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We identify and study a simple combinatorial problem that is derived
from submodularity issues encountered in the theory of tangles of graphs
and abstract separation systems.

1 Introduction

Here is an intriguingly simple combinatorial problem – simple enough that you can
explain it to a first-year student of mathematics – but which is challenging nonetheless:

Problem 1 (Unravelling problem). A finite set X of finite sets is woven if, for all
X, Y ∈ X , at least one of X ∪ Y and X ∩ Y is in X . Let X be a non-empty woven set.
Does there exist an X ∈ X for which X − X is again woven?

Given a set of subsets X which is woven, an unravelling of X shall be a sequence
X = Xn ⊇ · · · ⊇ X0 = ∅ of sets, all woven, such that |Xi r Xi−1| = 1 for all 1 ≤ i ≤ n.
If the unravelling problem has a general positive answer, then every woven set will have
an unravelling.

The question of whether every woven set has an unravelling arose naturally in our
study of structurally submodular separation systems. These systems are a framework
developed by Diestel, Erde and Weißauer [5] to generalise the theory of tangles in graphs
to an abstract setting, allowing the application of tangles in a multitude of contexts
including graphs and matroids, but also other combinatorial structures.

In this paper we analyse the unravelling problem. We prove affirmative versions in
two important cases, which come from the original context where the problem arose:
submodular separation systems. Our first main result is that unravellings exist for sets
X that consist, for some submodular function f on the subsets of V =

⋃
X , precisely of

the sets X ⊆ V with f(X) < k for some integer k. Our second main result settles the
unravelling problem for general finite posets, which we call woven if they contain, for
every two elements, either an infimum or a supremum of these two elements.

We start in Section 2 with the definitions required for this paper and show that the
unravelling problem has an equivalent formulation in terms of distributive lattices. We
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also establish a kind of converse of unravelling, showing that we can find, for every woven
set X , some subset of

⋃
X which we can add to X and remain woven.

In Section 3 we give a brief overview of the theory of abstract separation systems, the
setting for general tangle theory, and explain how a version of the unravelling problem
naturally arises in that context. Throughout the paper, we will come back to the context
of abstract separation systems, to discuss how our results apply there. Apart from these
discussions, however, our results are independent of Section 3, so that the reader may
opt to skip it and head directly to Section 4.

There we give a partial solution to the unravelling problem, by showing that the
following class of woven sets, which is particularly important in the theory of tangles,
can indeed be unravelled: Let X be a collection of subsets of some finite set V . If X has
the form X = {X ∈ 2V | f(X) < k} for some function f : 2V → R and k ∈ R, let us say
that f induces X .

Theorem 2. If X ⊆ 2V is induced by a submodular function on 2V , then X can be
unravelled.

In Section 5 we introduce a possible generalisation of the unravelling problem from
subsets of some power set to subsets of any lattice. We show that the lattice analogue
of the unravelling problem can be answered in the negative for non-distributive lattices,
constructing an explicit counterexample. However, if we restrict this generalised for-
mulation of the unravelling problem to distributive lattices, it becomes equivalent to
Problem 1.

We conclude in Section 6 with our second main result, a variant of the unravelling
problem for general partially ordered sets. Let us call a finite poset P woven if there
exists, for any p, q ∈ P , either a supremum or an infimium in P . A sequence P = Pn ⊇
· · · ⊇ P0 = ∅ of subposets is an unravelling of P if Pi is woven and |Pi r Pi−1| = 1 for
every 1 ≤ i ≤ n. Our second main result is that all woven posets have an unravelling:

Theorem 3. Every woven poset can be unravelled.

Wovenness in posets corresponds to the most general notion of structural submod-
ularity for separation systems, which we also discuss in [10]. There we also present
results about submodularity in separation systems which arose in our research on the
unravelling problem.

2 Preliminaries

We will formulate a problem equivalent to Problem 1 in terms of lattices. This problem
might be easier to work with, and will also allow us to explain how unravelling problem
originally came up. But more on that in Section 3. Let us begin by recalling some basic
terminology from lattice theory. We largely follow the notation of [1], however we will
tacitly assume that all the sets we consider are finite.

A lattice is a non-empty partially ordered set (or ‘poset’) L in which any two elements
a, b ∈ L have a supremum and an infimum, that is, there is a unique element a ∨ b (their
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join or supremum) minimal such that a ≤ a ∨ b and b ≤ a ∨ b and a unique element a ∧ b
(their meet or infimum) maximal such that a ≥ a ∧ b and b ≥ a ∧ b.

Every (finite) lattice has a greatest (top) element and a least (bottom) element, that
is, an element t ∈ L with a ≤ t for every a ∈ L and an element b ∈ L with b ≤ a for
every a ∈ L.

A lattice is distributive if it satisfies the distributive laws a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

Given a poset P and a, b ∈ P we say that a is a upper (lower) cover of b if a > b
(a < b) and there does not exists any c ∈ P such that a > c > b (a < c < b).

The power set of any given set V forms a lattice (the so-called subset lattice) with the
partial order on 2V given by the subset relation. In this lattice, the join of two subsets
of V is their union and the meet is their intersection. Using this, we can formulate a
lattice-theoretical variation of the unravelling problem. If L is a lattice, we say that
P ⊆ L is woven in L if for any p, q ∈ P we have p ∨ q ∈ P or p ∧ q ∈ P .

We can now generalise Problem 1 as follows:

Problem 2.1. Let L be a finite lattice and P ⊆ L a non-empty woven subset. Does
there exist p ∈ P for which P − p is again woven?

For distributive lattices, Problem 2.1 is equivalent to Problem 1 by Birkhoff’s represent-
ation theorem (see [1]), which says that every finite distributive lattice is isomorphic to
a sublattice of the subset lattice of some finite set. For general lattices, however, we have
a negative solution to Problem 2.1: in Section 5 we shall construct a (non-distributive)
counterexample for Problem 2.1.

