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The Turaev-Viro state sum invariant can be extended to 3-manifolds with free bound-
aries. We use this fact to describe generalized Frobenius-Schur indicators as Turaev-Viro in-
variants of solid tori. This provides a geometric understanding of the SL(2,Z)-equivariance
of these indicators.
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1 Introduction

Let K be an algebraically closed field. The Frobenius-Schur indicator assigns a scalar ν(V ) ∈ K to a
finite-dimensional K-linear representation V of a finite group G. The concept of a Frobenius-Schur
indicator has found its natural conceptual home in the context of spherical fusion categories [KSZ06;
SZ07] [NS07b; NS10]. In full generality, given a fixed spherical fusion category C over K, the
Frobenius-Schur indicator νXn,r(V ) ∈ K is a scalar assigned to an object V ∈ C, with an additional
argument in the Drinfeld center X ∈ Z(C), and (n, r) ∈ Z× Z. Specializing to the case C = G-rep,
X = 1, n = 2, r = 1, one obtains the classical indicator ν(V ) = ν12,1(V ). We recall the definition in
Section 2 (Definition 10).
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In the upper argument X, the Frobenius-Schur indicator is additive with respect to direct sums.
This allows us to extend the range of this argument from objects X ∈ Z(C) in the Drinfeld center to
elements of the Grothendieck algebra of the Drinfeld center, K0(Z(C))⊗Z K. The Drinfeld center
Z(C) is a modular fusion category, hence the K-vector space K0(Z(C))⊗ZK comes with the structure
of a left action of the modular group SL(2,Z), see [NS10, Sec. 1.4]. The group SL(2,Z) also acts on
the lower argument (n, r) of the indicator via right matrix multiplication.

The Frobenius-Schur indicator turns out to satisfy a rather surprising equivariance property with
respect to these actions, as first shown in [SZ07]: For g ∈ SL(2,Z), we have

ν
g[X]
(n,r)(V ) = ν

[X]
(n,r)g̃(V ), (1.1)

where g̃ = diag(1,−1) g diag(1,−1).
In this general form, Frobenius-Schur indicators have found several applications.

Application 1. Kashina, Sommerhäuser and Zhu extensively study higher Frobenius-Schur indicators
in representation categories of semisimple Hopf algebras in [KSZ06]. (Note that the representation
category of a semisimple Hopf algebra has a canonical pivotal structure.) In their work, three distinct
formulae for the indicators are presented. Their results include a generalization of the classical
theorem on Frobenius-Schur indicators [KSZ06, Thm. 2.4], as well as relations to other invariants,
among them the following (previously conjectured) result: If p ∈ K is a prime in an algebraically
closed field of characteristic zero, and p divides dimH (where H is a semisimple finite-dimensional
Hopf algebra over K), then p also divides the so-called exponent expH of H [KSZ06, Thm. 3.4].

Application 2. In [NS08], Ng and Schauenburg apply the definition of higher Frobenius-Schur
indicators for X = 1 to the case of semisimple quasi-Hopf algebras.

They present four quasi-Hopf algebras whose representation categories share the same number of
(isomorphism classes of) simple objects and the same fusion rules, and use the indicators to show
that nevertheless, these categories are inequivalent as monoidal categories. Before their work, it
had been known that precisely four inequivalent fusion categories of this type exist, but an explicit
construction in terms of representation categories had not been presented.
Different quasi-Hopf algebras with tensor-equivalent representation categories share the same

(higher) Frobenius-Schur indicators. Ng and Schauenburg establish inequivalence by finding a family
of representations – one for each of the four quasi-Hopf algebras – that are necessarily identified by
any tensor equivalence. They then explicitly compute some indicators and show that they do not
agree [NS08, Thm. 6.1]. To this end, the second (classical) Frobenius-Schur indicator is not sufficient
and higher indicators are needed.

Application 3. Finally, we remark that the full generality of Definition 10 has been used to prove
the congruence subgroup conjecture, in [SZ07, Thms. 9.3 and 9.4] for semisimple Hopf algebras,
and in [NS10, Thms. 6.7 and 6.8] in the context of spherical fusion categories, along with some
conjectures about rational conformal field theory [NS10, Sec. 8]. In this application, it is important
to consider for X ∈ Z(C) also objects different from the monoidal unit.

2



While the equivariance (1.1) has proven to be useful, its algebraic proofs in [SZ07] and [NS10] only
provide limited insight into its conceptual origin. The purpose of this note is to provide such an
understanding in topological terms.

The basic idea is to obtain the Frobenius-Schur indicator from the evaluation of a topological field
theory (TFT) associated to the spherical fusion category C on a suitable 3-manifold. Concretely,
we build on the construction of a state-sum theory in the formulation of Turaev and Virelizier
[TV17]. An important algebraic feature of the Frobenius-Schur indicator is the fact that both the
category C and its Drinfeld center Z(C) appear. The Drinfeld center naturally appears in Turaev-Viro
invariants of closed oriented 3-manifolds. To see also objects in C itself, we extend the notion of
Turaev-Viro invariants to 3-manifolds with boundary. Note that in contrast to the manifolds with
boundary that most commonly appear in this context (e.g. in [TV17]), our boundaries are not “gluing”
boundaries that arise when cutting a larger 3-manifold into pieces, but “physical” or free boundaries.
Consequently, a scalar (not a linear map, as one might expect) is assigned to a 3-manifold with free
boundary. As usual for state-sum constructions, auxiliary structure is needed. Following [TV17], we
use a skeleton embedded in the manifold (similar to a triangulation). We describe this construction
in Section 3. In Section 4, we show that the Frobenius-Schur indicator is obtained for a specific
skeleton from a solid torus with additional structure, namely embedded links (Wilson lines) in the
interior and on the boundary. This is the content of Proposition 14. An example for such a solid
torus is given in picture (4.2), the skeleton we use in (4.3).

