,

λ− 2µ = 0.

Inserting this into (12)-(13) we obtain

Λ = −3

2
µ2

and (14) then yields

Λ = −6a

b2
.

This shows that Λ < 0 and, hence, µ 6= 0. The above metrics are all homothetic to

dt2 + e4t(dz + xdy − ydx)2 + e2t(dx2 + dy2), (16)

by Remark 4.2 below. This is the complex hyperbolic metric of holomorphic sectional
curvature −4 (i.e. Λ = −6) written as a left-invariant metric on the simply transitive solvable
Iwasawa subgroup of its group of holomorphic isometries PSU(1, 2).

Remark 4.2. The two parameters of the solution (15) correspond to the freedom to re-
parametrize the t-variable by an affine transformation. In fact, a transformation of the
coordinates (t, x, y, z) by a pure translation in t yields another stationary solution but with
another C-parameter, whereas rescaling of the t-variable in the coordinate system yields an
Einstein metric which, up to a constant conformal factor, is a stationary solution in our
class (8), the latter with another µ-parameter.

Note that the transformation (a, b) 7→ (ã, b̃), where

ã(t) :=
a(kt)

k2
, b̃(t) :=

b(kt)

k2
, k ∈ R \ {0}, (17)

maps arbitrary solutions of (12)-(14) to (homothetic) solutions. In this way one can always
normalize a given solution with Λ < 0 such that Λ = −6.
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4.2 Ricci-flat solutions

Proposition 4.3. There exist solutions (a, b) of the Einstein equations (12)-(14) with λ = ℓ
t

and µ = m
t , ℓ,m ∈ R. They are all hyper-Kähler and of the form

a(t) = a1|t|−2/3, b(t) = b1|t|2/3, (18)

where a1, b1 are positive constants such that a1/b
2
1 = 1/9. The maximal domains of definition

of these (incomplete) metrics are R>0 × R
3 and R<0 × R

3.

Proof. Under the ansatz λ = ℓ
t and µ = m

t , the equation (13) implies that Λ = 0. The
equations (12)-(13) can then be easily solved in terms of (ℓ,m). We find that (ℓ,m) is
one of the following: (−2

3 ,
2
3), (−2

3 ,
4
3), (2, 0), (0, 0). However, the last three cases are clearly

inconsistent with equation (14). (The case (0, 0) is also excluded, because such a solution
would be stationary contrary to Proposition 4.1.) So we are left with studying equation (14)
in the case (ℓ,m) = (−2

3 ,
2
3). Inserting a = a1|t|ℓ = a1|t|−2/3 and b = b1|t|m = b1|t|2/3 we

obtain a1/b
2
1 = 1/9.

The given metric can now be explicitly shown to be hyper-Kähler. Consider the following
two-forms:

ω1 =
√
a dt ∧ (dz + xdy − ydx) + sign(t)bdx ∧ dy

=
√
a1|t|−1/3dt ∧ (dz + xdy − ydx) + 3 sign(t)

√
a1|t|2/3dx ∧ dy,

ω2 =
√
b dt ∧ dy + sign(t)

√
ab(dz + xdy − ydx) ∧ dx

=
√

b1|t|1/3dt ∧ dy + sign(t)
√

a1b1(dz + xdy − ydx) ∧ dx,

ω3 =
√
b dt ∧ dx+ sign(t)

√
ab dy ∧ (dz + xdy − ydx)

=
√

b1|t|1/3dt ∧ dx+ sign(t)
√

a1b1 dy ∧ (dz + xdy − ydx).

These are (anti-)self-dual and closed, and so form a hyper-Kähler structure.

Remark 4.4. The incomplete hyper-Kähler metrics described in Proposition 4.3 are all ho-
mothetic to a single metric, compare (17). The metric can be obtained from a Gibbons-
Hawking ansatz and admits a conformal rescaling to a complete left-invariant metric on the
solvable Iwasawa subgroup of SU(1, 2) [DH, Section 3.2.2]. The metric does also appear in
the study of collapsing hyper-Kähler metrics on K3 surfaces [HSVZ], as we learned from
Simon Salamon [S].

Proposition 4.5. If (a, b) is a Ricci-flat solution of the Einstein equations (12)-(14) not
isometric to (18), then the associated functions λ and µ satisfy

2

3µ

(

∓2F1

(

− 3

4
,
1

2
;
1

4
;−C|µ|4/3

)

+ 1

)

= t− t0, λ = ± µ
√

1 + C|µ|4/3
1∓

√

1 +C|µ|4/3
, (19)
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where C > 0 and t0 are constants and 2F1 is the hypergeometric function. The corresponding
metrics are incomplete. In fact, the maximal domains of definition of these metrics are

]

−∞, t0 −
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

[

× R
3,

]

t0 −
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

, t0

[

× R
3,

]

t0 +
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

,+∞
[

× R
3,

]

t0, t0 +
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

[

× R
3.