Perhaps surprisingly, it is easy to establish a kind of converse to Problem 2.1: given a
lattice L and a woven poset P ⊆ L we can always find a p ∈ L r P which one can add
to P while keeping it woven.

Proposition 2.2. If L is a lattice and P ( L a proper woven subset of L, then there is
a p ∈ L r P such that P + p is again woven.

Proof. Let p be a maximal element of LrP . Then P ′ := P +r is woven: for each q ∈ P ′

we have (p ∨ q) ∈ P ′ by the maximality of p in L r P .

In terms of woven sets in the sense of Problem 1, this statement directly implies the
following:

Corollary 2.3. If V is a finite set and X ( 2V woven, then there is a X ⊆ V such that
X /∈ X and such that X + X is again woven.

3 Abstract separation systems and submodularity

In this section we briefly describe the evolution of the theory of abstract separation
systems and how they relate to the unravelling problem.

This theory originates in work by Robertson and Seymour almost thirty years ago,
where they introduced, as part of their graph minor project [17] a new tool to capture
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indirectly what ‘highly connected regions’ of a graph are: so called tangles. This concept
of tangles has, over the years, been generalised to many other contexts, see for example
[3–8,12,13].

In this process of generalisation, concrete separations of a graph were replaced by a
more general objects, called an abstract separation system, which generalises not only
the notion of separations of a graph, but also of other combinatorial objects, for example
matroids [3]. Formally, an abstract separation system S is a partially ordered set with
an order-reversing involution ∗. The elments s ∈ S are called (oriented) separations and
we write s to mean the inverse s∗ of s. The set {s, s} of a separation together with
its inverse is also denoted as the unoriented separation s, and we write S for the set of
all these unoriented separations. Conversely, given a set S of unoriented separations we
denote as S the set of oriented separations s for which s ∈ S.

For simplicity, we will use definitions of oriented and unoriented separations inter-
changeably, as long as the meaning is clear.

This concept of abstract separation systems was developed to have the bare minimum
of structure needed to make the two fundamental theorems of tangle theory, the tangle-
tree-duality [5,8] and the tree-of-tangles theorem [5,6] work. Proving theorems, such as
these two, in this simple and abstract setting is a way to obtain results in a variety of
contexts, with just one unified proof.

In order for the two theorems to actually hold in this abstract setting, one needs
the separation system to be ‘rich enough’ in some sense. Historically this ‘richness’
was ensured via so-called submodular order functions: we require that the considered
separation system is contained in some universe U of separations, a separation system
U which is a lattice. A function f : U → R+

0 is then said to be a submodular order
function if f is symmetric, i.e. f(s) = f(s) for every s ∈ U and f satisfies f(s) + f(t) ≥
f(s ∨ t) + f(s ∧ t) for any s, t ∈ U . Historically, the only separation systems considered
where then the Sk ’s, separation systems of the form Sk := {s ∈ U | f(s) < k} for some
k ∈ R.

Such a universe U of separations, as well as such a submodular order function, natur-
ally arise when considering separations of graphs.1

However, in [5], Diestel, Erde and Weißauer found a weaker structural condition,
which still provided enough ‘richness’ for the two main theorems to hold: the property
of structural submodularity. A separation system S inside a universe U of separations is
said to be structurally submodular in U if s ∨ t ∈ S or s ∧ t ∈ S whenever s, t ∈ S. The
separation r ∨s and r ∧s are then called the corners of s and t. This definition no longer
relies on a submodular order function and is, in many arguments, the only necessary
property, as [5] demonstrated. Moreover, given a submodular order function f , every set
Sk is structurally submodular in U due to the fact that f is submodular. However, as
we show in [10], the converse is not true, so structurally submodular separation systems
are a strictly larger class of separation systems. The most abstract versions of the two
main theorems of abstact tangle theory are formulated in the context of these structural

1The universe of separations of a graph G is given by the set of all separations (A, B) of G, and the
considered order function is given by f((A, B)) = |A ∩ B|
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submodular separation systems [5,9, 11,12].
Also our original motivation for considering the unravelling problem originates in

these structural submodular separation systems: Given such a structural submodular
separation system S inside a universe U of separations, it might be possible that we find
a separation s inside S which we can delete, together with its inverse, and be left with
a separation system S r {s, s} that is again structurally submodular in U . Formally,
given a structurally submodular separation system S inside a universe U of separations,
we are interested if the following property holds:

Property 3.1. There is an s ∈ S such that S r {s, s} is submodular in U .

If this were to hold for all structurally submodular separation systems, then we could
recursively apply this reduction step to unravel such a separation system, i.e. we would
obtain a sequence ∅ = S1 ⊆ S2 · · · ⊆ Sn = S of structurally submodular separation sys-
tems such that, for every i < n, we have that Si+1 r Si consists of just one separation
si together with its inverse. Such an unravelling sequence would be of particular use for
proving theorems about structurally submodular separation systems via induction. For
example, it is possible to obtain a short proof of a tree-of-tangles theorem for structurally
submodular separation systems via this unravelling sequence [14, Section 4.1.8].

This question, whether Property 3.1 holds for every structurally submodular separa-
tion systems, is now closely related to Problem 2.1. In fact, if we could unravel every
structurally submodular separation system, we could answer Problem 2.1 positively: If
there exists a woven poset P inside a lattice L, such that P − p is not woven, we could
construct a structurally submodular separation system inside a universe U of separa-
tions which can not be unravelled. We use such a construction in Section 5 to turn our
counterexample to Problem 2.1 into an example of a structurally submodular separation
system inside a non-distributive lattice which cannot be unravelled.

Also, the converse of Problem 2.1 established in Proposition 2.2 directly translates to
a similar statement about structurally submodular separation systems inside a universe
of separations.

Corollary 3.2. If U is a universe of separations and S ( U submodular in U , then so
is S + r for some r ∈ U r S.

Proof. Let r be a maximal element of U rS. By Proposition 2.2, the separation system
S′ := S + r is again submodular in U .