In this setup, the SL(2,Z)-equivariance can be related to geometry: SL(2,Z) is the mapping class
group of the two-dimensional torus. Using standard techniques from topological field theory, we
can cut the solid torus along an embedded torus into two connected components, and glue them
together again along an element of the mapping class group. This is illustrated in the picture (5.1)
in Section 5. We show that this operation amounts to acting with the corresponding element of
SL(2,Z) on the upper argument of the Frobenius-Schur indicator; it also amounts to acting on the
lower argument. This fact implies the equivariance (1.1).

Our construction uses explicit skeleta. The arguments can be extended to an alternative proof of
SL(2,Z)-equivariance. However, such a proof requires a lot of elaboration and technical arguments,
in particular about skeleta, that do not add to the conceptual understanding of the well-established
equivariance property (see Remark 17). It is therefore much more attractive to complete a proof by
showing that our construction of assigning scalars to 3-manifolds with boundary, together with the
usual Turaev-Viro theory, assemble into a TFT defined on a cobordism category with free boundaries.
Such a proof, unfortunately, is beyond the scope of this note and is relegated to future work. From
this perspective, the construction in this note may be seen as a consistency check that it makes sense
to generalize the Turaev-Viro TFT to cobordisms with free boundary.

2 Preliminaries

Throughout this work, let C denote a spherical fusion category over an algebraically closed field K
of characteristic 0. We follow the conventions in [EGNO15], and proceed to make some definitions
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more explicit and introduce some notation.
We write the data of a monoidal category as (C,⊗,1), or simply as C, consistently suppressing

associativity and unitality constraints in notation.
For a monoidal category C, we use the following notion of duality: A right dual of an object

X ∈ C is an object X∨ ∈ C, together with morphisms evX : X∨ ⊗X → 1 and coevX : 1→ X ⊗X∨,
satisfying zig-zag relations. In the same situation, X together with these morphisms is called a left
dual of X∨.

A basic example for a category with duals, which we recall in order to introduce a notational
convention, is the category vect of finite-dimensional K-vector spaces. A right dual of a (finite-
dimensional) vector space V is given by the linear dual V ∗, with the evaluation given by the standard
pairing. In terms of a basis (αi) and the corresponding dual basis (α∗i ) the coevaluation in V is
defined by

coevV (1) =

dim(V )∑
i=1

αi ⊗ α∗i = αi ⊗ α∗i = α⊗ α∗. (2.1)

We here introduced a form of the Einstein summation convention, dropping the sum from the notation,
or even the summation index. This convention will in particular be applied to hom-spaces.
A pivotal structure on a rigid monoidal category C is a monoidal natural isomorphism j : idC →

(−)∨∨. In a pivotal category C, that is, a rigid monoidal category with pivotal structure, we can
define left and right traces of endomorphisms f , trl(f) and trr(f). These are morphisms 1 → 1,
which, if C is a K-linear category with simple unit 1, correspond under the canonical identification
HomC (1, 1) ∼= K to a scalar. The left and right (pivotal) dimensions diml(X) and dimr(X) of
an object X ∈ C are given by the corresponding traces of the identity. A pivotal structure is
said to be spherical if trr(f) = trl(f) for any endomorphism f of any object X.In this case, we
drop the subscripts r and l from the expressions for traces and dimensions, and abbreviate further
dX = dim(X).

There is a coherence theorem for pivotal monoidal categories [NS07b, Thm. 2.2], which states that
any pivotal monoidal category is equivalent (under a suitable notion of pivotal monoidal equivalence)
to a strict pivotal monoidal category, in which the tensor product is strict and j is the identity. This
justifies omitting the pivotal constraint j from our notation when we work with these categories.
Moreover, we do not distinguish right duals and left duals, and write in pivotal categories X∗ for the
two-sided dual of an object X.

In a spherical fusion category C, the dimensions of simple objects are non-zero [EGNO15, Prop.
4.8.4]. We will always denote by I a complete set of representatives of simple objects, and assume
that the representative of [1] is 1. We define the dimension of the category as

dim(C) :=
∑
i∈I

d2
i .

Note that some authors [BK10] define the dimension to be the square root of this quantity instead.
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Moreover, the pairing

HomC (X, Y )⊗HomC (Y, X)→ 1, f ⊗ g 7→ Tr(g ◦ f) (2.2)

is non-degenerate (semisimplicity is essential for this), inducing an isomorphism

HomC (X, Y )∗ ∼= HomC (Y, X) . (2.3)

We will make heavy use of the graphical calculus of string diagrams appropriate for spherical
fusion categories, with conventions similar to those in e.g. [BK10]. Recall that the principal feature
of string diagrams in spherical fusion categories is that closed diagrams on the sphere S2 can be
evaluated to a scalar in K (see [TV17, Lem. 2.9]).
We will often consider pairs of dual bases of a hom-space. These will be denoted by lowercase

greek letters α, β, . . . . We adopt the summation conventions from (2.1) to the graphical calculus:
Whenever we draw a string diagram in which a coupon is labeled by α (or β, . . . ), and another
coupon is labeled by α∗, we evaluate it as follows. Choose a basis (αi) of a hom-set appropriate for
the α-labeled coupon, and denote by (α∗i ) the image of the dual basis under the isomorphism (2.3).
We require that the adjacent strands of the α∗-coupon are such that the the coupon is allowed to be
labeled by the elements α∗i . Then we replace the labels α and α∗ by αi and α∗i , and take the sum
over i. As an example, the following lemma uses this convention:

Lemma 4. Let X,Y ∈ C, and F : HomC (X, Y )→ HomC (X, Y ) a linear map. Then the following
equality holds for the trace Tr of linear endomorphisms of vector spaces:

Tr(F ) =
*

F( )
Y X .

