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1. INTRODUCTION 

Mayer expansions in Euclidean quantum field theory on the lattice lead to convergent expansions and to the 
existence of the thermodynamical limit of the generating functional for connected amputated Greens functions 
for sufficiently weak coupling. It is essential for convergence that the mass m in units of inverse lattice spacings 
a- 1 is nonzero. The region of convergence for the coupling constant shrinks to zero if m or a goes to zero. 
Moreover, terms of the expansion may become infrared or ultraviolet divergent. For handling these problems 
methods of the renormalization group are necessary. We shall only regard massive models on the lattice in this 
paper. However the results of this paper are useful for single renormalization group steps. The convergence 
condition of Gruber and Kunz [4] furnishes a condition for the existence of the thermodynamical limit and for the 
convergence of the Mayer expansion of the generating function for connected free-propagator-amputated Greens 
functions if the external field t/1 is in a (coupling constant and rna-dependent) bounded complex neighborhood 
of t/1 = 0. Moreover, the thermodynamical limit of the connected free-propagator-amputated Greens functions 
exists. Using the tree estimate with extra factors n! of Battle [14] the proof of convergence will be easy for 
simple Mayer expansions. We will show that this estimate is in fact an immediate corollary of the tree estimate 
used and derived by M. Gopfert and G. Mack ]8]. The extra factors n! permit to absorb the factors n! due 
to the Cauchy formula for the n-th derivative of a holomorph function. It will be shown that the condition 
of convergence is fulfilled for the >.¢4 -theory, the discrete Gaussian model and the nonlinear cr-model in a 
(coupling constant and rna-dependent) real neighborhood of t/1 = 0 for sufficiently small coupling constant so 

The activity of a polymer equals the sum of all "point connected" Feynman diagrams whose vertex positions 
occupy all points of the polymer. A Feynman diagram with given positions of its vertices is called point connected 
if it is connected or becomes connected after all vertices that are positioned at the same points of space are 
identified. It will be shown how to express Mayer amplitudes by Feynman amplitudes. For .l.¢4 -theory it will 
be shown that the perturbation expansion of the activities is Borel summable in>. (on the lattice). 

For renormalization and Mayer expansion it will be useful to introduce counterterms which are dependent 
on subsets of the lattice. The Mayer expansion for the Boltzmannian factor with X-dependent counterterms 
will be done and it will be shown that the molecular activities are of order >.lXI (lXI = number of points in X) 
if some renormalization conditions are fulfilled. 

After splitting the propagator into pieces of increasing range and decreasing strength one gets effective 
actions in the sense of Wilson's renormalization group approach [21]. We will derive a tree formula for activities 
corresponding to the iterated Mayer expansion ([8], [10]). The asymptotic expansion in>. of this formula is the 
Gallavotti Nicolo tree formula of the effective action [11]. The effective action is nonlocal. Appendix B presents 
a decoupling expansion for nonlocal interactions (corresponding to the tree graph formula for local interactions). 
It is a modified version of the expansion derived by Brydges [22]. 

1.1. MAYER-AND FEYNMAN DIAGRAM EXPANSION 

J.E. Mayer [I] introduced the method of Mayer expansions for statistical mechanics in the fourties. Mayer 
considered real gases and their condensation. The essential trick of Mayer in treating the partition function of 
real gases is to introduce the factor 

f(r) = e-P•(r) - 1 (I. I) 

instead of the Boltzmannian factor .-P•(r), where (3 is inversely proportional to the temperature and v is the 
pair potential of the molecules. n molecules form a cluster. The partition function is a sum of products of 
cluster integrals. The cluster integral is n-dimensional if n is the number of particles in the cluster. Particles 
of a cluster are connected by bonds such that the resulting graph is connected and two vertices of this graph 
are connected by only one line (Mayer graph). The integrand of the cluster integral consists of a sum over all 
Mayer graphs. 
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Likewise in the fourties, Schwinger introduced the generating functional for Greens functions and their 

perturbative treatment for quantum field theory. The generating functional for Greens functions in 11-dimen

sional Minkowski space is defined by 

T[J] = ~I··· I[ IJ d,P(x)] exp {i [ rf'x .C(,P(x)) + [ dvx J(x),P(x)} (1.2) 
~env l:~:eRv lxem.v 

where )I is a normalization constant such that T[OJ = 1. The Lagrange density e consists of a free part eF and 

an interaction part (perturbative term) >.t1 

e = tr + >.t[. (1.3) 

>.labels the. coupling constant of the model. According to R.P.Feynman [2] terms of the perturbation expansion 

are represented by graphs. These graphs are called Feynman diagrams. The "interaction Boltzmannian" 

has to be developped for the perturbation expansion. It is essential for the representation in Feynman diagrams 

that the free term tr of the interaction is quadratically in </>, i.e. 