(20)

Proof. Setting Λ = 0 in (12)-(14) gives us

2λ′ = −(λ2 + 6λµ + 2µ2), (21)

2µ′ = 3λµ, (22)

−4a

b2
= µ(µ+ 2λ). (23)

On a domain where µ and µ+ 2λ are non-vanishing, (21) and (22) imply

d(µ(µ + 2λ))

µ(µ+ 2λ)
= λdt− 2µdt.

Integrating and then exponentiating both sides gives

µ2 + 2λµ = −4ka

b2
,

where k is a non-zero constant of integration. Notice however that given λ = (ln a)′ and
µ = (ln b)′, the positive functions a and b are determined only up to overall positive constant
factors. Thus, the constant k may be absorbed into this indeterminacy so that the constraint
(23) is satisfied, provided that k > 0.

In particular, this argument fails when either µ or µ+2λ vanish. In fact, (23) then necessarily
means that a vanishes, which is not allowed. Therefore, the constraint amounts to stipulating
that µ and µ+ 2λ are non-vanishing on the domain of definition and of opposite sign.

We will now describe general non-stationary solutions of (21) and (22). If λ is a constant
function, then so is µ. We may thus assume that λ is not everywhere 0. As µ is constrained
to be non-vanishing, µ′ = 3

2λµ must also be non-vanishing on the (open) complement of
the vanishing set of λ. On this open set, we may regard t, and hence λ(t), as an implicit
function of µ. Then λ satisfies the following ode:

dλ

dµ
=

λ′

µ′ = −λ2 + 6λµ+ 2µ2

3λµ
.

Define a function ν by λ = µν. Substituting this into the above equation and rearranging
the terms gives us

µ
dν

dµ
= −4ν2 + 6ν + 2

3ν
.

There are two cases to be considered now: either the numerator of the right-hand side is
identically zero or it is not.
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Let us suppose the first case, that is

4ν2 + 6ν + 2 = 2(ν + 1)(2ν + 1) = 0.

Then ν takes the value −1 or −1
2 . Note that if ν = −1

2 , then

µ+ 2λ = µ+ 2µν = 0.

So this is not allowed, and ν must necessarily be −1. Thus, λ = −µ and µ′ = 3
2λµ = −3

2µ
2.

Up to constant shifts in t, this gives the same solution as in (18), and so is excluded as well.

So 4ν2 + 6ν + 2 cannot be identically zero. On the complement of its vanishing set, we we
may separate the variables and integrate to obtain

ln |ν + 1| − 1

2
ln |2ν + 1| = −2

3
ln |µ|+ const.

Multiplying by −2 throughout and then exponentiating both sides gives us

2ν + 1

(ν + 1)2
= −C|µ|4/3, (24)

where C is some non-zero constant. Then solving for ν, we get

ν = ±
√

1 + C|µ|4/3
1∓

√

1 + C|µ|4/3
.

Thus, λ as a function of µ is given by

λ = µν = ± µ
√

1 + C|µ|4/3
1∓

√

1 + C|µ|4/3
.

To now obtain µ as function of t, we substitute the above expression into (22):

2µ′ = ± 3µ2
√

1 + C|µ|4/3
1∓

√

1 + C|µ|4/3
.

Separating the variables and integrating gives us the equation

2

3µ

(

∓2F1

(

− 3

4
,
1

2
;
1

4
;−C|µ|4/3

)

+ 1

)

= t− t0, (25)

where t0 is a constant of integration. To see this we remark that the hypergeometric function

2F1(a, b; c;x) for c = a+1, a 6= 0, is related to the incomplete beta function Bx(a, 1− b) by

Bx(a, 1− b) = 2F1(a, b; a+ 1;x)
xa

a
.

This implies that 2F1(a, b; a+1;x) satisfies the first order ode F ′(x) = a((1−x)−b−F (x))
x , which

leads to (25).

To determine the maximal domains of definition of the metric, we determine the values of t
for which either at least one of λ and µ becomes infinite or for which we have µ(µ+2λ) = 0.
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We find that for the upper branch of the solution, that is

2

3µ

(

−2F1

(

− 3

4
,
1

2
;
1

4
;−C|µ|4/3

)

+ 1

)

= t− t0, λ =
µ
√

1 + C|µ|4/3
1−

√

1 +C|µ|4/3
,

taking the limit µ → 0± gives us t = t0 and λ → ∓∞. By contrast, on the lower branch of
the solution, that is

2

3µ

(

+2F1

(

− 3

4
,
1

2
;
1

4
;−C|µ|4/3

)

+ 1

)

= t− t0, λ = − µ
√

1 + C|µ|4/3
1 +

√

1 + C|µ|4/3
,

the limit µ → 0± gives t → ±∞ and λ → 0.

