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Abstract 

Starting from Monte Carlo generated equilibr-ium gauge field configurations at 

~" 2.1 and 2.2 on a 64 lattice, representing the physical vacuum, we system­

atically freeze the quantum fluctuations by means of successive relaxation. 

The result is that we obtain {approximate) solutions of the classical equa­

tions of motion, which turn out to have discrete values of the action 

!>. 2 -SR< I" 21< N, N - 0,1,2, ... 

in close agreement with the continuum {multi-) instanton solutions. We show 

that these "lattice {multi-) instantons" are localized in space-time, that 

they carry a topological charge JQ( " N and that they give rise to a number of 

fermion zero modes in acordance with the Atiyah-Singer index theorem. Finally, 

we ·estimate the "background topological sus·ceptibility" from the distribution 

of lattice (multi-) instantons. 

+) Address after 1. September 1985: NORDITA, Copenhagen, De~r.1ark 
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I. Introduction 

To "solve·" QCD it is not enough to compute the mass spectrum, conden­

sates, the topological susceptibility, etc. by lattice Monte Carlo rnethods
1l. 

It is equally important to get a qualitative understanding of confinement, 

chiral symmetry breaking and the like - i.e. of the QCD vacuum. 

A necessary and sufficient condition for confinement is the existence of 

random domains of colour magnetic flux 2l. One would think that the energy it 

costs to patch up such a vacuum - thinking of the vortices being necessary to 

do so - outweighs the energy that is gained in "growing" the domains. In QCD 

there is, however, the possibility of the formation of instantons3) - i.e. 

semi-classical, dipole-like objects of minimal action wlth unit topological 

charge -which could amalgamate the random domains with little cost in energy. 

Though, in this picture, instantons may not be the "driving force" of 

confinement, we believe that they play a key role in the physics of the QCO 

vacuum. This belief receives further support from the observation that, semi­

classically, instantons may provide a resolution of the.U{l} .problem4) as well 

as a mechanism for chiral symmetry breaking5). 

So far the question, whether the QCD vacuum does possess an underlying 

instanton structure, has only found an indirect answer: it has been shown by 

lattice Monte Carlo calculations that the va_cuum of the SU(2) gauge theory is 

topologically non-trivial and that the topological susceptibility is of the 

right order of magnitude as required for a quantitative resolution of the U(l) 

problem6 •7). The early semi-classical calculations, on the other hand, have 

remained of uncertain validity in spite of great efforts undertaken during the 

last years8 ) to cure its infrared problems. 

In the present paper we shall try to find a more direct answer to this 

question. l:he idea is to generate equilibrium lattice gauge field configura­

tions, i.e. "snapshots" of the physical vacuum, and subsequently freeze their 

quantum fl ucutat ions by successive re 1 axati on. If there are ins tan tons under­

lying the vacuum, they should remain behind and become visible, as they are 

quasi-stable under relaxations, i.e. {approximate) solutions of the classical 

equations of motion. A simi 1 ar procedure has been app 1 i ed previously to the 

0{3) sigma model 9 ). 
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The paper is organized as follows. In section II we describe the 

procedure of relaxation and ask the question, to what extent it leads to re­

producible r.esults. In section III we collect evidence that the resulting, 

quasi-stable field configurations represent {multi-) instantons. In section IV 

we estimate the background topological susceptibility and in section V we draw 

the conclusion. 

II. Relaxation of lattice gauge field configurations 

We start from equilibrium SU(2) gauge field configurations, which we have 

generated by standard Monte Carlo methods using Wilson's action 

s ~~.L:;(1-~TrUn "") ~{!>~ [1-~Tr(Un ,un+"~u~+l>"u~,l] 
-n,r<~ '" .,,JC<v •r "' '" ' 

( 1 I 

Now we replace successively each link matrix, U , by 
n,~ 

u _.. ij ~ c £ [u u u+ + u+ u u ] 
n,IJ n,IJ v n,v n+')),IJ n+IJ,'J n-11,.., n-)),t' n+r-IJ,l} 

rp<'t)> 
( 2) 

where c is a normalization constant such that 

U E SU(2) . 
n,~ 

( 3) 

When all link matrices have been changed once, we call this one iteration. 

This procedure will locally minimize the action. One can also think of other 

methods of "cooling" the gauge field configurations. A similar algorithm can 

also be given for SU(3)lO). 

