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Abstract

It is shown that instanton-anti-instanton induce a negative infrared finite
vacuum energy in massless supersymmetric QC8. In the massive Lheory the

same field configuration induces no vacuum energy because its classical
action diverges due to the contribution of the mass term. Only if the scalar
field is classically zero (in a background of an instanton-anti-instanton}

a vacuum enerqy is found in the massive theory. Hewsver, it is negative

and infrared divergent.
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Supersymmetry breaking was studied exbensively in the past few years <1).
Perturbatively such a breaking is not possible due to the cancellation between
bosons' and fermions' contributions to the vacuum energy. Non-perturbative

(1

effects were alsa studied In particular instanton’s contribution fo
the vacuum eneragy is found to be zero in 5YM and in SQCD due to the fermionic
zerc modes of the relevant Dirac operator in the topologically non-trivial

background (2).

Instanton-anti-instanton configuration, however, has a zero
topolagical charge and there are no exact zero modes. As a result instanton-
anti-instanton contribution to the vacuum energy may not vanish. Indeed, it

was shown in previous publications ,4)

that quantum fluctuations in a
background of an instanton-anti-instanton induce negative wacuum energy,

which may signify an explicit breaking of supersymmetry if it is not cancelled
by other necn-perturbative effects. The induced wvacuum energy, though, is ip-
frared divergent and a cutoff of the instanton (anti-instanton} size was in-
troduced to define the integrals. This by itself may be the source of super-
symmetry breaking found, because the bosonic and fermionic zero modes from

(5)

a supermultiplet®” . This structure is speiled by cutting off the instanton

size thus supersymmetry breaking might have been introduced by hand.

In the following we will analyze a theory where such a cutoff is not needed.
We study the contribution of an instanton-anti-instanton to the path integral
in massless SQCD. In this theory the matter supermultiplet contains a scalar
field which is classically non-vanishing. Its contribution to the classical
action in a background of an instanton (or anti-instanton) introduces a
Gaussian factor which makes the integration over the instanton (or anti-
instanton) size finite. Quantum fluctuastions around this configuration have

a positive contribution to the path integral if functional integration



over Weyl spinors in Euclidean space is taken to be the square root of the
determinant of the associated Dirac operator. The induced vacuum energy is,
then, infrared finite and negative. In the massive theory, on the other hand,
the same field configuration induces no vacuum energy because its classical
action diverges due to the contribution of the mass term. The configuration
¢&=0 has a finite action; however, its contribution to the vacuum energy

is infrared divergent. Thus only if a finite action configuration, whose con-
tribution to the path integral is infrared finite is found, would it be pos-

sible tec analyze unambiguously the breaking of supersymmetry in the massive

theory.

To be more specific we work with an SU{2) supersymmetric model, which contains
one matter and aone anti-matter supermuitiplets transforming under the funda-
mental representation of the gauge group. The Lagrangian in Euclidean space-

time can be written as

J’E = Qosm d'xjum.ill'.i‘v

where d@,ﬂ is the super-Yang-Mills Lagrangian given in the Wess-Zumino gauge

n

by
Leyu = + F YD Z}‘ 2h {1a)
with  Fuy = W - tyﬂ‘*SE‘““Arﬂ‘ , D}":L’“‘*gé“b‘ﬂr? . AR
are the vector potentials and 2% are Weyl spinors. They are expressed in
Euclideanised Weyl basis with Dirac matrices being
o £, _
i I, o A Ty f*‘=(i"-')'ﬂ) ant T, L, E,= 2,

matter is the matter field Lagrangian
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such that {*},¢J (i = 1,2} form the matter supermultiplet,
&Jtln ﬁiUF“( and j%: are the SU(2) generators in the fundamental
representation.

AR I F;?= QO

Classically the vacuum in Minkowski space is given by
¢ﬁ parallel to d;; in group space and £¢0¢.:0 (i = 1,2). This last equation
has as an integrability condition
-
d‘f,i: PG*F (? ijﬂrﬂixr )LO )

The integrability con-

Foif =< which is trivially satisfied in the

vacuum. The solution is then , where the integral
is along a path ™ from-s> Lo x and v is a constant.
dition guarantees the path independence of the solution. We compactify the

tuclidean *-space into 53 in which case the vacuum configurations are given by

Ap=

U(x) define the set of maps Sg

e

Lu(m,um where U{x)e SU(2) and Uix) 7=
b

—S5U(2) classified by TFJ{S'L((Z’)FZ-ThE same

maps(T&(ng classify also the vacuum cenfiguration of the scalar fields.

