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Abstract. This is a continuation of a sequence of two papers on the analysis of a quasilinear
coupled magneto-quasistatic model. In this part, we study this model from a systems theoretic
perspective. First, by taking the injected voltages as input and the associated currents as output,
we prove that the magneto-quasistatic system is passive. Moreover, by defining suitable Dirac and
resistive structures, we show that it admits a representation as a port-Hamiltonian system. There-
after, we consider dependence on initial and input data. We show that the current and the magnetic
vector potential can be estimated by means of the initial magnetic vector potential and the voltage.
We also analyse the free dynamics of the system and study the asymptotic behavior of the solutions
for t → ∞.
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1. Introduction. A subject of this paper is the investigation of systems theo-
retic properties of a quasulinear coupled magneto-quasistatic (MQS) model

∂
∂t (σA) +∇× (ν(·, ‖∇ ×A‖2)∇×A) = χ i in Ω × (0, T ),(1.1a)

d
dt

∫
Ω

χ>Adξ +R i = v on (0, T ),(1.1b)

A× no = 0 in ∂Ω × (0, T ),(1.1c)

σA(·, 0) = σA0 in Ω ,(1.1d) ∫
Ω

χ>A(·, 0) dξ =

∫
Ω

χ>A0 dξ,(1.1e)

where Ω ⊂ R3 is a bounded domain with some further properties specified later on,
A : Ω × [0, T ] → R3 is the magnetic vector potential, ν : Ω × R≥0 → R≥0 is the
magnetic reluctivity, σ : Ω → R≥0 is the electric conductivity, and v, i : [0, T ]→ Rm
are, respectively, the voltage and the electrical current through the electromagnetic
conductive contacts. Furthermore, χ : Ω → R3×m is the winding function, which
expresses the geometry of m windings, R ∈ Rm×m is the resistance of the wind-
ing, no : ∂Ω → R3 is the outward unit normal vector to the boundary ∂Ω , and
A0 : Ω → R3 is the initial value for the magnetic vector potential. The voltage v
is considered as the input, whereas the current i is the output of the system. The
dynamics of the magnetic vector potential is expressed by (1.1a), which arises from
a simplification of Maxwell’s equations [10], and (1.1c) means that the magnetic flux
through the boundary ∂Ω is zero. The term χ i stands for the external current
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induced by m windings, and (1.1b) expresses Kirchhoff’s voltage law including the
applied voltage v, the resistive voltage R i, and the term d

dt

∫
Ω
χ>Adξ, which is the

voltage induced by the electromagnetic field. Note that σ is positive and constant on
a subdomain ΩC ⊂ Ω , whereas it vanishes on the complement of ΩC . This implies
that the coupled MQS system (1.1) becomes of degenerate parabolic type.

The purpose of this paper is to investigate the dynamic behavior of the coupled
MQS model (1.1) from a systems theoretic point of view. In doing so, we analyse
passivity of this model by establishing the existence of a certain energy balance. Fur-
ther, we show that the MQS system (1.1) fits into the framework of port-Hamiltonian
systems. The findings on passivity will be the basis for solution estimates by means of
the initial value A0 and the input voltage v. Besides showing that the free dynamics
of system (1.1) (that is, the solution behavior with v ≡ 0) are bounded and that the
L2-norm of the curl of the magnetic vector potential decays exponentially, we present
estimates for the L2-norm of the output and the magnetic vector potential in terms
of the initial value, the input and the material parameters.

The paper is organized as follows. In Section 2, we collect our model assump-
tions and review some results from [10] on existence, uniqueness and regularity of
solutions of the coupled MQS system (1.1). We also highlight that this system ad-
mits a representation as a differenial-algebraic system in which the state evolves in
an infinite-dimensional Hilbert space. This section closes with a brief introduction
to the concept of magnetic energy. It plays an essential role in Section 3, where we
establish an energy balance of the MQS system (1.1) and prove that this system is
passive. In Section 4, we introduce infinite-dimensional port-Hamiltonian systems via
abstract Dirac and resistive structures and show that the coupled MQS system (1.1)
belongs to this class. The energy balance from Section 3 is then used in Section 5
to establish the solution estimates for (1.1). In Section 5.1, we derive a bound for
the L2-norm of the output in terms of the L2-norm of the input and the initial value.
This gives, in particular, an estimate for the generalization of the H∞-norm to the
nonlinear infinite-dimensional differential-algebraic case. In Section 5.2, we derive es-
timates for the magnetic energy and the L2-norm of the magnetic vector potential at
some given time t ≥ 0 by means of the initial value and the L2-norm of the input.
Finally, in Section 5.3, we consider the MQS system (1.1) in which the zero voltage
is applied. We show that the magnetic energy decays exponentially, and we present
estimates for the L2-norm of the magnetic vector potential at time t ≥ 0.

2. The MQS system: assumptions, solvability and magnetic energy.
Throughout this paper, we use the notation and terminology of the first part [10]. For
ease of reference, we recall here the assumptions on the spatial domain, the material
parameters, the initial value, and the winding function. Moreover, we present the
solution concept and recap the solvability results and some essential properties of the
magnetic energy established in [10].

2.1. The model assumptions. First, we impose the following assumptions on
the spatial domain Ω .

Assumption 2.1 (Spatial domain, geometry and topology). The set Ω ⊂ R3 is
a simply connected bounded Lipschitz domain, which is decomposed into two Lipschitz
regular, open subsets ΩC , ΩI⊂Ω, called, respectively, conducting and non-conducting
subdomains, such that ΩC⊂Ω and ΩI = Ω \ΩC . Furthermore, ΩC is connected, and
ΩI has finitely many connected internal subdomains ΩI,1, . . . ,ΩI,q with single bound-
ary components Γ1, . . . ,Γq, respectively, and the external subdomain ΩI,ext which has
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two boundary components Γext = ΩI,ext ∩ ΩC and ∂Ω.

Next, we state the assumptions on the electric conductivity σ, the magnetic re-
luctivity ν, and the resistance matrix R.

Assumption 2.2 (Material parameters).
a) The electric conductivity σ : Ω → R≥0 is of the form σ = σC1ΩC , where σC > 0

and 1ΩC denotes the indicator function of the subdomain ΩC .
b) The magnetic reluctivity ν : Ω × R≥0 → R≥0 has the following properties:

(i ) ν is measurable;
(ii ) the function ζ 7→ ν(ξ, ζ)ζ is strongly monotone with a monotonicity constant

mν > 0 independent of ξ ∈ Ω. In other words, there exists mν > 0 such that(
ν(ξ, ζ)ζ − ν(ξ, ς)ς

)
(ζ − ς) ≥ mν(ζ − ς)2 for all ξ ∈ Ω , ζ, ς ∈ R≥0;

(iii ) the function ζ 7→ ν(ξ, ζ)ζ is Lipschitz continuous with a Lipschitz constant
Lν > 0 independent of ξ ∈ Ω. In other words, there exists Lν > 0 such that

|ν(ξ, ζ)ζ − ν(ξ, ς)ς| ≤ Lν |ζ − ς| for all ξ ∈ Ω , ζ, ς ∈ R≥0.

c) The resistance matrix R ∈ Rm×m is symmetric and positive definite.

As the space in which the solutions of the coupled MQS system (1.1) evolve, we
consider the set X(Ω ,ΩC) of all square integrable functions which are L2-orthogonal
to all gradient fields of functions from H1

0 (Ω) being constant on each interface com-
ponent Γ1, . . . ,Γq and Γext. The space X(Ω ,ΩC) is a Hilbert space equipped with
the standard inner product in L2(Ω ;R3). We further consider the space

(2.1) X0(curl,Ω ,ΩC) = H0(curl,Ω) ∩X(Ω ,ΩC),

which is again a Hilbert space, now provided with the inner product in H0(curl,Ω).
For any A ∈ X(Ω ,ΩC), one has 1ΩCA ∈ X(Ω ,ΩC), see [10, Lemma 3.3]. Moreover,
[10, Lemma 3.4] states that X0(curl,Ω ,ΩC) is dense in X(Ω ,ΩC).

The space X(Ω ,ΩC) enables us to formulate the assumptions on the initial mag-
netic vector potential A0 and the winding function χ. For the latter, we impose
a condition for which it is necessary that all components of the matrix-valued func-
tion χ : Ω → R3×m are square integrable, i.e., χ ∈ L2(Ω;R3×m). Note that such
a function can, loosely speaking, be canonically identified with a m-tuple of elements
of L2(Ω;R3). More precisely, we will use the identification

(2.2) L2(Ω;R3×m) ∼= L2(Ω;R3)1×m,

where elements of L2(Ω;R3)1×m are regarded as operators from Rm to L2(Ω;R3).
The corresponding operator norm is given by

(2.3) ‖χ‖L2(Ω ;R3×m) =

√
λmax

(∫
Ω

χ>χdξ

)
,

where λmax(X ) stands for the largest eigenvalue of a symmetric matrix X ∈ Rm×m.
Note that the resulting normed space L2(Ω ;R3×m) is not a Hilbert space unlessm = 1,
since the above norm is not induced by an inner product.

Assumption 2.3 (Initial condition and winding function).
a) The initial magnetic vector potential A0 : Ω → R3 belongs to X(Ω ,ΩC).
b) The winding function χ : Ω → R3×m belongs, by using the identification (2.2), to

X(Ω ,ΩC)1×m.