Meanwhile, setting µ+ 2λ = 0 is the same as setting ν = λ
µ = −1

2 , giving us:

−1

2
= ±

√

1 + C|µ|4/3
1∓

√

1 + C|µ|4/3
.

This is solved only by µ = 0 on the lower branch of the solution, and therefore for no finite
value of t.

In the case that C is positive, we can take the limit µ → ±∞ to obtain on the upper branch

t = t0 ∓
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

, λ → ∓∞,

and on the lower branch

t = t0 ±
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

, λ → ∓∞.

Note that the above cases automatically take care of the limits in which λ becomes infi-
nite. The above limits are obtained by specializing the asymptotics for |x| → ∞ of the
hypergeometric function F (x) = 2F1(a, b; c;x) for a− b 6∈ Z to (a, b, c) = (−3

4 ,
1
2 ;

1
4):

F (x) ∼ Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−x)−a +

Γ(a− b)Γ(c)

Γ(a)Γ(−b)
(−x)−b.

Putting everything together, we find that the maximal domains of definition for t are the
open intervals ]−∞, t0[ and ]t0,+∞[ when C < 0, and the following open intervals when
C > 0:

]

−∞, t0 −
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

[

,

]

t0 −
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

, t0

[

,

]

t0 +
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

,+∞
[

,

]

t0, t0 +
2C3/4

3
√
π

Γ

(

1

4

)

Γ

(

5

4

)

[

.

Now that we have described all the solutions to the ode system, we check which of them
satisfy the sign constraint µ(µ + 2λ) < 0 to determine which of them correspond to Rie-
manninan metrics. Dividing the sign constraint by µ2 > 0, we find that it is equivalent to
2ν + 1 < 0. From (24) we see that this happens precisely when C > 0.
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Remark 4.6. By taking t purely imaginary and the integration constant t0 complex, one can
similarly describe Ricci-flat Lorentzian metrics of the form

g = −dt2 + a(t)(dz + xdy − ydx)2 + b(t)(dx2 + dy2)

from solutions of (25) with C < 0. As in the Riemannian case, these are O(2)⋉H-invariant.
Lorentzian solutions of the Einstein equations invariant under a principal action of a three-
dimensional Lie group with space-like orbits have been studied as cosmological models in
general relativity, see [EM].

Remark 4.7. The limit C → +∞ is in fact well-defined. In this limit, (19) becomes

2

3µ
= t− t0, λ = −µ.

A constant shift t 7→ t− t0 then reproduces the solution (18).

4.3 The one-loop deformed universal hypermultiplet

In this section we exhibit a family of solutions of the Einstein equations (12)-(14) with
Λ = −6 depending on a real parameter c. The solution is stationary only for c = 0, in which
case the metric is the complex hyperbolic metric (16).

Let c be a real constant and let I be a connected component of the set

{ρ ∈ R | ρ 6= 0, ρ+ c > 0 and ρ+ 2c > 0}. (26)

Let ρ : J
∼→ I, t 7→ ρ(t), be a (maximal) solution of the differential equation

ρ′(t) = 2ρ(t)

√

ρ(t) + c

ρ(t) + 2c
(27)

which is defined on some interval J and has the interval I as its range. The functions

a(t) =
ρ(t) + c

4ρ(t)2(ρ(t) + 2c)
and b(t) =

ρ(t) + 2c

2ρ(t)2
(28)

are positive on their domain J .

Recall (see Remark 4.2) that the Einstein constant Λ of a solution of (12)-(14) is either zero
or the metric can be rescaled such that Λ is any constant negative number.

Proposition 4.8. The functions a(t) and b(t) defined by (28) and (27) constitute a one-
parameter family of solutions of the Einstein equations (12)-(14) with Λ = −6. The corre-
sponding metrics are complete if and only if c > 0 and I = {ρ | ρ > 0}.

Proof. Writing the metric g = dt2 + a(t)(dz + xdy − ydx)2 + b(t)(dx2 + dy2) in terms of
the coordinates (ρ, x, y, z) instead of (t, x, y, z) shows that it coincides with the one-loop
deformed universal hypermultiplet metric, as given in equation (1.1) of [CS]. (For the
physical origins and significance of this metric see [AMTV, RSV].) The metric is not only
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Einstein of Einstein constant −6 but is half conformally flat and is complete if and only if
c > 0 and I = {ρ | ρ > 0}, see [ACDM]. Moreover, it was shown in [CST, Theorem 4.5]
that for c 6= 0 the metric has the isometry group O(2)⋊H, where H denotes the Heisenberg
group. (For c = 0 the metric is the complex hyperbolic metric discussed in Section 4.1.)
This proves Proposition 4.8.

