
ar
X

iv
:2

10
3.

15
77

2v
2 

 [
m

at
h.

Q
A

] 
 1

9 
A

pr
 2

02
1

[ZMP-HH/21-3]
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Given a finite tensor category C, we prove that a modified trace on the tensor ideal of projective
objects can be obtained from a suitable trivialization of the Nakayama functor as right C-
module functor. Using a result of Costello, this allows us to associate to any finite tensor
category equipped with such a trivialization of the Nakayama functor a chain complex valued
topological conformal field theory, the trace field theory. The trace field theory topologically
describes the modified trace, the Hattori-Stallings trace, and also the structures induced by
them on the Hochschild complex of C. In this article, we focus on implications in the linear (as
opposed to differential graded) setting: We use the trace field theory to define a non-unital
homotopy commutative product on the Hochschild chains in degree zero. This product is
block diagonal and can be described through the handle elements of the trace field theory.
Taking the modified trace of the handle elements recovers the Cartan matrix of C.

1 Introduction and summary

A finite category over a fixed field k, that we will assume to be algebraically closed throughout, is an
Abelian category enriched over finite-dimensional k-vector spaces which has enough projective objects
and finitely many isomorphism classes of simple objects; moreover, one requires that every object has
finite length. Any finite category C comes with a right exact endofunctor

Nr : C −→ C , X 7−→ NrX :=

∫ Y ∈C

C(X,Y )∗ ⊗ Y ,

the (right) Nakayama functor, where ⊗ denotes the tensoring of objects in C with finite-dimensional vector
spaces. This Morita invariant description was given in [FSS20], and it reduces to the usual definition of
the (right) Nakayama functor for the category of finite-dimensional modules over a finite-dimensional k-
algebra. As a consequence of the coend description of Nr, we obtain in Corollary 2.3 natural isomorphisms

C(P,X) ∼= C(X,NrP )∗ for X ∈ C , P ∈ Proj C

turning the subcategory Proj C ⊂ C into an Nr-twisted Calabi-Yau category. Through the correspondence
between (twisted) Calabi-Yau structures and (twisted) traces, one obtains the trace

tP : C(P,NrP ) −→ k for P ∈ Proj C . (1.1)

It is now an obvious task to relate this relatively generically constructed trace (or rather family of traces)
to the modified trace [GPT09, GKP11, GKP13, GPV13, GKP21, BBG18]. Modified traces are not only
a concept of independent algebraic interest, but can also be used for the construction of invariants of
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closed three-dimensional manifolds, see e.g. [CGPM14, BCGPM16]. In such constructions, they serve as
a non-semisimple replacement for quantum traces.
In this article, we prove in Theorem 3.6 that, for a finite tensor category in the sense of Etingof-Ostrik

[EO04], i.e. a finite category with rigid monoidal product and simple unit, the trace (1.1) on the tensor
ideal of projective objects, indeed produces a twisted modified trace.

Theorem 3.6. For any finite tensor category C, the twisted trace (tP : C(P,NrP ) −→ k)P∈Proj C from (1.1)
is (twisted) cyclic, non-degenerate and satisfies a generalized partial trace property. Under the additional
assumption that on the finite tensor category C a pivotal structure has been chosen, the twisted trace
(tP : C(P,NrP ) −→ k)P∈Proj C can be naturally identified with a right modified D-trace, where D ∈ C is
the distinguished invertible object of C.

This uses crucially that by [FSS20, Theorem 4.26] the Nakayama functor of a finite tensor category
can be expressed as

Nr ∼= D−1 ⊗−∨∨

using the distinguished invertible object D ∈ C [ENO04] and the double dual functor −∨∨. Note that we
do not require a pivotal structure to define our traces because the double dual functor can be conveniently
absorbed into the Nakayama functor. If C is pivotal, however, we recover the usual definitions.
Our motivation for unraveling the connection between the Nakayama functor and the modified trace is

topological, but does not directly come from invariants of closed three-dimensional manifolds. Instead, we
are motivated by two-dimensional topological conformal field theory, a certain type of differential graded
two-dimensional open-closed topological field theory: Suppose that we are given a finite tensor category
C and a symmetric Frobenius structure, by which we mean a certain trivialization of the right Nakayama
functor as right C-module functor relative to a pivotal structure (we give the details in Definition 4.6;
it will amount to a pivotal structure and a trivialization of the distinguished invertible object). Then
the trace coming from this particular trivialization of Nr produces, as discussed above, a Calabi-Yau
structure on the tensor ideal Proj C ⊂ C. To this Calabi-Yau structure on Proj C, Costello’s Theorem
[Cos07] associates a topological conformal field theory ΦC that we refer to as the trace field theory of
the finite tensor category C with symmetric Frobenius structure. On a technical level, ΦC : OC −→ Chk
is a symmetric monoidal functor from a certain differential graded version of the open-closed bordism
category to chain complexes, we recall the details in Section 4.
If we evaluate ΦC on the open part of the two-dimensional bordism category, ΦC provides topological

tools to compute with traces, but only captures information that one could have obtained by hand.
This is drastically different for the closed part of the two-dimensional bordism category: On a closed
boundary component, i.e. on the circle, we obtain, following again [Cos07], the Hochschild complex of C,

i.e. the homotopy coend
∫ X∈Proj C

L
C(X,X) over the endomorphism spaces of projective objects. On this

complex, we have an action of the prop provided by the chains on moduli spaces of Riemann surfaces
with closed boundary components. Phrased differently, the trace field theory ΦC captures the higher
structures induced by the modified trace on the Hochschild complex of C while, at the same time, being
very accessible through the tools available for computations with Nakayama functors. These higher
structures will be developed in detail elsewhere. For the present article, no homotopy theory is needed,
and we focus entirely on the purely linear consequences, i.e. on structures induced in homological degree
zero.

