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1. INTRODUCTION

The port-Hamiltonian approach to energy-based modeling
has quite recently boomed in the mathematical commu-
nity, see Jeltsema and van der Schaft (2014) for an intro-
ductory overview. In the author’s opinion, this is due to
its mathematical elegance and a nearly unlimited appli-
cability in various (multi-)physical domains. The class of
port-Hamiltonian systems moreover closed under power-
conserving network interconnection, that is, the coupling
of port-Hamiltonian systems again results into a port-
Hamiltonian system, see Cervera et al. (2007). Hence this
approach is in particular suitable for coupled systems. Re-
cently, tremendous progress has been made in differential-
algebraic port-Hamiltonian systems and therefore enables
to also treat constrained multibody systems as well as
electrical circuits, see Maschke and van der Schaft (2018);
Mehl et al. (2018); Gernandt et al. (2020b). Beyond that,
the physical principles which lead to port-Hamiltonian
modelling hold all the more for systems which are spatially
distributed. This leads to the urgent need of a theory for
port-Hamiltonian systems governed by partial differential
equations and partial differential-algebraic equations. Such
a theory is presented in Maschke and van der Schaft (2002)
from a differential geometric perspective by utilizing dif-
ferential forms. On the other hand, functional analysis
and operator theory are fruitful tools for treating systems
governed by partial differential equations, in particular
for the study of existence, regularity and asymptotics of
the solutions. Note that, though a functional analytic ap-
proach to port-Hamiltonian systems to partial differential
equations has been discussed in Jacob and Zwart (2012),
the theory presented therein, however, restricts to the
very limited class of coupled systems of linear transport
equations.
The aim of this article is to give impulses for research
on a functional analytic treatment. Besides presenting
a definition and proving elementary results for port-
Hamiltonian systems on Banach spaces, we discuss some
examples which fit into this framework.

This article is organized as follows: In the subsequent
Section 2, we present the definition of port-Hamiltonian
systems after introducing Dirac structures, resistive re-
lations and Hamiltonians. As an example, we show that
Maxwell’s equations with nonlinear material laws fit into
this framework. In Section 3, we generalize the setup to Ba-
nach manifolds, which allows to treat practical examples
from constrained continuum mechanics. In particular, we
introduce the concept of modulated Dirac structure and, as
an example, we present a non-elastic rope. In Section 4 we
discuss some further possible, in particular in conjunction
with gradient systems and Lagrangian manifolds, and we
discuss some possible research topics like solvability and
regularity.
Throughout this article, all considered spaces are real. The
Euclidean norm on Rn is denoted by ‖ · ‖2, and X ′ stands
for dual of a normed space X. We write 〈x, x′〉X,X′ or
〈x′, x〉X′,X for the evaluation of x′ ∈ X at x ∈ X. If
the spaces are clear from context, then we neglect the
subindices indicating the spaces. The Cartesian product
X1×X2 of two normed spaces becomes a normed space by
taking the norm ‖(x1, x2)‖X1×X2

= ‖(‖x1‖X1
, ‖x2‖X2

)‖R2 ,
where ‖ · ‖R2 is a norm on R2. In particular, X1 × X2

becomes a Hilbert space, if both X1 and X2 are Hilbert
spaces, and ‖·‖R2 = ‖·‖2. It follows that the dual ofX1×X2

is given by X ′
1 × X ′

2 with 〈(x1, x2), (x′1, x′2)〉 = 〈x1, x′1〉 +
〈x2, x′2〉. Moreover, the symbol L(X,Y ) stands for the
space of linear operators mapping from X to Y .
Lebesgue and first order Sobolev spaces of functions de-
fined on Ω ⊆ Rm and with values in a Banach space X are
respectively denoted by Lp(Ω ;X) and W 1,p(Ω ;X), and we
shortly write Lp(Ω) and W 1,p(Ω) when X = R. Especially,
when Ω = I ⊂ R is an interval, we also consider the
space Lp

loc(I;X) which consists of all (equivalence classes
of) functions f : I → X such that f ∈ Lp(K;X) for all
compact intervals K ⊆ I. Similarly, one defines W 1,p

loc (I;X).



2. DEFINITION OF PORT-HAMILTONIAN SYSTEMS
ON BANACH SPACES

Port-Hamiltonian systems are composed of so-called Dirac
structures, resistive relations and Hamiltonians, which are
successively introduced in the sequel.

2.1 Dirac structures

An important concept is the Dirac structure which de-
scribes the power preserving energy-routing of the system.
Definition 1. (Dirac structure). Let X be a Banach space.
A subspace D ⊂ X ×X ′ is called a Dirac structure, if for
all f ∈ X, e ∈ X ′, it holds

(f, e) ∈ D ⇐⇒
(
〈f, ê〉+ 〈f̂ , e〉 = 0 for all (f̂ , ê) ∈ D

)
.