Proof. The string diagram depicted involves a choice of basis (αi) of HomC (X, Y ) (but we will see
that its value in K is independent of this choice). The identification (2.3) determines a dual basis
(α∗i ) of HomC (Y, X). The basis (αi) also determines a matrix representing F , whose components we
denote by Fij . The diagram is then evaluated as∑

i

tr(α∗i ◦ F (αi)) =
∑
i

tr
(
α∗i ◦

∑
j

Fjiαj

)
=
∑
ij

Fji tr(α∗i ◦ αj)︸ ︷︷ ︸
δij

=
∑
i

Fii = Tr(F ).

We recall some more rules for string diagrams in spherical fusion categories. In the lemmata below,
single strands labeled by capital letters X,Y, . . . can be replaced by a collection of parallel strands.
Γ-labeled coupons are always meant to be a suitable morphism.
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In particular, string diagrams with coupons labeled by pairs of dual bases come with useful rules
that allow us to simplify them. The following lemma shows that we can dissolve strands. A detailed
proof can be found in [Pas18, Lem. 1.8]. It is clear that finiteness of the category C is necessary to
state the lemma, and semisimplicity is required in the proof.

Lemma 5 ([BK10, Lem. 1.1 (2)]). Recall that I is a set of representatives of simple objects in C.
Then

∑
i∈I

di

*
i

X

X

= X .

In other instances, disconnected subgraphs can be glued together along a pair of dual coupons:

Lemma 6 ([BK10, Lem. 1.3]). We have

*1 2X X
= 1 2X

.

Note that the coupons Γ1, Γ2 can themselves be replaced by string diagrams, making this a statement
about two disconnected closed diagrams, each having a coupon labeled by one of two bases that are
dual to one another.

Proof. This is a corollary of Lemma 5. By Schur’s Lemma, any morphism 1→ i, for i 6= 1 simple, is
zero. Since C is a fusion category, 1 is simple, so in the sum∑

i

di *1 2iX X
= 1 2X

(applying Lemma 5), only the term i = 1 survives.

Lemma 7. Let X,Y ∈ C and let (ϕi,α)α=1...[i:X] be, for each i ∈ I, a basis of HomC (i, X), and
similarly (ψi,α)α=1...[i:Y ] be a basis of HomC (i, Y ). Denote by ϕαi , ψ

α
i the elements of the dual bases.

Then the maps (
ψi,α ◦ ϕβi

)
i∈I,α=1...[i:X],β=1...[i:Y ]

form a basis of HomC (X, Y ), and the dual basis of HomC (Y, X) is given by(
di ϕi,β ◦ ψαi

)
i∈I,α=1...[i:X],β=1...[i:Y ]

.

This implies the following rule for string diagrams, for any morphism Γ:

∑
i

di

* *

i

i

=

*

.
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Proof. This follows by a direct computation using Schur’s lemma.

Lemma 8. Similarly, we have the following rule for all endomorphisms Γ of any object X ∈ C.

∑
i

di *
X X

ii = dim(C)
X X

* .

Proof. By Lemma 6, the left-hand side is equal to

∑
i

di
X

i * *
X X *

X
i .

We again use Lemma 6 to eliminate the vertices labeled by α. In this way, the strands labeled by i
form a circle, which brings an additional factor di to the term:∑

i

d2i *
X X X

* .

After applying Lemma 6 once more to dissolve the coupons labeled by β, we obtain the right-hand
side in Lemma 8.

Coupons labeled by a pair of dual bases will appear excessively in the string diagrams we consider,
so we will employ the following convention:

Convention 9. When drawing a string diagram with some unlabeled vertices, we implicitly label
each pair of dual vertices by a pair of dual bases and sum over basis elements, as in the following
example, where a sum over α is implied:

1

42

3

X

X
Y

Y =

*

1

42

3

X

X
Y

Y .

Of course, this only makes sense if the labeling of the strands uniquely determines which vertices are
labeled by dual morphisms.

The equivariant Frobenius-Schur indicators in the sense of Kashina, Sommerhäuser and Zhu
[KSZ06; SZ07] and Ng and Schauenburg [NS07b; NS07a; NS08; NS10], can be conveniently expressed
using the graphical calculus in C:
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Definition 10 ([NS10, Def. 2.1]). Let C be a spherical fusion category, and let X ∈ Z(C) be an
object in the Drinfeld center of C. Then for n ∈ N, r ∈ {0, . . . , n}, the r-twisted n-th (generalized)
Frobenius-Schur indicator of an object V ∈ C is given by the scalar

νXn,r(V ) = Tr



f

r
n

7→

f

r
n



∈ K,

where f ∈ HomC

(
X, V ⊗n

)
.

The Frobenius-Schur indicator is thus the trace over an automorphism EX,Vn,r : HomC

(
X, V ⊗n

)
→

HomC

(
X, V ⊗n

)
, where we suppressed the forgetful functor Z(C)→ C, applied to X, in the notation.

These pictures establish the use of double-stroke green lines for objects in the Drinfeld center.
Crossings of strands are then to be interpreted using the half-braiding of X ∈ Z(C). For an arbitrary
pair (n, r) ∈ Z× Z, EX,Vn,r is given by

EX,Vn,r (f) := (evV ⊗r ⊗ V ⊗n) ◦ ((V ∗)⊗r ⊗ f ⊗ V ⊗r) ◦ (β(V ∗)⊗r ⊗ V ⊗r) ◦ (X ⊗ coev(V ∗)⊗r),

where we use the convention V ⊗−1 ∼= V ∗, and by β−, we denote the half-braiding X ⊗− → −⊗X
of X.