Theorem 4.9. Let C be a finite tensor category with symmetric Frobenius structure and ΦC : OC −→ Chk
its trace field theory. The evaluation of ΦC on the disk with one incoming open boundary interval whose
complementing free boundary carries the label P ∈ Proj C

ΦC




Pin


 : C(P, P ) −→ k

is a right modified trace, while the evaluation of ΦC on the cylinder with one incoming open boundary
interval with complementing free boundary label P ∈ Proj C and one outgoing closed boundary circle

ΦC




Pin

out



 : C(P, P ) −→

∫ P∈Proj C

L

C(P, P )

agrees, after taking zeroth homology, with the Hattori-Stallings trace of C.
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By evaluation of ΦC on the pair of pants, we obtain a non-unital multiplication ⋆ on the Hochschild
complex (it will generally not have a unit because the bordism that would normally give us a unit is not
admitted in Costello’s category OC). From results of Wahl and Westerland [WW16], we can conclude that
this multiplication is supported, up to homotopy, in degree zero. Moreover, it is homotopy commutative
by construction. Besides the connection between the Nakayama functor and the modified trace, the
construction of this multiplication or rather its degree zero remnant is one of the main results of this
short article and will be one of the key ingredients for future work. In the present article, we prove that
the product ⋆ is block diagonal (Proposition 5.3) and provide a formula for ⋆ (when evaluated on identity
morphisms) involving the handle elements

ξP,Q := ΦC


P

Q

out


 ∈ C(P, P ) for P,Q ∈ Proj C . (1.2)

of the trace field theory.

Theorem 5.6. Let C be a finite tensor category with symmetric Frobenius structure.

(i) Let P,Q ∈ Proj C. Up to boundary in the Hochschild complex of C, the ⋆-product of idP and idQ

is the handle element ξP,Q of P and Q:

idP ⋆ idQ ≃ ξP,Q .

(ii) All handle elements in the sense of (1.2) are central elements in the endomorphism algebras of C.

(iii) The modified trace of the handle element is given by

tP ξP,Q = dim C(P,Q) . (1.3)

Formula (1.3) tells us that the modified trace of the handle elements recovers the entries of the Cartan
matrix of C. If P is simple, the handle element can be identified with the number

ξP,Q =
dim C(P,Q)

dm(P )
∈ k ,

where dm(P ) := tP (idP ) ∈ k× is the modified dimension of P .
If we denote for an endomorphism f : P −→ P of a projective object P the Hattori-Stallings trace by

HS(f) ∈ HH0(C), we obtain the following statement in homology:

Corollary 5.7. For any finite tensor category C with symmetric Frobenius structure,

t(HS(idP ) ⋆ HS(idQ)) = dim C(P,Q) for P,Q ∈ Proj C .

Here we denote the map on HH0(C) induced by the modified trace again by t.

Conventions. As already mentioned above, for the entire article, we fix an algebraically closed field
k (which is not assumed to have characteristic zero).
Concerning the convention on left and right duality, we follow [EGNO17]: In a rigid monoidal category

C, every object X ∈ C has

• a left dual X∨ that comes with an evaluation dX : X∨ ⊗X −→ I and a coevaluation bX : I −→
X ⊗X∨ subject to the usual zigzag identities,

• and a right dual ∨X that comes with an evaluation d̃X : X ⊗ ∨X −→ I and a coevaluation b̃X :
I −→ ∨X ⊗X again subject to the usual zigzag identities.

Acknowledgments. We would like to thank Jürgen Fuchs, Lukas Müller and Nathalie Wahl for
helpful discussions.
CS is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under

Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306. LW gratefully acknowl-
edges support by the Danish National Research Foundation through the Copenhagen Centre for Geometry
and Topology (DNRF151).
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Note. While finalizing this manuscript, the preprint [SS21] appeared which provides a proof for
a connection between the Nakayama functor and modified traces very similar to the one afforded by
Theorem 3.6.

2 Traces on finite categories

For any finite category C, the (right) Nakayama functor Nr : C −→ C is given by

NrX :=

∫ Y ∈C

C(X,Y )∗ ⊗ Y . (2.1)

This is the Morita invariant description given in [FSS20] for the usual Nakayama functor for finite-
dimensional modules over a finite-dimensional algebra A which is given by

NrX = HomA(X,A)∗ ∼= A∗ ⊗A X (2.2)

for any finite-dimensional A-module X . The Nakayama functor sends projective objects to injective
objects.

Proposition 2.1. For any finite category C, there is a canonical isomorphism of chain complexes

C(X,Y•)
∗ ∼= C(Y•,N

rX)

natural in objects X,Y ∈ C, where Y• is a projective resolution of Y .

Proof. Since every finite category can be written as finite-dimensional modules over a finite-dimensional
algebra, we conclude from the comparison of (2.1) and (2.2) that the right hand side of (2.1) can be
modeled as a finite colimit.
Since C(Y•,−) is exact, the finite colimit used to define NrX is preserved, which leads to

C(Y•,N
rX) ∼=

∫ Z∈C

C(Y•, C(X,Z)∗ ⊗ Z) ∼=

∫ Z∈C

C(Y•, Z)⊗ C(X,Z)∗ ∼= C(X,Y•)
∗ .