4 T. REIS, T. STYKEL

2.2. Solutions of the coupled MQS system. Before discussing the solution
properties of the coupled MQS system (1.1), we declare what we mean by solutions.
Let T > 0 and v ∈ L2([0, T ];Rm). We call (A, i) with A ∈ Ω × [0, T ] → R3 and
i : [0, T ]→ Rm a weak solution (or just solution) of the coupled MQS system (1.1), if
a) σA ∈ C([0, T ];X(Ω ,ΩC)) ∩H1

loc((0, T ];X(Ω ,ΩC)) and σA(0) = σA0,
b)
∫

Ω
χ>Adξ ∈ C([0, T ];Rm) ∩H1

loc((0, T ];Rm) and
∫

Ω
χ>A(0) dξ =

∫
Ω
χ>A0 dξ,

c) A ∈ L2([0, T ];X0(curl,Ω ,ΩC)) and i ∈ L2
loc((0, T ];Rm),

d) for all F ∈ X0(curl,Ω ,ΩC) and almost all t ∈ [0, T ],
(2.4)

d
dt

∫
Ω

σA(t) · F dξ +

∫
Ω

ν(·, ‖∇×A(t)‖2)(∇×A(t)) · (∇×F ) dξ =

∫
Ω

χ i(t) · F dξ,

d
dt

∫
Ω

χ>A(t) dξ +R i(t) = v(t).

It has been is proven in [10, Theorem 4.4] that, under Assumptions 2.1–2.3, the
solution the coupled MQS system (1.1) is unique. Existence and some additional
regularity properties of the solution have been established in [10, Theorem 7.1]. In
particular, it has been shown there that for almost all t ∈ [0, T ],

(2.5)

d
dt (σA(t)) +∇× (ν(·, ‖∇ ×A(t)‖2)∇×A(t)) = χ i(t),

d
dt

∫
Ω

χ>A(t) dξ +R i(t) = v(t),

and if, additionally, A0 ∈ X0(curl,Ω ,ΩC), then the solution of (1.1) fulfills

∇×A ∈L∞([0, T ];X(Ω ,ΩC)), σA ∈H1([0, T ];X(Ω ,ΩC)),∫
Ω

χ>Adξ ∈H1([0, T ];Rm), i ∈L2([0, T ];Rm).

Remark 2.4. The above solution concept can easily be extended to the positive
real axis R≥0 by saying that, for v ∈ L2

loc(R≥0;Rm), (A, i) with A : Ω × R≥0 → R3

and i : R≥0 → Rm is a solution of the coupled MQS system (1.1) if for any T > 0,
the restriction of (A, i) to [0, T ] is a solution of (1.1). In this case, existence and
uniqueness of solutions immediately follow from the results on finite time intervals,
and the above regularity results can be adapted straightforwardly.

The coupled MQS model (1.1) can be regarded as an abstract differential-algebraic
control system

(2.6)
d
dtEx(t) = A(x(t)) + Bu(t), Ex(0) = Ex0,

y(t) = Cx(t)

with the input u(t) = v(t), the state x(t) = (A(t), i(t)), the output y(t) = i(t), and
the initial value x0 = (A0, 0). Further, the linear operators E , B , C and the nonlinear
operator A are given by

E : X(Ω ,ΩC)× Rm → X(Ω ,ΩC)× Rm,(2.7a)

(A, i) 7→
(
σA,

∫
Ω

χTAdξ
)
,

A : X0(curl,Ω ,ΩC)× Rm → X0(curl,Ω ,ΩC)′ × Rm,(2.7b)

(A, i) 7→
(
−A11(A) + χ i,−R i

)
,
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B : Rm → X0(curl,Ω ,ΩC)′ × Rm,(2.7c)

v 7→ (0,v),

C : X(Ω ,ΩC)× Rm → Rm,(2.7d)

(A, i) 7→ (0, i),

where

A11 : X0(curl,Ω ,ΩC) → X0(curl,Ω ,ΩC)′,

A 7→
(
F 7→

∫
Ω

ν(·, ‖∇ ×A‖2)(∇×A) · (∇× F ) dξ

)
.

Hereby, the first “block row” in d
dtEx(t) = A(x(t))+Bu(t) corresponds to (1.1a) and

also includes the boundary condition (1.1d), as this is included in the domain of A11.
The second “block row” expresses the coupling relation (1.1b). The initial condition
Ex(0) = Ex0 comprises (1.1d) and (1.1e), and the output equation y(t) = Cx(t)
states that the output y is given by the current i.

2.3. Magnetic energy. The magnetic energy plays an important role in our
forthcoming discussions. For the magnetic reluctivity ν as in Assumption 2.2 b),
consider the function ϑ : Ω × R≥0 → R≥0 given by

(2.8) ϑ(ξ, %) =
1

2

∫ %

0

ν(ξ,
√
ζ) dζ =

∫ √%
0

ν(ξ, ζ)ζ dζ.

Further, define a functional

(2.9)

E : X(Ω ,ΩC)→R ∪ {∞},

A 7→


∫

Ω

ϑ
(
ξ, ‖∇ ×A(ξ)‖22

)
dξ if A ∈ X0(curl,Ω ,ΩC),

∞ else.

Given a magnetic vector potential A(t) ∈ X0(curl,Ω ,ΩC), the scalar function
ξ 7→ ϑ

(
ξ, ‖∇ ×A(ξ, t)‖22

)
is the magnetic energy density, and E(A(t)) is the mag-

netic energy. Many properties of the magnetic energy are collected in [10, Propo-
sition 5.2]. In particular, it has been shown there that E is convex, and for all
A ∈ X0(curl,Ω ,ΩC), it fulfills the estimates

(2.10)
mν

2
‖∇ ×A‖2L2(Ω ;R3) ≤ E(A) ≤ Lν

2
‖∇ ×A‖2L2(Ω ;R3),

where mν , Lν > 0 are the constants as in Assumption 2.2 b).

3. Passivity. In this section, we investigate passivity of the coupled MQS sys-
tem (1.1). Passive systems form a special class of dissipative dynamical systems which
have extensively been studied in [13,27]. They are of particular interest in circuit si-
mulation [3] and controller design [9]. Roughly speaking, a system is passive if it
does not generate energy or, equivalently, the energy is dissipated. Mathematically,
passivity can be defined in terms of a storage function. An important property of
passive systems is that an interconnection of passive subsystems often provides a new
passive system.
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Consider a general abstract differential-algebraic control system

(3.1)
d
dtE(x(t)) = A(x(t)) + B(u(t)),

y(t) = C (x(t))

with (possibly nonlinear) operators E : X → Z, A : D(A) ⊂ X → Z, B : U → Z
and C : X → U ′ for some Hilbert spaces X, Z and U . The input u ∈ L2([0, T ];U)
is called admissible with the initial condition E(x(0)) = E(x0), if (3.1) has a solution
x : [0, T ] → X with E(x(0)) = E(x0) and y ∈ L2([0, T ];U ′). Similarly to the finite-
dimensional case [27], we define passivity for the infinite-dimensional system (3.1) as
follows.

Definition 3.1 (Passivity). A function S : X → R≥0 ∪ {∞} is called a storage
function for passivity of system (3.1), if for all T > 0, x0 ∈ X with S(x0) <∞ and all
inputs u ∈ L2([0, T ];U) admissible with the initial condition E(x(0)) = E(x0), the
following conditions are fulfilled:
a) t 7→ S(x(t)) is continuous as a function from [0, T ] to R≥0 ∪ {∞};
b) for all 0 ≤ t0 ≤ t1 ≤ T , it holds the dissipation inequality

(3.2) S(x(t1))− S(x(t0)) ≤
∫ t1

t0

〈u(τ), y(τ)〉2 dτ,

where 〈·, ·〉2 stands for the standard Euclidean inner product in Rm. System (3.1) is
called passive, if there exists a storage function for passivity.

The dissipation inequality (3.2) typically has the interpretation of an energy ba-
lance. Namely, S(x(t)) expresses the energy of the state x(t), whereas the energy

extracted from the system is given by
∫ t1
t0
〈u(τ), y(τ)〉2dτ . The nonnegative term∫ t1

t0

〈u(τ), y(τ)〉2 dτ − S(x(t1)) + S(x(t0))

is the energy which is dissipated by the system on the time interval [t0, t1].

Remark 3.2.
a) Assume that the initial value x0 fulfills S(x0) < ∞ and u ∈ L2([0, T ];U) is ad-

missible with the initial condition E(x(0)) = E(x0). Then it immediately follows
from the dissipation inequality (3.2) that S(x(t)) <∞ for all t ∈ [0, T ].

b) If, additionally, S(0) = 0, then for system (3.1) initialized with E(x(0)) = E(0)
and for all inputs u ∈ L2([0, T ];U) admissible with this initial condition, the dis-
sipation inequality (3.2) implies

S(x(t)) ≤
∫ t

0

〈u(τ), y(τ)〉2 dτ for all t ∈ [0, T ].

In this case, by the nonnegativity of S, we have

0 ≤
∫ t

0

〈u(τ), y(τ)〉2 dτ.