Thus the scalar fields and the gauge potential are classified by the Pantry-

(&)

agin index, n 11> and quantum

- .
>3 &

Wz-on

. The vacuum is then given by
mechanical tunnelling between vacua differing by one unit of topological
charge is provided by the single instanton or anti-instanton

(2)

I(L

’.a

ﬂ;"‘ = —:e v (R-xg)y
G-np?s vt

= 2 Yapy Aoy 3

9 @ont- £ g

(2}

and the scalar field configurations

L '-.- (x |)tu s s _-;L]‘.?I
¢1x_ & [(x :Jl#‘— z.]’v.( ) 5 "D-‘I Ax

iF

—L(x;i) ufzﬁm »

—— 4, and Glu=g=U -'fk)(iér) .
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which satisfy the field equation 9“2¢’;T0(i = 1,2) in the appropriate back-
ground. In the above 7“""?“!" are the 't Hooft symbols (2), X1 %gs J"l, fz
are the location and size of the instanton and anti-instanton respectively

and "C';: qﬁf (;':_511 4).

As was mentioned previously quantum mechanical tunnelling by these field con-
figurations in a supersymmetric model is completely suppressed due to the zero
modes of the Dirac operator, 1.‘1".[)', , in the above background. In the absence of
the Yukawa coupling in (1b) we have six left-handed zero mades in a background

of an instanton: 4 for the gluino and 2 for the matter field

wha ¥ile ay Bl
(]Ss)q '..J%‘_-ﬁx_—-f:W]T((f )g( M.P

ya 3z [ . N .
(2% = 2 2y 6 (B lnd Dy
Y e g . ; My .
(% )K’_ (ttﬁ‘z )ks ) TT_IF;.: (lxnn® s p* ,25:«: (4)

where k= 1,2, §= 1,2 are spinor and color indices, respectively. For the anti-

swT

instanton we have six right-handed zero modes

(a;:)a&:iz, 5f2. (5‘7‘)&? J_HP‘
L CENER A

5-.--: a&:; a2 . ‘;‘P —a v we
( < ) - .—.LW;J (X‘!“ (» K)_)},) ( )F’ §
(WEN™ = (o) = - "E (5)

ﬁ I.U\‘X_ﬂl .;5;2::._].312,

Here U &) are unit vectors given by either (1,0) or (0,1).

When the Yukawa coupling is turned on Aee ¥, iT¥, arenc longer zero modes
4 r

and their contribution to the action beccmes

Sd#x \'J;-tansa'c.g ¢; = ) dx (pj- '31}103\}}, = _.‘%}__7 (6)

for the instanton and a similar contribution for the anti-instanton. Thus
1’).;,1\‘3(1 cobine together to form a massive Dirac spinor. (We denote the
pair g‘*]’J“.l.'Ci‘Vi} by . They both have only two spin components}. As:, on the
other hand, stays as a zerc mode because_[d“x $rread =0, since the inte-
grand is odd under space-time reflections. As a result quantum mechanical tun-

nelling is suppressed even when the Yukawa coupling is turned on.

In the absence of tunnelling in a background of one instanton or one anti-
instanton we are led to consider the tunnelling in a background of an in-

stanton-anti-instanton. Without loss of generality we take the distance be-
tween the instanton and the anti-instanton in the time-like direction,ag =
B (xz—x,,)g‘L :ASW‘. Later we will integrate over its direction. Then the in-

stanton anti-instanton configuration is given by
T Y. ol @li-
e A% (R0 Ap GLE-R) , (7

where Rﬂ"j“""ﬂf“ﬁm , and generality is not lost by taking the locations
to be such that §l=§2=0. We later integrate over Rll as well. In a similar
way we can write the expression for the classical scalar fields associated

with the instanton-anti-instanton configuration in (7).