All coends are computed degree-wise here. In the last step, we have used the Yoneda Lemma.

The isomorphisms from Proposition 2.1 can be used to obtain a twisted Calabi-Yau structure on ProjC.

Definition 2.2. An (F,G)-twisted Calabi-Yau category is a linear category A with endofunctors F,G :
A −→ A and isomorphisms A(F (X), Y ) ∼= A(Y,G(X))∗ natural in X,Y ∈ A.

In order to avoid overloaded notation, we call a twisted Calabi-Yau category left F -twisted and right
G-twisted if the twist datum (F,G) is given (F, idA) and (idA, G), respectively. By a Calabi-Yau category
(without any mention of twists) we will understand an untwisted Calabi-Yau category in the sense that
F = G = idA. A Calabi-Yau category with one object is a symmetric Frobenius algebra.

Corollary 2.3. For a finite category C, there are canonical isomorphisms

C(P,X) ∼= C(X,NrP )∗ (2.3)

natural in X ∈ C and P ∈ Proj C. In particular, Proj C is a right Nr-twisted Calabi-Yau category.

Proof. For X ∈ C and P ∈ Proj C, we find (we denote equivalences of chain complexes aka quasi-
isomorphisms by ≃ and isomorphisms, as before, by ∼=)

C(X,NrP )∗ ≃ C(X•,N
rP )∗ (because NrP is injective)

∼= C(P,X•) (Proposition 2.1)
≃ C(P,X) (because P is projective) .
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Definition 2.4 (Trace of a finite category). For any finite category C, we define the pairings

〈−,−〉 : C(P,X)⊗ C(X,NrP )
(2.3)

−−−−−→ C(X,NrP )∗ ⊗ C(X,NrP )
evaluation

−−−−−−−−−→ k (2.4)

for X ∈ C , P ∈ Proj C

and, by considering the case X = P in (2.4), the twisted trace

tP : C(P,NrP )
〈idP ,−〉

−−−−−−−→ k for P ∈ Proj C (2.5)

on C(P,NrP ). We refer to the family of maps (2.5), where P runs over all projective objects, as the
twisted trace on C. By an untwisting of the twisted trace, we mean a trivialization Nr ∼= idC of Nr (if
there exists any) and the resulting identification of the maps (2.5) with maps C(P, P ) −→ k that we then
refer to as untwisted trace, or just trace for brevity.

It is important to note that the twisted trace is canonical while the untwisting (if possible) will involve
choices. An untwisting of the trace is equivalent to an untwisting of the twisted Calabi-Yau structure
from Corollary 2.3.
The usual correspondence between Calabi-Yau structures and traces can be adapted to the present

situation and leads to the following:

Lemma 2.5. For any finite category C, the twisted trace

tP : C(P,NrP ) −→ k for P ∈ Proj C

has the following properties:

(i) Cyclicity: For P,Q ∈ Proj C, f : P −→ NrQ and g : Q −→ P , we have

tQ(fg) = tP (N
r(g)f) .

(ii) Non-degeneracy: The trace is non-degenerate in the sense that the pairings

C(P,X)⊗ C(X,NrP ) −→ k , f ⊗ g 7−→ tP (gf) (2.6)

are non-degenerate. In fact, they agree with the pairings (2.4).

Proof. Let X,Y ∈ C and P,Q ∈ Proj C. Naturality of (2.3) in X means for a : P −→ X , b : Y −→ NrP
and c : X −→ Y

〈a, bc〉 = 〈ca, b〉 . (2.7)

Naturality of (2.3) in P means for a : Q −→ X , b : P −→ Q and c : X −→ NrP

〈a,Nr(b)c〉 = 〈ab, c〉 . (2.8)

This implies for f : P −→ NrQ and g : Q −→ P

tQ(fg)
(2.5)
= 〈idQ, fg〉

(2.7)
= 〈g, f〉

(2.8)
= 〈idP ,N

r(g)f〉
(2.5)
= tP (N

r(g)f) .

This proves cyclicity. Non-degeneracy holds by construction because it follows easily from (2.7) that the
pairing (2.6) agrees with 〈−,−〉.

3 Traces on finite tensor categories and connection to modified

traces

We will now turn to finite tensor categories and connect the construction from Definition 2.4 to modified
traces [GKP11, GKP13, GPV13, GKP21]. A (twisted, right) modified trace on the tensor ideal of
projective objects in a pivotal finite tensor category is a cyclic, non-degenerate trace that satisfies the
right partial trace property as we will discuss in detail below. The first two properties hold very generally
for traces constructed from linear trivializations of the Nakayama functor thanks to Lemma 2.5.
The partial trace property makes use of the monoidal structure. In order to understand when we

can formulate and prove such a property for the trace from Definition 2.4, one needs to understand the
Nakayama functor of a finite tensor category: Let C be any finite tensor category. We denote by CC the
finite category C as regular right module category over itself and by C∨∨ the finite category C as C-right
module with action given by X.Y := X ⊗ Y ∨∨ for X,Y ∈ C.
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Theorem 3.1 ([FSS20, Theorem 3.26]). For any finite tensor category C, the (right) Nakayama functor

is an equivalence Nr : CC
≃

−−−→ C∨∨ of right C-module categories; in particular, comes with canonical
isomorphisms Nr(− ⊗ X) ∼= Nr(−) ⊗ X∨∨ for X ∈ C. Moreover, NrI ∼= D−1, where D ∈ C is the
distinguished invertible object and D−1 its dual, and hence

Nr ∼= D−1 ⊗−∨∨

by a canonical isomorphism.