Alternatively, one can check directly that the functions a(t) and b(t) solve the system (12)-
(14). In fact, the equations (13) and (14) are easily checked and (14) implies (12) on the set
where µ 6= 0. The latter is shown by differentiating (14) and using the simple equation

( a

b2

)′
=

a

b2
(λ− 2µ).

A short calculation shows that for the above functions a and b, the function µ vanishes only
if c < 0 and −4c ∈ I. In that case, the zero is at ρ = −4c, i.e. at t = ρ−1(−4c). The
equation (12) follows by continuity, since the complement of the zero set is dense.

Proposition 4.9. A solution (λ(t), µ(t)) of the Einstein equations (12)-(14) corresponding to
the one-loop deformed universal hypermultiplet satisfies the following polynomial constraint
of degree 4:

P (λ, µ) := (λ+ µ)3µ− 4(3λ2 + 18λµ + 11µ2) + 512 = 0. (29)

Proof. From (28), we obtain the following parametrisation of λ and µ in terms of ρ:

λ = (ln a)′ =
ρ′

ρ

(

ρ

ρ+ c
− 2− ρ

ρ+ 2c

)

, (30)

µ = (ln b)′ =
ρ′

ρ

(

ρ

ρ+ 2c
− 2

)

= −ρ′

ρ

(

ρ+ 4c

ρ+ 2c

)

. (31)

In particular, on a domain where µ is non-vanishing, we have 4c
ρ +1 6= 0 and we can combine

the above equations to get

λ+ µ

µ
=

(

ρ

ρ+ c
− 4

)(

ρ

ρ+ 2c
− 2

)−1

= 2 +

(

4c

ρ
+ 1

)−1( c

ρ
+ 1

)−1

. (32)

By subtracting 2 throughout, we see that this implies that λ − µ is non-vanishing. In
particular, we have a quadratic equation in c

ρ , which we can then solve to obtain

c

ρ
=

−5±
√
D

8
where D =

9λ+ 7µ

λ− µ
. (33)

Now substituting (27) into (30) and (31), we get

λ+ µ = 2

√

ρ+ c

ρ+ 2c

(

ρ

ρ+ c
− 4

)

= − 2(3 + 4c/ρ)
√

(1 + 2c/ρ)(1 + c/ρ)
. (34)

Upon substituting (33) into the above and eliminating the square roots, we then obtain

(λ+ µ)2P (λ, µ) = 0 (35)

From (32) we see that λ+ µ vanishes if and only if (3ρ+ 4c)(ρ+ 2c) vanishes. Since this is
not generically the case, the constraint (29) follows.
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Remark 4.10. More generally, if we introduce the polynomial

PΛ(λ, µ) := (λ+ µ)3µ+
2Λ

3
(3λ2 + 18λµ+ 11µ2) +

128Λ2

9
,

then (12) and (13) imply
P ′
Λ = −3µPΛ. (36)

So the vanishing set of PΛ(λ, µ) contains a flowline. When Λ = −6, this becomes the
constraint (29).

Proposition 4.11. Any solution (λ(t), µ(t)) of the Einstein equations (12)-(14) with negative
Einstein constant Λ satisfies the following constraint on each maximal domain of definition:

(

µ2 + λµ+ 2Λ

µ2 + 2λµ+ 4Λ

)3

PΛ(λ, µ) = K, (37)

for some constant K. Furthermore, when K = 0, the solution has to be one of the following:

• Stationary solutions at ±(2
√

−2Λ/3,
√

−2Λ/3).

• Solutions with maximal domains of definition ]−∞, t0[ and ]t0,+∞[ which are given
by

µ =

√

−2Λ

3

e
√
−6Λ(t−t0) ± 1

e
√
−6Λ(t−t0) ∓ 1

, λ = 2

√

−2Λ

3

e2
√
−6Λ(t−t0) ± 4e

√
−6Λ(t−t0) + 1

e2
√
−6Λ(t−t0) − 1

. (38)

• A solution with maximal domains of definition ]−∞, t0[ and ]t0,+∞[ which is given
by

λ =
sign(t− t0)8

√

−2Λ/3
√

3 + 18σ + 11σ2 −
√

(1− σ)3(9 + 7σ)
, µ = λσ, where 0 < σ < 1,

∫ σ

0

−8
√

3 + 18u+ 11u2 −
√

(1− u)3(9 + 7u) du

(1− u)(1 − 5u)(9 + 7u)− 3(1 + 3u)
√

(1− u)3(9 + 7u)
=

√

−2Λ

3
|t− t0|.