Our sample of vacuum configurations consist of 40 configurations at~= 

2.1 and 18 configurations at~= 2.2 on a 64 lattice. In Fig.1 we have shown 

the history of 4 typical gauge field configurations under successive 

relaxation. While configuration A decays into the trivial (S=O} vacuum, con­

figurations B,C and D show a plateau, indicating the passage through a quasi­

stable field configuration. On the plateaus the action takes the values 

S ~ (3 ( 271}- t. )N, N = 1, 2,. (4) 

with A~ 1. This is in close agreement with what one would expect for a con­

tinuum (multi-) instantori field configuration, i.e. S o:(! 27L2N. The fact that 

the lattice action (4) is somewhat smaller than the continuum value is pre­

sumably due to the finite volume. of the lattice 11 ). 

--
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In the following we shall call a configuration quasi-stable if after one 

iteration it changes its action by 1 ess than 2. The fact that the re 1 axat ion 

procedure employed here does not lead to absolutely stable lattice field con­

figurations has a 1 ready been observed in ref. 12, We disagree, however, with 

the authors 1 s conclusion that the Wilson action does not support the existence• 

of instantons. 

If the observed quasi -stable lattice field configurations are an 

attribute of the equ i 1 i bri urn configuration they carne from, their appearance 

should, by and large, not depend on the particular relaxation procedure used. 

One possibility to check this is to apply a different algorithm to compute the 

new link matrix U from the old ones, e.g. by using the Langevin equation 
n,~ 

without noise or a modified Metropolis algorithm. In this paper we have 

performed a different test: we have "cooled" our sample of 40 configurations 

at{3 = 2.1, in addition, by sweeping through the lattice in the reverse order. 

To compare the outcome of the two procedures we have computed in Table 1 the 

correlation matrix 

- -1 
MNN ~ 40 (NN) <NN> (5) 

where N, N is the height of the first (quasi-stable) plateau in units of 

S/~{2;(..2-.t::J) for the "forward", respectively the reverse ordering. We find 

that the two procedures give in 17 out of 35 {identifiable) cases the same 

answer. In order to underpin the statistical significance of this result we 

calculate 
- - 2 

'l: ~ J:: 40(NN)-1 (<NN>- <N><N>) , (6) 
N 1i <N> <N> 

' 
which gives?:= 31.9. For a~2-distribution for 16 degrees of freedom there is 

only a 1% probability that% 2 >7:, so that the possibility for both sets of 

values being statistically independent is extremely small. To check the 

stability of the results further, we have "cooled" the field configuration 

which gave N,N = 3 (and is relatively infrequent) a further 10 times by sweep­

ing through the latt1ce in sequential order but starting from randomly chosen 

links. In all cases we found a N=3 plateau. All together we take this as 

(statistical) evidence for a real underlying semi-classical field str.ucture 

already at (3 = 2.1. 
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In Fig.2 we have plotted the frequency 40N- 1<N> of finding a quasi­

stable, N = S/(3(2.,!--./1) field configur~tion among the configurations of Table 

1, where we have averaged the results for forward and reverse ordering. 

III. Do the quasi-stable configurations support the picture of an instanton? 

Before we can interpret the quasi-stable lattice configurations obtained 

in the last section as instantons, we must demonstrate that their action 

density is localized in space-time, that they are solutions of the classical 

(lattice) equations of motion, that they have the right topological charge and 

that they give rise to the right number of fermion zero modes. 

(i) Action density 

During the process of relaxation we have monitored the action density, 

sn = i,~L(l - iTr Un ,.) (7} 
r<~ or 

As an example we have plotted in Figs.3a-c Pn "'[100Sn!fl] for configuration B 

of Fig.l after 30 successive iterations, where the dots indicate Pn = 0. The 

_time sllces not shown have action densities Pn = 0 everywhere. This shows that 

the action density is indeed localized. Similar plots for configurations C and 

D (on the p 1 a tea us) show that the action is concentrated in 2 and 3 we 11 

separated lumps which resembles the picture of a dilute instanton gas. 

{ii) Lattice equations of motion 

The relaxation procedure does not guarantee that the resulting field con­

figurations represent (always) a solution of the classical lattice field 

equations 

os 
$ un.~ 

0 (8} 

i.e. 