4 Unravelling order-induced sets

In this section we show that for a subclass of the woven subsets of a lattice we indeed
have unravellings.

For this let us say that a set P inside a lattice L is order-induced if there exists a
submodular function f : L → R+

0 and a real number k such that P = {p ∈ L | f(p) < k}.
Here, f beeing submodular should mean that f(p) + f(q) ≥ f(p ∨ q) + f(p ∧ q) for
any p, q ∈ L. Note that every order-induced set P is woven, as the submodularity of
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f implies that at least one of f(p ∨ q), f(p ∧ q) is at most max{f(p), f(q)} and thus at
least one of p ∨ q and p ∧ q lies in P , whenever both p and q lie in P . However, there do
exists woven sets which are not order-induced, see [10].

We will see in what follows that for order-induced posets P it is possible to find an
unravelling, that is a sequence P = Pn ⊇ · · · ⊃ P0 = ∅ of posets which are woven in L
such that |Pi r Pi−1| = 1 for every 1 ≤ i ≤ n.

We say that P can be unravelled if there exists an unravelling for P . In other words P
can be unravelled if we are able to successively delete elements from P until we reach
the empty set and maintain the property of being woven throughout.

We shall demonstrate that every order-induced subset of a lattice can be unravelled.

Theorem 4.1. Let L be a lattice with a submodular function f and consider the subset
P = {p ∈ L | f(p) < k} for some k. Then P can be unravelled.

For the remainder of this section let L be a lattice with a submodular order function f
and P ⊆ L. It is easy to see that we can perform the first step of an unravelling sequence:

Lemma 4.2. If P = {p ∈ L | f(p) < k} and p ∈ P maximises f(p) in S, then P − p is
woven in L.

Proof. Given q, r ∈ P − p, since P is woven in L at least one of q ∨ r and q ∧ r also lies
in P . However, by the choice of p we have f(p) ≥ f(q), f(r). Thus if one of q ∨ r and
q ∧ r equals p, the other also needs to lie in P . Thus P − p is indeed woven in L.

Unfortunately we cannot rely solely on Lemma 4.2 to find an unravelling of P , since
after its first application and the deletion of some p the remaining poset P − p may no
longer be order-induced. This can happen if P − p contains an r such that f(r) = f(p).

To rectify this, and thereby allow the repeated application of Lemma 4.2, we shall
perturb the submodular function f on L to make it injective, whilst maintaining its
submodularity and the assertion that P = {p ∈ L | f(p) < k} for a suitable k. This
approach is similar to – and inspired by – the idea of tie-breaker functions employed by
Robertson and Seymour [17] to construct certain tree-decompositions. For this we show
the following:

Theorem 4.3. Let L be a lattice, then there is an injective submodular function ρ : L → N.
Moreover, we can chose ρ so that, for any p1, p2, q1, q2 ∈ L, we have that ρ(p1)+ ρ(p2) =
ρ(q1) + ρ(q2) if and only if {p1, p2} = {q1, q2}.

Proof. Enumerate L as L = {p1, . . . , pn}. For q ∈ L let I(q) be the set of all i ≤ n
with pi ≤ q. We define ρ : L → N by letting

ρ(q) = 3n+1 −
∑

i∈I(q)

3i .

To see that this function is submodular note that for q and r in L we have I(q) ∩ I(r) =
I(q ∧ r) and I(q) ∪ I(r) ⊆ I(q ∨ r). Therefore each i ≤ n appears in I(q) and I(r) at
most as often as it does in I(q ∨ r) and I(q ∧ r). This establishes the submodularity.
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It remains to show that ρ(q) 6= ρ(r) for all q 6= r. For this note that by definition
of ρ we have ρ(q) = ρ(r) if and only if I(q) = I(r). But if q 6= r then either q /∈ I(r) or
r /∈ I(q).

To see the moreover part we note that ρ(p1)+ρ(p2) = ρ(q1)+ρ(q2) if and only if I(p1)∪
I(p2) = I(q1) ∪ I(q2) and I(p1) ∩ I(p2) = I(q1) ∩ I(q2). Since I(p1), I(p2), I(q1), I(q2)
correspond to the down-closures of p1, p2, q1, q2 in L, this implies that {p1, p2} = {q1, q2}:
Clearly, if p1 = q1 then we need to have p2 = q2, so suppose that {p1, p2} and {q1, q2}
are disjoint. Since p1 ∈ I(p1) we see that p1 ∈ I(q1) ∪ I(q2), so suppose without loss
of generality that p1 < q1. Since q1 ∈ I(q1) and q1 /∈ I(p1) we thus conclude that
q1 ∈ I(p2), thus q1 < p2. As p2 ∈ I(p2) this then implies p2 < q2. As q2 ∈ I(q2) this is a
contradiction as q2 /∈ I(p1) ∪ I(p2).

We immediately obtain the following corollary about universes of separations:

Corollary 4.4. Let U be a universe of separations. Then there is a submodular order
function γ : U → N with γ(r) 6= γ(s) for all r 6= s.

Proof. Let ρ be the function obtained from Theorem 4.3 applied to U as a lattice. We
set γ(s) = ρ(s) + ρ(s). It is easy to see that this is a submodular order function. The
moreover part of Theorem 4.3 guarantees that indeed γ(r) 6= γ(s) ∀r 6= s.

We can now establish Theorem 4.1.

Proof of Theorem 4.1. Let L be a lattice with a submodular order function f . Let P =
{p ∈ L | f(p) < k} for some k ∈ R+

0 . Let ρ be the submodular function on L from The-
orem 4.3. Let ǫ be the minimal difference between two distinct values of f , that is
|f(p) − f(q)| ≥ ǫ or f(p) = f(q) for any two p, q ∈ L. Since L is finite, ǫ > 0. Pick
a positive constant c ∈ R+ so that c · ρ(p) < ǫ for all p ∈ L. We define a new func-
tion g : L → R+

0 on L by setting

g(p) := f(p) + c · ρ(p) .