Hereby, X is called the space of flows, whereas X ′ is called
the space of efforts.

Dirac structures on Hilbert spaces have been considered
in Behrndt et al. (2010), and their structure has been
analysed by using the theory of Krein spaces.
Remark 1. a) If J ∈ L(X ′, X) be a skew-dual operator

in the sense that it fulfills 〈Jv,w〉 = −〈Jw, v〉 for all
v, w ∈ X ′, then, by using the Hahn-Banach theorem
(Alt, 2016, Sec. 6.14), it can be shown that D =
{(J e, e) : e ∈ X ′} is a Dirac structure, see Reis and
Stykel (2021). It is even more straightforward to prove
that for J ∈ L(X,X ′) fulfills 〈Jv,w〉 = −〈Jw, v〉
for all v, w ∈ X, then the graph of J , i.e., D =
{(f, Jf) : f ∈ X}. Note that this generalizes the
well-known statement that graphs of skew-symmetric
matrices define Dirac structures, see Maschke and
van der Schaft (2018); Gernandt et al. (2020a).

b) Dirac structures are closed subspaces of X ×X ′, and
they are therefore complete.

c) Let D ⊂ X × X ′ be a Dirac structure. If X is
reflexive, i.e., the canonical embedding X → X ′′,
x 7→ (x′ 7→ 〈x, x′〉) (which allows to regard X as
a subspace of X ′′) is surjective, then

Dswap ⊂ X ′ ×X ′′ = {(e, f) : (f, e) ∈ D}
is a Dirac structure as well. This is no longer true in
general, if X is not reflexive. For instance, consider
a non-reflexive space X and the Dirac structure D =
X × {0}. Then Dswap ⊂ X ′ × X ′′ is not a Dirac
structure, since any x′′ ∈ X ′′ \ X fulfills 〈0, x〉 +
〈0, x′′〉 = 0 for all x ∈ X, but (x′′, 0) /∈ D = X × {0}.
On the other hand, the Hahn-Banach theorem implies
that - independent on reflexivity - for any Banach
space X the swap of the Dirac structure D = {0}×X ′

is a Dirac structure as well.

2.2 Hamiltonians

Now we introduce functionals which express the energy
storage in a system. We first review some needed differen-
tiability and continuity concepts.
Definition 2. Let X,Y be Banach spaces, U ⊂ X be open.
Then a function f : U → Y is called

a) locally Lipschitz continuous, if for all x ∈ U , there
exists some neighborhood V and some L > 0, such
that

∀y, z ∈ U ∩ V : ‖f(y)− f(z)‖ ≤ L ‖y − z‖.
b) Gâteaux differentiable at x ∈ U , if the Gâteaux

derivative
Df(x) =

(
y 7→ lim

t→0

1
t (f(x+ ty)− f(x))

)
∈ L(X,Y )

exists.
c) Gâteaux differentiable, if it is Gâteaux at any x0 ∈ U .

The Hamiltonian is a real-valued mapping with the above
properties.
Definition 3. (Hamiltonian). Let X be a Banach space
and U ⊂ X be open. We call H : U → R a Hamiltonian,
if it is locally Lipschitz continuous and Gâteaux differen-
tiable.

Note that the Gâteaux derivative of the Hamiltonian is
mapping to the dual of X, i.e., DH : X → X ′. In our
context, the most important property of the Hamiltonian
is that it fulfills the weak form of the chain rule. Before
presenting the result, we declare a manner of speaking:
It follows from weak form of the fundamental theorem of
calculus (Alt, 2016, E3.6) that for any x ∈ W 1,p

loc (I;X)
and almost all t0, t1 ∈ I with t0 ≤ t1, the integral of
d
dtx(t) equals to the difference between x(t1) and x(t0).
Consequently, x possesses a continuous representative,
which is moreover unique since the complements of null
sets are dense. Hence, by writing x(t) for some x ∈
W 1,p

loc (I;X) and t ∈ I, we mean the evaluation of the
continuous representative at t.
Proposition 1. Let X be a Banach space, let U ⊂ X be
open, let H : U → R be a Hamiltonian and, for some
interval I ⊂ R and p ∈ [1,∞], let x ∈ W 1,p

loc (I;X) with
x(t) ∈ U for all t ∈ I. Then the mapping H ◦ x : t 7→
H(x(t)) is in W 1,p

loc (I). In particular, the weak derivative of
H ◦ x fulfills the weak chain rule

d
dtH(x(t)) = 〈 d

dtx,DH(x)〉 for almost all t ∈ I.

Before presenting the proof, we note that “x(t) ∈ U for
all t ∈ I” means that the continuous representative of x
has this property. In case of compact I, this is equivalent
to the existence of a neighborhood V ⊂ U of the trace
of x. Be aware that “x(t) ∈ U for almost all t ∈ I” does
not guarantee the result since the trace of x may kiss the
boundary of U .