Remark 11. In the definition of EX,Vn,r , we omitted the pivotal structure, as well as half-braidings
and associativity morphisms. Ng and Schauenburg had to be much more careful with their definition,
but they showed that the so-defined indicators are preserved under (pivotal) tensor-equivalence (in
detail in [NS07b] for the case X = 1). Once this has been done, we may write down the definition in
the setting of a strict pivotal monoidal category (as we effectively did) and need not worry about the
ambiguities of where to insert the structure maps.

The definition in terms of traces of endomorphisms of hom-spaces can be awkward to work with.
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Lemma 4 shows that we can express the indicator as the value of the string diagram

νXn,r(V ) =

α

α*

, (2.4)

which involves a sum over dual bases α, α∗.

3 A State-Sum Model for Manifolds with Free Boundaries

In this section, we describe a procedure, based on the Turaev-Viro state sum construction in the
formulation of [TV17], to associate a number |M| ∈ K to a (compact oriented) 3-manifold M,
possibly with boundary, with additional data:

• A framed link embedded in the interior of M, whose components are labeled by objects in
Z(C).

• A link embedded on the boundary surface ofM, whose components are labeled by objects in
C. (By a link we here mean an embedding (S1)tn → ∂M, i.e. there are no crossings.)

In contrast to the usual setting of the Turaev-Viro construction, the boundary ∂M does not get
assigned a vector space, and it does not make sense to glue together manifolds along boundary
components. We refer to the type of boundary we consider here as a free or physical boundary – as
opposed to a gluing boundary.
In order to compute the scalar |M| ∈ K, an auxiliary structure called a skeleton is embedded

into the 3-manifoldM [TV17, Sec. 11.5.1]. The skeleton comes with a decomposition into finitely
many oriented 2-cells, edges between them, and vertices. The picture (3.9) illustrates how a skeleton
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may locally look around a vertex. We moreover require that the boundary ofM is a subset of the
skeleton, and that the 3-cells (the connected components of the complement of the skeleton inM)
are open balls.

If the manifoldM comes equipped with embedded links, we call a skeleton ofM a graph skeleton
if the embedded links restrict to the skeleton, and only meet the skeleton’s edges transversely, at
special vertices called switches. Locally, the neighborhood of a switch looks as follows:

We further require that the orientations of the two 2-cells which a graph intersects in the neighborhood
of a switch are compatible (in that they define an orientation on the union of the cells). The embedded
links split some 2-cells into several faces : In the picture of the switch above, there are six 2-cells, but
eight faces.

We now describe how the number |M| is obtained as a state-sum, recalling and slightly extending
the construction in [TV17, Chap. 15].

1. Given a 3-manifoldM with embedded links, pick a graph skeleton P . For now, fix a coloring
c, that is, a map of sets

c : Fac(P )→ I,

where Fac(P ) denotes the set of faces of the skeleton P and I is the chosen set of representatives
of simple objects of the spherical fusion category C. The objects c(f) are often called state-sum
variables, as we will later sum over all possible colorings c.

2. By a half-rim we mean a vertex or a switch of P together with a germ of an adjacent edge of P
(in this case we speak of a half-edge) or an adjacent component of an embedded link. To each
half-rim e, we associate a vector space Hc(e) as follows. If e is a half-edge, the vector space is
constructed from the value of the coloring c on the faces adjacent to e, their cyclic order around
e, their orientations, and the orientation of e. The following example makes the construction

10



clear. (Here, Y1, . . . , Y4 ∈ C are the objects assigned to the faces by the coloring c.)

Hc

Y1 Y2

Y3Y4
e


∼= HomC

(
1, Y1 ⊗ Y ∗2 ⊗ Y3 ⊗ Y ∗4

)
. (3.1)

If e is a switch together with a germ of a link segment, then e has precisely two adjacent faces
bl and br. So locally, a neighborhood of e looks as follows.

bl br

e

The notation bl and br for the faces is not arbitrary: We can always draw a neighborhood of
the half-rim e such that the link segment of e points upwards, and such that both faces are
oriented positively on the paper, as is done in the picture above. This is possible because the
two faces come from a single oriented 2-cell, and thus their orientations are compatible. Then
it is clear that there is a well-defined notion of a left face (this we denote by bl) and a right
face (this we denote by br). The associated vector space is

Hc(e) = HomC

(
1, c(br)⊗X∗ ⊗ c(bl)∗

)
, (3.2)

if the half-rim e is oriented away from the switch and

Hc(e) = HomC

(
1, c(br)⊗X ⊗ c(bl)∗

)
, (3.3)

if it is oriented towards the switch.

We may also assign a vector space to a vertex or switch v in P : We set

Hc(v) =
⊗

e∈R(v)

Hc(e). (3.4)

Here, e runs over half-rims adjacent to v, and ⊗ denotes the (unordered) tensor product of
vector spaces.

Finally, we assign a vector space to the 3-manifoldM (together with the chosen graph skeleton)
as a whole.

Hc(M) =
⊗
e∈R

Hc(e), (3.5)

where the product runs over all half-rims.
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3. There is yet another way to decompose the space Hc(M). Note that every rim r (this is an
edge of P or a segment of an embedded graph) gives rise to precisely two half-rims e, e′, which
are opposite to one another, so we may rewrite the product over half-rims as a product over
internal rims:

Hc(M) =
⊗
r

Hc(e)⊗Hc(e
′).

With the definitions above, the vector spaces associated to opposite half-rims are in duality:

Hc(e) ∼=
(
Hc(e

′)
)∗
. (3.6)

Using the duality (3.6), this allows us to define a distinguished non-zero vector

∗r = coev(1) ∈ Hc(e)⊗Hc(e
′), (3.7)

associated to a rim r whose half-rims are denoted e and e′, and hence a distinguished vector in
Hc(M):

∗c = ⊗r∗r ∈ Hc(M). (3.8)

4. We now assign, to every internal vertex or switch v of P , a linear map

Γc(v) : Hc(v)→ K

using the evaluation of string diagrams on spheres. (In the notation of [TV17], Γc(v) is written
as FC(Γcv).) This requires different treatments for vertices and switches. The discussion follows
[TV17, Sec. 15.5.1] closely, the formalism is not changed by the presence of free boundaries.