Together with Proposition 2.1, this implies:

Corollary 3.2. For any finite tensor category C, there are canonical isomorphisms

C(X,Y•)
∗ ∼= C(Y•, D

−1 ⊗X∨∨)

natural in objects X,Y ∈ C, where Y• is a projective resolution of Y . In particular, any pivotal structure
on C provides canonical isomorphisms

C(X,Y•)
∗ ∼= C(Y•, D

−1 ⊗X) .

We now propose a generalization of the partial trace property that does not need a pivotal structure
(from our perspective, this will turn out to be more natural): Let C be a finite tensor category. For X ∈ C
and P ∈ Proj C, we may use Theorem 3.1 to define a map

C (P ⊗X,Nr(P )⊗X∨∨) −→ C(P,NrP ) (3.1)

sending f : P ⊗X −→ Nr(P )⊗X∨∨ to

P
P⊗bX−−−−−−→ P ⊗X ⊗X∨ f⊗X∨

−−−−−−→ Nr(P )⊗X∨∨ ⊗X∨ Nr(P )⊗d
X∨

−−−−−−−−−−→ NrP .

Definition 3.3. Let C be a finite tensor category, P ∈ Proj C and X ∈ C. Then we define the right
partial trace as the composition

trXr : C(P ⊗X,Nr(P ⊗X))
Theorem 3.1

−−−−−−−−−−→ C(P ⊗X,Nr(P )⊗X∨∨)
(3.1)

−−−−−→ C(P,Nr(P )) .

All of this crucially uses that P ⊗ X (and also X ⊗ P ) is projective if P is, i.e. the ideal property
property of ProjC.

Remark 3.4. A pivotal structure is not needed for the definition given here because the double dual is
absorbed into the Nakayama functor. In presence of a pivotal structure ω : −∨∨ ∼= idC , however, our
definition specializes to the usual partial trace property for a right D-trace in the terminology of [GKP21]
in the sense that the composition

C(D ⊗ P ⊗X,P ⊗X) ∼= C(P ⊗X,Nr(P ⊗X))
trXr−−−−→ C(P,Nr(P )) ,

where the first isomorphism uses duality, Theorem 3.1 and the (inverse) pivotal structure, is the usual
partial trace.

Proposition 3.5. For any finite tensor category C, the twisted trace

tP : C(P,NrP ) −→ k for P ∈ Proj C

from Definition 2.4 satisfies the right partial trace property: For X ∈ C and P ∈ Proj C and any morphism
f : P ⊗X −→ Nr(P ⊗X)

tP tr
X
r (f) = tP⊗X(f) . (3.2)

Proof. For X,Y ∈ C, P ∈ Proj C and a projective resolution Y• of Y , consider the following diagram in
which all maps are isomorphisms (we explain all parts of the diagram and its commutativity afterwards):

C(P ⊗X,Y•)
∗

∫
Z∈C

C(Y•, Z)⊗ C(P ⊗X,Z)∗ C(Y•,N
r(P ⊗X))

C(P, Y• ⊗X∨)∗
∫

Z∈C
C(Y•, Z)⊗ C(P,Z ⊗X∨)∗

∫
Z

′
∈C

C(Y• ⊗X∨, Z′)⊗ C(P,Z′)∗ C(Y• ⊗X∨,NrP ) C(Y•,N
rP ⊗X∨∨) .

∨

YL

∨

(⋄)

Nr(−⊗X)∼=Nr(−)⊗X
∨∨

YL

relabeling
YL

(⋄) ∨
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The isomorphisms labeled ‘YL’ and ‘∨’ come from the Yoneda Lemma and duality, respectively. The
isomorphisms (⋄) pull the coend and the tensoring with vector spaces out of the hom functor using
exactness of C(Y•,−) (they follow essentially from the definition (2.1) of the Nakayama functor). The

‘relabeling’ isomorphism
∫ Z∈C

C(Y•, Z)⊗C(P,Z⊗X∨)∗ −→
∫ Z′∈C

C(Y•⊗X∨, Z ′)⊗C(P,Z ′)∗ sends f⊗α ∈

C(Y•, Z)⊗C(P,Z⊗X∨)∗ living in the summand indexed by Z of the coend
∫ Z∈C

C(Y•, Z)⊗C(P,Z⊗X∨)∗

to (f ⊗X∨)⊗α living in the summand indexed by Z⊗X∨ of the coend
∫ Z′∈C

C(Y•⊗X∨, Z ′)⊗C(P,Z ′)∗.
The vertical isomorphism on the very right uses Theorem 3.1.
In fact, the isomorphism Nr(− ⊗X) ∼= Nr(−) ⊗X∨∨ can be obtained by extracting the isomorphism

C(Y•,N
r(P⊗X)) −→ C(Y•,N

rP⊗X∨∨) by going in counterclockwise direction in the hexagon on the right
(this follows from an analysis of the proof of [FSS20, Theorem 3.18]). As a consequence, the hexagon on
the right commutes.
A direct computation shows that the square and the triangle on the left commute. Therefore, the entire

diagram commutes.
After taking the linear dual of the entire diagram and remembering that the isomorphisms ‘YL’ and

(⋄) combine into the isomorphisms from Proposition 2.1, we see that the diagram

C(P ⊗X,Y•) C(Y•,N
r(P ⊗X))∗ ∼= C(Y•,N

rP ⊗X∨∨)∗

C(P, Y• ⊗X∨) C(Y• ⊗X∨,NrP )∗

Proposition 2.1

∨ ∨

Proposition 2.1

commutes. Since P is projective (and hence NrP injective — in fact, the projective objects in C even
coincide with the injective ones), this reduces to the commutative diagram

