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It is shown that instanton-anti-instanton induce a negative infrared finite 

vacuum energy in massless supersymmetric QCD. In the massive theory the 

same field configuration induces no vacuum energy because its classical 

action diverges due to the contribution of the mass term. Only if the scalar 

field is classically zero (in a background of an instanton-anti-instanton) 

a vacuum energy is found in the massive theory. However, it is negative 

and infrared divergent. 

PACS No: 11.15 Kc, 11.30 Pb. 

* Humboldt fellow 

Address after November lst, 1985: oepartement de Physique Theorique, 

Un.iversite de Gen8ve, Gen8ve 4, Suisse 

- 2 .:. 

Supersymmetry breaking was studied extensively in the past few years (l) 

Perturbatively such a breaking is not possible due to the cancellation between 

bosons' and fermions' contributions to the vacuum energy. Non-perturbative 

effects were also studied (l). In particular instanton's contribution to 

the vacuum energy is found to be zero in SYM and in SQCD due to the fermionic 

zero modes of the relevant Dirac operator in the topologically non-trivial 

background ( 2 ). Instanton-anti-instanton configuration, however, has a zero 

topological charge and there are no exact zero modes. As a result instanton-

anti-instanton contribution to the vacuum energy may not vanish. Indeed, it 

was shown in previous publications ( 3•4 ) that quantum fluctuations in a 

background of an instanton-anti-instanton induce negative vacuum energy, 

which may signify an explicit breaking of supersymmetry if it is not cancelled 

by other non-perturbative effects. The induced vacuum energy, though, is in-

frared divergent and a cutoff of the instanton (anti-instanton) size was in-

traduced to define the integrals. This by itself may be the source of super-

symmetry breaking found, because the bosonic and fermionic zero modes from 

a supermultiplet(S). This structure is spoiled by cutting off the instanton 

size thus supersymmetry breaking might have been introduced by hand. 

In the following we will analyze a theory where such a cutoff is not needed. 

We study the contribution of an instanton-anti-instanton to the path integral 

in massless SQCD. In this theory the matter supermultiplet contains a scalar 

field which is classically non-vanishing. Its contribution to the classical 

action in a background of an instanton (or anti-instanton) introduces a 

Gaussian factor which makes the integration over the instanton (or anti-

instanton) size finite. Quantum fluctuations around this configuration have 

a positive contribution to the path integral if functional integration 
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over Weyl spinors in Euclidean space is taken to be the square root of the 

determinant of the associated Dirac operator. The induced vacuum energy is, 

then, infrared finite and negative. In the massive theory, on the other hand, 

the same field configuration induces no vacuum energy because its classical 

action diverges due to the contribution of the mass term. The configuration 

¢u:o has a finite action; however, its contribution to the vacuum energy 

is infrared divergent. Thus only if a finite action configuration, whose con-

tribution to the path integral is infrared finite is found, would it be pas-

sible to analyze unambiguously the breaking of supersymmetry in the massive 

theory. 

To be more specific we work with an SU(2) supersymmetric model, which contains 

one matter and one anti-matter supermultiplets transforming under the funda-

mental representation of the gauge group. The Lagrangian in Euclidean space-

time can be written as 

J'c = i'sy11 .... l ... ",lt"Y (l) 

where afsy~ is the super-Yang-Mills Lagrangian given in the Wess-Zumino gauge 

by 

_, -•F''Fa+-''D- '' <J..-s~-ll - Ll I'~ f'-i A • rE·r ~ (la) 

with Fa = " f\ (\ _ J A<'. + o [ Q b( 11 b A • 
J'>' ~,. " II f" V · PI >' 

•'" _ rt;( ("I c(,b< A b l)t - ~ ...... r:J c.- t· 
,, 

Ar 
are the vector potentials and Ah are Weyl spinors. They are expressed in 

Euclideanised Weyl basis with Dirac matrices being 

' ( 0 "f)· ~~ r.,. 0 
rr, r_;. = (' "·> 11.) and Ty L,..[y= ~'5,.~. 