• If v is a vertex of the skeleton P , draw a small sphere B ∼= S2 inM around v. If v lies on
the boundary, embed a small neighborhood of v into R3 and draw the sphere there. The
intersection P ∩B is a graph on B: The faces adjacent to V become lines in P ∩B, these
are the edges of the graph (which we also call Γc(v)). The end points of the edges are
vertices, and each vertex is located at an intersection point between a rim of P and B.
The orientations of the faces induce orientations of the edges of Γc(v), and, since the graph
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skeleton is colored, the edges also inherit colors. This is best illustrated in an example:

F

F

E

E

D
D

C

C
B

B

A

A

v (3.9)

In the picture, A, B, C, D, E and F are elements of I that form a coloring of faces
adjacent to the vertex v of a graph skeleton. Drawn in red is the graph Γc(v), which is
located on the surface of a small ball around v.

Consider a vertex x of Γc(v) with adjacent edges colored by objects Y1, . . . , Yl. Let
εi = − if the i-th edge is oriented towards the vertex and εi = + otherwise. We want
to read the graph Γc(v) as a string diagram, so x has to be labeled by a morphism in
HomC

(
1, Y ε1

1 ⊗ · · · ⊗ Y
εl
l

)
. This space is isomorphic to Hc(e), where e is the half-rim

adjacent to v that corresponds to the vertex x.

In other words: A choice of vector in Hc(e) for each half-rim e adjacent to v corresponds to
a labeling of vertices in the graph Γc(v) by appropriate morphisms. We can then interpret
Γc(v) as a string diagram drawn on a sphere – which can be evaluated to a scalar in the
graphical calculus for the spherical fusion category C. All together, this yields a map
Γc(v) : Hc(v)→ K.

A more detailed discussion is presented in [TV17, Sec. 13.1.1].

• If v is a switch as in Figure (3.10), then the procedure is the same, except that we
add another line (in green) to the graph we evaluate. Since we know the neighbor-
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hoods of switches explicitly, we can make this concrete: Assume, for the moment, that
v does not lie in the boundary of M. A neighborhood of v looks as follows, where
A,B,C,D,E1, . . . , Eµ, F1, . . . , Fν ∈ I for µ, ν ∈ N ∪ {0} and X ∈ Z(C).

DC

B

E1
F1

E

F
A

v (3.10)

Γc(v) : Hc(v)→ K is then given by the map

Γc(v) =
A B

C D

E1

E

F1
F

, (3.11)

where again, we interpret a string diagram with unlabeled vertices as a linear map from
Hc(v) to K. The crossings in the diagram are evaluated using the half-braiding associated
with X ∈ Z(C). Of course, the orientations of adjacent faces can be different from those
indicated in the picture (3.10). In this case, the orientations of the corresponding edges in
the graph (3.11) change accordingly.

If v does lie on the free boundary, then the defect line is labeled by an object V ∈ C
rather than in the Drinfeld center of C and in the above picture (3.10), we necessarily
have µ = 0. This means that in (3.11), there are no crossings in the diagram, which is
important because V does not come with a half-braiding.

5. We now define the scalar |M| associated to the manifoldM. The sum over c is a sum over all
possible colorings.

|M| := dim(C)−K
∑
c

dim(c)
(
⊗vΓc(v)

)
(∗c) ∈ K. (3.12)
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Here, K denotes the number of 3-cells inM, that is, the number of connected components of
M\ P . The dimension of the coloring c is defined as

dim(c) :=
∏

f∈Fac(d)

dim(c(f))χ(f), (3.13)

where χ(f) denotes the Euler characteristic of the face f . In the example we will consider, all
faces are topologically disks, so χ(f) is always 1.

Remark 12. A priori, the quantity |M| depends not only on the manifold data, but also on the
choice of graph skeleton P . We do not make this explicit in the notation, and posit that it is indeed
independent of P (see Hypothesis 16). For ∂M = ∅, this is well-known.

Remark 13. The formula (3.12) makes clear why we need to work with a finite category C: If there
were an infinite number of isomorphism classes of simple objects in C, there would also be infinitely
many possible colorings, rendering the sum over c ill-defined.

4 Computing Frobenius-Schur Indicators from decorated
Manifolds

In this section, we will show by direct computation that for a suitable manifold T X,Vn,r with V ∈
C, X ∈ Z(C), the state-sum |T X,Vn,r | from Section 3 is equal to the Frobenius-Schur indicator νXn,r(V )

from Definition 10. The manifold T X,Vn,r is a solid torus D2 × S1, with an embedded X-labeled
non-contractible untwisted loop (−ε, ε)×{0}× S1 ⊂ D2× S1, and n V -labeled lines on the boundary,
which revolve around the torus in such a way that after a full rotation, they connect to the starting
point of the line which is r positions away from their own starting point. For the sake of simplicity,
we will here only consider the case r = 1, where an explicit parametrization of the line labeled by V
embedded on the torus surface is given by

ϕ 7→ (ϕ, −nϕ) ∈ S1 × S1, (4.1)

for ϕ ∈ [0, 2π). The picture below illustrates T X,Vn,r for the case n = 4, r = 1.