L:: ( u - u+ •} = o . 
v n.~~ n,~ 

(9} 

To find out to what extent the quasi-stable configurations are solutions of 

the. classical equations of motion, we define:_the local deviation of the actual 

link matrix U from 1ts replacement value U (cf. equ.(2}): 
n ,IJ n, 1J 

(; n = iL:Tr {(Un,.- Un ,}(Un,- Un ,.}+j. r ·r ·r ·r •r 
( 10} 
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We have calculated bn for all lattice sites after each iteration. We find that 

when "we get down to the plateau, sn becomes small for all n and remains so for 

typically the first half of the plateau. In the second half 0 n then starts 

locally to increase and, as we approach the region where the action turns into 

another plateau or to zero, it develops a sharp peak at exactly the maximum 

{or one of the maxima) of Sn - which also becomes more pronounced as we 
move along. The "instanton" thus shrinks, becomes a dislocation 13 ) and finally 

is annihilated. 

(iii) Topological charge 

We have computed the topological charge Q of the quasi-stable field con­

figurations using LUscher's definition6•14 ) of Q. On the plateaus- more pre­

cisely: throughout the whole plateaus until the configurations collapse, the 

secondary plateaus inc_luded - we found for all configurations 

Q = :': N = t 5/~(2.!'-A} (11} 

(despite the fact that LUscher's bound 14), S/f! < 0.015, is -locally violated; 

cf. Figs.3a-c where S 1{1> .{ 0.14). This is exactly what we expect for a . n 
(multi-) instanton field configuration. We shall call this charge the back-

ground charge. 

In Fig.4 we have plotted the background charge distribution of our sample 

of 18 equilibrium gauge field configurations· -at (3 = 2.2. The background charge 

distribution of the 40 configurations at~ = 2.1 can be read off from Fig.2 

(for /Q/ though). 

{iv) Fermion zero modes 

The lattice action for massless Kogut-Susskind fermions in a background 

field configuration fu J is given by 
n,~ 

SFa iM(U}\1: =L:{'fn(-1}nt+ ... +n~-\ •~n+ h.c.J, (12} 
"'•/' or ~ 

where(n•:\h are single c'omponent, colour doublet Grassmann variables sitting at 

the sites n (= (n 1,n 2,n 3,n4}}. We assume antiperiodic boundary conditions in 

all 4 directions. SF then has an explicit chiral symmetry for which ~t> is an 

order parameter. In the infinite (lattice) volume limit we have 15 } 

<t'X> = lTv <3( 0} > (13} 
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where ,g(~) is the density of eigenvalues [A.j of the fermion matrix iM(U), It 

is thus the existence of zero modes that wi 11 determine whether chiral 

symmetry is broken spontaneously or not. 

In the continuum the Atiyah-Singer index theorem16 ) states that the 

number of zero modes, Z, of self-dual or anti-self-dual gauge fields is equal 

to /Q/. To check this we have computed the eigenvalues of the fermion matrix 

associated with the quasi -stable field configurations using the lanczos algo­

rithm developed in ref.lS. On a finite lattice we will, of course, not find 

exact zero modes but (at most) small eigenvalues which are well separated from 

the rest of them. On the plateaus we found 

Z " IQ I " N ( 14 I 

in accordance with the index theorem. To illustrate this, we have plotted~(~ 

for 3 typical field configurations proceeding from (6 = 2.2. Configuration E, 

which has 0=0, has also no "zero" mode. Configuration F, which has 0=1, has 

one "zero" mode (not counting the degeneracy of the eigenvalues due to the 

fermion doubling), while configuration G, which has 0=2, supports exactly 2 

"zero" modes. 

For comparison we have also shown .j (A,) for a typical equilibrium 

configuratton (that of Fig.5b) in Fig.5d. The difference in the two eigenvalue 

spectra is striking: while ._f(~) extends continuously to PL~ 0 for the equi­

librium configuration; H develops a gap in the process of relaxation leaving 

behind the "zero" mode-s. 

To conclude this section, we may say that the quasi-stable field configu­

rations underlying the equilibrium configurations have passed all tests so 

that they can be int~rpreted as (multi-) instantons. It would be interesting 

now to compare these configurations with an analytic expression for an instan­

ton field configuration. The constructiOn of such an expression on the lattice 

is made difficult, however, because it has to be periodic in all 4 directions. 