(39)

• A solution with maximal domains of definition ]−∞, t0[ and ]t0,+∞[ which is given
by

λ =
−sign(t− t0)8

√

−2Λ/3
√

3 + 18σ + 11σ2 +
√

(1− σ)3(9 + 7σ)
, µ = λσ, where −1 < σ < 1

2 ,

∫ σ

−1

8
√

3 + 18u + 11u2 +
√

(1− u)3(9 + 7u) du

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
=

√

−2Λ

3
|t− t0|.

(40)

• Solutions defined for all t ∈ R given by

λ =
±8
√

−2Λ/3
√

3 + 18σ + 11σ2 +
√

(1− σ)3(9 + 7σ)
, µ = λσ, where 1

2 < σ < 1,

∫ σ

3/4

∓8
√

3 + 18u+ 11u2 +
√

(1− u)3(9 + 7u) du

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
=

√

−2Λ

3
(t− t0).

(41)
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With the exception of (39), all of them correspond to Riemannian metrics.

Proof. Equations (12) and (13) imply

(µ2 + 2λµ + 4Λ)′ = (λ− 2µ)(µ2 + 2λµ+ 4Λ), (42)

(µ2 + λµ+ 2Λ)′ = (λ− µ)(µ2 + λµ+ 2Λ). (43)

On the domain where µ2 + 2λµ + 4Λ is non-vanishing, (42) can be written as

d(µ2 + 2λµ + 4Λ)

µ2 + 2λµ+ 4Λ
= λdt− 2µdt.

Integrating and then exponentiating gives

µ2 + 2λµ+ 4Λ = −4ka

b2
,

where k is a non-zero constant of integration. As we had noted in the proof of Proposition 4.5,
given λ = (ln a)′ and µ = (ln b)′, the functions a and b are determined only up to overall
non-zero constant factors. Thus, the constant k may be absorbed into this indeterminacy so
that (14) is automatically satisfied, provided that k > 0. So, we see that (14) is equivalent
to the condition µ2 + 2λµ + 4Λ < 0.

Given that µ2 + 2λµ + 4Λ is nowhere vanishing, (36), (42), and (43) can be combined into
a single equation:

(

(µ2 + λµ+ 2Λ)ℓPm
Λ

(µ2 + 2λµ+ 4Λ)n

)′
= (ℓ(λ− µ)− 3mµ − n(λ− 2µ))

(µ2 + λµ+ 2Λ)ℓPm
Λ

(µ2 + 2λµ + 4Λ)n
,

where ℓ,m, n are arbitrary non-negative integers. In particular, we see that the right-hand
side vanishes for the choice ℓ = 3,m = 1, n = 3. The constraint (37) follows.

For K = 0, we have either

µ2 + λµ+ 2Λ = 0 or PΛ(λ, µ) = 0.

If µ2 + λµ+ 2Λ = 0, then (13) becomes

2µ′ = −3µ2 − 2Λ.

If the right-hand side vanishes, then we obtain the stationary solutions

µ = ±
√

−2Λ

3
, λ = −µ− 2Λ

µ
= ±2

√

−2Λ

3
. (44)

Otherwise, we can separate the variables and integrate to obtain

log

∣

∣

∣

∣

∣

µ+
√

−2Λ/3

µ−
√

−2Λ/3

∣

∣

∣

∣

∣

=
√
−6Λ(t− t0),

where t0 is an integration constant. This gives the solutions

µ =

√

−2Λ

3

e
√
−6Λ(t−t0) ± 1

e
√
−6Λ(t−t0) ∓ 1

, λ = −µ− 2Λ

µ
= 2

√

−2Λ

3

e2
√
−6Λ(t−t0) ± 4e

√
−6Λ(t−t0) + 1

e2
√
−6Λ(t−t0) − 1

.



4 Solutions 17

Both the upper and lower solutions are well-defined eveywhere except t = t0. Moreover, the
vanishing sets of µ2 + λµ + 2Λ and µ2 + 2λµ + 4Λ do not intersect. Thus, their maximal
domains of definition are the open intervals ]−∞, t0[ and ]t0,+∞[.

Now we consider the case PΛ(λ, µ) = 0. Observe that at λ = 0, we have

PΛ(0, µ) =

(

µ2 +
11Λ

3

)2

+
7Λ2

9
> 0.

Thus, it follows that λ 6= 0 on the vanishing set of PΛ. We can therefore define σ = µ
λ and

rewrite PΛ(λ, µ) = 0 in terms of it as

(1 + σ)3σ +
2Λ

3λ2
(3 + 18σ + 11σ2) +

128Λ2

9λ4
= 0.