Proof. The result for U = X and H Lipschitz continuous
(that is, the constant L in Definition 2 does not depend
on x) has been shown in (Arendt and Kreuter, 2018,
Theorem 4.2). A careful inspection of the proof yields that
this statement also holds, if H is Gâteaux differentiable
and Lipschitz continuous on some open subset U ⊂ X,
and x ∈W 1,p

loc (I;X) fulfills x(t) ∈ U for all t ∈ I.
Now we show that the result also holds in the case where H
is Gâteaux differentiable and locally Lipschitz continuous:
First note that - by restricting to a suitable subinterval - it
is no loss to assume that I is compact. Then, by continuity
of x, the trace of x, namely trx := {x(t) : t ∈ I}, is
compact. Then, by a covering argument, there exists some
open set V ⊂ U with trx ⊂ V , such that the restriction
of H to V is Lipschitz continuous. Then the result follows
from the argumentation at the beginning of this proof.



Remark 2. a) If H ∈ L(X,X ′) is self-dual in the sense
that it fulfills 〈Hv,w〉 = 〈Hw, v〉 for all v, w ∈ X,
then H : X → R, x 7→ 1

2 〈x,Hx〉 is a Hamiltonian.
In particular, the Gâteaux derivative reads DH(x) =
Hx for all x ∈ X.

b) Assume that H : U → R is Gâteaux differentiable,
where U is an open subset of a Banach space X.
Consider x, y ∈ U such that all convex combinations
of x and y are still in U . The chain rule applied to
the function [0, 1] → R, t 7→ H(tx+ (1− t)y) implies
that

H(y)−H(x) =

∫ 1

0

〈(x− y),DH(tx+ (1− t)y)〉dt.

Consequently, Lipschitz continuity of H is guaran-
teed, if DH : U → X ′ is locally bounded, that is, for
all x ∈ U there exists some neighborhood V ⊂ U
of x such that the restriction of H to V is bounded.
Local boundedness of DH is for instance guaranteed,
if DH : U → X ′ is a continuous function. Note that
the latter implies the even stronger concept of Fréchet
differentiability (Zeidler, 1986a, §4.2).

2.3 Resistive relations

Another ingredient for port-Hamiltonian systems are re-
sistive relations, which are defined below.
Definition 4. (Resistive relation). Let X be a Banach
space. A relation R ⊂ X ×X ′ is called resistive, if

〈f, e〉 ≤ 0 for all (f, e) ∈ R.
Remark 3. a) Assume that R ⊂ X × X ′ is a resistive

relation. By using the canonical embedding of X into
its bidual, we see that

Rswap ⊂ X ′ ×X ′′ = {(e, f) : (f, e) ∈ R}
is again a resistive relation.

b) The closure of a resistive relation is again a resistive
relation. Any subset of a resistive relation is a resistive
relation.

c) If the mapping R : X → X ′ is dissipative, i.e.,
〈x,R(x)〉 ≤ 0, then the graph of R, i.e., R =
{(f,R(f)) : f ∈ X} is a resistive relation. Likewise,
if G : X ′ → X is dissipative in the sense that
〈x′, G(x′)〉 ≤ 0 for all x′ ∈ X ′, then the relation
R = {(G(e), e) : e ∈ X ′} is resistive.

2.4 Port-Hamiltonian systems

Having defined Dirac structures, Hamiltonians and re-
sistive relations, we are now ready to introduce port-
Hamiltonian systems.
Definition 5. (Port-Hamiltonian system). LetXS ,XR and
XP be Banach spaces. A port-Hamiltonian system is
a triple (D,H,R), where D ⊂ (XS ×XR ×XP)× (X ′

S ×
X ′

R ×X ′
P) is a Dirac structure, H : U → R (with U ⊂ XS

open) is a Hamiltonian, and R ⊂ XR ×X ′
R is a resistive

relation. The behavior of the port-Hamiltonian system on
an interval I ⊂ R is consisting of all (x, fR, fP , eR, eP)

with x ∈ W 1,2
loc (I;XS), and x(t) ∈ U for all t ∈ I,

(fR, eR) ∈ L2
loc(I;XR×X ′

R), (fP , eP) ∈ L2
loc(I;XP ×X ′

P)
that fulfill the differential inclusion

for almost all t ∈ I :(
− d

dtx(t), fR(t), fP(t),DH(x(t)), eR(t), eP(t)) ∈ D,
(fR(t), eR(t)

)
∈ R.

(1)
The object x(t) is called state at t ∈ I. The spaces XS×X ′

S ,
XR ×X ′

R and XP ×X ′
P are referred to as energy storage

port, resistive port and external port, respectively.