T X,V4,1 = (4.2)
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We now apply the construction from Section 3. As a first step, we endow T X,Vn,1 with a graph
skeleton P . For drawing purposes, we view the solid torus as a solid cylinder D2 × [0, 1] with top and
bottom disks identified via (ξ, 0) ∼ (ξ, 1) for ξ ∈ D2.

x

J1

J1

Jn

Jn

M1

M1

Mn-1

Mn-1

Mn-2

Mn-2

Mn

Mn

M2

M2

Nn-1

Nn

u1
un-1

un
u2

v

w

a

y

A

B

C

C

D

D

(4.3)

We describe the skeletal structure of P in words:
There are n+ 5 vertices and switches in total, among them two black vertices x, y (located on the

boundary away from embedded lines), one green switch a (situated on the X-labeled line) and n+ 2
blue switches u1, . . . , un, v, w (situated on the n embedded lines on the boundary).
The graph skeleton P has n + 8 faces. Four of them lie in the interior and are drawn in red,

labeled A,B,C,D. The horizontal face A is the flat polygon spanned by the vertices and switches
(a, x, u1, . . . , un−1, y). Similarly, the other horizontal face B is spanned by (a, y, un, x). The faces C
and D are perpendicular to A and B. They are oriented as indicated by the circular arrows. On
the boundary, the faces J1, Jn, Nn−1, Nn and Mi, i = 1, . . . , n, are drawn in black and oriented in
accordance with the boundary.
Finally, we note that there are two 3-cells.
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Similar graph skeleta P exist for all integer values of n and r.

Proposition 14. The 3-manifold T X,Vn,r with embedded links labeled by objects X ∈ Z(C) and V ∈ C,
endowed with the graph skeleton P described above, evaluates under the state-sum model described in
Section 3 to the Frobenius-Schur indicator from Definition 10:

|T X,Vn,r | = νXn,r(V ).

The remainder of this section comprises the proof of Proposition 14. As mentioned above, we
restrict to the case r = 1. This is, however, only a matter of convenience; indeed, Proposition 14
holds for general values of (n, r) ∈ Z× Z.

According to Section 3, we assign a closed graph to each vertex or switch. These graphs are
evaluated on the canonical vector ∗c, weighted by the dimensions of the colors for all faces, and
summed over, as dictated by (3.12). Here, c denotes a coloring. In the following we will use the same
letters for colors of faces as for the faces themselves, writing e.g. A for c(A). As a consequence, the
sum over c in (3.12) turns into a sum over colors for all faces.

|T X,Vn,1 | =
1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn−1,Nn

dAdBdCdDdJ1dJndM•dNn−1dNn

(
Γc(a)Γc(x)Γc(y) Γc(u1)

n−2∏
i=2

(
Γc(ui)

)
Γc(un−1)Γc(un) Γc(v)Γc(w)

)
(∗c).

(4.4)

As a first step, we read off all the n + 5 graphs for the n + 5 vertices and switches involved from
figure (4.3). This is done using the procedure from (3.9) for the vertices. The graphs associated to
switches are obtained using (3.11). The vertices of these graphs come in dual pairs, and they have to
be labeled by elements of dual bases of the appropriate hom-spaces. (This constructs the vector ∗c.)
We make use of Convention 9 and do not label the vertices. The calculations below are easier to
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follow in color. With the same order of factors as in (4.4), we obtain

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn−1,Nn

dAdBdCdDdJ1dJndM•dNn−1dNn

B

A
C

C D

D

X

B

AC

C

J1

M1
Nn

Mn
B

A

D

D

Jn

Mn
Nn-1

Mn-1

V

AJ1

M1 M2

M1
n−2∏
i=2

 V

AMi-1

Mi Mi+1

Mi

 V

AMn-2

Mn-1 Nn-1

Mn-1

V

BJn

Mn
Nn

Mn

V C

M1
Nn

Mn J1

V D

Mn
Nn-1

Mn-1 Jn

.

(4.5)
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Next, we repeatedly use Lemma 6 to glue together the graphs for the vertices ui, x and y.

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn−1,Nn

dAdBdCdDdJ1dJndM•dNn−1dNn

B
AC

C

J1

M1

M1

Nn

Kn

V
M2

Mn-2

Mn-1

V

Mn-1

Nn-1

Jn

Mn

V
DNn

Kn

BD

B

A
C

C D

D

X V C

M1
Nn

Mn J1

V D

Mn
Nn-1

Mn-1 Jn

.

(4.6)

Lemma 6 can also be used to glue in the remaining graphs associated to v and w.

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn−1,Nn

dAdBdCdDdJ1dJndM•dNn−1dNn

B

A
C

C D

D

X

B
AC

C

J1

M1
Nn

Mn

V
M1

M2

Mn-2

Mn-1

V

Mn-1

Nn-1

Jn

Mn

V
DNn

Mn

BD

V V JnMn-1
Mn J1

.

(4.7)
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Finally, we use Lemma 6 one last time to obtain a connected graph.

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn−1,Nn

dAdBdCdDdJ1dJndM•dNn−1dNn

X

B

AC

C

J1

M1
Nn

Mn

V
M1

M2

Mn-2

Mn-1

V

Mn-1

Nn-1

Jn

Mn

V
DNn

Mn

BD

V V JnMn-1
Mn J1

DD

.

(4.8)

We now use Lemma 5 to dissolve the strand labeled by Nn−1. In the process, the sum over Nn−1
(together with the factor dNn−1) disappears.

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn

dAdBdCdDdJ1dJndM•dNn

X

B

AC

C

J1

M1
Nn

Mn

V
M1

M2

Mn-2

Mn-1
V

Mn-1 Jn

Mn

V
DNn

Mn

BD

V

Jn

Mn J1

DD

.

(4.9)
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The next step is merely a deformation of the previous graph.

1

dim(C)2

∑
A,B,C,D

J1,Jn,M•,Nn

dAdBdCdDdJ1dJndM•dNn

X

B
AC

C

J1

M1
Nn

Mn V
M1

M2

Mn-2

Mn-1
V

Mn-1 Jn

Mn

V
DNn

Mn

BD

V

Jn

Mn
J1

D

D

.