Systems with this property are called input-output passive. It has been shown in
[13] that reachable and stabilizable input-output passive finite-dimensional standard
state space systems possess a storage function. In particular, such systems are
passive. Passivity of infinite-dimensional linear systems has been studied in [14,25].
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We now return to the coupled MQS system (1.1). We have seen in Section 2.2 that
this system can be written as an abstract differential-algebraic control system (2.6)
with the operators as in (2.7) and, in particular, U = U ′ = Rm. Then the existence
result in [10, Theorem 7.1] consequences that for A0 ∈ X0(curl,Ω ,ΩC), any input
u=v∈L2([0, T ];Rm) is admissible with the initial condition E(A(0), i(0))=E(A0, 0).

Next, we show that the function SMQS : X(Ω ,ΩC) × Rm → R≥0 ∪ {∞} defined
by the magnetic energy as in (2.9), i.e.,

(3.3) SMQS(A(t), i(t)) = E(A(t))

is a storage function for passivity of the coupled MQS system (1.1). A formal con-
sideration by invoking the chain rule for ϑ being as in (2.8), and the integration by
parts formula with the weak curl operator, see [10, eq. (2.1)], yields that the solution
of system (1.1) fulfills

d
dtSMQS(A(t), i(t)) =

∫
Ω

∂
∂%ϑ

(
·, ‖∇ ×A(t)‖22

)
d
dt‖∇ ×A(t)‖22 dξ

= −
∫

Ω

∥∥ d
dt

√
σA(t)

∥∥2
2

dξ − 〈i(t), R i(t)〉2 + 〈v(t), i(t)〉2.

Integrating this equation on [t0, t1] and using that u = v, y = i, and R is a positive
definite matrix, we obtain

SMQS(A(t1), i(t1))− SMQS(A(t0), i(t0))

= −
∫ t1

t0

∫
Ω

∥∥ d
dτ

√
σA(τ)

∥∥2
2

dξ dτ −
∫ t1

t0

〈i(τ), R i(τ)〉2 dτ +

∫ t1

t0

〈v(τ), i(τ)〉2 dτ

≤
∫ t1

t0

〈u(τ), y(τ)〉2 dτ.

In particular, the non-negative expression∫ t1

t0

∫
Ω

∥∥ d
dτ

√
σA(τ)

∥∥2
2

dξ dτ +

∫ t1

t0

〈i(τ), R i(τ)〉2 dτ ≥ 0

stands for the energy dissipated by the system on the time interval [t0, t1]. Next, we
show that a rigorous analysis indeed leads to the above dissipation inequality.

Theorem 3.3 (Energy balance for the coupled MQS system). Assume that
Ω ⊂ R3 with a subdomain ΩC satisfies Assumption 2.1. Further, let Assumptions 2.2
and 2.3 be fulfilled, T > 0, v ∈ L2([0, T ];Rm), and let (A, i) be a solution of the
coupled MQS system (1.1). Then the magnetic energy function E as defined in (2.9)
has the following properties:(

t 7→ E(A(t))
)
∈L1([0, T ]) ∩W 1,1

loc ((0, T ]),(3.4) (
t 7→ t E(A(t))

)
∈L∞([0, T ]).(3.5)

Further, for all 0 < t0 ≤ t1 ≤ T , it holds

(3.6) E(A(t1))− E(A(t0)) = −
∫ t1

t0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3)dτ

−
∫ t1

t0

〈i(τ), R i(τ)〉2 dτ +

∫ t1

t0

〈v(τ), i(τ)〉2 dτ.
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If, additionally, A0 ∈ X0(curl,Ω ,ΩC), then

(3.7) (t 7→ E(A(t))) ∈ W 1,1([0, T ]),

and the identity (3.6) holds for all 0 ≤ t0 ≤ t1 ≤ T .

Proof. It has been shown in the proof of [10, Theorem 7.1] that the coupled MQS
system (1.1) can be formulated as an abstract differential-algebraic gradient system
with a subgradient of E. This system meets the assumptions of [10, Corollary 6.4],
which leads to the existence of a unique solution (A, i) satisfying (3.4), (3.5) and
(3.6). If, further, A0 ∈ X0(curl,Ω ,ΩC), then (3.7) is fulfilled, and the identity (3.6)
even holds for all 0 ≤ t0 ≤ t1 ≤ T .

As a consequence of Theorem 3.3, we obtain the following result establishing the
passivity of the coupled MQS system (1.1).

Corollary 3.4. Under the assumptions of Theorem 3.3, the function SMQS as
in (3.3) is a storage function for passivity of the coupled MQS system (1.1), and thus,
this system is passive.

Proof. Since the expression∫ t1

t0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3) dτ +

∫ t1

t0

〈i(τ), R i(τ)〉2 dτ

is positive, Theorem 3.3 implies that for all 0 < t0 ≤ t1 ≤ T , the solution (A, i) of
(1.1) fulfills the dissipation inequality

SMQS(A(t1), i(t1))− SMQS(A(t0), i(t0)) ≤
∫ t1

t0

〈v(τ), i(τ)〉2 dτ.

Thus, SMQS is a storage function for passivity of the coupled MQS system (1.1) and
this system is indeed passive.

Remark 3.5. Theorem 3.3 implies that for v∈L2([0, T ];Rm) and A0∈X(Ω ,ΩC),
we have SMQS(A(t), i(t)) <∞ for all t ∈ (0, T ]. In other words, the storage function
takes finite values after an arbitrary short time, even if it is infinite at time zero.

4. The coupled MQS system in port-Hamiltonian formulation. Port-
Hamiltonian systems have meanwhile become rather popular as a modelling tool es-
pecially for coupled (multi-)physical systems [16]. In the past few years, this the-
ory has successfully been extended to (finite-dimensional) differential-algebraic sys-
tems [12, 19, 20, 26]. The aim of this section is to show that the coupled MQS sys-
tem (1.1) also fits into the framework of port-Hamiltonian systems.

We first introduce some basics of port-Hamiltonian systems which are heavily
inspired by [16]. Since infinite-dimensional port-Hamiltonian systems have been so
far treated mainly from a differential geometric rather than from a functional ana-
lytic perspective [18, 22, 23], the authors of this paper have a certain sovereignty of
definition. Note that, though a functional analytic approach to infinite-dimensional
port-Hamiltonian systems has been discussed in [15], the theory presented therein,
however, restricts to the very limited class of coupled systems of linear transport
equations.

An important concept is the Dirac structure which describes the power preserving
energy-routing of the system. Dirac structures on Hilbert spaces have been considered
in [7], and their structure has been analysed by using the theory of Krein spaces.
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Definition 4.1 (Dirac structure). Let X be a Banach space. A subspace
D ⊂ X ×X ′ is called a Dirac structure, if for all f ∈ X, e ∈ X ′, it holds

(f, e) ∈ D ⇐⇒
(
〈f, ê〉+ 〈f̂ , e〉 = 0 for all (f̂ , ê) ∈ D

)
.

Hereby, X is called the space of flows, whereas X ′ is called the space of efforts.

Another concept needed for port-Hamiltonian systems is the resistive relation
which represents the internal energy dissipation of the system [16, Section 2.4].

Definition 4.2 (Resistive relation). Let X be a Banach space. A relation
R ⊂ X ×X ′ is called resistive, if

〈f, e〉 ≤ 0 for all (f, e) ∈ R.

Having defined the Dirac structure and the resistive relation, we are now ready
to introduce port-Hamiltonian systems. The subsequent definition uses the concepts
of Gâteaux differentiability and Gâteaux derivative, for which we refer to [28, Defini-
tion 4.5].

Definition 4.3 (Port-Hamiltonian system). Let XS , XR and XP be Banach
spaces. A port-Hamiltonian system is a triple (D,H,R), where D ⊂ (XS × XR ×
XP)× (X ′S ×X ′R ×X ′P) is a Dirac structure, H : XS → R is Lipschitz continuous on
bounded sets and Gâteaux differentiable, and R ⊂ XR × X ′R is a resistive relation.
The dynamics of the port-Hamiltonian system on an interval I ⊂ R are specified by
the differential inclusions

(4.1)

(
− d

dtx(t), fR(t), fP(t),DH(x(t)), eR(t), eP(t)) ∈ D,
(fR(t), eR(t)

)
∈ R, t ∈ I,

where DH : XS → X ′S is the Gâteaux derivative of H. The function H is called
Hamiltonian, whereas, for some time t in which the system is driven, x(t) is called
state. The spaces XS ×X ′S , XR×X ′R and XP ×X ′P are referred to as energy storage
port, resistive port and external port, respectively.

Remark 4.4.
a) Though the above definition of a port-Hamiltonian system includes the case of

infinite-dimensional Banach spaces and therefore has a certain generality, there
are quite a lot of opportunities for even further generalizations. For instance, in
a very general setting, a Dirac structure is defined on a manifold M by a certain
subbundle of D ⊂ TM⊕ T ∗M, where TM is the tangent bundle and T ∗M is the
co-tangent bundle of M [11, Definition 2.2.1]. In [19, 20], the energy storage port
has been determined by so-called Lagrange manifolds, which generalize the above
use of Hamiltonians.

b) Since the Hamiltonian is assumed to be Lipschitz continuous on bounded sets and
is Gâteaux differentiable, [4, Theorem 4.2] can be applied to obtain that for any
interval I ⊂ R and any x ∈W 1,p(I;XS), it holds that (t 7→ H(x(t)) ∈W 1,p(I), and
the weak derivative fulfills the generalized chain rule

(4.2) d
dtH(x) = 〈 ddtx,DH(x)〉.