The definition of the Dirac structure together with Propo-
sition 1 yields that any element (x, fR, fP , eR, eP) of the
behavior of a port-Hamiltonian system on the interval
I ⊂ R fulfills
0 = − 〈 d

dtx(t),DH(x(t))〉+ 〈fR(t), eR(t)〉+ 〈fP(t), eP(t)〉
= − d

dtH(x(t)) + 〈fR(t), eR(t)〉+ 〈fP(t), eP(t)〉
≤ − d

dtH(x(t)) + 〈fP(t), eP(t)〉.
Hence, an integration on [t0, t1] ⊂ I yields

H(x(t1))−H(x(t0))

=

∫ t1

t0

〈fR(t), eR(t)〉dt+
∫ t1

t0

〈fP(t), eP(t)〉dt

≤
∫ t1

t0

〈fP(t), eP(t)〉dt.

(2)

In practical situations, this is an energy balance: The
expression H(x(t)) stands for the energy of the system at
time t ∈ I, whereas

∫ t1
t0
〈fP(t), eP(t)〉dt is the energy which

is put into the system, and
∫ t1
t0
〈fR(t), eR(t)〉 dt stands

for the energy that is dissipated from the system in the
interval [t0, t1].

2.5 Example: An eddy current model

Eddy current models occur as a simplification of Maxwell’s
equations in which the contribution of the dynamics of
the electric field is small compared to the dynamics of
the magnetic field. For an interval I, we consider the
functions D,B,E,H,J : R3 × I → R3 which are referred
to as electric displacement, magnetic flux intensity, electric
field intensity, magnetic field intensity and electric current
density. Assuming that there are no electric charges,
Maxwell’s equations are given by

∇ ·D = 0, ∇ ·B = 0,

∇×E = − ∂
∂tB ∇×H = J + ∂

∂tD,

where ∇· stands for the divergence and ∇× denotes
the curl of a vector field with respect to the spatial
variable ξ ∈ R3. The simplification caused by staticity
of the electric field means that the time derivative of
the electric displacement vanishes, i.e., ∂

∂tD = 0, see e.g.
Cortes Garcia et al. (2018); Chill et al. (2021). In addition,
the above variables fulfill constitutive relations, which are
determined by the physical properties of the medium. The
constitutive relations are, in the quasilinear and isotropic
case, of the form

H(ξ, t) = ν(ξ, ‖B(ξ, t)‖2)B(ξ, t),

J(ξ, t) = σ(ξ, ‖E(ξ, t)‖2)E(ξ, t) + Jext(ξ, t)

for some measurable and bounded nonnegative functions
ν, σ : R3 × R → R which respectively express the electric
permittivity, magnetic reluctivity and electric conductiv-
ity of the material, and Jext stands for the externally



injected currents. We assume that the latter is induced
by a winding

Jext(ξ, t) = χ(ξ)i(t), (3)
where i : I → R is the injected current, and the divergence-
free function χ : R3 → R3 expresses the geometry of the
winding. The voltage at the winding is defined by

u(t) =

∫
R3

χ⊤(ξ)E(ξ, t)dξ. (4)

For the magnetic reluctivity ν, we consider the function
ϑ : R3 × R≥0 → R≥0 given by

ϑ(ξ, ϱ) =
1

2

∫ ϱ

0

ν(ξ,
√
ζ) dζ =

∫ √
ϱ

0

ν(ξ, ζ)ζ dζ, (5)

which stands for the magnetic energy density. Conse-
quently, the magnetic energy is the spatial integral of
the magnetic energy density. That is, we consider the
functional

H(B) =

∫
R3

ϑ
(
ξ, ‖B(ξ)‖22

)
dξ (6)

on a space which has to be further specified in the follow-
ing. First note that the boundedness and measurability of
the magnetic reluctivity implies that H(B) is well-defined
for any B ∈ L2(R3;R3).
Now consider the space L2(div=0) consisting of all square
integrable functions whose distributional divergence van-
ishes, where we identify functions which coincide on sets of
measure zero. Note that L2(div=0) is a closed subspace of
the space L2 of all square-integrable R3-valued functions
on R3, and it is thus a Hilbert space provided with respect
to the natural inner product on L2. Further, we set
H(curl,div=0) = {A∈L2(div=0), curlA ∈ L2(div=0)},
where curlA stands for the distributional curl of A ∈
L2(div = 0). This space is again a Hilbert space, now
provided with the inner product which is given by the
sum of the L2-inner product of the functions and L2-inner
product of the curl of the given functions. To this end,
note that curlA ∈ L2(div = 0) is fulfilled if, and only if,
curlA is a square integrable function.
Next we formulate our eddy current model as a port-
Hamiltonian system. Hereby, the external port is supposed
to be consisting of the injected current i together with the
voltage u at the winding. More precisely, we set XP = R
and eP(t) = u(t), fP(t) = i(t). Furthermore, we consider
the space XS = L2(div = 0) and XR = H(curl,div = 0)′,
where the latter is given by the dual of H(curl,div = 0)
with respect to the pivot space L2(div = 0). Note that,
by using the integration by parts formula for the curl
operator, curl extends to an operator from L2(div = 0)
to H(curl,div=0)′ via

curlB =

(
F 7→

∫
R3

(curlF )⊤Bdξ

)
. (7)