I rf'x lr(.P(x)) =if dvx rf'y ,P(x)K(x,y),P(y). (1.4) 

K(x,y) is the integral kernel of an invertible positive operator K. The inverse operator v = K-1 is. called free 

propagator of the model. The perturbation expansion is a formal power series in the coupling constant >.. All 

terms of the perturbation expansion of order >. n are represented by Feynman diagrams with n vertices. The 

line (xy) connecting the points x andy in the Feynman diagram corresponds to the propagator v(x, y). 

The two above described expansions for statistical mechanics resp. for the quantum field theory were 

independent methods that were succesfully applied to different problems. After Wick rotation ( t -+ it) the 

quantum field theory on Minkowski space will turn into the Euclidean quantum field theory. For Euclidean 

quantum field theory it is possible to apply methods of statistical mechanics. In the mid-sixties K.Symanzik [3] 

introduced the method of Mayer expansion for Euclidean quantum field theory (in the form of iterative solutions 

of Kirkwood Salsburg equations). In this connexion the partition function in statistical mechanics corresponds 

to the generating functional for Greens functions in Euclidean quantum field theory. The Mayer expansion in 

statistical mechanics is an expansion in the number of particles and corresponds to an expansion in the number 

of points in Euclidean quantum field theory. The generating functional for connected Greens functions In T[J] 

corresponds to the free energy In Z in statistical mechanics. Terms in the perturbation expansion for Greens 

functions can be ultraviolet divergent. This ultraviolet divergence arises from non integrable singularities (not 

well defined products of distributions) of the integrand in the Feynman integra.!. To circumvent this problem 

only quantum field theories on the lattice ( aZlt will be considered here. In the following section we will 

introduce some notations and definitions for the lattice. 

1. 2. LATTICE NOTATIONS AND DEFINITIONS 

Consider a 11-dimensional cubic lattice (aZl)v with lattice spacing a. Differentiation and integration on the 

lattice are defined a.s follows 

V ,.f(z) = a-1 [f(x + e,.)- f(x)], J.' E { -11, ••• ,11} (L5a) 

(1.5b) 
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Here e,. is a vector of length a in ~-direction. The negative Laplacian operator is 

v 

-6.= Ev_,.v,.. (1.6) 
p.=l 

Operating with the Laplacian on a function f: (a:IZ)v -+ ([J gives 

6./ = a-2 2: [f(y)- f(x)] (1.7) 
y 

y ,..,. :II 

where the sum is over all nearest neighbors of " E ( a:IZ)v. The scalar product of two functions /, g on the lattice 
is defined by 

(!,g)= [ · f(x)g(x) 
} xE(aZl)• 

(1.8) 

Summation by parts 
(1.9) 

shows that 
v 

(!, -6./) = l:(V ,./, V ,.f)= l:it(x)- /(y)] 2a-2
• (1.10) 

1'=1 (xy) 

The sum L(xy) is over all links (xy) on the lattice. Because of (1.10) the operator -6. is positive. If we replace 
differentiation and integration in the Lagrange density on the continuum by the above defined differentiation 
and integration on the lattice we get the lattice approximation of the Lagrange density. The Dirac distribution 
6(x- y) corresponds to a-v 6,, on the lattice, where 

ifx=y 
otherwise (1.11) 

is the Kronecker symbol. The functional derivative St/J~x) becomes the ordinary derivative a-v a~x) on the 

lattice. Dimensionsless variables are introduced by 

· v-dJ( ) J~& = a x , (1.12) 

where d = Hv - 2). 

The (normalized) Gaussian measure d~.(</>) is defined by its Fourier transform which is given by the 
following Gaussian integral 1 d~.(<l>)i(• ... ) = .-t(•···) 

for a positive semidefinite operator v. For positive definite operators we obtain 

d~.(</>) = det(27rv)-! IJ d<f>(x) e-H.P.•-'4>). 
xE(aZl)• 

(1.13) 

(1.14) 

. The field</> with Gaussian measure dp..(</>) may be interpreted as Gaussian distributed random variable. In this 
propability theoretic interpretation </> is called process of covariance v. The moments of the Gaussian distribution 
are simple to calculate using the defining relation (1.13). 

Expectation values of observables 0(</>) with respect to the Gaussian distribution are defined by 

(0) = 1 d~.(</>)0(4>) (1.15) 

The support of an observable 0( </>) is defined by 

supp 0 = {x E (a:IZtl 0 depends on</>.}. (1.16) 
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Suppose that supp 0 is finite and the Fourier transform 0( 4>) defined by 

0(4>) = J [ II dq,] O(q)e;L: .... , o•·<fr· 
xEsupp 0 

(1.17) 

exists. Then O(q) depends only on q., x E supp 0, and the expectation value of 0(4>) is an n-dimensional 

integral (n = ]supp 0]) 

(o<-~>ll = f [II dq.vt L:.,, •• ·····•·o(q), 
•EA 

A = supp 0. 