Then g is submodular and, like ρ, has the property that g(p) 6= g(q) whenever p 6= q.
Enumerate the elements p1, . . . , pn of P so that g(p1) < g(p2) < · · · < g(pn). Then Pi :=
{p1, . . . , pi} ⊆ P is woven in L for each i ≤ n: for i = n it equals P , and for i < n we
have that Pi = {p ∈ L | g(p) < g(pi+1)}, which is woven in L since g is a submodular
function on L. Thus P = Pn ⊇ · · · ⊇ P0 = ∅ is an unravelling for P .

Theorem 4.1 allows us to give a class of sets X ⊆ 2V for which we can answer Problem 1
positively. We say that a function f : 2V → R is submodular if f(X) + f(Y ) ≥ f(X ∪
Y ) + f(X ∩ Y ) for all X, Y ∈ 2V and obtain the following theorem as a corollary:

Theorem 2. If X ⊆ 2V is induced by a submodular function on 2V , then X can be
unravelled.

Proof. By adding a large constant to f(X) for every X ⊆ V we may suppose that
f(X) ≥ 0 ∀X ⊆ V . Applying Theorem 4.1 to the subset-lattice 2X together with its
subset X results in the desired sequence ∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X .
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Moreover, Theorem 4.1 also allow us to show that separation systems Sk inside a
universe of separations with a submodular order function can be unraveled.

Corollary 4.5. Let U be a universe of separations with a submodular order function f
and S = Sk for some k. Then S can be unravelled.

Proof. Perform the same argument as in the proof of Theorem 4.1, using the function γ
from Corollary 4.4 instead of the function ρ from Theorem 4.3.

5 A woven subset of a lattice which cannot be unravelled

In this section we are going to construct a counterexample to Problem 2.1 for non-
distributive lattices. So, we construct a lattice L together with a woven subset P of L
so that P − p is not woven in L for any p ∈ P .

This construction needs to be such that for every element p of P there are elements q
and r of P such that either p = q ∨ r and q ∧ r 6∈ P or p = q ∧ r and q ∨ r 6∈ P .

We will construct our lattice L by building its Hasse diagram. To be able to prove
that our construction results in a lattice we need to start with a graph of high girth.
(For the definition of graphs and their basic properties we follow [2].) Specifically we will
use a 4-regular graph of high girth as a starting point. Lazebnik and Ustimenko have
constructed such graphs:

Lemma 5.1 ([15]). There exists a 4-regular graph G with girth at least 11.

For contradiction arguments we will try to find short closed walks in our graph. The
following simple lemma then tells us that these contradict the high girth of G:

Lemma 5.2. If G is a graph, W = v1v2 . . . vnv1 a closed walk in G such that there exists
an j with vi 6= vj for all i 6= j and vj−1 6= vj+1, then W contains a cycle. In particular,
G contains a cycle of length at most n.

Proof. Since vj 6= vi for all i 6= j, the graph W − vj is connected. Thus, W − vj contains
a path between vj−1 and vj+1 which together with vj forms the desired cycle.

We are now ready to start the construction of our lattice L together with its woven
subset P .

Let G be a 4-regular graph of girth at least 11. The ground set of our lattice L
consists of a top element t, a bottom element b and 4 disjoint copies of V (G) which we
call V −, V, W and W +.

We say that v ∈ V − ∪ V ∪ W ∪ W + corresponds to w ∈ V − ∪ V ∪ W ∪ W + if they are
copies of the same vertex in V (G).

We now start with defining our partial order on L. We define, for v ∈ V and w ∈ W ,
that v ≤ w if and only if there is an edge between v and w in G.

Now consider the bipartite graph G′ on V ∪ W where v ∈ V is adjacent to w ∈ W
if and only if v ≤ w. This bipartite graph is 4-regular graph and has girth at least 12.
Every regular bipartite graph has a 1-factor. Hence G′ has a colouring of E[G′] with

8



two colours, red and blue say, such that every vertex in G′ is adjacent to exactly two red
and exactly two blue edges. We fix one such colouring.

To define our partial order for v− ∈ V − and v ∈ V we define that v− ≤ v if and only
if there is a red edge between v and the vertex in W corresponding to v−. Thus, every
v− in V − lies below exactly two points in V , we call these the neighbours in V of v−.

Similarly, we let w ≤ w+ for w ∈ W and w+ ∈ W + if and only if there is a blue edge
between w and the vertex in V corresponding to w+. We call the two points in W which
lie below w+ ∈ W + the neighbours in W of w+.

We finish our definition of ≤ by taking the transitive closure and defining b ≤ v and
v ≤ t for every v ∈ L. It is easy to see that this ≤ is indeed a partial order.

t

b

V −

V

W

W +

G′

Figure 1: The Hasse diagram of L. The points in P are denote by black dots, the points
outside of P are white.

We claim that (L, ≤) is a lattice, that P = V ∪ W ∪ {t, b} ⊆ L is a woven subset of L
and that P − p is not woven in L for any p ∈ P . To show that L is a lattice and that P
is woven in L we have to show that there is, for every pair x, y ∈ L, a supremum and an
infimum and that at least one of these two lies in P if x, y ∈ P . We do so via a series of
lemmas which distinguish different cases for x, y.
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Let us first consider the case that either both x and y lie in V , or that they both lie
in W :

Lemma 5.3. If v1, v2 ∈ V , then there is a supremum and an infimum of v1, v2 in L.
Moreover, if v1 ∧ v2 6= b then v1 ∨ v2 ∈ W .

Analogously, if w1, w2 ∈ W , then there is a supremum and an infimum of w1, w2 in
L. Moreover, if w1 ∨ w2 6= t then w1 ∧ w2 ∈ V .