Quantum fluctuations around this backgr(lJund vield one over the square root

of each bosonic determinant. For the Weyl fermions we first double the number
of degrees of freedom to generate Dirac fermions. We then define the function-
al integral cver the Weyl spincrs as the square root of the functional inte-
gral over the Dirac fermions, thus getting the square roct of the determinant

of the Dirac operator. The fermionic determinant has 12 approximate zerc modes
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as listed in (4) and (5). In the limit of infinite separation 4 of them
(2;?,'a§2) become exact zero modes. The bosonic determinant has 16 approx-
imate zerc modes associated with the invariance under translations, dilata-
tions and group crientations of the instanton and the anti-instanton. These
are Factored oub and treated by the collective coordinate method. Factoring
out alsc the approximate fermionic zero modes we finally get the square root
of the ratic of the non-zero modes fermionic over the boscnic determimant in
the background of an instenton-anti-instanton. In the approximation of far
separation this determinantal factor can be approximated by the product of
the determinantal factors of the instanton and the anti-instanten, and each

is equal to one (2). As a result we approximate the path integral by

e 180 gx = §le- BJ Id"x: %&-J"’xz%‘%—l dan dog
f’ 2.
-5z
(‘%'f%) gifrz)) W(xixa,5,5,e) € - (8)

In eq. (8) we integrate over the locaticns X5 %y the sizes f]) fz and the
group orientations ,fgof the instanton and anti-instanton respectively.
g is the relative orientation of the anti-instanton compared to the in-
stanton and k(xrxu)y|‘pgjjln) is the square root of the fermionic deter-
minant evaluated in the subspace of the fermionic zero modes listed in (4)
and {5) with ¢° in eq. (5) replaced by G§t=R5® and with g being re-
placed by Ql(ﬁ)E)ks . R is the rotation matrix of the relative orientation

and U(R) is the associated SU(Z) representation. S is the Euclidean action

= bpgt urt . 2.e8flp2, D2
ggﬁﬁﬂ(y_rgg)» Sag + BAZOPI-EY) (9)

where the last term is the contribution of the scalar fields and it is this

E

contribution which eventually makes the ¥ integration infrared finite as was

pointed out in Ref. 2. Sp, is the interaction action between the instanton

and the anti-instanton.

To calrulate X we double the number of fermions to get Dirac fermions and
calculate the determinant of the Dirac operator {including the Yukawa coup-

lings) in the subspace of zerc modes. Therefare

-8 -

o ¢ O Ao
co oo o
N
Kizdet| @ 2 C 00 0 (10)
atcto oo o
et vt o ¢ o W
¢ 0 U 0 kK o ,

where the entries are all 2x2 matrices. In {10) we have picked up the dominant
contribution to the determinant for large 8. Thus the contribution of some of
the matrix elemerts to the determinant is zero only.up to the leading arder in
a™t, Du is the covariant derivative in the background (7}. Using the fact that

el ] - B . .
Ay s Aey { A3 are exact zero modes in a background of an instanton
s 4 8¢ ss s 5 9

{anti-instantaon} we find that

Jd*x 3%%0,E,2" = Jd3x 37(-0,3) 2% (g, %) (11)
then
Az fdo A 0,500 = aag g s e (12a)
B = Jd% A DT, A = j?i(layf"’_ﬁ}_ g o (126)
C= Jd A (0T =- a0 Pl Al (12c)
D= fdUx A iDL = i (b- aol) g g R (12d)
K, = g__g_:g(:au) i=1,2 {12e)
with
asb= 5:""1,‘ x5 x (13)

(x‘.l.“ %-_., *‘?‘1)1 (’)‘1; %f*j’,?)l
and only the leading order terms in &' should be kept for widely separated

instanton-anti-instanton.
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Expressing the relative arientation in terms of a unimodular four vector uu
we find

det (G, 08) = A+gu?

then

_ 2 §a2 2 2
Jda, e =380 w2, 5,) @ (442 ) (942) (14)

Substituting (14} in (8) and integrating over d ¥R we get a factor 2W*VT

(space-time volume). We are then left with the integrations ecver J’l, .PZ, and

A, To sccount for the & integration we need to know the interaction action.

This was calculated in Ref. 7 to yield

Y f Z_?n far RSN PP
4 2z
S =

33 w2 e 1(3&(,:,}) for AD> f,
gr \a

CRTYy

The effect of Sin is to suppress the contribution of configurations which

t

are not widely separated. Thus we may ignore the interaction action and in-
tegrate from a minimal distance A, up to <, We take A‘t = ’X(f,*‘*_f’,f) where X
is some number which we estimate in the following way:

. T
e‘?(-sjf(q'xr{‘)z)s’ explsme) € exp (_ﬂgﬁ%"—)i)

Thus if we take _gu =~ 4« %n*, the interaction action can be ignored
G = gt

compared to the total action {(which is L‘%). Using this we choose X to be

T

('x_n)l: _%'T_ . {15)