Combining this with the properties of the Dirac structure and resistive structure,
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we obtain from (4.1) that for almost all t ∈ I, it holds the energy balance

0 = − 〈 ddtx(t),DH(x(t))〉+ 〈fR(t), eR(t)〉+ 〈fP(t), eP(t)〉
= − d

dtH(x(t)) + 〈fR(t), eR(t)〉+ 〈fP(t), eP(t)〉
≤ − d

dtH(x(t)) + 〈fP(t), eP(t)〉.

and, hence, an integration on [t0, t1] ⊂ I yields

(4.3) H(x(t1))−H(x(t0)) ≤
∫ t1

t0

〈fP(t), eP(t)〉dt.

If, for instance, the flows at the external ports form the input, and the efforts
at the external ports form the output (or vice-versa), then we indeed obtain the
dissipation inequality (3.2).

c) A generalization of the Gâteaux derivative is given by the subdifferential as con-
sidered in [5] from the perspective of nonlinear evolution equations. This ap-
proach is applicable to a class of Hamiltonians which are further allowed to map
to R≥0 ∪ {∞}, and typically results into a subdifferential which is set-valued and
only defined on some subset of XP . Under the additional assumption that XP is
a Hilbert space, it is shown in [5, Lemma 4.4] that the generalized chain rule (4.2)
also holds, if the Gâteaux derivative is replaced by a subdifferential. Since this is the
essential ingredient used in (4.3), the incorporation of subdifferentials is a further
possible generalization of our approach to infinite-dimensional port-Hamiltonian
systems.

We now show that the coupled MQS system (1.1) admits a formulation as a port-
Hamiltonian system. For this purpose, we introduce the function

HMQS : X0(curl,Ω ,ΩC)→ R,

A 7→
∫

Ω

ϑ
(
ξ, ‖∇ ×A(ξ)‖22

)
dξ,

with the magnetic energy density ϑ defined in (2.8). Then it follows from [10, Propo-
sition 5.2 a)] that HMQS is Lipschitz continuous on bounded sets, whereas [10, Propo-
sition 5.2 c)] shows that HMQS is Gâteaux differentiable, and the Gâteaux derivative
fulfills for all A,F ∈ X0(curl,Ω ,ΩC),

(4.4) 〈F ,DHMQS(A)〉 =

∫
Ω

ν(·, ‖∇ ×A‖2) (∇×A) · (∇× F ) dξ.

Next, consider the Hilbert spaces

(4.5)
XS =X0(curl,Ω ,ΩC), XR =X0(curl,Ω ,ΩC)′ × Rm,
XP =Rm, X =X0(curl,Ω ,ΩC)×X0(curl,Ω ,ΩC)′ × Rm × Rm.

Since Hilbert spaces are reflexive, and the dual space of Rm can be canonically iden-
tified with itself, we have

X ′S =X0(curl,Ω ,ΩC)′, X ′R =X0(curl,Ω ,ΩC)× Rm,
X ′P =Rm, X ′ =X0(curl,Ω ,ΩC)′ ×X0(curl,Ω ,ΩC)× Rm × Rm.
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We introduce the relations

DMQS =





fA

Jint

vwind

i

 ,


J
E

iwind

v


 ∈ X ×X ′ : fA = E, Jint = −J + χ iwind,

(4.6)

vwind = −
∫

Ω

χ>E dξ − v, i = iwind

}
,

RMQS =

{((
Jint

vwind

)
,

(
E

iwind

))
∈ XR ×X ′R : Jint = −σE, vwind = −R iwind

}
.

(4.7)

It immediately follows from Assumption 2.2 a) and c) thatRMQS is a resistive relation.
To prove that DMQS is a Dirac structure, we advance the following lemma, which
is a straightforward generalization of the well-known statement that the graphs of
a skew-symmetric matrices define Dirac structures [12,19].

Lemma 4.5. Let X be a Banach space, and let J ∈ L(X ′, X) be a skew-dual
operator in the sense that it fulfills 〈J v, w〉 = −〈Jw, v〉 for all v, w ∈ X ′. Then
D = {(J e, e) : e ∈ X ′} is a Dirac structure.

Proof. Assume that (f, e) ∈ D. Then f = J e. This implies that for all (f̂ , ê) ∈ D,

〈f, ê〉+ 〈f̂ , e〉 = 〈J e, ê〉+ 〈J ê, e〉 = −〈J e, ê〉+ 〈J ê, e〉 = 0.

On the other hand, if (f, e) ∈ X ×X ′ fulfills 〈f, ê〉+ 〈f̂ , e〉 = 0 for all (f̂ , ê) ∈ D, then
we obtain for all ê ∈ X ′ that

0 = 〈f, ê〉+ 〈J ê, e〉 = 〈f, ê〉 − 〈J e, ê〉 = 〈f − J e, ê〉.

Hence, [1, Corollary 6.17 (2)] (which is a direct consequence of the famous Hahn-
Banach theorem) leads to f = J e, which in turn gives (f, e) ∈ D.

We can now easily verify that DMQS as in (4.6) is a Dirac structure.

Proposition 4.6. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1, and let χ : Ω → R3×m satisfy Assumption 2.3 b). Then DMQS as in (4.6) is
a Dirac structure.

Proof. For X as in (4.5), consider the bounded operator JMQS : X ′ → X with

JMQS


J
E

iwind

v

 =


E

−J + χ iwind

−
∫

Ω
χ>E dξ − v
iwind

 .

Then it can be immediately seen that JMQS is skew-dual, whence Lemma 4.5 implies
that DMQS is a Dirac structure.

Next, we show that the coupled MQS system (1.1) represents the dynamics of the
port-Hamiltonian system (DMQS,HMQS,RMQS) in some sense. Denote the state x(t)
by A(t) and the flow and effort at the external port by i(t) and v(t), respectively.
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Then

(4.8)

(
− d

dtA(t),

(
Jint(t)
vwind(t)

)
, i(t),DHMQS(A(t)),

(
E(t)

iwind(t)

)
,v(t)

)
∈ DMQS,((

Jint(t)
vwind(t)

)
,

(
E(t)

iwind(t)

))
∈ RMQS.

By using the definition of DMQS in (4.6) and RMQS in (4.7), we obtain

− d
dtA(t) =E(t), −σE(t) = −DHMQS(A(t)) + χ iwind(t),

−R iwind(t) = −
∫

Ω

χ>E(t) dξ − v(t), i(t) = iwind(t),

and, thus,
d
dtσA(t) = −DHMQS(A(t)) + χ i(t),

d
dt

∫
Ω

χ>A(t) dξ = −R i(t) + v(t).

Since the first equation takes place in X0(curl,Ω ,ΩC)′ and DHMQS reads as in (4.4),
we obtain the weak formulation (2.4) of the coupled MQS system (1.1). Moreover, the
external port is formed by the voltage v and the current i at the conductive contacts,
which are, respectively, the input and the output of (1.1). The variable Jint in (4.8)
stands for the current density in Ω induced by the electromagnetic field, whereas E
is the electric field intensity. Further, vwind is the part of the voltage at the winding
which is caused by the resistive effect, and iwind is the corresponding current.

Remark 4.7. Note that the port-Hamiltonian model (4.8) requires weak differen-
tiability with respect to time of the magnetic vector potential A, whereas the solution
concept in Section 2.2 only requires σA to be weakly differentiable.

The port-Hamiltonian model (4.8) can at least formally be represented in a com-
pact form

d
dt

I 0 0
0 0 0
0 0 0

A(t)
E(t)
i(t)

 =

0 −I 0
I −σ −χ
0
∫

Ω
χ> · dξ −R

DHMQS(A(t))
E(t)
i(t)

+

0
0
I

v(t),

i(t) =
[
0 0 I

] DHMQS(A(t))
E(t)
i(t)

 ,
whose structure amazingly resembles the class of finite-dimensional port-Hamiltonian
differential-algebraic systems studied in [6, 21].

5. Solution estimates. In this section, we study the quantitative properties of
the coupled MQS system (1.1) by considering its input-to-output and input-to-state
behavior. We present estimates for the current, the magnetic vector potential and
the magnetic energy upon the initial magnetic vector potential and the voltage. We
further show that, under some additional assumption on the initial value, the free
dynamics of the MQS system decay exponentially. Note that our estimates also cover
the case of infinite intervals. To this end, we refer to Remark 2.4 for the definition
and existence of solutions on the whole positive real axis R≥0.
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5.1. Input-to-output behavior. First, we derive estimates for the current i,
which is considered as the output of the coupled MQS system (1.1), by means of the
initial value A0 and the voltage v, which forms the input. In most cases, we will
stick to the case A0 ∈ X0(curl,Ω ,ΩC). Note that by [10, Theorem 7.1] (see also
Section 2.2), the solution (A, i) has the property that A(t) ∈ X0(curl,Ω ,ΩC) for
almost all t > 0 even if the weak curl of A0 ∈ X(Ω ,ΩC) is not in L2(Ω ;R3).