In ref.17 a construction of a lattice instanton wa-s given, which had the right 

topological charge and exactly one "zero" mode. The basic idea was to map JR 4 

onto a finite lattice, which was divided into an inner and outer region. In the 

inner (outer) region the gauge fields were taken to be the discretized in­

stanton solution of the continuum equations of motion in the regular (singu­

lar) g_aug~. and in the overlap region they were patched together by a gauge 

trans.formation. Unfortunately, we find that this construction violates the 

' classical equations of motion in the overlap region, and therefore it 

collapses under relaxation. 

-'"'---""-·---""---""--~----------"'-~"--~-------"'----""------""- ~----- -------

- 8 -

IV. Estimate of the background topological susceptibility 

In ref.6 the topological susceptibility,Xt <0 2>/V, was found to be 

'Xt" (40.8 ± 1.3'\1
4 (15) 

for values of P, ranging between 2. 2 and 2. 5, which, taking6) A L ~ 6 MeV, gives 

Xt" (245 ± 8 MeV) 4 (16) 

The question is now: can this be attributed to instantons? 

To answer this question, we have computed the topological charge of the 

equilibrium configurations and compared it to the corresponding background 

charge. We find that the equilibrium and the background charges are not 

strongly correlated. A similar test as that described in section II gives (for 

32 degrees of fredorn) a 80% probabi 1 i ty that the two sets of charges are sta­

tistically independent. For the background topological susceptibility we 

obtain 

~" 2.1 : 'J:t ~ (201\)
4

" (120 MeV)
4 

, 

( 17) 

" 4 4 ~" 2.2 : "'t ~ (21.71\) " (130 MeV) 

which is one order of magnitude below the value (15), (16). 

This is, may be, not surprising. It is possible that the 0- glueballs 

contribute to Xt• which woUld be on the quantum level. But it could also be 

that at the present values of (6 the gauge fields are not smooth enough to 

allow for an unambiguous determination of the topological charge. 

V. Conclusion 

We have shown that even on small lattices and for values of~ at the edge 

of the continuum region the vacuum of the quantized (pure) SU(2} gauge theory 

does possess an underlying instanton structure. 

The lattice size (and hence the range of{!> values) was dictated to us by 

the fact that the computation of o6• 14 ) is very time consuming. However,we are 

now in the possession of an algebraic expression for the topological charge on 

the lattice 18}, which is fast to compute. This will allow us to repeat the 

investigation on larger lattices and for larger values of~· which will be the 

subject of a future report. 

~- ----
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Note added in proof 

After this work has been completed we learned that M. Teper (CERN 

preprint TH-4208) has done a similar investigation to ours. 
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MNN 
reverse ordering 

~ 
not 

0 I 2 3 identi- ~MNN fi ab 1 e N 

0 5 3 4 0 2 14 

"' 0 

c I I 8 I 0 2 12 
~ 
~ 
c 
0 

~ 2 I 2 3 0 I 7 
c 
~ 

~ 
.):' 3 0 I 0 I 0 2 

not 
identi- 2 3 0 0 0 5 
fiable 

LMNN 9 17 8 I 5 40 
N 

Table 1: The correlation matrix MNN as defined in the text . 
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Figure captions 

Fig.l The ratio S/~ as a function of the number of iterations for 4 typical 

gauge field configurations at~= 2.1. The first iterations with S!f >,.. 

120 are not shown. 

Fig.2 The frequency 40 N- 1<N> of finding a quasi-stable configuration with N 

= S/~(2nf-d) for the configurations of Table 1. 

Fig.3 The action density 5
0 

of configuration B (Fig.l) after 30 iterations. 

The integers plotted are Pn = [ 100 50 ;~]. The dots correspond to Pn=O. 

Fig.4 Distribution of the background topological charge for the sample of 

configurations at~= 2.2. 

Fig.5 a-c: The eigenvalue densitiy .!i (~} as a function of A, for 3 typical 

gauge field configurations at(! = 2.2. The insert shows the corres­

ponding S/~ as a function of the number of iterations, and the arrow 

indicates whereJ(.\) and Q were computed. 

d: The eigenvalue density j'C~ .. ) for a typical equilibrium configuration. 
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