Proof. Let us start by showing that there is a supremum of v1 and v2.
First consider the case that the neighbourhoods of v1 and v2 in G′ intersect, that is,

NG′(v1) ∩ NG′(v2) 6= ∅. In this case, there is only one point in the intersection, since
if there are w1, w2 ∈ NG′(v1) ∩ NG′(v2), w1 6= w2, then v1w1v2w2v1 would be a cycle of
length 4 in G′, contradicting the fact that G′ has girth at least 12. We claim that the
single point in the intersection, which we call w, is the supremum of v1 and v2.

To see this consider any x ∈ L such that v1 ≤ x, v2 ≤ x. We need to show that w ≤ x.
If x = t then this is clear and x ∈ W ∪ V ∪ V − ∪ {b} is not possible, so suppose that
x ∈ W +. Let w1, w2 be the neighbours in W of x, i.e., w1, w2 ≤ x. We show that w1 = w
or w2 = w. So suppose that w 6= w1, w2. Let vx ∈ V be the point corresponding to x.
As v1 ≤ x we may suppose without loss of generality that v1 ≤ w1. Now if v2 ≤ w2 then
wv1w1vsw2v2w contains a cycle of length at most 6 in G′ by Lemma 5.2, as v1 6= v2 and
w 6∈ {v1, w1, vs, w2, v2}. This contradicts the fact that G′ has girth at least 12. Thus
v2 ≤ w1 and hence w1 = w as NG′(v1) ∩ NG′(v2) = {w}, contradicting the assumption
that w 6= w1 and thus proving w ≤ x.

Now suppose that NG′(v1) ∩ NG′(v2) = ∅.
Then every candidate for a supremum of v1 and v2 is either t, or lies in W +, hence

it is enough to show that there cannot be two elements w+
1 , w+

2 ∈ W + both satisfying
v1, v2 ≤ w+

1 , w+
2 . So suppose that there are two such points and denote the neighbours

of w+
1 and w+

2 in W as w11, w12 and w21, w22 respectively, i.e., w11, w12 ≤ w+
1 and

w21, w22 ≤ w+
2 .

As v1 ≤ w+
1 , w+

2 , we may suppose without loss of generality that v1 ≤ w11, w21. Since
NG′(v1) ∩ NG′(v2) = ∅, we thus have v2 ≤ w12, w22 and w12, w22 6∈ {w11, w21}. Let us
denote the corresponding points of w+

1 and w+
2 in V as vw+

1

and vw+

2

. Since w+
1 6= w+

2

either w12 6= w22 or w11 6= w21, as otherwise G′ would contain a cycle of length 4.
In any case, we consider the closed walk v1w11v

w+

1

w12v2w22v
w+

2

w21v1. As v
w+

1

6= v
w+

2

,

we have v1 6= v
w+

1

or v1 6= v
w+

2

and v2 6= v
w+

1

or v2 6= v
w+

2

. Furthermore, either

w11 /∈ {w12, w21, w22} and w21 /∈ {w11, w12, w22} or w12 /∈ {w11, w21, w22} and w22 /∈
{w11, w12, w21} This allows the application of Lemma 5.2 to our walk, yielding a cycle
of length at most 8, which contradicts the fact that G′ has girth at least 12. Thus there
exists a supremum v1 ∨ v2 in L.

One candidate for the infimum v1 ∧ v2 is b. Every other candidate needs to lie in V −.
However, there can be at most one such candidate in V −, otherwise, these candidates
together with v1, v2 would correspond to a cycle of length 4 in G′ contradicting the fact
that G′ has girth at least 12. Thus there is indeed an infimum v1 ∧ v2.
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Moreover, if v1 ∧ v2 6= b, then there is a point w ∈ W such that both, v1w and v2w
are red edges in G′, hence NG′(v1) ∩ NG′(v2) 6= ∅, which shows the moreover part of the
claim.

The statement for w1, w2 ∈ W follows by a symmetric argument.

We can now apply Lemma 5.3 to show the existence of suprema and infima between
v ∈ V and w ∈ W :

Lemma 5.4. If v ∈ V and w ∈ W , then there is a supremum and an infimum of v and
w in L. Moreover, if v ∧ w 6= b then v ∨ w = t or v ≤ w.

Proof. If v ≤ w then the statement is obvious, so suppose that v 6≤ w.
By Lemma 5.3, every point wi ∈ NG′(v) has a supremum with w which is either t or lies

in W +. Moreover, there can be at most one point wi ∈ NG′(v) such that the supremum
wi ∨ w is in W +, since if there are two, w1, w2 ∈ NG′(v) say, then, by Lemma 5.3, w1 ∧ w
and w2 ∧ w ∈ both lie in V and thus wv1w1vw2v2w is a cycle of length 6 in G′. Hence
v ∨ w is well-defined.

A symmetric argument shows that also v ∧ w is well-defined, so all that is left to show
is that v ∨ w ∈ W + and v ∧ w ∈ V − cannot both occur.

However, if this were the case, say w+ = v ∨ w ∈ W + and v− = v ∧ w ∈ V −, we can
consider the corresponding vertex vw+ of w+ in V and the corresponding vertex wv− of
v− in W . By definition, there is a vertex w1 ∈ W such that vw1 ∈ E(G′) and both w1vw+

and wvw+ are blue edges. Similarly, there is a vertex v1 ∈ V such that v1w ∈ E(G′) and
both v1wv− and vwv− are red edges. Consider the closed walk vw1vw+wv1wv−v. We
have v /∈ {vw+ , v1} as v 6≤ w and similarly w /∈ {w1, wv− }. Moreover, since every edge
in G′ has precisely one colour we have v1wv− 6= vw+w1 and thus either wv− 6= w1 or
v1 6= vw+. We can thus apply Lemma 5.2 to our walk to show the existence of a cycle of
length at most 6 in G′, which is a contradiction.

Finally it remains to consider suprema x ∨ y and infima x ∧ y where one of x and y
lies in V − or W +:

Lemma 5.5. If v− ∈ V − and x ∈ L, then there exists a supremum and an infimum of
v and x in L.