~matter is the matter field Lagrangian 
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:f. ~ (<if'' A, )t ,0'" If· 
»> .. t!~-( f 'h t j 

(""''A, )+fi!"'"· • ·"'cV"' f 'Y. • >v.'d)'''L ~· a.Jr 't'"L t -r~ T~ r r 4 .1 r t :t 

.... ..:01 ( 4..· r r:" ;{' 't; 
.IT ' 

"q; 'c'' ~"~') • !.f:-L.>.> C''·'·- A.' r"· .. ')·<,h c 
J._ '.!.. 3l. '+i 'ft '-K,.. '+':l • .. (lb) 

such that \ 't; ,ckj ( i 1,2) form the matter supermultiplet, 

i./'· 21:') .!:lf A((~' r 'r .J r ~ and ..t::..:: are the SU(2) generators in the fundamental 

" 
rep resen tat ion. 

Classically the vacuum in Minkawski space is given by \f~ =~-=A~ Fr,.= 0 

tJ;1 parallel to~;; in group space and &J;;)4.=o (i::; 1,2). This last equation 

has as an integrability condition F,.,<t,::;o which is trivially satisfied in the 

vacuum. The solution is then 4·t,.,: ~ Pc"'f (; ij j flr(_b.l" )l~) , where the integral 

is along a path r from-<"> to x and v is a constant. The integrability con-

dition guarantees the path independence of the solution. We compactify the 

Euclidean 3·-space into s
3 

in which case the vacuum configurations are given by 

Ar=fjl.L-'(>.);-,,U.lll) where U(x)e. SU(2) and U.(:..,)i~ 4.., and ¢,1-V=<J.:./x)-=U"h)(~J. 
U(x) define the set of maps s

3
-___,.SU(2) classified by ·-rr3 (s:l.f(.:t))=.z. The same 

maps(TT1 (.'> 1)j classify also the vacuum configuration of the scalar fields. 

Thus the scalar fields and the gauge potential 

agin index, n ( 6 ). The vacuum is then given by 

are classified by the Pantry-

en ~lt£l 
It')·~ .L e /11) and quantum 

... ~-...-, 
mechanical tunnelling between vacua differing by one unit of topological 

charge is provided by the single instanton or anti-instanton 

A.ra_ r - 1L ~l·~i' 
9 (1.·\,f. fl 

> 

and the scalar field configurations ( 2 ) 

AY("i."" .&.. 
r ~ 

j"et lx.-xJy 
(~-),,tl~~ 'ill. 

( 2) 

¢' " ¢ • • ~."'1~<--;:e ( "") 
a. n ({ll-li.,Jl._.. J~~ C 

¢.~ i = ¢;1.~ ~ (J~.-X.J,... .. Cc ('') (3) 
l<•-•L)'·.Ffl" 0 ·' 
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which satisfy the field equation ~~J~~-~O(i ~ 1,2) in the appropriate back-

- (2) 
ground. In the above ?Ar•) ?ur~ are the 't Hooft symbols x

1
,x

2
, 1

1
, i 

2 

are the location and size of the instanton and anti-instanton respectively 

and 7::; = {;1';: (~~t:IJ .1). 

As was mentioned previously quantum mechanical tunnelling by these field con-

figurations in a supersymmetric model is completely suppressed due to the zero 

modes of the Dirac operator, ~~rO~ , in the above background. In the absence of 

the Yukawa coupling in (lb) we have six left-handed zero modes in a background 

of an instanton: 4 for the gluino and 2 for the matter field 

(A~:)a "::E. 9 ~·11. (q'"<)! u.l•> 
<:1 rr[(x-x,)Z•J/-].2. p 

(~~;)a.., 3... r/':t (G<l)./ \t,..(x.~;~~.>t)~i- c~~--n"-
" 11' ((ll·.,.,).: .. y/Yl 

( "') l · V>) I 1/ ll~ ' ~ K.:r:.: l't".;~,'+'l. ks = -lTii" ((x-~~) .... ;,:t )3,~ &t<-s (4) 

where K= 1,2, 5= 1,2 are spinor and color indices, respectively. For the anti-

instanton we have six right-handed zero modes 

(:;•·> )a,;- r. P;" ( . . ). :, -,_,;. 
11ss. - .t!_ ,z r:; ·~ · u- ,. 