This follows easily from the defining relation (1.13). With the characteristic function 

A~ (a1Z)" and the abbreviation 

follows that 

XA(x) = { ~ ifxE A 
otherwise 

{0) = J dJL,,., 0 (-f>)O(,P). 

We see that the propagator can be restricted to the support of 0. 

(1.18) 

( 1.19) 

(1.20) 

(1.21) 

1. 3. EUCLIDEAN QUANTUM FIELD THEORY ON THE LATTICE AND STATISTICAL MECHANICS 

After Wick rotation and with the lattice notations of section 1.2. the generating functional of Greens 

functions on Minkowski space will be replaced by the generating function for Euclidean Greens functions on the 

lattice 
T[J] = ~ f dJL.(-f>)F(,P)e(J,.Pl, (1.22) 

where )I is fixed by the condition T[O] = 1. The Gaussian measure depends on the free part and the function 

F( 4>) depends on the interaction part of the Lagrange density. Definitions for Greens functions are given in the 
following. Euclidean Greens functions are defined by 

The connected Euclidean Greens functions are defined by 

The connected free-propagator-amputated Euclidean Greens functions are defined by 

It will be shown in appendix C that 

G,(x,, ... ,x,.) = o,P(x,to.p(x,.) In [z~(~o)] lw=o, 
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where 

Z(.P) = j dJJ.(</>)F(4>+,P). (1.24b) 

Therefore the generating functional/or the free-propagator-amputated Euclidean Greens functions is given by 

In Z(.p) -In Z(.p = o). 

The connected free-propagator-amputated Euclidean Greens functions are not necessarily !-particle irreducible. 

In the following we will consider local interactions. For local interactions the function F in the generating 
function on the lattice has the following form 

F(</>) = II. F.(</>.). (1.25) 
xe(a~)"' 

For finite A C ( a:IZ)" let 

Z(AI.P) = J dJJ.(</>) II F.(</>.+ .P.), 
zEA 

(1.26) 

i.e. the interaction is switched off outside A. By (1.13) and the definition of the Fourier transform F,(q,) of 
F,(</>.) 

(1.27) 

we obtain 

Z(AI.P) = J liT dq, e-!q ...... e'•·"'· F,(q.)] 
zEA 

(1.28) 

The product is over all (unordered) pairs (xy) with x ol y, x, yEA. The (non-normalized) generating function 
for free-propagator-amputated Greens functions in the form (1.28) can be interpreted as a partition function 
for a generalized gas with pair potential q,v,yqy, complex fugacity and continuous charge q (see section 2.1.). 
The Mayer expansion of the partition function Z(AI.PJ is based on the following polymer representation 

Z(AI.P) = L II A(XI.P). (1.29) 
A=I;X X 

The sum is over all disjoint partitions of A. Finite non empty subsets of the lattice (a:IZ)" are called polymers. 
A(XI.P) is called the activity of the polymer X. For lXI = 1 the activity A(XI.P) is called monomer activity. 
The activity A(XI.P) is uniquely determined by Z(YI.P) for allY C X. This follows from 

n 

A(XI.P) = L L Ht-1 (n- 1)! IT Z(Y;I.P) (1.30) 
i=l 

(proof see app. A). (1.30) is the inverse formula of (1.29). Conversely, the partition function Z(XI.P) is obviously 
uniquely determined by A(YI.P) for allY C X. 

The partition functions 

Z(XI.P) = L II A(YI.P) 
X=L;Y Y 

are the iterative solutions of the Kirkwood Salsbury equations 

Z(XI.P) = L A(YI.P)Z(X- YI.Pl 

with arbitrary x E X and initial condition 

y 
zEY£;X 

Z(01.PJ = 1. 
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The Kirkwood Salsburg equations in statistical mechanics correspond to the Schwinger Dyson equations in 
quantum field theory. 

1.4. TREE GRAPH FORMULA, ESTIMATES FOR ACTIVITIES AND CONVERGENCE OF MAYER EXPANSION 

The tree graph formula leads to estimates for activities A(XI.PJ, where lXI ~ 2 (see Theorem 2.5.1. or [5]). 
A tree graph with n vertices is defined by the following function 

'I : {2, ... , n} ........, {I, ... , n- 1} , 'I( i) < i. (1.34) 

Fig. 2.2 shows a graphical representation of a tree graph. The number of tree graphs with n vertices is (n-1)! 
(proof see section 2.5., p.35). Labellings of polymers X are defined by bijective maps 

:V: {1, ... ,n} ......... x, :V(i) =z;. 

Given n- 1 real variables s; E [0, 1], i E {1, ... , n- 1} we will use the following abbreviation 

n 

/('II•) =II [•a-2Ba-3 · · • "•(a)]· 
a=2 

The interpolating covariance v[s] is defined by 

{ 

SiSi+l • • • Sj-1 V:x; 0xi, 

v[s]x.:Xj = SjSj+l · · · Si-1 Vx;Xj 1 

Vx 1x;' 

ifi < j 
if i > i 
if i = j. 