Since Hilbert spaces are reflexive, and the dual space
of R can be canonically identified with itself, we have
X ′

S = L2(div = 0), X ′
R = H(curl,div = 0) and X ′

P = R.
By setting X = XS ×XR ×XP , we consider the set

D =

{((
fS
fR
fP

)
,

(
eS
eR
eP

))
∈ X ×X ′ : fS = curl eR,

fR = − curl eS − χeP , fP =

∫
R3

χ⊤eR dξ

}
.

It can be seen that this set is of the form D = {(J e, e) :
e ∈ X ′} for some skew-dual operator J ∈ L(X ′, X),
whence we obtain from Remark 1 a) that D is a Dirac
structure. It can be further seen that the nonnegativity of
the electric conductivity implies that
R = {(fR, eR) ∈ XR ×X ′

R :

fR(ξ) = −σ(ξ, ‖eR(ξ)‖2)eR(ξ)∀ ξ ∈ R3
}
.

is a resistive structure. As Hamiltonian, we take H :
XS = L2(div = 0) → R defined by the relation (6).
A straightforward calculation implies that the Gâteaux
derivative fulfills

DH(B) = ν(·, ‖B(·)‖2)B, (8)
where, for some function F : R3 → R3, ‖B(·)‖2 stands for
the pointwise evaluation of the Euclidean norm of B. Next,
we show that the port-Hamiltonian system (D,H,R)
indeed represents the previously introduced eddy current
model. Denote the state x(t) by B(t) ∈ L2(div = 0), and
fR = J , eR = E, fP = u and eP = i. Then(

− d
dtB(t),J(t),v(t),DH(B(t)),E(t), i(t)

)
∈ D,

(J ,E(t)) ∈ R.
(9)

By using the definition of D and R and the representation
(8) of the Gâteaux derivative of the Hamiltonian, we
obtain

− d
dtB(t) = curlE(t),

−σ(·, ‖E(·, t)‖2)E(t) = − curl(ν(·, ‖B(·, t)‖2)B(t))

− χ iwind(t),

u(t) =

∫
R3

χ⊤(ξ)E(ξ, t)dξ,

which is exactly the previously introduced eddy current
model. Note that the second relation in an equality in
H(curl,div=0)′, and the identity (7) for the extension of
the curl operator to L2(R3;R3) means that it is equivalent
to

∀F ∈ H(curl,div=0) :∫
R3

F (ξ)⊤(σ(ξ, ‖E(ξ, t)‖2)E(ξ, t) + χ(ξ) iwind(t))

+ (curlF (ξ))⊤(ν(ξ, ‖B(ξ, t)‖2)B) + F (ξ)⊤dξ = 0,

which indeed corresponds to a weak formulation.

3. PORT-HAMILTONIAN SYSTEMS ON BANACH
MANIFOLDS

The Banach space setup is oftentimes not capable for
physical systems, in particular for those involving ideal
constraints. Instead, the state evolves in a manifold, i.e., a
topological spaces which has at least locally the structure
of a Banach space.
Definition 6. (Banach manifold). Let M be a topological
space. An atlas of class C1 on M is a family of pairs (called
charts) (Ui, φi)i∈I , such that

• Ui ⊂ M for all i ∈ I, and
⋃

i∈I Ui = M;



• φi is a homeomorphism from Ui onto an open subset
φi(Ui) of some Banach space Xi, and for any i, j ∈ I,
the crossover map

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is continuously differentiable, i.e., its Fréchet deriva-
tive exists and is a continuous function with respect
to the operator norm topology on L(Xi, Xj).

Two atlasses (Ui, φi)i∈I and (Vj , ψj)j∈J are called compat-
ible, if for all i ∈ I, j ∈ J , the map

ψj ◦ φ−1
i : φi(Ui ∩ Uj) → φi(Ui ∩ Uj)

is continuously differentiable (note that compatibility de-
fines an equivalence relation on the set of atlasses of class
C1 on M).
A differentiable manifold structure on M, is an equivalence
class of compatible atlases of class C1 on M.