11" ((Jo.-x:J'l"'"i:/Ji ~ 

( ;<-> )""- ' •'" ( l ) )~~(r") r u•-> "~sc - - ? E ,__ X.2 r " f 
lT [(ll.-x..zY1·y/Ji -r r f'> 

(~'~l)~~_;i--= (ir,_q.,~-))~i-:: ·-'- -~~z & "':r 
TT G: llJo.- x~)2 ~ .f1-'~- Y''2-

(5) 

Hereu.W,(Yt*J are unit vectors given by either (1,0) or (0,1). 

When the Yukawa coupling is turned on A~.:, +1~ (, 'C.1.'+':1 are no longer zero modes 

and their contribution to the action becomes 

lcl'x"',."""a "'' •)ci'x"''-c"~" 'I'~£&. T;t SCi 't'2, 't'1 SC;2 l fr 
(6) 
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for the instanton and a similar contribution for the anti-instanton. Thus 

tA,,,'f} combine together to form a massive Dirac spinor. (We denote the 

pair f't'JJ_l<::t.'+'J by"+'. They both have only two spin components). ?ts~, on the 

other hand, stays as a zero mode because Jd~x cJ; +- r;'' A~ 't'= 0, since the inte-

grand is odd under space-time reflections. As a result quantum mechanical tun-

nelling is suppressed even when the Yukawa coupling is turned on. 

In the absence of tunnelling in a background of one instanton or one anti-

instanton we are led to consider the tunnelling in a background of an in-

stanton-anti-instanton. Without loss of generality we take the distance be-

tween the instanton and the anti-instanton in the time-like direction,~~= 

= (x~-x1 )~ =Af~~· Later we will integrate over its direction. Then the in­

stanton anti-instanton configuration is given by 

A;i.= A; tllR-t) _..A; elt·-R) 

where R,.-=J\"t""X1}lRr,.to, and generality is not lost by taking the locations 

to be such that X1:X2=0. We later integrate over R~ as well. In a similar 

way we can write the expression for the classical scalar fields associated 

with the instanton-anti-instanton configuration in (7). 

Quantum fluctuations around this background yield one over the square root 

(7) 

of each bosonic determinant. For the Weyl fermions we first double the number 

of degrees of freedom to generate Dirac fermions. We then define the function-

al integral over the Weyl spinors as the square root of the functional inte-

gral over the Dirac fermions, thus getting the square root of the determinant 

of the Dirac operator. The fermionic determinant has 12 approximate zero modes 
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as listed in (4) and (5). In the limit of infinite separation 4 of them 

( 71~:'' ~;-;) become exact zero modes. The bosonic determinant has 16 approx-

imate zero modes associated with the invariance under translations, dilata­

tions and group orientations of the instanton and the anti-instanton. These 

are factored out and treated by the collective coordinate method. Factoring 

out also the approximate fermionic zero modes we finally get the square root 

of the ratio of the non-zero modes fermionic over the bosonic determinant in 

the background of an instanton-anti-instanton. In the approximation of far 

separation this determinantal factor can be approximated by the product of 

the determinantal factors of the instanton and the anti-instanton, and each 

is equal to one (Z), As a result we approximate the path integral by 

(el e-•r le'> « "' Ho-e'J ._l..._. f J•x, ~ J'x, <lh d.n. d.D.• 
(21f")~ ~, i'2-,. 

. (~)"I~)" K(x,-x,,y_,y, ,-"-•) e-•• 
'<}2-tr.> \: 9.:2tf!Ll 

In eq. (8) we integrate over the locations x1,x2 the sizes J1 , Y2 and the 

group orientationsllx.Q.Rof the instanton and anti-instanton respectively. 

-:n.R is the relative orientation of the anti-instanton compared to the in­

stanton and k(x,-x~,.P,,P;~.,-JJ.R) is the square root of the fermionic deter­

minant evaluated in the subspace of the fermionic zero modes listed in (4) 

and (5) with G8 in eq. (5) replaced by r:f?= RO..bG""b and with f. ~<i being re­

placed by (utA)E)k$ . R is the rotation matrix of the relative orientation 

and U(R) is the associated SU(2) representation. SE is the Euclidean action 

(B) 

Se-= ~-+ tor-t ... S·t. Rrr:li.J":2lf,i.._.f'2-"') (9) 
':.f.l.<y,) 9 2 (fz_) ... 

where the last term is the contribution of the scalar fields and it is this 

contribution which eventually makes theY integration infrared finite as was 

pointed out in Ref. 2. s·.:...t is the interaction action between the instanton 

and the anti-instanton. 