2
Indeed with this cheice, if the interaction action is ignored, the integrals
over f, ,F & produce a result which is very close to the bound found in Ref.4
for the vacuum energy in 5YM theory. In Uiew_of the fact that the integrals we
have here are very similar to the ones appearing there, the choice {15) for

the minimal distance should be reascnably good.
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From now on we have fairly simple integrals to perform. We only need to use

the renormalization group equation

§iC _ 3T - 50 fp . (16)
g T g

Substituting (14)-(16) in (8) and keeping anly the leading order terms in the

coupling constant we get

Q"Z; ic -

. 3y T L0 el L jew?

cole™ ey, s > S ( (1) 7 U2 ')
13 15 (£4%) G v

G (17}

Or using the renormalization group invariant scale

f\'&o = l,."’ enp (‘——-—K—'(;z(:) ) J (l8)

we get for the leading order contribution to the vacuum enerqy
E() ~ _ _3 ( 2 )9’2 (_ss..n’\ ¢)6 Noeo (19)
" 35 (TN Ggriw) v

We would like to comment now on the mass dependence of the result. If we start
with a massive theory, we have the following mass term in the Lagrangian
Loass = OF widp + ¢,:- wmid, + q,;t"m\v’_-» \E'm\-p,_ (20)
for this theory the vacuum state in Minkows#i space is uniquely defined by
de=py=-t=3:-0 , Ar=_§__u_'{x} Su Uiy . Thus the Pontryagin index labels the
gauge potentials on;y. In Euclidean space the solutions (3) in a background
of an instanton or anti-instanton do not have a finite action as the mass
term of the classical configuration diverges. As a result tunnelling with
this configuration is suppressed even in a background of an instanton-anti-
instanton, and the vacuum energy stays at zero. One may use instead the con-
figuration ¢d;o in a background of an instanton-anti-instanteon. The deter-
minant to be calculated is then similar to the one in (10) with mass terms
appropriately inserted. Since the contribution of the scalar fields to the

classical action is zero, an infrared cutoff, ¥. , aver the ‘Pl’ j’2 integration

I e o T S e
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is needed. The resulting vacuum energy is then similar to {19} with hﬁf;r
replacing v, Otherwise one may seek a solution to the Euclidean equation
5fﬁb;:vh“¢;(i:l,2) which has a finite action, [f such a solution is found
and its contribution to the action is as in (9}, then it would be possible
to Find whether instanton-anti-instanton induce a vacuum energy in this mas-
sive theory. It is expected that for such a solution the result (if non-zero)

will be infrared finite.

We have thus demonstrated that instanton-anti-instanten ipduce vacuum energy

in massless SQCD. It is negative and infrared finite. The sign of the vacuum

energy is fixed by the fact that the functional integration over Weyl spinors 2) G. 't Hooft, Phys. Rev. Dl4, (1976) 3432.
is given by the sguare root of the determinant of the Dirac operator. Dividing
3) R.K. Kaul and L. Mizrachi, CERN preprint TH-3816 (1984).
by the functional integral in a background of the vacuum {(which is 1 in super-
symmetric theory), we get z positive contribution to the Functional integral, 4) L. Mizrachi, Univ. of Geneva preprint UGVA-DPT 1984/09-40.
thus making the vacuum energy negative. It is infrared finite due to the con-
N . N 5} V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.B. Voloshin
tribution ef the scalar fields to the classical action, which is $mu?(g* EL),
and V.1, Zakharov, Nucl. Phys. B229 {1983) 394.
and which makes the integration over fi, PZ finite., The denasity of the vacuum
energy is proporticnal to ASCD’ and flep could be used as an expansicn para- 6) G. Woo, Phys. Rev. DL (1977} 1014; J. Math. Phys. 18 (1977) 1756,
2
meter if v is large encugh.
7) D.1. Dyakonov and Y.Yu. Petrov, "Instanton-based vacuum from Feynman
variational principle", Leningrad preprint 1583.
In the massive theory the same field configuration induces no vacuum energy
ag the classical action is not Finite due to the divergence of the mass term.
Only if a finite actien field configuration whose contribution te the path in-
tegral is infrared finite is found, would it be possible to check unambiguous-
ly whether supersymmetry -is broken or genuinely preserved in the quantum level.
in the massless theory, on the other hand instanton-anti-instanton induce an
explicit breaking of supersymmetry.
e e M e el el e Pt P e e e B % P e p o e F e L e £ e
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