Similarly, if w+ ∈ W + and x ∈ L, then there exists a supremum and an infimum of
v and x in L.

Proof. If v− and x are comparable, the statement is obvious, so suppose that this is not
the case. It is then immediate that v− ∧ x = b.

Let v1, v2 be the two points in V such that v− = v1 ∧ v2 and let wv− be the point in
W corresponding to v−. We note that any l ∈ L satisfies v− < l if and only if v1 ≤ l or
v2 ≤ l. We distinguish multiple cases, depending on whether x lies in W +, W, V or V −.

If x ∈ W +, then x ∨ v− = t.
If x ∈ W , then x∨v1 and x∨v2 exist by Lemma 5.4 and it is enough to show that x∨v1

and x∨v2 are comparable. If they are incomparable, then x∨v1 ∈ W + and x∨v2 ∈ W +

and moreover x ∨ v1 6= x ∨ v2 and v1 6≤ x ∨ v2 as well as v2 6≤ x ∨ v1. Let v3 ∈ V be
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the point corresponding to x ∨ v1, let v4 ∈ V be the point corresponding to x ∨ v2, let
w3 ∈ W such that w3 ∨ x = x ∨ v1 and let w4 ∈ W such that w4 ∨ x = x ∨ v2. Note
that both v1, v2, v3, v4 and x, wv− , w3, w4 consist of pairwise distinct points as v1 6≤ x
and v2 6≤ x and wv− /∈ {x, w3, w4}, thus w3v3wv4w4v2wv−v1w3 needs to be a cycle of
length 8 in G′ contradicting the fact that G′ has girth at least 12.

If x ∈ V , then again x∨v1 and x∨v2 exist by Lemma 5.4, and if they are incomparable
we may suppose that x∨v1 ∈ W + ∪W and x∨v2 ∈ W + ∪W and moreover x∨v1 6= x∨v2.

If x ∨ v1 ∈ W and x ∨ v2 ∈ W , then v1wv−v2(x ∨ v2)x(x ∨ v1)v1 would be a cycle of
length 6 in G′ as x ∨ v1 6= x ∨ v2.

Now suppose that x∨v1 ∈ W and x∨v2 ∈ W +. Let vx2
be the point in V corresponding

to x ∨ v2 and let w1, w2 ∈ W such that w1 ∨ w2 = x ∨ v2. We may suppose that
w1, w2 6= x ∨ v1 and that v2 ≤ w1 and x ≤ w2. Note that vx2

6= x as otherwise
x ∨ vx = w2. Now xw2vx2

w1v2wv−v1(x ∨ v1)x contains a cycle of length at most 8 in G′

by Lemma 5.2, as s /∈ {v1, v2, vx2
} and x ∨ v1 6= w2.

So we may suppose that x ∨ v1 ∈ W + and x ∨ v2 ∈ W +.
Let vx1

be the point in V corresponding to x∨v1, vx2
be the point in V corresponding

to x ∨ v2, let w1, w2, w3, w4 ∈ W such that w1 ∨ w2 = x ∨ v1 and w3 ∨ w4 = x ∨ v2. We
may suppose that v1 ≤ w1, v2 ≤ w3 and x ≤ w2, w4. Note that x /∈ {v1, v2, vx1

, vx2
}

and that w4 6= w2 as otherwise w4 ≤ x ∨ v1 and thus x ∨ v2 = x ∨ w4 ≤ x ∨ v1. Thus
xw2vx1

w1v1wv−v2w3vx2
w4x contains a cycle in G′ of length at most 10 by Lemma 5.2.

So the remaining case is x ∈ V −. Let us denote the vertex in W corresponding to x
as wx and let v3, v4 ∈ V such that v3 ∧ v4 = x. Since every candidate for a supremum
of v− and x lies above one of v1 ∨ v3, v1 ∨ v4, v2 ∨ v3 and v2 ∨ v4, all of which exist by
Lemma 5.4, it is enough to show that all these points are comparable, since then the
smallest of them needs to be the supremum of v− and x.

However, we know by the previous argument that v− ∨ v3 exists, which needs to be
equal to v1 ∨ v3 or v2 ∨ v3. Hence v1 ∨ v3 and v2 ∨ v3 are comparable.

Similarly, if we consider v− ∨ v4 we see that v1 ∨ v4 and v2 ∨ v4 are comparable.
If we consider x ∨ v1, we observe that v1 ∨ v3 and v1 ∨ v4 are comparable.
And finally, if we consider x ∨ v2, we see that v2 ∨ v3 and v2 ∨ v4 are comparable as

well and therefore there indeed exists a supremum of v− and x.

We have now seen that L is indeed a lattice and that P is woven in L. This allows us
to state and prove the main result of this section:

Theorem 5.6. L is a lattice and P = V ∪ W ∪ {t, b} ⊆ L is woven in L such that P − p
is not woven in L for any p ∈ P .

Proof. By the Lemmas 5.3 to 5.5 L is indeed a lattice. To see that P is woven in L
observe that by Lemma 5.3, Lemma 5.4 and the fact that t and b are comparable with
every element in P it follows that at most one of x ∨ y and x ∧ y lie outside of P , for
any x, y ∈ P .

For any p ∈ V there are w1, w2 ∈ W such that pw1 and pw2 are both blue edges in G′,
thus both w1 ∨w2 and w1 ∧w2 lie outside of P −p. Similarly, P −p is not woven in L for
any p ∈ W . Finally, if p = b we note that there are v1, v2 ∈ V such that v1 ∨ v2 ∈ W +
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which implies that v1 ∧ v2 = b and shows that P − b is not woven in L. Similarly, P − t
is not woven in L.

As before, this result about woven subsets of lattices allows us to directly obtain a
result about structurally submodular separation systems, as we can use this lattice L to
construct a universe U of separations together with a structurally submodular separation
system S ⊆ U which cannot be unravelled:

Theorem 5.7. There exists a universe U of separations and a submodular subsystem
S ⊆ U such that S − {s, s} is not submodular in U for any s ∈ S.