(1.35) 

(1.36) 

(1.37) 

We assume that F,( <Px) is C"" for all z E X. Let z E X be an arbitrary point. Then the tree graph formula for 
the activity A(XI.P) reads 

The derivative can be estimated by the Cauchy inequality. Let F be a holomorph function in {z E(V liz I :::; 
10 }, 10 > 0. Then the n-th derivative ofF is bounded by 

dn n' 
1-d F(z)[:::; -· maz[F(z)[. 

zn ,ocn lzi=IC 
(1.39) 

The faculties on the rhs of the Cauchy inequality can be dominated by using the following Lemma of Battle 
(see [14] or Lemma 3.1.5.). 

[1 n 8n-1 
L Jn ds1 · · · dsn-1 f('l[s) IJ dt('l)l:::; - 2-. 

" 0 l=l 

(1.40) 

Here dt('l) labels the number of links in the tree graph 'I having their origin in the vertex I. For fixed labelling 
:V the number of derivatives of F,, at <l>x. in the tree graph formula ( 1.38) equals d1 ('I). The Lemma of Battle 
is an immediate corollary of the following tree estimate ([6], [8]) 

L [ ds1 ... dsn-1 f('l[s) fl[!-'(I)JL('I(I))] ::; fl[l-'(l)e~'(l- 1 )] 
, 0 1=2 l=2 

(1.41) 
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with!-'(/)~ 0, IE {1, ... , n} (see Le=a 3.1.4.). For the ).ql4-theory one chooses t< = 0().-t). The Cauchy 

inequality leads then to a factor of order ). t for every derivative. Since in the tree graph formula there are 
2(n- 1) derivatives and (n- 1)! labellings with x(1) = x, n ~ 2, we obtain, using 

the bounds 

and 

L Vxy = (m~)• 
yE(alZ)• 

·-· IA(XIt/1)1 :$ (n- 1)! 0(>.-, ) 

·-· E IA(XIt/JJI :$ 0( [(m:). r-.-) 
X, IXI=n 

"'EXC(a:ZZ)"' 

(1.42) 

(1.43) 

(1.43') 

for all real external fields t/1. For general estimates of activities we suppose that F.(¢.) is a holomorphic and 
bounded function in the complex strip { ¢. EaJ I lim ¢.1 :$ t<} with t< > 0 for all x E (a:ll)v (see Theorem 3.2.1. 
and generalization to N-component theories see Theorem 3.2.2.). Notice that these estimates are independent 
of real external fields t/J. 

We can get better estimates for bounded external fields t/J. Let us change the assumptions for F slightly. 
For all x E ( a:ll)v Jet F. E G 00 and <, c be constants with 

<v:$c<1 

and <-dependent constants C, h, such that 

is fulfilled. The Gaussian expectation values are estimated by 

I(G(ql + t/J)}I :$l(el E,eA ~;)I sup IG(¢ + t/J) .-t LeA ~;I 
¢,.ER"' 

>EA 

(1.44) 

(1.45) 

(1.46) 

for finite A = supp G (suppose G(¢ + t/J) ~ 0 or :$ 0 for all ¢, t/J). We obtain for the expectation value of the rhs 

(1.47) 

(see proof of Theorem 3.4.1.). The estimates obtained by this method are represented in Theorem 3.4.1. for 
1-component theories and in Theorem 3.4.2. for N-component theories. This method yields for >.¢4 -theory 

without counterterms 
(1.48) 

for). :$ O((ma)4 ), lXI ~ 2 and complex external fields t/J (see Corollary 3.4.5.). 

Gruber and Kunz 14] have stated with the help of the Kirkwood Salsburg equations a sufficient convergence 
condition for the existence of the thermodynamical limit A /' ( a:ll)v (in the sense of van Hove) of the reduced 

correlation functions 
Pa(XIt/J) = Z(A- Xlt/1)/Z(XIt/J). (1.49) 

The convergence condition of Gruber and Kunz is fulfilled, if for some { > 1 

B({,t/1) < 1, (1.50a) 

where 

IM( {x, xo, ... , x,}lt/JJie""}] (1.50b) 
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and 
M(XI¢) = -o,,fxf + A(XI¢). (1.50c) 

For theories defined by the partition function 

Z(AI.Pl =I dJl.. (4>) II F~(<l>~ + .P~l 
~EA 

(1.51) 

with holomorph and bounded functions F~ in the complex strip 

s~ = {4>~ EaJ IIJm¢,1 ~It}, ~<>0 (1.52) 

we obtain the following estimate for the terms in the series of (1.5Gb) 

(1.53a) 

with the abbreviation 
b~ = min sup sup IF~( 4>~) - cl 

cElRv .zE(a2Z)v if>zE(J; 
(1.53b) 

llm\11.,:1=~< 

(see Theorem 3.2.1.). Especially for the >.¢4 -theory without counterterms 

(1.54) 

for It= 0(>.-t) (cf. Lemma 3.2.3.). (1.53a) and (1.54) implies 

a-v(n-1) r ·-· 
( _ )' J. IM({x,x., ... ,xn}l¢)1 ~ 0(>.-, ) 
n 1 . :t2, ... ,:tnE(a7Z) ... 