C(P ⊗X,Y ) C(Y,Nr(P ⊗X))∗ ∼= C(Y,NrP ⊗X∨∨)∗

C(P, Y ⊗X∨) C(Y ⊗X∨,NrP )∗

Corollary 2.3

∨ ∨

Corollary 2.3

in which the horizontal maps have specialized to the ones from Corollary 2.3. If we spell out the com-
mutativity of this diagram in equations for morphisms g : P ⊗ X −→ Y and h : Y ⊗X∨ −→ NrP , we
obtain with the bracket notation from Definition 2.4 (we use here additionally the graphical calculus for
morphisms in a monoidal category — to be read from bottom to top; we refer to [Kas95] for a textbook
treatment)

P X

Y NrP X∨∨

Y

,

P

X∨Y

,=

Y X∨

NrP

g h g h . (3.3)

As another preparation, recall that the double dual functor −∨∨ : C −→ C is monoidal, hence it preserves
the duality pairing d∨X : X ⊗ ∨X −→ I (we use here the canonical identification ∨(X∨) ∼= X) and
therefore sends it to dX∨ : X∨∨ ⊗X∨ −→ I. Using Theorem 3.1 we find the equality of morphisms

Nr(P ⊗ d∨X) = NrP ⊗ dX∨ : Nr(P )⊗X∨∨ ⊗X∨ −→ NrP ,

which implies for a morphism f : P ⊗X −→ Nr(P ⊗X)

7



P

X

X∨∨

NrP

=trXr f

P

X

X∨∨

NrP

=

Nr(P ⊗ d∨X)

X∨X∨

.f f

(3.4)

The desired equality (3.2) now follows from:

=tP tr
X
r f

P

X

X∨∨

NrP

X∨

P

, =

f

Nr(P ⊗ d∨X)

P

X

X∨∨NrP X∨

P

, f

X ∨X

=

P

X∨∨NrP

XP

, f

X

X

=

P

X∨∨NrP

XP

, f

X

= tP⊗X(f)

(3.4) (2.8)

(3.3)

Theorem 3.6. For any finite tensor category C, the twisted trace (tP : C(P,NrP ) −→ k)P∈Proj C from Def-
inition 2.4 is cyclic, non-degenerate and satisfies the partial trace property in the sense of Proposition 3.5.
Under the additional assumption that on the finite tensor category C a pivotal structure has been chosen,
the twisted trace (tP : C(P,NrP ) −→ k)P∈Proj C from Definition 2.4 can be naturally identified with a
right modified D-trace, where D ∈ C is the distinguished invertible object of C.

Remark 3.7. More precisely, the twisted trace from Definition 2.4 yields a canonical right modified
D-trace and thereby trivializes the k×-torsor of right modified D-traces in a canonical way.

Proof of Theorem 3.6. We use the pivotal structure ω : −∨∨ ∼= idC to obtain isomorphisms

C(P,NrP )
Theorem 3.1

∼= C(P,D−1 ⊗ P∨∨)
ω and duality

∼= C(D ⊗ P, P ) for P ∈ Proj C .

As a consequence, the twisted trace from Definition 2.4 gives us maps C(D⊗P, P ) −→ k which are cyclic
and non-degenerate (Lemma 2.5). Moreover, Proposition 3.5 combined with Remark 3.4 gives us the
usual partial trace property in presence of a pivotal structure.
Note that one needs really a monoidal isomorphism −∨∨ ∼= idC to get the desired maps C(D⊗P, P ) −→

k. If ω is just linear, one would get maps C(D ⊗ P, P ) −→ k, but they would not necessarily satisfy the
partial trace property: The proof of the partial trace property in its Nr-twisted version (Proposition 3.5)
relies on the monoidal structure of −∨∨. The partial trace property only transfers along the isomorphisms
C(P,D−1 ⊗ P∨∨) ∼= C(P,D−1 ⊗ P ) if −∨∨ is replaced by idC as monoidal functor.
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4 The trace field theory

We now introduce the topological conformal field theory induced by the Calabi-Yau structure appearing
the previous section. To this end, let us recall from [Cos07] the definition of the (differential graded) open-
closed two-dimensional cobordism category, see [ES15, WW16] for models of this symmetric monoidal
differential graded category in terms of fat graphs. An open-closed Riemann surface is a Riemann surface
with the following data:

• A subset of its boundary components, the so-called closed boundary components. They are para-
metrized and labeled as incoming or outgoing.

• A finite number of embedded intervals in the remaining boundary components, the so-called open
boundary intervals. They are also parametrized and labeled as incoming or outgoing.