We refer to (Zeidler, 1986b, Chapter 73) for further details
on Banach manifolds. For sake of brevity, we will call M
itself a differentiable manifold instead of the equivalence
class of compatible atlases. Next we introduce the tangent
space. Hereby we use the concept of differentiable curve
x : (−1, 1) → M, which is defined to be a continuous
mapping with the property that for all charts (U,φ),
it holds that φ ◦ γ : γ−1(U) → φ(U) is continuously
differentiable.
Definition 7. (Tangent space). Let M be a differentiable
manifold and let x0 ∈ M. Two differentiable curves
x1, x2 : (−1, 1) → M with x1(0) = x2(0) = x0 are called
equivalent at x0, if for some (and hence any) chart (U,φ)
with x0 ∈ U , the derivative fulfills d

dt (φ ◦ x1)(0) = d
dt (φ ◦

x2)(0). The set of all equivalent curves at x0 is called
a tangent vector. The set of tangent vectors is called
tangent space at x ∈ M, and will be denoted by TMx0

.

The definition of the tangent space allows to write d
dtx(t) ∈

TMx(t) for all t ∈ I and all differentiable curves x :
I → M. Addition and scalar multiplication on the set
of tangent vectors is well-defined by addition and scalar
multiplication in the space defined by the vectors d

dt (φ ◦
x)(0). Further, note that, for two charts (U1, φ1), (U2, φ2),
the norms ‖ · ‖i : [x] 7→ ‖ d

dt (φi ◦ x)(0)‖, i = 1, 2 are
equivalent, where [x] stands for the class of all curves
being equivalent to x at x0 ∈ M. Hence, the tangent
space is a topological vector space with topology induced
by a norm. As a consequence, the cotangent space TM′

x
at x ∈ M is well-defined by the dual of the tangent space
at x ∈ M.
The previously introduced concepts allow to introduce
Dirac structures on Banach manifolds.
Definition 8. (Modulated Dirac structure). Let M be a
Banach manifold. A modulated Dirac structure on M is
a family (Dx)x∈M, where for each x ∈ M, Dx is a Dirac
structure with Dx ⊂ TMx × TM′

x.
Definition 9. (Hamiltonian on Banach manifold). Let M
be a Banach manifold. We call H : M → R a Hamiltonian,
if is locally Lipschitz continuous and Gâteaux differen-
tiable. That is, for any chart (φ,U) of M, the mapping
H ◦ φ−1 is locally Lipschitz continuous and Gâteaux dif-
ferentiable.

Let H : M → R be a Hamiltonian. Then for any chart
(φ,U) of M, we have that the mapping H ◦ φ−1 is
locally Lipschitz continuous and Gâteaux differentiable.
Furthermore, for any differentiable curve x : I → M and
any chart (φ,U) of M, Proposition 1 implies that the
derivative of the function t 7→ H(x(t)) fulfills

∀x−1(U) ⊂ I : d
dtH(x(t)) = d

dt (H ◦ φ−1) ◦ (φ ◦ x(t))
= 〈D(H ◦ φ−1)(x(t)), d

dtφ ◦ x(t)〉.
The definition of the tangential space now leads to the
fact that the Gâteaux derivative DH : M → TM′

x of H
at x ∈ M is well- and completely defined by
〈DH(x(t)), d

dtx(t)〉 :=
d
dt (H ◦ φ−1) ◦ (φ ◦ x(t))

= 〈D(H ◦ φ−1)(x(t)), d
dtφ ◦ x(t)〉

for some (and hence any) chart (φ,U) with x(t) ∈ U .
Combining the previous identity with Proposition 1, we
see that this also holds, if the curve x is only weakly
differentiable.
Next we introduce port-Hamiltonian systems involving
Banach manifolds. To this end, we note that the Cartesian
product of Banach manifolds is canonically again a Banach
manifold. Further, for a Banach manifold M, we say that
x : I → M is in W 1,2

loc (I;M), if for any t0 ∈ I, there exists
some chart (U,φ) for φ−1(U) ⊂ X with some Banach
space X, and some relative neighborhood J ⊂ I, such that
x(J) ⊂ U , and φ−1 ◦ x

∣∣
J ∈W 1,2

loc (J;X).
Definition 10. Let M be a Banach manifold, and let XR
and XP be Banach spaces. A port-Hamiltonian system
is a triple (D,H,R), where D = (Dz)z∈M×XR×XP is
a modulated Dirac structure on M×XR×XP , H : M → R
is a Hamiltonian, and R ⊂ XR × X ′

R is a resistive
relation. The behavior of the port-Hamiltonian system on
an interval I ⊂ R is consisting of all (x, fR, fP , eR, eP)

with x ∈ W 1,2
loc (I;M), (fR, eR) ∈ L2

loc(I;XR × X ′
R),

(fP , e
′
P) ∈ L2

loc(I;XP × XP) that fulfill the differential
inclusion
for almost all t ∈ I :(

− d
dtx(t), fR(t), fP(t),DH(x(t)), eR(t), eP(t)) ∈ Dx(t),

(fR(t), eR(t)
)
∈ R.