Proof. Let L′ be a copy of L with reversed partial order, i.e., the poset-dual of L. In
the disjoint union L ⊔ L′ we now identify the copy of t in L (the top of L) with the copy
of b in L′ (the top of L′) and the copy of b in L with the copy of t in L′ to obtain U .
It is easy to see that this forms a universe of separations and that S = P ∪ P ′ (where
P ⊆ L is as above and P ′ ⊆ L′ is the image of P in L′) is a separation system which is
submodular in U . Moreover, there is no separation s ∈ S such that S − {s, s} is again
submodular in U .

Note that neither our lattice L nor the constructed universe U of separations are
distributive.

6 Woven posets

Instead of asking in Problem 2.1 for a woven subset P inside a lattice L, we might as
well directly ask for a partially order set P , which is woven in itself. More precisely let
us say that a partially order set P is woven if we have, for any two elements p, q of P a
supremum or an infimum in P , i.e., there exists a r ∈ P such that p ≤ r, q ≤ r and r ≤ s
whenever s ∈ P such that q ≤ s and p ≤ s or there exists a r ∈ P such that p ≥ r, q ≥ r
and r ≥ s whenever s ∈ P such that q ≥ s and p ≥ s.

The Dedekind-MacNeille-completion [16] from lattice theory implies that we can find,
for each poset P , a lattice L in which P can be embededded in such a way that existing
joins and meets in P are preserved. Hence if P is a finite woven set there exists a lattice
L in which P can be embedded so that the image of P in L is woven in L.

Using this notion of wovenness inside the poset itself, we can now weaken the concept
of unravelling, by considering a woven poset P instead of a woven subset of a lattice.
We will be able to show that, given a woven poset P , we can always remove a point so
that the remainder is again a woven poset.

Even though every woven poset can be embedded into a lattice, this still is a proper
weakening of the unravelling conjecture. The key difference here lies in the different
perspective we take on P − p, given a poset P and some p ∈ P : if we consider P as a
woven poset and P − p is again woven, then there are lattices L and L′ in which P and
P − p, respectively, can be embedded so that the images are woven as subset of these
lattice. However, these two lattices are different, and in general it is not possible to find
one lattice in which both P and P − p can be embedded so that their images are woven
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in that lattice. In this sense, having an unravelling for the wovenness of a poset is a
weaker property than having an unravelling as a woven subset of a lattice.

To prove this weaker unravelling property for woven posets we will show that every
woven poset contains a point p with precisely one lower (or one upper) cover, i.e. there
exists precisely one q such that p > q (p < q) and there does not exists any c ∈ P such
that p > c > q (p < c < q). Deleting such a point does not destroy the wovenness, as
shown by the following lemma:

Lemma 6.1. Let P be a woven poset and p ∈ P a point with precisely one lower (upper)
cover p′, then P ′ = P − p is a woven poset.

Proof. Let x, y ∈ P ′. We need to show that x, y have a supremum or an infimum in P ′.
If they have a supremum s in P , then s 6= p: as p′ is the only lower cover of p we have
x, y ≤ p′ as soon as x, y ≤ p. Thus s ∈ P ′ is also the supremum of x and y in P ′.

If x, y have an infimum z in P , then either z 6= p and z is also the infimum in P ′ or
z = p, in which case p′ is the infimum of x and y in P ′, as p′ is the only lower cover of p.

The upper cover case is dual.

Thus, what is left to show is that there always exists a point p ∈ P with precisely one
upper or precisely one lower cover. To see this, we consider the maximal elements of P ,
since any subset of them needs to have an infimum by the following lemma:

Lemma 6.2. Let P be a woven poset and M its set of maximal elements. Then every
non-empty subset M ′ ⊆ M has an infimum inf M ′ in P .

Proof. We proceed by induction on |M ′|. For the induction start |M ′| = 1 this is trivial.
For the induction step consider |M ′| ≥ 2 and let m ∈ M ′ and M ′′ := M ′ − m. By the
inductive hypothesis M ′′ has an infimum p. Since m is maximal there can only be a
supremum of m and p if m and p are comparable. However then there also exists an
infimum of m and p in P . Thus, as P is woven, in any case P needs to contain an
infimum q of m and p. This q lies below all of M ′ and, conversely, every point which
lies below all of M ′ lies below both p and m and hence below q. Thus q is the infimum
of M ′ in P .

Given a woven poset P , let M be the set of maximal elements of P . Given some
subset M ′ ⊆ M we are interested in those points x ∈ P where, for every maximal
element m ∈ M we have x ≤ m precisely if m ∈ M ′. Let us denote as d(M ′) the set of
all these points in P .

Either each such set d(M ′) just consist of at most one point, or there is some M ′ such
that d(M ′) has size more then one. In the latter case, the following lemma guarantees
that we find a point p ∈ P with only one upper cover:

Lemma 6.3. Let P be a woven poset and M the set of maximal elements of P . If
M ′ ⊆ M is subset-minimal with the property that d(M ′) contains at least two points,
then there is an x ∈ d(M ′) for which inf M ′ is the only upper cover.
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Proof. Observe that, if d(M) 6= ∅ then inf M ′ ∈ d(M). Let x be a maximal element of
d(M ′) − inf M ′. Since x is a candidate for inf M ′, we have that inf M ′ is an upper cover
of x. If y is any point other than inf M ′ such that x < y then y lie in d(M ′′) for some
proper subset M ′′ of M . Thus, by our assumption, y is the only element of d(M ′′) and
therefore y = inf M ′′. However, inf M ′ ≤ inf M ′′ and y 6= inf M ′, thus y is not an upper
cover of x.

It remains to consider the case where every d(M ′) has size one. However, in that case
we can find an element with only one lower cover, as shown in the following lemma:

Lemma 6.4. Let P be a woven poset. Then P has an element which has precisely one
lower or one upper cover.