The free boundary components are defined as the complement (in the boundary) of the closed boundary
components and the open boundary intervals. It will be required that each connected component of the
Riemann surface has at least one free boundary component or at least one incoming closed boundary.
An example (that additionally contains certain labels that will be discussed in a moment) is depicted in
Figure 1.
One can now define the symmetric monoidal differential graded category OC of open-closed cobordisms

for a set Λ of labels (that we will fix later and that will be suppressed in the notation; the set of labels is
sometimes referred to as set of ‘D-branes’): The objects are pairs of finite sets O and C (that in a moment
will play the role of open boundary intervals and closed boundary components of Riemann surfaces) and
two maps s, t : O −→ Λ (that attach a ‘start’ and an ‘end’ label to any open boundary). The chain
complex of morphisms from (O,C, s, t) to (O′, C′, s′, t′) is given by the k-chains on the moduli space of
Riemann surfaces Σ with

• an identification of its set of incoming open and incoming closed boundary components with (O,C),
an identification of its set of outgoing open and outgoing closed boundary components with (O′, C′),

• a label in the set Λ of D-branes for each free boundary component

subject to the following requirement: First observe that any incoming open boundary interval o ∈ O
inherits a label for its start point and its end point, namely the label of the free boundary component that
it is bounded by. We require that this label agrees with (s(o), t(o)); the analogous requirement is imposed
for outgoing open boundary intervals. Explicitly, for the objects X = (O,C, s, t) and X ′ = (O′, C′, s′, t′),
the morphism complexes are given, up to equivalence, by

OC (X,X ′) ≃
⊕

S:X−→X′

C∗(BMap(S); k) ,

where the direct sum is running over all topological types of compact oriented open-closed bordisms S
with incoming and outgoing boundary described by X and X ′, respectively, and Map(S) is the mapping
class group of S; we refer to [ES15, WW16] for a description of these morphism complexes by means of
classifying spaces of categories of fat graphs. Composition in OC is by gluing. Disjoint union provides a
symmetric monoidal structure.

Definition 4.1 (Costello [Cos07] following Getzler [Get94] and Segal [Seg04]). For a fixed set Λ of D-
branes, an open-closed topological conformal field theory is a symmetric monoidal functor Φ : OC −→ Chk.
An open topological conformal field theory is a symmetric monoidal functor O −→ Chk defined only on
the subcategory O ⊂ OC of open bordisms.

Open-closed topological conformal field theories are a differential graded generalization of ordinary vec-
tor space-valued two-dimensional (open-closed) topological field theories. The latter can be constructed
and classified in terms of symmetric and commutative Frobenius algebras, see [Koc03, LP08] for the
precise statements.
In [Cos07], Costello proves that one may construct an open topological conformal field theory from a

(linear) Calabi-Yau category (Costello actually considers differential graded Calabi-Yau categories, but
we just need the linear case). By homotopy left Kan extension, one obtains an open-closed topological
conformal field theory:

9



P

Q

R
S

c

o1

o2

o′

in

in

out

Figure 1: An open-closed surface with D-brane labels. As a morphism in OC, we read the surface from left to
right, i.e. with the source object (constituted by the incoming boundary components) on the left and
the target object (constituted by the outgoing boundary components) on the right. We will, however,
deviate from the left-to-right drawing convention at times if it simplifies the surface; for this reason,
we also indicate by ‘in’ and ‘out’ whether a boundary component is incoming or outgoing. The source
object is given by {c, o1, o2} (where the identification with boundary components is through the dotted
arrows in the picture) plus the assignment s(o1) = s(o2) = P and t(o1) = t(o2) = Q. The target object
is {o′} plus the assignments s(o′) = t(o′) = R.

Theorem 4.2 (Costello [Cos07]). (i) Any linear Calabi-Yau category A gives rise to an open-closed
topological conformal field theory OC −→ Chk with the object set of A as the set of D-branes.

(ii) The value of this field theory on the circle is equivalent to the Hochschild complex of A.

In particular, if Mp,q is the moduli space of Riemann surfaces with p incoming closed (p ≥ 1), q
outgoing closed and no open and no free boundary components, there are maps

C∗(Mp,q; k)⊗

(∫ a∈A

L

A(a, a)

)⊗p

−→

(∫ a∈A

L

A(a, a)

)⊗q

.

We refer to [SW19] for details on the homotopy coends appearing here. In the present text, this is only

needed to a very limited extent. It suffices to know that in degree zero the complex
∫ a∈A

L
A(a, a) is given

by
⊕

a∈A A(a, a).

Remark 4.3. In [Cos07], it is actually required that k has characteristic zero, but an extension to fields
of arbitrary characteristic is given in [ES15, WW16].

From Corollary 2.3 and Costello’s result, we immediately obtain:

Corollary 4.4. For a finite category C, any trivialization of the Nakayama functor Nr : C −→ C yields a
Calabi-Yau structure on Proj C and hence gives rise to a topological conformal field theory ΦC : OC −→ Chk
with set of D-branes given by the set of projective objects of C.

Remark 4.5. The evaluation of the field theory ΦC on the disk with one incoming open boundary interval
whose complementing free boundary carries the D-brane label P ∈ ProjC

ΦC




Pin


 : C(P, P ) −→ k

is exactly the trace function of the Calabi-Yau structure from Definition 2.4 (this follows directly from
Costello’s construction), while for P,Q ∈ Proj C, the map

ΦC




P
in

in

out

P

Q


 : C(P,Q)⊗ C(Q,P ) −→ C(P, P )

is the composition over Q.

The construction of Corollary 4.4 does not do much: It just translates a trivialization of Nr to a Calabi-
Yau structure and then a topological conformal field theory, and in fact, this construction will only be of
limited use to us since we want to treat finite tensor categories and not just linear categories. Fortunately,
we can give a natural refinement: The construction from Corollary 4.4 becomes more meaningful in the
context of finite tensor categories if Nr is trivialized not just as a linear functor, but as a right C-module
functor relative to a pivotal structure. Let us define what we mean by that:
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Definition 4.6. For any finite tensor category C and a pivotal structure ω : −∨∨ ∼= idC , denote by
(idC , ω) the identity functor endowed with the structure of a right C-module functor CC −→ C∨∨ by
means of ω. We refer to an isomorphism Nr ∼= (idC , ω) of right C-module functors as a trivialization of Nr

as a right C-module functor relative to ω. We define a symmetric Frobenius structure on a finite tensor
category C as a trivialization of Nr as right C-module functor relative to a pivotal structure, where the
pivotal structure is part of the data.