Our forthcoming considerations rely on the following auxiliary result, which is
solely based on the energy balance (3.6) developed in Theorem 3.3.

Lemma 5.1. Assume that Ω ⊂ R3 with subdomain ΩC satisfies Assumption 2.1.
Further, let Assumptions 2.2 and 2.3 be fulfilled, and let T ∈ R≥0 ∪ {∞} and
v ∈ L2

loc([0, T );Rm). Moreover, let E be the magnetic energy as defined in (2.9),
and let (A, i) be the solution of the coupled MQS system (1.1). Then for all ε > 0
and all 0 < t0 ≤ t1 < T , it holds

E(A(t1))− E(A(t0))

≤ −
∫ t1

t0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3)dτ −

(
1− ε

2

)∫ t1

t0

‖R1/2i(τ)‖22 dτ

+
1

2ε

∫ t1

t0

‖R−1/2v(τ)‖22 dτ.

If, additionally, A0 ∈ X0(curl,Ω ,ΩC), then the above inequality holds even for all
0 ≤ t0 ≤ t1 < T .

Proof. Assume that 0 < t0 ≤ t1 < T , and let (A, i) be a solution of (1.1).
A combination of the Cauchy-Schwarz with Young’s inequality [1, p. 53] yields that
for almost all τ ∈ [t0, t1],

〈i(τ),v(τ)〉2 ≤ ‖R1/2i(τ)‖2 ‖R−1/2v(τ)‖2 ≤
ε

2
‖R1/2i(τ)‖22 +

1

2ε
‖R−1/2v(τ)‖22.

Then we obtain from the energy balance (3.6) that

E(A(t1))− E(A(t0))

≤ −
∫ t1

t0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3)dτ −

∫ t1

t0

‖R1/2i(τ)‖22 dτ

+

∫ t1

t0

ε

2
‖R1/2i(τ)‖22 +

1

2ε
‖R−1/2v(τ)‖22 dτ

= −
∫ t1

t0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3)dτ −

(
1− ε

2

)∫ t1

t0

‖R1/2i(τ)‖22 dτ

+
1

2ε

∫ t1

t0

‖R−1/2v(τ)‖22 dτ.

As Theorem 3.3 states that (3.6) holds for all 0 ≤ t0 ≤ t1 < T , if, additionally,
A0 ∈ X0(curl,Ω ,ΩC), the above estimate is then as well fulfilled in the remaining
case t0 = 0.

In the following theorem, we establish an estimate for the L2-norm of the output
y = i in terms of the L2-norm of the input u = v. In particular, we show that
i ∈ L2(R≥0;Rm), if v ∈ L2(R≥0;Rm) and A0 ∈ X0(curl,Ω ,ΩC).
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Theorem 5.2. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1. Further, let Assumptions 2.2 and 2.3 be fulfilled, and let T ∈ R≥0 ∪ {∞},
v ∈ L2([0, T );Rm), and A0 ∈ X0(curl,Ω ,ΩC). Moreover, let E be the magnetic ener-
gy as defined in (2.9), and let (A, i) be a solution of the coupled MQS system (1.1).
Then i ∈ L2([0, T );Rm), and for all ε ∈ (0, 2),

‖R1/2i‖2L2([0,T );Rm) ≤ 2
2−ε E(A0) + 1

ε(2−ε) ‖R
−1/2v‖2L2([0,T );Rm),(5.1)

‖R1/2i‖L2([0,T );Rm) ≤
√

Lν
2−ε ‖∇×A0‖L2(Ω ;R3) + 1√

ε(2−ε)
‖R−1/2v‖L2([0,T );Rm),(5.2)

where Lν is the Lipschitz constant as in Assumption 2.2 b). If, moreover, the initial
value is zero, i.e., A0 = 0, then

(5.3) ‖R1/2i‖L2([0,T );Rm) ≤ ‖R−1/2v‖L2([0,T );Rm).

Proof. By [10, Theorem 7.1], we have i ∈ L2([0, T );Rm). Further, let t ∈ [0, T )
and ε ∈ (0, 2). Then using Lemma 5.1, we obtain

0 ≤ E(A(t)) ≤E(A0)−
∫ t

0

‖ d
dτ

√
σA(τ)‖2L2(Ω ;R3)dτ

−
(

1− ε

2

)∫ t

0

‖R1/2i(τ)‖22 dτ +
1

2ε

∫ t

0

‖R−1/2v(τ)‖22 dτ

≤E(A0)−
(

1− ε

2

)∫ t

0

‖R1/2i(τ)‖22 dτ +
1

2ε

∫ t

0

‖R−1/2v(τ)‖22 dτ.

Adding the expression
(
1 − ε

2

) ∫ t
0
‖R1/2i(τ)‖22 dτ to both sides, dividing by 1 − ε

2 ,
and subsequently taking the limit for t ↗ T , we obtain (5.1). The estimate (5.2)
immediately follows by a combination of (5.1) with (2.10). Finally, if A0 = 0, then
(5.3) follows from (5.2) by setting ε = 1.

Remark 5.3.
a) Let λmin(R) be the minimal eigenvalue of R. Then, under the assumptions of

Theorem 5.2, we obtain from (5.1) and (5.2) that

‖i‖2L2([0,T );Rm) ≤ 2
(2−ε)λmin(R) E(A0) + 1

ε(2−ε)λ2
min(R)

‖v‖2L2([0,T );Rm),

‖i‖L2([0,T );Rm) ≤
√

Lν
(2−ε)λmin(R) ‖∇ ×A0‖L2(Ω ;R3)

+ 1√
ε(2−ε)λmin(R)

‖v‖L2([0,T );Rm).

If, further, A0 = 0, then (5.3) implies

(5.4) ‖i‖L2([0,T );Rm) ≤ ‖R−1‖ ‖v‖L2([0,T );Rm) = 1
λmin(R) ‖v‖L2([0,T );Rm).

Note that in the above estimates, we can further replace λmin(R) by R, if m = 1.
b) In systems theory and model reduction, estimates of the L2-norm of the output by

means of the L2-norm of the input play a crucial role. In the linear and time-
invariant case, such estimates can be obtained by using the so-called H∞-norm of
the transfer function. In particular, it has been shown in [17] that discretizing the
linear coupled MQS system (1.1) using the finite element method and regularizing
the resulting system, one obtains a differential-algebraic system whose transfer
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function has the H∞-norm coinciding with ‖R−1‖ independent of the fineness of
the discretization. In this case, we have

‖i‖L2([0,T );Rm) ≤ ‖R−1‖ ‖v‖L2([0,T );Rm),

and, further, in the case where m = 1, this estimate is sharp in the sense that
there exists a sequence of inputs (vk)k in L2(R≥0) such that for the corresponding
sequence of outputs (ik)k of the system with A0 = 0, the sequence of quotients
‖ik‖L2(R≥0)/‖vk‖L2(R≥0) tends to R−1. Thus, the estimate (5.4) is an extension of
this result to the quasilinear infinite-dimensional case, and it is presumably sharp.

5.2. Input-to-state behavior. Next, we present a quantitative estimate for
the magnetic energy E(A(t)) in terms of the L2-norm of the input v, if the coupled
MQS system (1.1) is initialized with A0 ∈ X0(curl,Ω ,ΩC).

Proposition 5.4. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1. Further, let Assumptions 2.2 and 2.3 be fulfilled, and let T ∈ R≥0 ∪ {∞},
v ∈ L2

loc([0, T );Rm), and A0 ∈ X0(curl,Ω ,ΩC). Moreover, let E be the magnetic
energy as defined in (2.9), and let (A, i) be a solution of the coupled MQS system
(1.1). Then for all 0 ≤ t < T ,

E(A(t)) ≤ E(A0) + 1
4 ‖R

−1/2v‖2L2([0,t);Rm),(5.5)

‖∇×A(t)‖L2(Ω ;R3) ≤
√

Lν
mν
‖∇×A0‖L2(Ω ;R3) + 1√

2mν
‖R−1/2v‖L2([0,t);Rm),(5.6)

where mν , Lν are the monotonicity and Lipschitz constants as in Assumption 2.2 b).
In particular, if v ∈ L2([0, T );Rm), then ∇×A ∈ L∞([0, T );L2(Ω ;R3)) with

‖∇×A‖L∞([0,T );L2(Ω ;R3)) ≤
√

Lν
mν
‖∇×A0‖L2(Ω ;R3) + 1√

2mν
‖R−1/2v‖L2([0,T );Rm).

Proof. The estimate (5.5) follows from Lemma 5.1 by choosing ε = 2. Further,
by invoking (2.10), we obtain from (5.5) that

‖∇ ×A(t)‖2L2(Ω ;R3) ≤ 2
mν

E(A(t))

≤ 2
mν

E(A0) + 1
2mν
‖R−1/2v‖2L2([0,t);Rm)

≤ Lν
mν
‖∇ ×A0‖2L2(Ω ;R3) + 1

2mν
‖R−1/2v‖2L2([0,t);Rm)

≤
(√

Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + 1√

2mν
‖R−1/2v‖L2([0,t);Rm)

)2
.

Thus, (5.6) follows by taking the square root.