(1.55) 

for n ~ 2. Therefore the series in definition (1.48b) will be estimated by a geometrical series, which is small for 
small coupling constant. For theories, which fulfill 

for I.P~I -+ 0 (1.56) 

for all x E (a:IZ)v, we get 

IM({x}I.Pll = I(F,(¢, H~l -1)1-+ 1 for I.Pzl -+ oo. (1.57) 

Obviously, lhe convergence condition of Gruber and Kunz is not fulfilled for large external fields (in the renor
malization group context: "large field problem"). For bounded external fields we get 

IM(XI.Pll -+ 0 for ), -+ 0. ( 1.58) 

With (1.58) the convergence condition of Gruber and Kunz is fulfilled for small coupling constant and bounded 
external field .p. 

Suppose that the convergence condition of Gruber and Kunz is fulfilled and the support of the external field 
.pis finite. It will be shown (in section 2.2.) that with these assumptions the thermodynamical limit A/ (a:IZ)v 
(in the sense of van Hove) exists for connected free-propagator-amputated Greens functions Gc(X!, ... , xn) and 
the generating function 

Moreover, the expansion 

lim 
A/(az>:)• 

ln Z(AI.P) -In Z(AI.P = 0). 

(1.59) 

is convergent in a small complex neighborhood of .p = 0. For notations and definitions of the combinatorial 
coefficient a(Q) and cluster Q see section 2.2., p.21-22. 
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The ordinary perturbation expansion is not convergent in general. E.g. the perturbation expansion in 

>.of the partition function of the >.ql4 ~theory on a lattice A= {x} that consists of a single point is only an 

asymptotic expansion 

(1.60) 

The series L:n>o a,(->.)" is not convergent for >. # 0, because the integral is divergent for >. < 0 and therefore 

the convergence radius of the series is zero. In the same way the following perturbation expansion 

[ 
Z(AI¢) ] " ( ->.)" -vn { 

In Z(AI.P=O) = L..J -;;Ja }. [{V(ql,, +¢,,); ... ;V(.P •• +.P.J)- {V(qi,J; ... ;V(qi,J)] 
n>l xl•···•x,.E.A 

- (1.61) 

with 
Z(AI.P) = f dJ.L.(4>) II e->.V(~.+¢.) 

xEA 

(1.62) 

is divergent. { ... ; ... ) denotes the truncated expectation value (for definition see app. A). Instead of the 

expansion (1.61) we use the convergent (for .P in a small complex neighborhood of .P = 0 and small>.) Mayer 

expansion (1.59) in the following form 

(1.63) 

with the definition of the augmented Mayer amplitude 

M(x,, ... , x,.l¢) = L a(Q) II n(x)! II Ht,IPI + A(PI.P)[. (1.64) 
q di•(it>cl PEQ 

•upp Q={"'l•···•"'n} ::rE{o:lo••••"'"} 

The clusters Q consist of points"''' ... , x,., where x appears in Q with multiplicity n(x). Therefore 

n(x) = I{P E Ql x E P}l. (1.65) 

From the polymer representation (1.29) we obtain the following expansion of the partition function in the 

number of points 

IAI 
Z(AI.P) = 1 + E E /,, , ... ,,.EA M(Yl' · • · 'Yn II/> )M(y,., +1' · .. , Yn, +n, II/>) · · • 

distinct (1.66) 

where m;( {n;}) = l{rln,. = i}l and the Mayer amplitudes Mare defined by 

(1.67) 

for n different points x1, .•• , "'" E ( ai'Z)". The Feynman amplitude is defined in terms of Gaussian expectation 

values by 
1 " 

1(y., ... ,y .. l¢) = ,,IIr->.vc.p., +.P.); ]). 
n. 

i=l 

(1.68) 

The Feynman amplitude is the sum of all connected Feynman diagrams with n vertices positioned on n distinct 

points of the lattice. Written as a truncated expectation value the Mayer amplitude reads 

"(x ~ I·'·)- a-vn{e->.v(~.,+¢.,) -1· ·e->.v(~,_+¢ •• ) -1) 
Jll t, ... ,..,n'f'- 1 

, ••• , • 
n. 