Remark 4.7. Thanks to Theorem 3.1, a symmetric Frobenius structure on a finite tensor category is a
pivotal structure plus a trivialization of D. We use the term symmetric Frobenius structure not only as
convenient shorthand for the rather clumsy description of ‘pivotal unimodular finite tensor category with
a trivialization of the distinguished invertible object as part of the data’, but also for a deeper reason:
The symmetric Frobenius algebra structure on a finite tensor category allows us to write C, as a linear
category, as modules over a symmetric Frobenius algebra. This can be read off from the Corollary 3.2
because it provides canonical natural isomorphisms

C(X,Y•)
∗ ∼= C(Y•, X) ,

where X ∈ C and Y• is a projective resolution of Y ∈ C. However, a finite tensor category with symmetric
Frobenius structure requires a compatibility of the monoidal structure with the trivialization of Nr. It is
not just an identification of C, as linear category, with modules over a symmetric Frobenius algebra. In
the latter sense, the notion is used in [Shi20].

Definition 4.8. Let C be a finite tensor category with symmetric Frobenius structure. For the trivial-
ization of the right Nakayama functor Nr (that C by Definition 4.6 comes equipped with), we refer to the
topological conformal field theory ΦC : OC −→ Chk built from this particular trivialization in the sense
of Corollary 4.4 as the trace field theory of C.

The name is chosen because ΦC does not only recover the trace of the Calabi-Yau structure by Re-
mark 4.5, but can also be recovered from the trace itself.

Theorem 4.9. Let C be a finite tensor category with symmetric Frobenius structure and ΦC : OC −→ Chk
its trace field theory. The evaluation of ΦC on the disk with one incoming open boundary interval whose
complementing free boundary carries the label P ∈ Proj C

ΦC




Pin



 : C(P, P ) −→ k

is a right modified trace, while the evaluation of ΦC on the cylinder with one incoming open boundary
interval with complementing free boundary label P ∈ Proj C and one outgoing closed boundary circle

ΦC




Pin

out



 : C(P, P ) −→

∫ P∈Proj C

L

C(P, P ) (4.1)

agrees, after taking zeroth homology, with the Hattori-Stallings trace of C.

Proof. The statement about the modified trace can be extracted from Theorem 3.6 and Remark 4.5.
For the second statement, we first observe that by the construction of ΦC the map (4.1) is just the

inclusion of C(P, P ) into the direct sum
⊕

P∈Proj C C(P, P ), which is the degree zero term of the Hochschild
complex. After taking homology, we get the natural map C(P, P ) −→ HH0(C), i.e. the quotient map
projecting to zeroth Hochschild homology, and hence the Hattori-Stallings trace for C. The connection
to the traditional Hattori-Stallings trace [Hat65, Sta65] uses that by writing C, as a linear category,
as finite-dimensional modules over a finite-dimensional algebra A (which we can always do), the zeroth
homology HH0(C) is isomorphic to the zeroth Hochschild homology HH0(A) = A/[A,A] of A. This is
a consequence of the Agreement Principle of McCarthy [MCar94] and Keller [Kel99], see also [SW19,
Section 3.2] for this principle in the context of finite tensor categories.

We formulate the result in Theorem 4.9 topologically (although the Theorem 3.6 that it relies on is
purely algebraic) because, instead of traces, we will in Section 5 use the trace field theory as an efficient
tool for computations.
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Remark 4.10. The reader should appreciate that the trace field ΦC is defined through a specific trivi-
alization of the Nakayama functor and not by choosing a modified trace (although Theorem 4.9 tells us
that we could have done that). This has the advantage that, through the closed formula for Nr, the trace
field theory ΦC becomes very accessible. In fact, we will rely on the particular definition of ΦC given
above in future work.

5 The block diagonal product on Hochschild chains

We will now see how we can profit from the topological description of traces. First we define a multipli-
cation by evaluation on the pair of pants:

Definition 5.1. Let C be a finite tensor category with symmetric Frobenius structure and ΦC : OC −→
Chk the associated trace field theory. Then we define the block diagonal ⋆-product on the Hochschild

complex
∫X∈Proj C

L
C(X,X) by

⋆ := ΦC




in

in

out


 :

∫ X∈Proj C

L

C(X,X)⊗

∫ X∈Proj C

L

C(X,X) −→

∫ X∈Proj C

L

C(X,X) .

The sense in which the product ⋆ is block diagonal will be discussed in Proposition 5.3.
The results of Wahl and Westerland on the product obtained from a topological conformal field theory

in [WW16, Section 6] imply that, up to homotopy, the multiplication is concentrated in degree zero
(they prove it for symmetric Frobenius algebras, but their proof carries over to our situation). They
also give a formula for the degree zero part of the homotopy commutative multiplication. We will below
give a slightly different formula which, when working with a Calabi-Yau category instead of a symmetric
Frobenius algebra, is a little more convenient.