This is quadratic in 1
λ2 , so we can solve for it to obtain

1

λ2
=

−3(3 + 18σ + 11σ2)± 3
√

(1− σ)3(9 + 7σ)

128Λ
. (45)

In order for the right-hand side to be real, we must have −9
7 ≤ σ ≤ 1. Given that Λ < 0, the

upper solution is positive for 0 < σ ≤ 1 and the lower solution is positive for −1 < σ ≤ 1.
Note however that the case σ = 1 has to be excluded as it implies µ = λ = ±2

√

−Λ/3 and
these are precisely the points where the vanishing sets of PΛ and µ2 + 2λµ + 4Λ intersect.
To summarise, the allowed range for σ in the upper solution is ]0, 1[ while that in the lower
solution is ]−1, 1[. Moreover, for each such case, there are two solutions for λ, one positive
and one negative.

Meanwhile, from (12) and (13), we can derive the following ode for σ:

2σ′ = 2σ(1 + σ)(2 + σ)λ+
4Λ(1 + 3σ)

λ
.

We can now obtain separable odes for σ by substituting the solutions for λ in (45) into the
above:

∓
8
√

3 + 18σ + 11σ2 −
√

(1− σ)3(9 + 7σ)
√

−2Λ/3
σ′

= (1− σ)(1− 5σ)(9 + 7σ) − 3(1 + 3σ)
√

(1− σ)3(9 + 7σ), (46)

∓
8
√

3 + 18σ + 11σ2 +
√

(1− σ)3(9 + 7σ)
√

−2Λ/3
σ′

= (1− σ)(1− 5σ)(9 + 7σ) + 3(1 + 3σ)
√

(1− σ)3(9 + 7σ). (47)

The ∓ in the above refers to the choice of sign ± of λ. The allowed range for σ in (46) is
]0, 1[ while that in (47) is ]−1, 1[. The right-hand side in (46) is non-vanishing for all σ in the
allowed range ]0, 1[, while the right-hand side in (47) vanishes only at σ = 1

2 in the allowed
range ]−1, 1[. This corresponds to the stationary solution at 2µ = λ = ±2

√

−2Λ/3 that we
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already encountered in (44). On the complement of this, we can separate the variables and
integrate to obtain

∫ σ

σ0

8
√

3 + 18u+ 11u2 −
√

(1− u)3(9 + 7u) du

(1− u)(1− 5u)(9 + 7u)− 3(1 + 3u)
√

(1− u)3(9 + 7u)
= ∓

√

−2Λ

3
(t− t0), (48)

∫ σ

σ0

8
√

3 + 18u+ 11u2 +
√

(1− u)3(9 + 7u) du

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
= ∓

√

−2Λ

3
(t− t0), (49)

where u is a dummy integration variable while σ0 and t0 are integration constants. The
integration constants are redundant and the choice of σ0 may be absorbed into the choice
of t0.

We now make the general observation that if the integrand f(u) of a given integral F (σ) :=
∫ σ
σ0

f(u)du has the asymptotic behaviour f(u) ∼ (u − u0)
α as u → u0 and is well-defined

over the half-closed interval [σ0, u0[ (if σ0 < u0) or ]u0, σ0] (if σ0 > u0), then F (σ) converges
in the limit σ → u0 when α > −1 and diverges otherwise. For (48), the integrand has the
asymptotic behaviour

8
√

3 + 18u + 11u2 −
√

(1− u)3(9 + 7u)

(1− u)(1− 5u)(9 + 7u)− 3(1 + 3u)
√

(1− u)3(9 + 7u)
∼ − 1√

3u
as u → 0,

8
√

3 + 18u + 11u2 −
√

(1− u)3(9 + 7u)

(1− u)(1− 5u)(9 + 7u)− 3(1 + 3u)
√

(1− u)3(9 + 7u)
∼ − 2

√
2

3
√

(1− u)3
as u → 1.

Thus, the integral is well-defined in the limit σ → 0, so we can set σ0 = 0. Then, as σ → 0,
we have t → t0, while as σ → 1, we have t → ±∞. For all other values of σ between these
two limits, the integral is well-defined. So, the maximal domains of definition of the upper
and lower solutions are ]t0,+∞[ and ]−∞, t0[ respectively. These can be combined into a
single solution (39).

For (49), the integrand has the asymptotic behaviour

8
√

3 + 18u + 11u2 +
√

(1− u)3(9 + 7u)

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
∼ −

√
u+ 1

2
as u → −1,

8
√

3 + 18u + 11u2 +
√

(1− u)3(9 + 7u)

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
∼ − 1

(

u− 1
2

) as u → 1

2
,

8
√

3 + 18u + 11u2 +
√

(1− u)3(9 + 7u)

(1− u)(1− 5u)(9 + 7u) + 3(1 + 3u)
√

(1− u)3(9 + 7u)
∼ 2

√
2

3
√

(1− u)3
as u → 1.