(1.69) 
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The Mayer amplitudes may be expressed in terms of Feynman amplitudes (Theorem 2.4.4.,p.33). From this 
representation we see that the Feynman diagrammatic expansion of the Mayer amplitude consists only of point 
connected Feynman diagrams. The essential difference between ordinary perturbation expansion and Mayer 
expansion is the maintainance of the stability condition (boundedness) for the interaction Boltzmann ian factor 

II e-AV(¢.H.) 

xE(aZZ)" 

for ,\ > 0 in the Mayer expansion. The ordinary perturbation expansion is obtained by developping the e
function in the Boltzmannian factor. The terms in this expansion are not uniformly bounded in </!, and this 
leads to a divergent perturbation series (see example for the lattice with a single point,p.15). Mayer expansions 
leave the e-functions uneffected. The Mayer amplitudes (1.69) remain bounded for arbitrarily large external 
fields .p (stability). On the other hand the Feynman amplitudes are not bounded for large external fields 1/J. 

The formal power series in ). of the Mayer amplitude 

M(XI1/J) = L Cn(1/J)>.n, (1.70) 
n;>:JXI 

where cn(.P) = O(n!), is also divergent. One can write 

(1.71) 

using the integral representation of the faculty 

(1.72) 

and the definition of the Borel transform 

(1.73) 

If the series of the Borel transform is convergent the series in (1.70) is called Borel summable. We will show 
that for small clbupling constants). the perturbation expansion (1.70) for A</!4 -theory without counterterms on 
the lattice is Borel summable (see Theorem 4.1.4., p.60). 

1.5. RENORMALIZATION AND MAYER EXPANSION; RENORMALIZATION GROUP 
AND ITERATED MAYER EXPANSION 

Estimates of the form (1.52) are useless for the continuum limit a --> 0. In particular, as in ordinary 
perturbation theory the problem of ultraviolet divergence appears. As a remedy counterterms are introduced in 
the action. In perturbation theory the counterterms are determined, so that some renormalization conditions 
are fulfilled and the resulting Feynman diagrams are finite for all orders in). (renormalization). Theories, where 
this renormalization procedure is possible with a finite number of counterterms, are called renormalizable. The 
degree of convergence C is defined by 

C= 2I -vL, (1.74) 

where I is the number of internal lines and L is the number of loops in the Feynman diagram. The Feynman 
integral of the Feynman diagram is convergent for C > 0. The theory is called super renormalizable if the 
minimal degree of convergence of the subdiagrams increases with the number of vertices. E.g. the ,\</!4 -theory 
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is super renormalizable for dimension v :$ 3, renormalizable for v = 4 and nOn renormalizable for v ;?: 5. Two 

counterterms are sufficient for the .l.¢4 -theory in v = 3 dimensions and the partition function is of the following 

form 
Z(A[,P) =I dp,(ql)e-V(H.P)-S'V(~+.P), (1.75a) 

where 
V(¢) = >. f ¢(x)4 

} •E(a'll)" 
(1.75b) 

6V(¢) =- f [6m2 ¢(x) 2 + 6e]. 
J :z:E(a2Z)'"' 

(1.75c) 

The coefficient 6m2 describes the mass renormalization and the coefficient 6e describes the vacuum energy 

renormalization. Perturbation thecry yields an expansion in >. for 8m2 and 6e. For small lattice spacings 

(theory near to the continuum limit a -+ 0) the coefficient 6m2 is positive. The mass counterterm must be 

dominated by the quartic interaction for maintainance of stability. Because of 8m2 = 0(>.) and 6e = 0(>.), we 

get 

-.l."-4 + 6m2 "'2 + 8e < (Dm
2

)

2 
+ 8e < 0(>.). 

'¥:~: 'f':z: - 4A -

For interactions on a finite sublattice we obtain an upper bound for the renormalized action 

f [->.¢!+8m2¢~+ 8e] 50(>.) • [A[ 
'~EA 

(I. 76) 

(1. 77) 

([AI = number of points in A). To exploit maintainance of stability we apply the Mayer expansion instead of 
ordinary perturbation expansion for the partition function with renormalized action ( cf. discussion of stability 
in section 1.4., p.16). For that purpose we introduce counterterms depending on finite subsets XC (a:IZ)". So 

we consider the partition functions 

Z(X[,P) =I dp, (¢)[II e->V(~.+.P.)Je-SVx(H.P) 
>EX 

(1.78a) 

with 
8Vx(¢) =- I; [8m2 (P) I;¢~+ 8e(P)] (1.78b) 

P :tEP 
f~P!i;;X 

for all finite X c ( a:IZ)". For the interaction Boltzmannian factor we obtain the following polymer representation 

[II e->V(~.+.P.)Je-.>Vx(H.P) = I; II B(P[,P). (1.79) 

>EX X=l:P P 

The functions B(P[,P) are called molecular activities. Counterterms and molecular activities B(PI,P) are fixed 
by the renormalization conditions 

In Z(X[¢)[.p=o = 0 

a• a.p• In Z(X[,P)[¢=o = 0 

(1.80a) 

(1.80b) 

for all finite X c ( a:IZ)". In .the renormalization condition ( 1.80b) the external field is supposed to be constant 
on the lattice. The number of renormalization conditions equals the number of countertermz. Renormalization 

conditions (1.80a,b) may be replaced by the following ones 

if [X[=l 
otherwise 

a~2 A""(X[,P)[¢=o = 0 
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with renormalized activities A"n(XIt/1) defined by 

( L IT B(PI?/1)) = L IT A"n(YI?/1). (1.82) 

X=l:P P X=l:Y Y 

This formulation of renormalization conditions is appropriate for theories, which are symmetrical under the 
transformation ,P ----+ -t{;, i.e. 