The notions of state, energy storage port, resistive port
and external port are used as for conventional port-
Hamiltonian systems. The energy balance (2) can be
inferred by using the definition of the Gâteaux derivative of
Hamiltonians on Banach manifolds and the argumentation
as in Section 2.4.

3.1 Example: A (not necessarily heavy) rope

q(t, ξ)

q(t, 0)

q(t, ℓ)

q′(t, ξ)

g

Consider a non-elastic and undamped
rope of fixed length ℓ. The rope at
time t is described by a curve q(·, t) :
[0, ℓ] → R2, ξ 7→ q(ξ, t), which is
parameterized by arc length, that is
‖q′(ξ, t)‖2 = 1 for all ξ ∈ [0, ℓ], where
the prime stands for the derivative
with respect to ξ. The rope has a mass
density ρ : [0, ℓ] → R>0 per unit
length, which is further assumed to be
measurable, bounded, and bounded
from below by some positive constant.



The acceleration due to gravity is assumed to be
(
0
g

)
,

whence the potential energy of the rope is given by
Epot(q(t)) =

∫ ℓ

0
ρ(ξ)q(ξ, t)⊤

(
0
g

)
dξ. The kinetic energy

reads Ekin(
d
dtq(t)) = 1

2

∫ ℓ

0
ρ(ξ)‖ d

dtq(ξ, t)‖
2
2dξ. By using

the Lagrangian function (see Jeltsema and van der Schaft
(2014)),
L(q(t), d

dtq(t))

= Epot(q(t))−Ekin(
d
dtq(t))+

∫ ℓ

0

λ(ξ, t)(‖q′(ξ, t)‖22−1),

the Lagrange formalism leads to the partial differential-
algebraic equation

d
dtq = 1

ρp,

d
dtp = (λq′)′ − ( 01 ) ρg,

0 = ‖q′‖22 − 1,

(10)

where the R2-valued p stands for the infinitesimal momen-
tum at the rope.
Our aim is now to embed this model into the port-
Hamiltonian framework: Due to the constraint ‖q′‖22 = 1,
we choose the manifold
Mpos = {x ∈W 1,∞([0, ℓ];R2) : ‖q′(ξ)‖22 = ℓ ∀ ξ ∈ [0, 1]}

for the positions q of the rope. It can be seen that the
mapping

F : R2 × L∞([0, ℓ]) → Mpos,

(q0, ϑ) 7→ q0 +

∫ ξ

0

(
cos(ϑ(ζ))
sin(ϑ(ζ))

)
dζ

is onto and continuous. Denoting the r-ball centered in q
by Ur(q), an atlas on Mpos is given by the family

(φ(q0,ϑ), U(q0,ϑ))∈R2×L∞([0,ℓ])

with
φ(q0,ϑ) =

(
F|U1(q0)×Uπ(ϑ)

)−1

,

U(q0,ϑ) =F(U1(q0)× Uπ(ϑ)).

Since the crossover map between two charts is simply the
identity, we further see that Mpos (and thus also M) is
a differentiable Banach manifold. Note that M equipped
with the relative topology in W 1,p([0, ℓ];R2) for p < ∞ is
not a Banach manifold, since there do not exist any charts
due to possible unboundedness of the weak derivative of
functions in W 1,p([0, ℓ];R2).
By using that Mpos is embedded in the Banach space
W 1,∞([0, ℓ];R2), we can directly identify the tangential
vectors in q ∈ Mpos by the derivatives d

dtq(0) of the
differentiable curves in W 1,∞([0, ℓ];R2) with q(t) ∈ Mpos

for all t in some neighborhood of zero. Note that, by
formally differentiating this constraint we obtain that any
curve q : I → Mpos fulfills (q′(ξ, t))⊤ d

dtq(ξ, t) = 0 for all
ξ ∈ [0, ℓ]. Indeed, it can be shown that
TMpos

q = {z ∈W 1,∞([0, ℓ];R2) :

(q′(ξ))⊤z′(ξ) = 0 ∀ ξ ∈ [0, ℓ]}.
By d

dtq = 1
ρp, we see that the momentum fulfills p(t) ∈

TMpos
q(t). Hence, we have x(t) := (q(t),p(t)) ∈ M with

M = {(q,p) ∈ M×W 1,∞([0, ℓ];R2) : p ∈ TMpos
q },

which is also known as the tangent bundle of Mpos. Since
the tangent bundle is itself a Banach manifold by (Zeidler,

1986b, Prop. 73.17), we obtain that M is a Banach
manifold.
Our resistive structure is chosen to be trivial, whereas
the external port is a pair of four-dimensional spaces, i.e.,
XP = R4. As Dirac structure, we choose