To calculate K we double the number of fermions to get Dirac fermions and 

calculate the determinant of the Dirac operator (including the Yukawa coup­

lings) in the subspace of zero modes. Therefore 

- B -

0 0 0 A 9 0 

0 0 ,_,, c 
D 0 

~<:':Jet/ 0 "'~+ 0 0 0 0 J (lO) 

At c. t o 0 0 0 

p;t o' o 0 0 "' 0 0 0 0 ., 
0 

where the entries are all 2x2 matrices. In (10) we have picked up the dominant 

contribution to the determinant for large~. Thus the contribution of some of 

the matrix elements to the determinant is zero only. up to the leading order in 

a-1. D is the covariant derivative in the background (7). Using the fact that 

" '11~·:) As~~) ( ~i~ ~ ~~) are exact zero modes in a background of an instanton 

(anti-instanton) we find that 

then 

A 

B 

c 

0 

Ki 

with 

Jd4>- -~t-'.co,.i:.,.?tl·•-= -(J d3.l< ~(-J(-i~1> ~('")Ci-J *) 

J d 4)1. -=\H ·o L ,_hJ -:::: -:~iayfi'2- "5'2 ~ ,-<::. 
ll!.s.trr"s.~ ~ .. J'1- JcuR 

J el l,- ,-,__, - t+l . :!>t-z. St1 .; 
){ :;, s~ .t Ori:r -=:\~(. = J¥. .t Q 0 Y.. J:t ~c () R 

l d!j -H . - ,_lo·l .r:>'. 5''.t .~IJ- r, c. 
X A,.(. l o,.r:,.. "s~"' -lf -t.UC; s1 .1'2. ~., r_; ~ 

~d4x :~~-: to, . .f.,..~~ .. ~ -= i. (b- n.~)J'.~,, f~~,'l- C::GR 

~ ( 0 "') 
2 l 0 

i l' 2 

(x"L4 f .. j;t-):tlx L_._ ~ •f2'l P a_;b~Joodx 
0 

X2 j X l.f 

(11) 

(l2a) 

(l2b) 

(l2c) 

(l2d) 

(l2e) 

(13) 

and only the leading order terms in ~-I should be kept for widely separated 

instanton-anti-instanton. 
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Expressing the relative orientation in terms of a unimodular four vector U~ 

we find 

det(r;~tt""~)'= A"-8U,} 

then 

J J.Q,I< ~ o8;-n'(f.y,J'a'(9~"f(~1o-t (14) 

Substituting (14) in (8) and integrating over dn.JY~ we get a factor .i7T 2 VT 

(space-time volume). We are then left with the integrations over J 1 , !
2

, and 

~. To account for thea integration we need to know the interaction action. 

This was calculated in Ref. 7 to yield 

1
4i!.~ 

" s~t = 
:1!.1C( r.r. '\(3 ·4u;;) 

9'l. I:J.'1.,. 9/ ... f.l} 

foe A<< f., f1. 

foe A>> .f. ,fz 

The effect of Sint is to suppre-ss the contribution of configurations which 

are not widely separated. Thus we may ignore the interaction action and in­

tegrate from a minimal distance .0. 0 up to oo, We take A~ = ?f.(J/ ... f'"l.'l-) where X 

is some number t'llhich we estimate in the following way: 

' ( ) I grr" ) ''f(- i4rr )~ e)l.p -.!....,t ~ <txr \ ul("X•'>~ 
~pcx~,p iJ 

Thus if we take ~ ~ -1 << ~""'1-, the interaction action can be ignored 
lj-'(X .. J)'~- til-

compared to the total action (which is ii.Jf!_). Using this we choose X to be 
9" 

l". •)' - .K.!L': - g:J. (15) 

Indeed with this choice, if the interaction action is ignored, the integrals 

overJ. ,f1 ,A produce a result which is very close to the bound found in Ref.4 

for the vacuum energy in SYM theory. In view of the fact that the integrals we 

have here are very similar to the ones appearing there, the choice (15) for 

the minimal distance should be reasonably good. 