Z(XI.P) = Z(XI - ¢) (1.83) 

(proof see app. D). It will be shown that the molecular activities B(PI,P) are uniquely determined by the 
renormalization conditions (1.80a,b) or (1.81a,b) and are of order >.IPI (Theorem 5.1.1.). Therefore the order 
of the following renormalized activity 

M"n(XIt/1) = L (fiiB(Pit/1); ]) (1.84a) 

X=l:P P 

with 
(1.84b) 

is >.lXI. In this way the existence of suitable counterterms, and the consistency of the renormalization procedure 
with Xwdependent counterterms is shown. 

To obtain estimates for activities we use the basic inequality 

(F(</>)) ~sup IF(</>)1. 
¢ 

(1.85) 

Suppose that the maximum of IF(</>)1 is at</>= 0. The Gaussian measure with mean value </> 0 may be used if 
the maximum is at <Po # 0. (1.85) yields 

(F(</>)) ~ F(O). (1.86) 

The Gaussian measure with covariance v = 0 is the Dirac measure 

dp,,=o(</>) =IT d</>(x)o(,P(x)). ( 1. 87) 
X 

So we see that the estimate (1.85) is suitable for small propagators v. For small (ma) the propagator ( -6+m2 )- 1 

is large and the estimate will become poor. In particular, estimates based on inequality (1.85) are not suffi
cient to handle the continuum limit and/ or massless theories. The same problem exists for the convergence 
of the Mayer expansion for Yukawa gases at low temperatures in statistical mechanics. The propagator corre
sponds in statistical mechanics to the product of (3 and a pair potential. Since (3 is inverse proportional to the 
temperature, this product will be large for low temperatures and estimates of the form ( 1.85) are unsatisfac
tory. A procedure for handling this problem in statistical mechanics is (for a large region of applications) the 
method of iterated Mayer expansion (see [8], [9], Ito]). The corresponding method for euclidean quantum field 
theory is renorma/ization group approach 121]. For this method the propagator v will be split inN propagators 
v,i=l, ... ,N 

( 1.88) 

For the propagators v; the range decreases and the strength increases if the index i increases. By the convolution 
formvla of Gaussian measures (see Lemma 3.1.2. for N=2) 

(1.89) 

the expectation value (F( </>)) may be computed or estimated successively. For this the Gaussian measure 
d!J,N ( </>N) will be computed resp. estimated first, then d!J,N-> ( </>N -•) etc. . Every integration over the 
Gaussian measure in this procedure will be called a renormalization group step. So we obtain for the partition 
function 

(1.90) 
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after k renormalization group steps 

(1.91) 

with the effective action 
(1.92) 

We see that after k renormalization group steps the propagator is v1 + ... vN-k and the action is vN-k, For 

Pauli- Villars regularized propagators 

(1.93) 

with Pauli- Villars cutoff M and the partition 

v = vl + ···+vN, i ( A 2)-1 ( A 2 )-1 
v = -w + mi - -w + mi+l , (1.94) 

where m1 = 0:::; m2 :::; .. · :::; mN-1 :::; mN :::; mN+ 1 = M, we obtain after k renormalization group steps the 

propagator 
v1 + ... vN-k = ( -t:.)-1 - (-b.+ m~-k+l)-1. (1.95) 

Thus the Pauli-Villars cutoff M is decreased to mN -k+l after k renormalization group steps. A perturbative 

representation for the effective action is the Gallavotti Nicol6 tree formula [11] (see Corollary 5.3.3.). Therein 

the effective action is the sum of tree graphs of depth k. The trees stand for truncated expectation values and 

the order in A equals the number of maximal vertices (= degree of the tree). We obtain a tree formula for 

the activities (Corollary 5.3.4.) with the help of a partition formula for truncated expectation values (Lemma 

5.3.1.). The trees of this formula correspond to partitions of partitions .... of partitions of polymers. The k-fold 

iterated partitions will be called k-cluster (cf. [8]). They correspond to the polymers in the simple Mayer 

expansion. 