(4.10)

We eliminate the strand labeled by A using Lemma 5.

1

dim(C)2

∑
B,C,D

J1,Jn,M•,Nn

dBdCdDdJ1dJndM•dNn

X

B
C

C

J1

M1
Nn

Mn V
M1

M2

Mn-2

Mn-1
V

Mn-1 Jn

Mn

V
DNn

Mn

D

V

Jn

Mn J1

.

(4.11)

Using the spherical structure, we can flip the D-labeled strand from the top to the bottom of the
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diagram, and then dissolve B using Lemma 5.

1

dim(C)2

∑
C,D

J1,Jn,M•,Nn

dCdDdJ1dJndM•dNn

C

J1

Mn

V
M1 Mn-2 V

Mn-1 Jn
V

X

D

VMn

Nn

J1 M1
M2 Mn-1

Jn
Mn

C D

.

(4.12)

Next, we apply Lemma 5 once more to eliminate Nn.

1

dim(C)2

∑
C,D

J1,Jn,M•

dCdDdJ1dJndM•

C

J1

Mn

M1 Mn-2 V
Mn-1 Jn

V
X

D

VJ1 M1
M2 Mn-1

Jn MnC D

.

(4.13)

We can now apply Lemma 7 to the pair of lines labeled by J1. The summation over J1 leads to a
pair of dual vertices, which we draw as a box.

1

dim(C)2

∑
C,D
Jn,M•

dCdDdJndM•

C Mn

M1 Mn-2 V
Mn-1 Jn

V
X

D

VM1
M2 Mn-1

Jn MnC D

. (4.14)
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After applying Lemma 7 several more times, only the sums over C, D and Mn remain.

1

dim(C)2

∑
C,D,Mn

dCdDdMn

C Mn

V V
X

D

V

MnC D

. (4.15)

C can also be eliminated using Lemma 7.

1

dim(C)2

∑
D,Mn

dDdDdMn

Mn

V V
X

D

V

MnD

. (4.16)

We now employ Lemma 8 to eliminate the line labeled by Mn, together with the sum over Mn. Note
that we obtain a factor of dim(C).

1

dim(C)

∑
D

dD
V V

X

D

V

D

. (4.17)

Using Lemma 8 once more with respect to D, we obtain the following graph.

V
V

X V . (4.18)
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Comparison with (2.4) shows that this is indeed the Frobenius-Schur indicator.
To conclude, we have shown |T X,Vn,1 | = νXn,1(V ). By a similar calculation, one finds that the general

case, |T X,Vn,r | = νXn,r(V ) also holds.

5 SL(2,Z)-Equivariance

The geometric representation of the Frobenius-Schur indicators obtained in Section 4 provides us
with a new tool to study them. In this section, we show how one can geometrically understand the
SL(2,Z)-equivariance of the indicators established by Sommerhäuser and Zhu [SZ07], generalized by
Ng and Schauenburg [NS10].
It follows from the additivity property of the indicators, νXn,r(V ) + νX

′
n,r(V ) = νX⊕X

′
n,r (V ), that

νXn,r(V ) only depends on the associated vector [X] ∈ K0(Z(C))⊗Z K in the Grothendieck algebra,
rather than the object X. Since the Drinfeld center of a spherical fusion category is a modular fusion
category, its Grothendieck algebra comes with a SL(2,Z)-action; this is called the canonical modular
representation in [NS10, Sec. 1.4]. We may also act with an element of SL(2,Z) on the lower indices
of the indicator by right matrix multiplication. For our purpose, we twist the right-multiplication
action by multiplying the element g ∈ SL(2,Z) from both sides with the invertible matrix diag(1,−1),
denoting

g̃ :=

(
1 0
0 −1

)
g

(
1 0
0 −1

)
.

The presence of SL(2,Z)-equivariance means that we can interchange the two actions [X] 7→ g[X] and
(n, r) 7→ (n, r)g̃ in the parameters of the indicators, which is the content of the following proposition,
see [SZ07, Thm. 8.3] or [NS10, Thm. 5.4], the former in the context of semisimple Hopf algebras.

Proposition 15. For g ∈ SL(2,Z), (n, r) ∈ Z× Z, V ∈ C and X ∈ Z(C), we have

ν
g[X]
(n,r)(V ) = ν

[X]
(n,r)g̃(V ).

The algebraic content of Proposition 15 finds its natural geometric interpretation by the result of
Section 4. For the ease of exposition, we work under the following hypothesis, see however Remark 17
for a discussion of the relevance of this assumption.

Hypothesis 16. Let CobC
3 denote a cobordism category whose objects are compact surfaces, possibly

with boundary, with embedded marked points. The points in the interior of a surface are labeled
by objects of Z(C), and the points on the boundary of a surface are labeled by objects of C. The
morphisms of CobC

3 are (equivalence classes of) 3-manifoldsM with boundary, an embedded network
of Z(C)-labeled framed oriented lines in the interior, a decomposition of the boundary ∂M into the
gluing boundary ∂gM and the free boundary ∂fM, and an embedded network of C-labeled oriented
lines in the free boundary.

We assume that there exists a (symmetric monoidal) functor

| − | : CobC
3 → vect
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such that

• restricted to the subcategory of CobC
3 of cobordisms without free boundary (∂fM = ∅), | − |

reduces to the usual Turaev-Viro TFT as described in [TV17],

• in the absence of gluing boundaries (∂gM = ∅), |M| reduces to the scalar associated toM by
the construction from Section 3.

The two actions on the parameters of the indicators can be related through the geometric viewpoint
by using that SL(2,Z) is also the mapping class group of the torus, MCG(S1 × S1). From the
3-manifold T X,Vn,r from Section 4, let us cut out a tubular neighborhood of the inner line labeled by
X ∈ Z(C), and glue this solid torus back into the rest along a homeomorphism g ∈ MCG(S1 × S1)
as pictured and described below.