The integral is ill-defined when σ = 1
2 lies in the domain of integration. So we have two

qualitatively different choices, namely σ0 <
1
2 and σ0 >

1
2 . In the first case, since the integral

is well-defined in the limit σ → −1, we can set σ0 = −1. Then, as σ → −1, we have t → t0,
while as σ → 1

2 from below, we have t → ∓∞. For all other values of σ between these two
limits, the integral is well-defined. So, the maximal domains of definition of the upper and
lower solutions are ]−∞, t0[ and ]t0,+∞[ respectively. These can be combined into a single
solution (40).
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However, if σ0 > 1
2 , say σ = 3

4 , then as σ → 1
2 from above, we have t → ±∞ while as σ → 1,

we have t → ∓∞. For all other values of σ between these limits, the integral is well-defined,
so we have two solutions defined for all t ∈ R, namely (41).

It remains to check which of the solutions satisfy the sign constraint µ2 + 2λµ + 4Λ < 0
necessary for the metric to be positive definite. Note that the condition µ2 + λµ + 2Λ = 0
automatically implies

µ2 + 2λµ + 4Λ = 2(µ2 + λµ+ 2Λ)− µ2 = −µ2 < 0.

So the stationary solutions and the solution (38) satisfy the sign constraint.

For the rest of the solutions, we see using (45) that

σ2 + 2σ +
4Λ

λ2
=

(σ − 9)(1− σ)± 3
√

(1− σ)3(9 + 7σ)

32
.

For −1 < σ < 1, the right-hand side is positive for the upper solution and negative for the
lower solution. Multiplying by λ2 throughout then tells us that (39) (which corresponds
to the upper solution) does not satisfy the sign constraint, while (40) and (41) (which
correspond to the lower solution) do satisfy the sign constraint.

Remark 4.12. For Λ = −6, the two stationary solutions are the solutions associated to the
complex hyperbolic plane with holomorphic sectional curvature −4, while the non-stationary
solutions in (40) and (41) are the solutions associated to the one-loop deformed universal
hypermultiplet.

The change of coordinates between σ and ρ may be deduced from (33) to be

ρ

c
= −8

(

5∓
√

9 + 7σ

1− σ

)−1

. (50)

This is well-defined for −1 < σ < 1. Multiplying (31) by dt
dσ and using the chain rule on the

right-hand side gives us

µ
dt

dσ
= −1

ρ

(

ρ+ 4c

ρ+ 2c

)

dρ

dσ
. (51)

Using the explicit expressions in (40) and (41) we find that

µ
dt

dσ
=

−64σ

(1− σ)(1− 5σ)(9 + 7σ) + 3(1 + 3σ)
√

(1− σ)3(9 + 7σ)
.

Meanwhile, using (50) we find that

−1

ρ

(

ρ+ 4c

ρ+ 2c

)

dρ

dσ
=

−64σ

(1− σ)(1− 5σ)(9 + 7σ)± 3(1 + 3σ)
√

(1− σ)3(9 + 7σ)
.

Thus, we see that (51) holds only for the upper solution

ρ

c
= −8

(

5−
√

9 + 7σ

1− σ

)−1

= − 1− σ

2(1− 2σ)

(

5 +

√

9 + 7σ

1− σ

)

. (52)

When 1
2 < σ < 1, we have ρ

c > 0, while when −1 < σ < 1
2 , we have ρ

c < −2. This
is consistent with the fact that the one-loop deformed universal hypermultiplet metric is
complete over the domain ρ

c > 0 and incomplete over the domain ρ
c < −2.
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In principle, for arbitrary values of K, the constraint (37) allows us to write λ as an implicit
function of µ, which can then be used to turn (13) into a separable ode in µ. However, as
(37) amounts to a bivariate polynomial equation of degree 7, the implicit function cannot
be expected to have a closed form in terms of radicals. Nevertheless, it is possible to make
conclusions about the completeness of the solutions, as in the next theorem. From Section
4.2 and Myer’s theorem we know that the Einstein constant Λ of any complete solution of the
Einstein equations (12)-(14) is necessarily negative. So we may as well assume Λ = −6.

Theorem 4.13. The complex hyperbolic metric (16) of constant holomorphic sectional cur-
vature −4 and the one-loop deformed universal hypermultiplet metric with ρ

c > 0 are the
only complete solutions of the Einstein equations (12)-(14) for Λ = −6.

Proof. Suppose we have a complete solution (λ(t), µ(t)) of (12)-(14). The solution is either
bounded in both the limits t → ±∞ or unbounded in at least one.