Lemma 5.2. The degree zero part

⋆ :
⊕

P,Q∈Proj C

C(P, P )⊗ C(Q,Q) −→
⊕

P∈Proj C

C(P, P )

of the product from Definition 5.1 is given on the summand C(P, P ) ⊗ C(Q,Q), up to boundary, by the
linear map

ΦC




Q

P

P

in out

in




: C(P, P )⊗ C(Q,Q) −→ C(P, P ) . (5.1)

Proof. Let P and Q be projective objects in C. The following morphisms in OC can be deformed into
each other and hence represent homologous zero chains:

P

Q

≃

P

Q

P

Q
≃

in

in

out

in in

out

in

in

out
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But this means that the square in OC

P Q P

Q

P

P

Q

P

P

in

in

out

out

in

in

out

in out

out

in

in

commutes up to boundary. If we apply ΦC : OC −→ Chk to the square, we see that the square

C(P, P )⊗ C(Q,Q) C(P, P )

∫X∈Proj C

L
C(X,X)⊗

∫X∈Proj C

L
C(X,X)

∫X∈Proj C

L
C(X,X)

(5.1)

⋆

commutes up to chain homotopy, where the vertical maps are just the usual embeddings of endomorphism
spaces as summands in the Hochschild complex. Since we now recover the linear map (5.1) as the upper
horizontal arrow, the assertion follows.

In the case of one object, using the Sweedler notation for the coproduct of a symmetric Frobenius
algebra, we recover the formula of Wahl and Westerland [WW16, Section 6, page 41] up to boundary.
In the sequel, it will always be implicit that the ⋆-product is applied in degree zero (because of the fact

that it only contains information in that particular degree).

Proposition 5.3. For any finite tensor category C with symmetric Frobenius structure, the product ⋆ is
block diagonal in the sense that it vanishes on two elements in components indexed by projective objects
P and Q with vanishing morphism space C(P,Q);

f ⋆ g = 0 for f ∈ C(P, P ) , g ∈ C(Q,Q) if C(P,Q) = 0 (or equivalently C(Q,P ) = 0) .

Proof. From the formula for the ⋆-product given in Lemma 5.2 one can see that the map describing ⋆ on
C(P, P )⊗ C(Q,Q) factors through C(P,Q) or C(Q,P ).

We now prove a formula for the ⋆-product of identity endomorphisms of two projective objects. As a
preparation, we make the following Definition:

Definition 5.4. Let C be a finite tensor category with symmetric Frobenius structure. For P,Q ∈ C,
we define the handle element of P and Q as the endomorphism ξP,Q ∈ C(P, P ) obtained by evaluation of
the trace field theory on the annulus:

ξP,Q := ΦC


P

Q

out


 ∈ C(P, P ) .

Remark 5.5. The name of the element ξP,Q is chosen for the following reason: If we were in the situation
P = Q, the element ξP,P would be the composition ‘multiplication ◦ comultiplication ◦ unit’ in the
symmetric Frobenius algebra C(P, P ). In [Koc03, page 128], this element is called the handle element of
the symmetric Frobenius algebra.
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Theorem 5.6. Let C be a finite tensor category with symmetric Frobenius structure.

(i) For P,Q ∈ Proj C, the ⋆-product of idP and idQ is the handle element ξP,Q of P and Q, up to
boundary in the Hochschild complex of C;

idP ⋆ idQ ≃ ξP,Q .

(ii) All handle elements in the sense of Definition 5.4 are central in the endomorphism algebras of C.

(iii) The modified trace of the handle element is given by

tP ξP,Q = dim C(P,Q) . (5.2)

Of course, the numbers dim C(P,Q) on the right hand side of (5.2) are the entries of the Cartan matrix
of C, considered here as elements in k.
If P is simple, the handle element is the number

ξP,Q =
dim C(P,Q)

dm(P )
∈ k ,

where dm(P ) := tP (idP ) ∈ k× is the modified dimension of P (note that t(idP ) 6= 0 is a consequence of
the non-degeneracy of the trace).

Proof of Theorem 5.6. In order to compute idP ⋆ idQ for P,Q ∈ Proj C, we use Lemma 5.2 and the
functoriality of ΦC :

idP ⋆ idQ ≃ ΦC




Q

P

P

in out

in




◦ ΦC




P

Q

out

out




= ΦC


P

Q

out


 = ξP,Q

This proves (i).
For the proof of (ii), recall that in the setting of symmetric Frobenius algebras, it is shown in [Koc03,

page 128] that the handle element is central. A straightforward computation by means of the trace field
theory ΦC shows that this holds still true in our more general situation: In fact, one can directly see that
both the map ξP,Q ◦ − : C(P, P ) −→ C(P, P ) and the map − ◦ ξP,Q : C(P, P ) −→ C(P, P ) are given by

ΦC




P Q

in

out




in terms of the trace field theory.
For the proof of (iii), first observe

ΦC




Pin



 ◦ ΦC


P

Q

out


 = ΦC




P

Q


 = dim C(P,Q) .

(This is the generalization of the fact that the counit evaluated on the handle element on a symmetric
Frobenius algebra is the linear dimension [Koc03, page 129] to Calabi-Yau categories.) Now we use
Theorem 4.9 which asserts that the evaluation of ΦC on the disk with one incoming open boundary
interval is actually the modified trace. This proves (5.2).
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Let us also formulate this on the level of homology and denote for an endomorphism f : P −→ P of
P ∈ Proj C by HS(f) ∈ HH0(C) the Hattori-Stallings trace. Then Theorem 4.9 and Theorem 5.6 imply:

Corollary 5.7. For any finite tensor category C with symmetric Frobenius structure,

t(HS(idP ) ⋆ HS(idQ)) = dim C(P,Q) for P,Q ∈ Proj C .

Here, by slight abuse of notation, we denote the map on HH0(C) induced by the modified trace again
by t.
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