= T X

= T Vn,r



−−−−−−−−−→
glue along g

to a solid torus

T Vn,r ◦g T X . (5.1)

The object on the top in the picture (5.1) is a solid torus which we denote by T X . Its boundary is a
gluing boundary, so T X represents in CobC

3 a morphism ∅ → S1 × S1. The manifold on the bottom
of Figure (5.1) is a cylinder over a torus, T Vn,r = S1 × S1 × [0, 1], whose inner boundary component
S1 × S1 × {0} is a gluing boundary, and whose outer boundary component S1 × S1 × {1} is a free
boundary with embedded line labeled by V ∈ C. In CobC

3 , T Vn,r represents a morphism S1 × S1 → ∅.
It follows from Hypothesis 16 and the computation from Section 4 that∣∣∣T X,Vn,r

∣∣∣ =
∣∣∣T Vn,r ◦ T X ∣∣∣ ,
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where “◦” denotes the gluing of manifolds, which is the composition in CobC
3 .

It is well-known [TV17, Sec. 17.4] that the vector space associated to a torus is the Grothendieck
algebra, ∣∣∣S1 × S1

∣∣∣ ∼= K(Z(C))⊗Z K, (5.2)

and that under the identification Homvect

(
K, K(Z(C))⊗Z K

) ∼= K(Z(C))⊗Z K, the manifold T X is
assigned the vector |T X | = [X]. Due to the additivity property of the TFT with respect to labels of
the embedded loops, |T X |+ |T X′ | = |T X⊕X′ |, it makes sense to label the embedded line in T X not
only by an object X ∈ Z(C), but by a vector ξ ∈ K(Z(C))⊗Z K. We then obtain |T ξ| = ξ.

The gluing of manifolds in Figure (5.1) to a solid torus can be realized as a composition of three
cobordisms: By a standard construction, an element of the mapping class group g ∈ SL(2,Z) ∼=
MCG(S1 × S1) defines a cobordism T g : S1 × S1 → S1 × S1. The gluing of manifolds along g as in
Figure (5.1) can then be written as a composition of cobordisms |T Vn,r ◦ T g ◦ T X |. Our argument
relies on the following two equalities of cobordisms:

T Vn,r ◦ T g = T V(n,r)g̃, |T g ◦ T X | = |T g[X]|.

The second equality is well known [BK01, Ex. 4.5.5 and Exc. 4.5.6], [Tur16, Sec. 5.4].

To see the first equality, we push the action of the homeomorphism g all the way to the boundary,
and check that it changes the configuration of the V -labeled lines on the boundary accordingly. It
suffices to show this for the two generators s and t of SL(2,Z). If we draw the surface S1 × S1 as a
rectangle with opposite sides identified, s acts as a 90◦ clockwise rotation. The following picture
shows how the boundary defect lines transform under the s-transformation:

s :
r

n

7→

r

-n .

This is consistent with (n, r)s̃ = (r,−n). Note that the negative sign appears because the strands
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meet the left side of the rectangle with opposite orientation. The homeomorphism t is a Dehn twist:

t :
r

n

7→ ∼=
r-n

n

.

Here, "∼=" means "is isotopic to". In the middle picture, the region above the dashed horizontal line
is copied from the left picture, and the region below the dashed line corresponds to the action of a
Dehn twist. Again, the result is consistent with (n, r)̃t = (n, r − n).
Combining the results, we find

ν
g[X]
(n,r)(V ) =

∣∣∣T g[X],V
n,r

∣∣∣ =
∣∣∣T Vn,r ◦ T g[X]

∣∣∣ =
∣∣∣T Vn,r ◦ T g ◦ T X

∣∣∣ =
∣∣∣T V(n,r)g̃ ◦ T X ∣∣∣ =

∣∣∣T X,V(n,r)g̃

∣∣∣ = ν
[X]
(n,r)g̃(V ),

as in Proposition 15. This shows the equivariance property from Proposition 15.

Remark 17. As presented here, our arguments rely on Hypothesis 16. Let us first remark that this
is not a bold assumption. State-sum TFTs with free boundary (or more generally, with defects) have
been discussed in the literature [CMS20; LFHSV21].
Moreover, it is possible to give a full proof of equivariance without relying on Hypothesis 16. To

this end, one first introduces a category1 CobC
3,sk of cobordisms with free boundary, where embedded

skeleta are part of the data. The constructions of Section 3 extend to a functor CobC
3,sk → vect. This

allows us to argue with cutting-and-gluing operations akin to those in (5.1), as long as we work
with fixed skeleta. For a general homeomorphism g ∈ MCG(S1 × S1), the operation (5.1) alters the
skeleton. In order to nevertheless use the argument as above, we need to revert to a skeleton which
is invariant under g. (More precisely, its intersection with the torus boundary needs to be invariant.)
It is not possible to find such a skeleton for general g, but it is possible to construct an s-invariant
skeleton and an st-invariant skeleton. (Recall that {s, st} form a set of generators for SL(2,Z), and
that both elements are of finite order.) Finally, one then has to adapt the calculations from Section 4
to these two skeleta.
Such an extension of our arguments to a new proof of the well-established fact of SL(2,Z)-

equivariance does not substantially add to the insights we gained in this note. We therefore refrain
from a presenting such an argument, which will, in any case, be superseded by a general proof of the
Turaev-Viro construction with free boundary.

1CobC
3,sk is not really a category, but a non-unital category without identities: When gluing any two cobordisms in

CobC
3,sk together, the resulting cobordism will be equipped with the glued skeleton. There is no skeleton which

stays unchanged when glued to another skeleton, except for the empty skeleton of the empty manifold.
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