We first consider the bounded case. Fix a real number k and define

f(λ, µ) = 2(λ+ kµ)PΛ(λ, µ)
2,

h(λ, µ) = λ2 + (2 + 12k)µ2 + (18− 3k)λµ + (12 − 4k)Λ.

By (12), (13), and (36), we have
f ′ = −hP 2

Λ.

The function h is strictly positive, and so −hP 2
Λ is non-positive, for all λ, µ and all Λ < 0

whenever k satisfies

3 < k ≤ 26 + 6
√
10

3
. (53)

Thus, given that k is in the above range, we have a monotonically decreasing function
f(λ(t), µ(t)) of t.

Any monotonically decreasing function of t is either unbounded or has well-defined (finite)
limits as t → ±∞. Since our solution is assumed to be bounded, it has to be the latter case.
In fact, the limiting value of f must be one for which f ′ = −hP 2

Λ (and hence PΛ) vanishes.
Thus, we have a well-defined limit

lim
t→±∞

PΛ(λ(t), µ(t)) = 0.

The constant K in the constraint (37) is either zero or non-zero. We have already explicitly
described the K = 0 case in Proposition 4.11 and seen in Remark 4.12 that the only
complete solutions for Λ = −6 correspond to precisely the complex hyperbolic metric with
holomorphic sectional curvature −4 and the one-loop deformed universal hypermultiplet
metric with ρ

c > 0. So we may assume K 6= 0 now. Since the solution is bounded, this
implies that

lim
t→±∞

(µ(t)2 + 2λ(t)µ(t) + 4Λ)3 = lim
t→±∞

1

K
(µ(t)2 + λ(t)µ(t) + 2Λ)3PΛ(λ(t), µ(t)) = 0.

The vanishing sets of the polynomials µ2+2λµ+4Λ and PΛ intersect in precisely the points

±
(

2
√
−Λ√
3

, 2
√
−Λ√
3

)

. These can be checked to be fixed points of the first-order ode system (12)
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and (13). Moreover,
(

2
√
−Λ√
3

, 2
√
−Λ√
3

)

is a stable fixed point, while −
(

2
√
−Λ√
3

, 2
√
−Λ√
3

)

is an

unstable fixed point. It thus follows that

lim
t→±∞

(λ(t), µ(t)) = ±
(

2
√
−Λ√
3

,
2
√
−Λ√
3

)

.

Now, as the vanishing set of µ2+λµ+2Λ is a hyperbola, its complement in R
2 consists of three

connected components. The two fixed points ±
(

2
√
−Λ√
3

, 2
√
−Λ√
3

)

are on two different connected

components, hence any complete solution has to intersect the hyperbola µ2 + λµ+ 2Λ = 0.
But this is not possible since K vanishes if µ2 + λµ + 2Λ vanishes, and we have assumed
that K 6= 0.

Next, we consider the case where the solution (λ(t), µ(t)) is unbounded in at least one of
the limits t → ±∞. Without loss of generality, we may assume the solution is unbounded
as t → +∞. Then there exists a sequence ti → +∞ such that at least one of the following
holds:

lim
i→∞

1

λ(ti)
= lim

i→∞

(

1

λ(ti)

)′
= 0 or lim

i→∞

1

µ(ti)
= lim

i→∞

(

1

µ(ti)

)′
= 0.

Since the solution satisfies a polynomial constraint, by regarding it as the vanishing set of a
polynomial on RP

2, we even see that limt→∞
1

λ(t) = 0 or limt→∞
1

µ(t) = 0.

If we let σ = µ
λ and ν = λ

µ , then the constraint (37) may be rewritten in the following
manner over suitable domains:

(

σ + 1 + 2Λλ−2

σ + 2 + 4Λλ−2

)3(

(1 + σ)3σ +
2Λ

3λ2
(3 + 18σ + 11σ2) +

128Λ2

9λ4

)

=
K

λ4
,

(

1 + ν + 2Λµ−2

1 + 2ν + 4Λµ−2

)3(

(ν + 1)3 +
2Λ

3µ2
(3ν2 + 18ν + 11) +

128Λ2

9µ4

)

=
K

µ4
,

where K is some constant. The above imply that in the limit |λ| → ∞, we have either
σ = −1 or σ = 0, while in the limit |µ| → ∞, we have ν = −1. Meanwhile (12) and (13)
imply that

(

2

λ

)′
= 1 + 2σ2 + 6σ +

12Λ

λ2
,

(

2

µ

)′
= −3ν − 4Λ

µ2
.

Thus, in the limit |λ| → ∞, we have either
(

2
λ

)′ → −3 or
(

2
λ

)′ → 1, while in the limit

|µ| → ∞, we have
(

2
λ

)′ → 3. This gives a contradiction.
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