Remark 5.5. Let λmin(R) be the minimal eigenvalue of R. Then, under the
assumptions of Proposition 5.4, we obtain that

E(A(t)) ≤ E(A0) + 1
4λmin(R) ‖v(τ)‖2L2([0,t);Rm),

‖∇ ×A(t)‖L2(Ω ;R3) ≤
√

Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + 1√

2mνλmin(R)
‖v‖L2([0,t);Rm),

‖∇ ×A‖L∞([0,T );L2(Ω ;R3))

≤
√

Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + 1√

2mνλmin(R)
‖v‖L2([0,T );Rm).

We can again replace λmin(R) by R in the single-input single-output case, i.e., m = 1.
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Finally, we analyze the dependence of ‖A(t)‖L2(Ω ;R3) upon the input v and the
initial value A0. Hereby, we make essential use of [10, Lemma 3.4] which states that
there exists a constant LC > 0 such that for all A ∈ X0(curl,Ω ,ΩC),

(5.7) ‖A‖2L2(Ω ;R3) ≤ LC
(
‖A‖2L2(ΩC ;R3) + ‖∇ ×A‖2L2(Ω ;R3)

)
.

As a preliminary thought, we use the fact that for the electric conductivity σ as in
Assumption 2.2 a), one has 〈σA1,A2〉L2(Ω ;R3) = σC〈A1,A2〉L2(ΩC ;R3). Then (5.7)
implies that

(5.8) 〈A1,A2〉X0(curl,Ω,ΩC) = 〈σA1,A2〉L2(Ω ;R3) + 〈∇ ×A1,∇×A2〉L2(Ω ;R3)

+

∫
Ω

χ>A1 dξ ·R−1
∫

Ω

χ>A2 dξ

defines an inner product in X0(curl,Ω ,ΩC) whose induced norm is equivalent to the
standard norm in H0(curl,Ω). Consider now the space

(5.9) X0(curl=0,Ω ,ΩC) = {A ∈ X0(curl,Ω ,ΩC) : ∇×A = 0}

which is a closed subspace of both X(Ω ,ΩC) and X0(curl,Ω ,ΩC) with respect to the
respective norms.

The following lemma is essential for our further analysis.

Lemma 5.6. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assumption 2.1.
Let P ∈ L(X0(curl,Ω ,ΩC)) be the orthogonal projector onto X0(curl=0,Ω ,ΩC) with
respect to the inner product (5.8). Then the following statements hold:

a) The projector P can be uniquely extended to a bounded projector P̃ ∈ L(X(Ω ,ΩC)),

where X(Ω ,ΩC) is provided with the norm in L2(Ω ;R3). The operator norm of P̃

fulfills ‖P̃‖ ≤
√

γ LC
σC

with σC as in Assumption 2.2 a), LC as in (5.7), and

(5.10) γ = σC + ‖χR−1/2‖2L2(Ω ;R3×m).

b) There exists a constant L1 > 0 such that for all A ∈ X0(curl,Ω ,ΩC),

(5.11) ‖(I − P )A‖L2(Ω ;R3) ≤ L1‖∇ ×A‖L2(Ω ;R3).

c) The operator

T : im P̃ → im P̃ ∗,

A 7→ P̃ ∗
(
σA + χR−1

∫
Ω

χ>Adξ

)
has a bounded inverse. The operator norm of this inverse fulfills ‖T −1‖ ≤ LC

σC
.

Proof. a) Let A ∈ X0(curl,Ω ,ΩC). Then ∇× (PA) = 0, and we obtain by using
the definition of the inner product (5.8) that

0 = 〈PA, (I − P )A〉X0(curl,Ω,ΩC)

=

∫
Ω

σ(PA) · ((I − P )A) dξ +

∫
Ω

χ>(PA) dξ ·R−1
∫

Ω

χ>((I − P )A) dξ.
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This relation leads to

‖PA‖2L2(Ω ;R3)

(5.7)

≤ LC

(
‖PA‖2L2(ΩC ;R3) + ‖∇ × (PA)‖2L2(Ω ;R3)

)
= LC ‖PA‖2L2(ΩC ;R3) = LC

σC

∫
Ω

σ‖PA‖22 dξ

≤ LC
σC

(∫
Ω

σ‖PA‖22 dξ+

∫
Ω

σ‖(I − P )A‖22 dξ

+ 2

∫
Ω

σ(PA) · ((I − P )A) dξ + 2

∫
Ω

χ>(PA) dξ ·R−1
∫

Ω

χ>((I − P )A) dξ︸ ︷︷ ︸
=0

+

∥∥∥∥R−1/2 ∫
Ω

χ>(PA) dξ

∥∥∥∥2
2

+

∥∥∥∥R−1/2 ∫
Ω

χ>((I − P )A) dξ

∥∥∥∥2
2

)

= LC
σC

(∫
ΩC

σC‖A‖22 dξ +

∥∥∥∥R−1/2 ∫
Ω

χ>Adξ

∥∥∥∥2
2

)
≤ γ LC

σC
‖A‖2L2(Ω ;R3).

Since X0(curl,Ω ,ΩC) is dense in X(Ω ,ΩC), we can make use of [1, Theorem E5.3]

to see that the projector P uniquely extends to an operator P̃ ∈ L(X(Ω ,ΩC)) with

‖P̃‖2 ≤ γ LC
σC

. As the operator P̃ 2− P̃ ∈ L(X(Ω ,ΩC)) vanishes on the dense subspace

X0(curl,Ω ,ΩC), it has to vanish everywhere. Consequently, P̃ is a projector.
b) Step 1: First, we show that the mapping

Ψ : X0(curl,Ω ,ΩC) → L2(div=0,Ω ;R3),

A 7→ ∇ ×A

is surjective. Let F ∈ L2(div = 0,Ω ;R3). Then, by [2, Theorem 3.17], there exists
some C ∈ H0(curl,Ω) such that F = ∇×C. By definition of X(Ω ,ΩC), we may con-
sider an orthogonal decomposition C = A+∇ψ with A ∈ X(Ω ,ΩC) and ψ ∈ H1

0 (Ω)
which is constant on each boundary component of ΩC . Consequently, the tangential
boundary trace of ∇ψ vanishes, whence this also holds for A = C − ∇ψ. Then we
obtain

∇×A = ∇×C−∇×∇ψ = ∇×C = F

and A ∈ X0(curl,Ω ,ΩC), i.e., F ∈ im Ψ.
Step 2: Next, we show that the restriction Ψ|kerP of Ψ to kerP is bijective.

By definition of P , we have ker Ψ = imP , which is the orthogonal complement of
kerP with respect to the inner product (5.8). Therefore, Ψ|kerP is injective. To
prove surjectivity, let F ∈ L2(div = 0,Ω ;R3). Then, by Step 1, there exists some
A ∈ X0(curl,Ω ,ΩC) with F = ∇×A, and thus

∇× ((I − P )A) = ∇× ((I − P )A) +∇× (PA) = ∇×A = F .

Step 3: Finally, we show that there exists L1 > 0 such that (5.11) holds. We
have seen in Step 2 that Ψ|kerP : kerP → L2(div = 0,Ω ;R3) is bijective. It can
be further shown that this mapping is bounded. Then the inverse mapping theorem
[1, Theorem 7.8] yields that Ψ|kerP has a bounded inverse, which implies that there
exists a constant c1 > 0 such that for all A ∈ X0(curl,Ω ,ΩC),

‖(I − P )A‖2L2(Ω ;R3) + ‖∇ × ((I − P )A)‖2L2(Ω ;R3) ≤ c1‖∇ × (I − P )A‖2L2(Ω ;R3).
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Then, clearly, c1 > 1, and we obtain that (5.11) holds with L1 = c1 − 1 > 0.
c) Let A ∈ X0(curl,Ω ,ΩC). Then

〈P̃A, T P̃A〉L2(Ω ;R3) = 〈P̃A, T PA〉L2(Ω ;R3)

=
〈
P̃A, P̃ ∗

(
σPA + χR−1

∫
Ω

χ>(PA) dξ
)〉

L2(Ω ;R3)

=
〈
P̃ P̃A, σPA + χR−1

∫
Ω

χ>(PA) dξ
〉
L2(Ω ;R3)

=
〈
PA, σPA + χR−1

∫
Ω

χ>(PA) dξ
〉
L2(Ω ;R3)

=

∫
Ω

σ(PA) · (PA) dξ +

∫
Ω

χ>(PA) dξ ·R−1
∫

Ω

χ>(PA) dξ

≥
∫

Ω

σ(PA) · (PA) dξ

= σC

(
‖PA‖2L2(ΩC ;R3) + ‖∇ × (PA)‖2L2(Ω ;R3)

) (5.7)

≥ σC
LC
‖PA‖2L2(Ω ;R3).

Since X0(curl,Ω ,ΩC) is dense in X(Ω ,ΩC), we have

〈P̃A, T P̃A〉L2(Ω ;R3) ≥ σC
LC
‖P̃A‖2L2(Ω ;R3) for all A ∈ X(Ω ,ΩC).

Consequently, T has a bounded inverse with ‖T −1‖ ≤ LC
σC

.

For the next result on the dependence of the L2-norm of A(t) upon the input and
the initial value, we recall that we use the identification (2.2) and the norm (2.3) on
L2(Ω ;R3×m).