~ 

,-----,__ -------~._r---~--~-- , ____ ..------------1'--l- ~--- -~-. ~ •. ----..- r-___,--- ___________ _ 
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From now on we have fairly simple integrals to perform. We only need to use 

the renormalization group equation 

__w: _ ~- se,.fr (16) 
9lff) - ~J,frJ 

Substituting (14)-(16) in (8) and keeping only the leading order terms in the 

coupling constant we get 

<el e-HT I e) ~'i -v '?>VT 
- ':',5 (f'l(~-)li 

I rrr< )qh ~ (- ,.,., ) 
\ ~ - ()"(. Q_)l,f ~yt,.) (17) 

Or using the renormalization group invariant scale 

" (\Q(,_o "=; r'o e)l.r (-~) 
~r(rJ ) (18) 

we get for the leading order contribution to the vacuum energy 

£_!f) "' - • ( f7t' )q" (" .\' ' 
V 1s-(r?rr"-Yi gz.£'-,-) ~) 1\Q, o (19) 

We would like to comment now on the mass dependence of the result. If we start 

with a massive theory, we have the following mass term in the Lagrangian 

..jJ ~ ,.j....+l'tl:l.J-. t- ,!...+14-\t.J. -.f. \11.,-WI\\J + \P,.,.\'11\Q 
..l~<-14~ 't', 't', "Y'J. 'r'·z. Tt l. I '- (20) 

For this theory the vacuum state in Minkowski space is uniquely defined by 

¢,"'t4"'"1.l{=-'t''l.= A=o, Ar-= 1- u-'(dJ,.Utll) . Thus the Pontryagin index labels the 
~ 

gauge potentials only. In Euclidean space the solutions (3) in a background 

of an instanton or anti-instanton do not have a finite action as the mass 

term of the classical configuration diverges. As a result tunnelling with 

this configuration is suppressed even in a background of an instanton-anti-

instanton, and the vacuum energy stays at zero. One may use instead the con-

figuration ~~:o in a background of an instanton-anti-instanton. The deter­

minant to be calculated is then similar to the one in (10) with mass terms 

appropriately inserted. Since the contribution of the scalar fields to the 

classical action is zero, an infrared cutoff, Yc , over the f 
1

, J' 
2 

integration 
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is needed. The resulting vacuum energy is then similar to {19) with r .. tJ;._-J 

replacing v-t. Otherwise one may seek a solution to the Euclidean equation 

af'1J>;= Vl1·1 ~~(i=l,2) which has a finite action. If such a solution is found 

and its contribution to the action is as in (9), then it would be possible 

to find whether instanton-anti-instanton induce a vacuum energy in this mas-

sive theory. It is expected that for such a solution the result (if non-zero) 

will be infrared finite. 

We have thus demonstrated that instanton-anti-instanton induce vacuum energy 

in massless SQCD. It is negative and infrared finite. The sign of the vacuum 

energy is fixed by the fact that the functional integration over Weyl spinors 

is given by the squa~e root of the determinant of the Dirac operator. Dividing 

by the functional integral in a background of the vacuum (which is 1 in super-

symmetric theory), we get a positive contribution to the functional integral, 

thus making the vacuum energy negative. It is infrared finite due to the con­

tribution of the scalar fields to the classical action, which is ":Srr'~-t..' 1 (.f'.:.L_,_f_L'I..), 

and which makes the integration over J1, y
2 

finite. The density of the vacuum 

energy is proportional toA~CD' and AJ;o could be used as an expansion para­

meter if v is large enough. 

In the massive theory the same field configuration induces no vacuum energy 

as the classical action is not finite due to the divergence of the mass term. 

Only if a finite action field configuration whose contribution to the path in-

tegral is infrared finite is found, would it be possible to check unambiguous-

ly whether supersymmetry ·is broken or genuinely preserved in the quantum level. 

In the massless theory, on the other hand instanton-anti-instanton induce an 

explicit breaking of supersymmetry. 
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