D(q,p) ⊂ (TM(q,p) × R4)× (TM′
(q,p) × R4)

with the property that((
fS
fP

)
, ( eS

eP )
)
∈ D(q,p)

if, and only if, there exists some measurable λ ∈ L∞([0, ℓ])
with λq′ ∈W 1,∞([0, ℓ];R2) and

fS =
(

fS1

fS2

)
=
[

0 I
−I 0

]
( eS1
eS2

)︸ ︷︷ ︸
=eS

+
(

0
(λq′)′

)
as well as
fP =

(
fP1

fP2

)
=
(

(λq′)(0)

−(λq′)(ℓ)

)
, eP = ( eP1

eP2
) =

(
eP1(0)
eP2(0)

)
.

Note that the physical interpretation of λq′ is the force
acting along the rope. Further note that, in the above
Dirac structure, we have implicitly used the canonical
embedding W 1,∞([0, ℓ];R2) ⊂W 1,∞([0, ℓ];R2)′ via
W 1,∞([0, ℓ];R2) 3 z

=̂

(
z̄ 7→

∫ ℓ

0

z(ξ)⊤z̄(ξ)dξ

)
∈W 1,∞([0, ℓ];R2)′ (11)

As Hamiltonian chose the sum of kinetic and potential
energy, i.e.,

H(q,p) =

∫ ℓ

0

1
2ρ(ξ)‖p(ξ)‖

2
2 + ρ(ξ)q(ξ)⊤

(
0
g

)
dξ,

and it can be directly seen that it indeed meets the
requirements on Hamiltonians. In particular, by using
the canonical embedding (11), we see that the Gâteaux
derivative reads

DH(q,p) =

((
0
g

)
1
ρp

)
,

and a straightforward calculation yields that the behavior
of the resulting port-Hamiltonian system exactly reflects
the model (10).

4. CONCLUDING REMARKS

We have presented some aspects of port-Hamiltonian sys-
tems theory from a functional analytic viewpoint. By pre-
senting a Banach space (manifold) framework to (modu-
lated) Dirac structures, Hamiltonians and resistive struc-
tures, we have seen that several examples from electro-
magnetism and continuum mechanics can be formulated
in this manner. However, a functional analytic approach to
port-Hamiltonians is still in its infancy, and a quite variety
of tasks can be interesting subjects of future research. Such
topics are listed below.

a) Implicit energy storage: Port-Hamiltonian sys-
tems theory on Banach spaces can be extended by us-
ing so-called Lagrangian manifolds instead of Hamil-
tonians, see Maschke and van der Schaft (2018) for
the linear and finite-dimensional case. These are sub-
manifolds L of the cotangent bundle {(x, x′) : x ∈
M, x′ ∈ TM′

x} with the property that (x, x′) ∈ L if,
and only if, 〈x, y′〉 − 〈y, x′〉 = 0 for all (y, y′) ∈ L. It



can be shown that the graph of a Hamiltonian defines
a Lagrangian manifold. The extension to Lagrangian
manifolds which are no graphs allows to incorporate
energy storage which further exerts constraints to the
systems. For instance, this extension allows to relax
the assumption on the mass density per unit length
in the rope model in Section 3.1 to be bounded from
below by some positive constant.

b) Input-output structures: This refers to a split of
the external ports via XP = XPi × XPo and fP =
(fPi, fPo), eP = (ePo, ePi). The input of the system
is defined by u(·) = (fPi(·), ePi(·)) : I → XPi ×
X ′

Po, whereas the output is y(·) = (ePo(·), fPo(·)) :
I → X ′

Pi × XPo. The most important problem in
conjunction with input-output structures is existence
of and qualitative behavior of solutions for prescribed
inputs.

c) Non-smooth systems: Recall that we have ob-
tained the energy balance by the weak chain rule
from Proposition 1 together with Gâteaux differ-
entiability of the Hamiltonian. On the other hand,
a generalization of the Gâteaux derivative is given
by the subdifferential as considered in Barbu (2010)
from the perspective of nonlinear evolution equations.
This approach is applicable to a class of Hamiltonians
which are further allowed to map to R≥0 ∪ {∞}, and
typically results into a subdifferential which is set-
valued and only defined on some subset of XS . In
other words, subdifferentials give rise to subsets of
XS ×X ′

S , which can be also analyzed from the view-
point of Lagrangian manifolds. Under the additional
assumption that XS is a Hilbert space, it is shown in
(Barbu, 2010, Lemma 4.4) that the weak chain rule
also holds, if the Gâteaux derivative is replaced by
a subdifferential. Since this is the essential ingredient
used in (2), the incorporation of subdifferentials is
a further possible generalization of our approach to
infinite-dimensional port-Hamiltonian systems.
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