Theorem 5.7. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1. Further, let Assumptions 2.2 and 2.3 be fulfilled, and let T ∈ R≥0 ∪ {∞},
v ∈ L2

loc([0, T );Rm), and A0 ∈ X0(curl,Ω ,ΩC). Moreover, let E be the magnetic en-
ergy as defined in (2.9), and let (A, i) be a solution of the coupled MQS system (1.1).
Let mν and Lν be as in Assumption 2.2 b), LC as in (5.7), L1 as in Lemma 5.6 b),
and γ as in (5.10).
a) For all 0 < t ≤ T ,

‖A(t)‖L2(Ω ;R3) ≤ L1

√
Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + L1√

2mν
‖R−1/2v‖L2([0,t);Rm)

+
√

γ LC
σC

(
‖A0‖L2(Ω ;R3)+

LC
σC
‖χR−1/2‖L2(Ω ;R3×m)

∥∥∥∥∫ t

0

R−1/2v(τ)dτ

∥∥∥∥
2

)
.

b) If χ ∈ L2(div=0,Ω ;R3)1×m, then

‖A(t)‖L2(Ω ;R3) ≤
√

γ LC
σC
‖A0‖L2(Ω ;R3)

+ L1

√
Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + L1√

2mν
‖R−1/2v‖L2([0,t);Rm).

Proof. a) Let (A, i) be a solution of the coupled MQS system (1.1), and let
P ∈ L(X0(curl,Ω ,ΩC)) be the orthogonal projector onto X0(curl = 0,Ω ,ΩC) as de-
fined in (5.9), where X0(curl,Ω ,ΩC) is provided with the inner product (5.8). Then
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the definition of the solution, see Section 2.2, yields that for all F∈X0(curl,Ω ,ΩC),

d
dt

∫
Ω

σA(t) · (PF ) dξ +

∫
Ω

ν(·, ‖∇ ×A(t)‖2)(∇×A(t)) · (∇× (PF )) dξ

=

∫
Ω

χ i(t) · (PF ) dξ

= v(t) ·R−1
∫

Ω

χ>(PF ) dξ − d
dt

∫
Ω

χ>A(t) dξ ·R−1
∫

Ω

χ>(PF ) dξ.

Since ∇× (PF ) = 0, this equation reduces to

(5.12)

d
dt

(∫
Ω

σA(t) · (PF ) dξ +

∫
Ω

χ>A(t) dξ ·R−1
∫

Ω

χ>(PF ) dξ

)
= v(t) ·R−1

∫
Ω

χ>(PF ) dξ.

By using that P ∈ L(X0(curl,Ω ,ΩC)) is an orthogonal projector onto the space
X0(curl=0,Ω ,ΩC) with respect to the inner product (5.8) and, by [10, Theorem 7.1],
A(t) ∈ X0(curl,Ω ,ΩC) for almost all t ∈ [0, T ), we obtain∫

Ω

σA(t) · (PF ) dξ +

∫
Ω

χ>A(t) dξ ·R−1
∫

Ω

χ>(PF ) dξ

=

∫
Ω

σA(t) · (PF ) dξ +

∫
Ω

χ>A(t) dξ ·R−1
∫

Ω

χ>(PF ) dξ

+

∫
Ω

(∇×A) · (∇× (PF ))︸ ︷︷ ︸
=0

dξ

(5.8)
= 〈A(t), PF 〉X0(curl,Ω,ΩC) = 〈PA(t),F 〉X0(curl,Ω,ΩC)

=

∫
Ω

σ(PA(t)) · F dξ +

∫
Ω

χ>(PA(t)) dξ ·R−1
∫

Ω

χ>F dξ

+

∫
Ω

(∇× (PA(t)))︸ ︷︷ ︸
=0

·(∇× F ) dξ

=

∫
Ω

σ(PA(t)) · F dξ +

∫
Ω

χ>(PA(t)) dξ ·R−1
∫

Ω

χ>F dξ.

Since by Lemma 5.6 a), P extends to a projector P̃ ∈ L(X(Ω ,ΩC)), we further have

v(t) ·R−1
∫

Ω

χ>(PF ) dξ =

∫
Ω

(χR−1v(t)) · (PF ) dξ = 〈χR−1v(t), PF 〉L2(Ω ;R3)

= 〈χR−1v(t), P̃F 〉L2(Ω ;R3) = 〈P̃ ∗χR−1v(t),F 〉L2(Ω ;R3),

where P̃ ∗ is the adjoint of P̃ . By using the density of the space X0(curl,Ω ,ΩC) in
X(Ω ,ΩC) and the latter two equations, the integration of (5.12) implies that

t 7→ σ(PA(t)) + χR−1
∫

Ω

χ>(PA(t)) dξ
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is a continuous mapping from [0, T ) to X(Ω ,ΩC) with(
σ(PA(t)) + χR−1

∫
Ω

χ>(PA(t)) dξ

)
−
(
σ(PA0) + χR−1

∫
Ω

χ>(PA0) dξ

)
= P̃ ∗χR−1

∫ t

0

v(τ) dτ for all t ∈ [0, T ).

An application of P̃ ∗ to both sides of this equation yields

T (PA(t)− PA0) = P̃ ∗χR−1
∫ t

0

v(τ) dτ for all t ∈ [0, T ),

where T is the operator as in Lemma 5.6 c). Since T is invertible, we obtain

(5.13) PA(t)− PA0 = T −1
(
P̃ ∗χR−1

∫ t

0

v(τ) dτ

)
for all t ∈ [0, T ).

Hence, using Lemma 5.6 a) and c), we obtain for all t ∈ [0, T ),

‖PA(t)‖L2(Ω ;R3)

≤ ‖PA0‖L2(Ω ;R3) + ‖T −1‖‖P̃ ∗‖‖χR−1/2‖L2(Ω ;R3×m)

∥∥∥∥∫ t

0

R−1/2v(τ) dτ

∥∥∥∥
2

≤
√

γ LC
σC

(
‖A0‖L2(Ω ;R3) + LC

σC
‖χR−1/2‖L2(Ω ;R3×m)

∥∥∥∥∫ t

0

R−1/2v(τ) dτ

∥∥∥∥
2

)
.

Further, Lemma 5.6 b) and Proposition 5.4 imply for all t ∈ [0, T ),

‖(I − P )A(t)‖L2(Ω ;R3) ≤ L1 ‖∇ ×A‖L2(Ω ;R3)

≤ L1

√
Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + L1√

2mν
‖R−1/2v‖L2([0,t);Rm)

and, thus,

‖A(t)‖L2(Ω ;R3) ≤ ‖PA(t)‖L2(Ω ;R3) + ‖(I − P )A(t)‖L2(Ω ;R3)

≤
√

γ LC
σC

(
‖A0‖L2(Ω ;R3) + LC

σC
‖χR−1/2‖L2(Ω ;R3×m)

∥∥∥∥∫ t

0

R−1/2v(τ) dτ

∥∥∥∥
2

)
+ L1

√
Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + L1√

2mν
‖R−1/2v‖L2([0,t);Rm).

b) If χ ∈ L2(div=0,Ω ;R3)1×m, then it follows from [2, Theorem 3.17] that there

exists some F ∈ H0(curl,Ω)
1×m

with χ = ∇ × F . Using the integration by parts
formula for the curl operator, see [10, eq. (2.1)], we obtain that the columns of χ are or-
thogonal with respect to the inner product in L2(Ω ;R3) to all C ∈ X0(curl=0,Ω ,ΩC).
In other words,

χ ∈ ((im P̃ )⊥)1×m = (ker P̃ ∗)1×m,

which gives P̃ ∗χ = 0. Then (5.13) reduces to PA(t) = PA0 for all t ∈ [0, T ). Now
proceeding as in the previous case, we obtain

‖A(t)‖L2(Ω ;R3) ≤ ‖PA(t)‖L2(Ω ;R3) + ‖(I − P )A(t)‖L2(Ω ;R3)

≤
√

γ LC
σC
‖A0‖L2(Ω ;R3)

+ L1

√
Lν
mν
‖∇ ×A0‖L2(Ω ;R3) + L1√

2mν
‖R−1/2v‖L2([0,t);Rm).
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Remark 5.8. Note that the divergence-freeness condition in Theorem 5.7 b) is
guaranteed, if the support of χ does not meet the interface between the conducting
and non-conducting subdomains, i.e., supp(χ) ⊂ ΩC ∪ΩI . In this case, the condition
χ ∈ X(Ω ,ΩC)1×m is even equivalent to χ ∈ L2(div=0,Ω ;R3)1×m.

5.3. The free dynamics. By free dynamics, we mean the solution behavior of
the coupled MQS system (1.1) in which (1.1) no voltage is applied, i.e., v = 0. Our
goal is now to analyse their asymptotic behavior for t→∞.

The following theorem shows that the magnetic energy E(A(t)) as well as the
L2-norm of∇×A(t) can be bounded from above by an exponentially decaying function
provided v ≡ 0.