Proof. Suppose the converse is true. Let M be the set of maximal elements of P . Note
that every element of P lies in d(M ′) for exactly one set M ′ ⊆ M . By Lemma 6.3, given
any M ′ ⊆ M there exists at most one element in d(M ′). Moreover, by Lemma 6.2 we
know that inf M ′ exists for every M ′ ⊆ M .

Now if |d(M ′)| = 1 for some M ′ ⊆ M , then inf M ′ ∈ d(M ′): we know that inf M ′ is
in d(M ′′) for some M ′′ ⊆ M and clearly M ′ ⊆ M ′′, however if d(M ′) = {v}, say, then
clearly v ≤ inf M ′ which implies that M ′′ ⊆ M ′ and thus M ′ = M ′′.

However, since every element of P lies in some d(M ′) and inf M ′ ≤ inf M ′′ whenever
M ′′ ⊆ M ′ this implies that inf M is the smallest element of P . However, any upper cover
of this smallest element inf M has precisely one lower cover, which is a contradiction.

Thus if we consider woven posets instead of woven subsets of a fixed lattice (as in
Section 5) we can indeed unravel every such poset: given some woven poset P , by
Lemma 6.4, P contains an element p which has only one upper or lower cover, and, by
Lemma 6.1, P − p is again woven. Thus we obtain the following theorem:

Theorem 3. Every woven poset can be unravelled.

Again we can translate this result to abstract separation systems as introduced in
Section 3.

Let us say that a separation system S, on its own, not in the context of a surrounding
universe U of separations, is submodular if there exists, for any two separations s, t ∈ S
a supremum or an infimum in S, i.e., – as for woven posets – we require that there either
is a smallest separation r such that s, t ≤ r or there is a largest separation r such that
s, t ≥ r. These submodular separation systems are also considered in [10], where we also
show that one can find, for each such system S, a universe U of separations in which we
can embed S so that the joins and meets in S are preserved.

We now obtain the following corollary for this type of separation system:

Theorem 6.5. Let S be a submodular separation system. Then there exists an s ∈ S
such that S r {s, s} is again submodular.

Proof. Observe that S considered as a poset is woven. Let M be the set of maximal
elements of S. We note that s ≥ t for all s, t ∈ M . Therefore inf M ≥ t for all t ∈ M
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and thus inf M ≥ sup M∗ = (inf M)∗. Suppose that there is a proper subset M ′ of M
such that |d(M ′)| ≥ 2 and let M ′ be chosen subset-minimal with that property. Let
x ∈ d(M ′) be as guaranteed by Lemma 6.3. We note that x 6= (inf M ′)∗ as otherwise
x ≤ (inf M)∗ ≤ inf M , contradicting the fact that x ∈ d(M ′). But this implies that S−x
is a woven poset by Lemma 6.1. However, x has only one lower cover in S and, since
this cover is not x, also exactly one lower cover in S − x. Thus, again by Lemma 6.1,
also ((S − x) − x) is a woven poset and thus S − x is a submodular separation system.

Hence we may suppose that |d(M ′)| ≤ 1 for all proper subset M ′ of M . This implies
that every element s ∈ S is nested with inf M : if s ∈ d(M) then s ≤ inf M and if
s ∈ d(M ′) for a proper subset M ′ of M , then s = inf M ′ ≥ inf M . Now suppose that
|M | ≥ 2. Then there is a m ∈ M such that m 6= inf M . We claim that S r {m, m} is
again submodular. To see this suppose that, for some x, y ∈ S, we have that x ∨ y = m
(the case x ∧ y = m is dual). As x and y are nested with inf M this implies that
x, y ≥ inf M as x ≤ inf M would imply that x ∨ y = y or x ∨ y ≤ inf M . Thus
x = inf M ′ and y = inf M ′′ for subsets M ′, M ′′ of M , say. Thus inf(M ′ ∪ M ′′), which
exists by Lemma 6.2, is also the infimum of x and y . Moreover, since m 6= inf M and m
is a minimal element of S and inf(M ′ ∪ M ′′) ≥ inf M we have that inf(M ′ ∪ M ′′) 6= m
and thus there is a corner of x and y in S r {m, m}.

It remains the case that |M | = 1, say M = {m}. In this case however, we have that
s ≤ m for every s ∈ S. If S = {m, m} the statement is trivial, so let s ∈ S − m be
≤-maximal such that s 6= m. Such an s exists as m is a ≤-minimal element of S. Then
m is the unique upper-cover of s. Thus S −s is a woven poset by Lemma 6.1. Moreover,
m is the unique lower cover of s and, since m 6= s it is also the unique lower cover of s in
S − s. Thus (S − s) − s is a woven poset by Lemma 6.1, and thus S − s is a submodular
separation system.

The Dedekind-MacNeille completion of posets [1] allows us to embed every woven
poset into a lattice so that the poset is woven in this lattice. We show in [10] that this
technique can also be applied to submodular separation systems to obtain a universe of
separations in which the separation system is submodular.

In particular, if P is a woven poset and p ∈ P such that P ′ = P − p is again woven,
there are lattices L and L′ such that P is woven in L and P ′ is woven in L′. If we
could arrange for these two lattices to be sublattices of one another, L′ ⊆ L, in such a
way that every element of P ′ ⊆ L′ is mapped to the corresponding element of P ⊆ L,
then this would imply that P could be unravelled as a woven subset of L in the sense of
Problem 2.1.

The way in which we constructed P ′, however, makes this almost impossible. We
choose p as an element with a unique upper, or a unique lower cover. Now if p ∈ P
has a unique upper cover q, say, and is also the supremum of some two points r, s ∈
P r {p}, then the Dedekind-MacNeille completion L′ of P ′ cannot be embedded in the
way outlined above into the Dedekind-MacNeille completion L of P : in L′, the images
of r and s have the image of q as supremum and an embedding as a sublattice would
need to preserve this property, but the images of r and s in L have the image of p as
their supremum. (However, L′ is order-isomorphic to a subposet of L.)
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