Theorem 5.9. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1. Further, let Assumptions 2.2 and 2.3 be fulfilled, and A0∈X0(curl,Ω ,ΩC).
Moreover, let E be the magnetic energy as defined in (2.9), and let (A, i) be a solu-
tion of the coupled MQS system (1.1) with v ≡ 0. Then for σC , mν and Lν as in
Assumption 2.2, γ as in (5.10), and

(5.14) ω :=
m2
ν

γ Lν
,

it holds for all t ≥ 0 that

E(A(t)) ≤ e−2ωtE(A0),(5.15)

‖∇ ×A(t)‖L2(Ω ;R3) ≤
√

Lν
mν

e−ωt ‖∇ ×A0‖L2(Ω ;R3).(5.16)

Proof. Consider the operator

F : X(Ω ,ΩC)× Rm → X(Ω ,ΩC),

(A, i) 7→
√
σA + χR−1/2 i.

Then F is linear and bounded with ‖F‖ ≤ √γ. Further, imF is closed, as it is the
sum of the closed space L2(ΩC ;R3) and a finite-dimensional subspace of X(Ω ,ΩC).
Therefore, we conclude from [8, Theorem 9.3.3] that F has a bounded Moore-Penrose
inverse F+ : X(Ω ,ΩC)→ X(Ω ,ΩC)× Rm such that FF+ and F+F are the ortho-
gonal projectors onto imF and imF∗, respectively. Using ‖F‖ ≤ √γ, we obtain for
all F ∈ imF ,

(5.17) ‖F ‖L2(Ω ;R3) = ‖FF+F ‖L2(Ω ;R3) ≤
√
γ ‖F+F ‖L2(Ω ;R3)×Rm .

Let (A, i) be a solution of (1.1) with v ≡ 0. Then it follows from (2.5) that for almost
all t ≥ 0,
(5.18)
∇× (ν(·, ‖∇ ×A(t)‖2)∇×A(t)) = − d

dt (σA(t)) + χ i(t) = −F d
dtF

∗A(t) ∈ imF ,

and Assumption 2.2 b) gives

〈∇ ×A(t), ν(·, ‖∇ ×A(t)‖2)∇×A(t)〉L2(Ω ;R3) ≥ mν‖∇ ×A(t)‖2L2(Ω ;R3).

Further, using the integration by parts formula for the weak curl operator together
with the fact that A(t) ∈ X0(curl,Ω ,ΩC) for almost all t ≥ 0, we obtain

(5.19) ‖∇ × (ν(·, ‖∇ ×A(t)‖2)∇×A(t)) ‖L2(Ω ;R3) ≥ mν‖∇ ×A(t)‖L2(Ω ;R3).
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Then it follows from (5.17) and (5.19) that for almost all t ≥ 0,

(5.20)

∥∥F+(∇ ×(ν(·, ‖∇ ×A(t)‖2)∇×A(t)))‖L2(Ω ;R3)×Rm

≥ 1√
γ ‖∇ × (ν(·, ‖∇ ×A(t)‖2)∇×A(t))‖L2(ΩC ;R3)

≥ mν√
γ ‖∇ ×A(t)‖L2(ΩC ;R3) .

Let ω be as in (5.14). Using the energy balance (3.6) and the relation F∗ = F+FF∗,
we obtain, by invoking v ≡ 0, that for all 0 ≤ t0 < t <∞,

E(A(t1))− E(A(t0))

= −
∫ t1

t0

‖ d
dτ

√
σA(τ))‖2L2(Ω ;R3)dτ −

∫ t1

t0

〈i(τ), R i(τ)〉2 dτ

(2.5)
= −

∫ t1

t0

‖ d
dτ

√
σA(τ))‖2L2(Ω ;R3)dτ −

∫ t1

t0

∥∥∥∥ d
dτR

−1/2
∫

Ω

χ>A(τ) dξ

∥∥∥∥2
2

dτ

= −
∫ t1

t0

‖ d
dτF

∗A(τ)‖2L2(Ω ;R3)×Rmdτ

= −
∫ t1

t0

‖F+F d
dτF

∗A(τ))‖2L2(Ω ;R3)×Rmdτ

(5.18)
= −

∫ t1

t0

∥∥F+ (∇× (ν(‖∇ ×A(τ)‖2)∇×A(τ)))
∥∥2
L2(Ω ;R3)×Rm dτ

(5.20)

≤ −m
2
ν

γ

∫ t1

t0

‖∇ ×A(τ)‖2L2(Ω ;R3) dτ

(2.10)

≤ −2ω

∫ t1

t0

E(A(τ))dτ

with ω as in (5.14). By a division of the above inequality by t1 − t0 and then taking
the limit t1 → t0, we obtain that the weak derivative of t 7→ E(A(t)) fulfills the
differential inequality

(5.21) d
dtE(A(t)) ≤ −2ωE(A(t)).

Then Grönwall’s inequality for the weak derivative [24, Lemma IV.4.1] gives rise
to (5.15). The estimate (5.16) can be concluded from (5.15) by further using the
inequalities in (2.10), and subsequently taking the square root.

Remark 5.10.
a) The inequality (5.21) shows that the scalar function t 7→ E(A(t)) is strictly decay-

ing unless ∇×A(t)= 0. This is not surprising from a physical point of view, as,
by v ≡ 0, no external energy is put into the system.

b) Let us briefly consider the case where the free MQS system is initialized with
A0 ∈ X(Ω ,ΩC), which is not necessarily in H0(curl,Ω). By [10, Theorem 7.1]
on the existence and regularity properties of the solutions of the coupled MQS sys-
tem (1.1), we have A(t) ∈ X0(curl,Ω ,ΩC) for almost all t > 0. Further, for each
finite interval [0, T ], the functions t 7→ E(A(t)) and t 7→ ‖∇ ×A(t)‖L2(Ω ;R3) can

be bounded by a constant times 1
t and 1√

t
, respectively. As a consequence, there

exists some constants M1,M2 > 0 such that the solution (A, i) of (1.1) with v ≡ 0
satisfies for all t > 0,

E(A(t)) ≤M1 (1 + 1
t ) e
−2ωt, ‖∇ ×A(t)‖L2(Ω ;R3) ≤M2 (1 + 1√

t
) e−ωt.
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Finally, we derive the estimates for the L2-norm of the magnetic vector potential
A(t) of the uncontrolled coupled MQS system (1.1).

Theorem 5.11. Assume that Ω ⊂ R3 with a subdomain ΩC satisfies Assump-
tion 2.1. Further, let Assumptions 2.2 and 2.3 be fulfilled, and A0 ∈ X0(curl,Ω ,ΩC)
and v ≡ 0. Moreover, let E be the magnetic energy as defined in (2.9), and let
(A, i) be a solution of the coupled MQS system (1.1). Then for σC , Lν , mν as in
Assumption 2.2, γ as in (5.10), and ω as in (5.14), it holds for all t ≥ 0,

(5.22) ‖A(t)‖L2(Ω ;R3) ≤
√

γ LC
σC
‖A0‖L2(Ω ;R3) + L1

√
Lν
mν

e−ωt‖∇ ×A0‖L2(Ω ;R3).

If, additionally, the initial value fulfills for all F ∈ X0(curl=0,Ω ,ΩC),

(5.23)

∫
Ω

σA0 · F dξ +

∫
Ω

χ>A0 dξ ·R−1
∫

Ω

χ>F dξ = 0,

then for all t ≥ 0,

(5.24) ‖A(t)‖L2(Ω ;R3) ≤ L1

√
Lν
mν

e−ωt‖∇ ×A0‖L2(Ω ;R3).

Proof. Let P̃ ∈ L(X(Ω ,ΩC)) be the projector as in Lemma 5.6 a). Then by using
the argumentation as in the proof of Theorem 5.7 a) and invoking v ≡ 0, we obtain

that P̃A(t) = P̃A0 for all t ≥ 0. Thus, by further using that A(t) ∈ X0(curl,Ω ,ΩC),
we obtain for almost all t ≥ 0,

(5.25)

‖A(t)‖L2(Ω ;R3) ≤ ‖P̃A(t)‖L2(Ω ;R3) + ‖(I − P̃ )A(t)‖L2(Ω ;R3)

= ‖P̃A0‖L2(Ω ;R3) + ‖(I − P )A(t)‖L2(Ω ;R3)

(5.11)

≤ ‖P̃A0‖L2(Ω ;R3) + L1‖∇ ×A(t)‖L2(Ω ;R3)

(5.16)

≤ ‖P̃A0‖L2(Ω ;R3) + L1

√
Lν
mν

e−ωt‖∇ ×A0‖L2(Ω ;R3).

Then (5.22) follows by using the bound ‖P̃‖ ≤
√

γ LC
σC

from Lemma 5.6 a).

On the other hand, if A0 satisfies (5.23), then A0 is orthogonal to all elements of
X0(curl=0,Ω ,ΩC) with respect to the inner product (5.8). Since P is an orthogonal

projector with respect to that inner product, we have P̃A0 = PA0 = 0, and, hence,
(5.25) immediatelly implies (5.24).

6. Conclusion. We have considered a quasilinear magneto-quasistatic approxi-
mation of Maxwell’s equations, which is furthermore coupled with an integral equa-
tion. By employing the magnetic energy, we have shown that this system is passive
and admits a representation as a port-Hamiltonian system. Further, we have derived
estimates of the state and output of the system by means of the initial value and
the input. A special emphasis in the solution estimates is placed on the free system
with the zero input voltage, where we have shown that the magnetic energy decays
exponentially.
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