2- SIMPLE MAYER EXPANSION AND THEm RELATION 
WITH PERTURBATION THEORY 

We will consider here quantum field theories without derivative couplings on the v-dimensional lattice 

!J. C Atot = (a2Z)v. The generating function for free-propagator-amputated Greens functions is 

Z(!J.],P) = J dp,.(.f>) II F,(q,. + .P.) 
•EA 

(2.1) 

(see app. C,p.94). F, is a function or distribution. Examples for theories described by Z(!J.],P) are 

a) -'4>4 -theory with counterterms: 

4> is a rea.! scalar field, 

F,(,P,) = e->-'V(~.), V(,P,) = 4>~- 6m2 </>~+ eo 

v(x, y) =kernel of (-b.+ m 2 )-1 , A= A0 av-< dimensionsless coupling constant. 

b) discrete Gaussian model: 

4> is a real scalar field, 
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F,(¢>,) = LnelZ 6(¢>,- 2n) 

v = five•, Vcb = kernel of ( -6)-1
• 

c) nonlinear o--model: 

¢> is an N-component real field, 

F,(¢>,) = 6(¢>~ -1) 

v = ~Vcb, Vcb =kernel of (-6)-1
• 

2 .1. QUANTUM FIELD THEORY AND POLYMER SYSTEMS 

We obtain from the Gaussian integral (1.13) and the definition of the Fourier transform F,(q,) ofF,(¢>,) 

(2.2) 

the following relation 

Z(AJ!/1) = J [IT dq,F(q,)] e -t L .. , •• •·•·•••, 
•EA 

(2.3) 

where 
(2.4) 

The representation (2.3) of the generating function Z(AJ!/1) is called gas picture (cf. [11]). The generating 
function Z(AJ!/1) may be interpreted as a partition function of a generalized gas, whose particles sit on lattice 
sites x E !J. and carry (not necessarily discrete) charge q, # 0. Lattice sites are not occupied by particles if 
q, = 0. The pair potential ofthe lattice gas is given by the propagator v. Per definitionem different particles 
sit on different sites. The charge dependent fugacity is F,(q,). The notions generating function and partition 
function are synonym in this context. With this interpretation of a quantum field theoretic model as a model of 
statistical mechanics the methods of statistical mechanics may be applied to problems in quantum field theory. 
A model on the lattice !J. described by the partition function Z(AJ!/1) may be considered as a polymer system, 
where the activities are derived by simple· Mayer ei<pansion (without use of the renormalization group). 

Theorem 2.1.1. The polymer representation of the partition function Z(!J.I.P) is 

with 

Z(AJ!/1) = :E IT A( XII/I) 
A=LX X 

A(XJ,P) = :E J [IT dq,F,(q,)e'•·"'·e-h·•··•·] IT [e-•·•·•••- 1]. 
GE!ix :.:EX (xy)EG 

(2.5) 

(2.6) 

F,(q,) is the Fourier tranform ofF,(¢>,) (see Eq. (2.2)). The sum LA=L:x is over all partitions of A into 

disjoint non empty subsets. 9x is the set of all connected graphs {Mayer graphs} with vertices in !J. and two 
vertices are linked by only one line. 

Remark: The functions A(XJ!/1) may be interpreted as (not necessarily positive) activities of a polymer system. 
The polymers are non empty subsets of the lattice A. The activity for monomers (=polymers with only one 
constituent) { x} 

(2.7) 
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is called monomer activity. 

PROOF: Splitting the representation (2.4) for the partition function Z(A].P) in point and line dependent factors 

gives 

Z(A],P) J liT Pq%)[ II .-·····•·], 
%EA (%y)EA* 

(2.8) 

where {)q% = dq%F%(q%)e'•·"'·e-h·•··•· and A* is the set of all unordered pairs (:ty), :t,y EA. By the definition 

e-•······ = 1 + J •• (q) (2.9) 

we obtain 
Z(AI.Pl = I: I II Pq.] II J •• (q). (2.10) 

(xy)EB 

B is a disjoint union of Mayer graphs G; E 9x,, L; X; =A. The q-integrations factorizes and we obtain 

Z(AI.P) = I: II A(XI.P) (2.11) 
A=LX X 

with 
A(XI.P) = I: I II {)q,] II J •• (q). (2.12) 

GEBx :z:EX (xy)EG 

The partition functions for subsets Y ~ A are defined by 

Z(YI.P) = J dp,.(,P) II F.(.P. + .P.) 
<EY 

(2.13) 

and the polymer representation is 

Z(YI.P) = I: II A(XI.P) for allY, 0;tY~A. (2.14) 

Y=l:X X 

Empty products are 1. This yields Z(0i.P) = 1 for the empty set 0. The activities A(XI.P) are uniquely 

determined by Z(YI.P), 0 # Y <;;;X (see section 1.3., p.ll). 

2.2. EXPANSION OF THE FREE ENERGY lnZ(A],P) AND THE GRUBER KUNZ CONVERGENCE CONDITION 

The free energy In Z(A],P) may be represented by a sum of products of activities A(X],P), 0 #X<;;; A. For 

that we will define a cluster Q of polymers P ~ A (cf. 1131). Q = (P;'', ... , Pi:•) is a collection of polymers 

P; with multiplicities n;. In the following we adjoin a graph -y(Q) for each cluster Q. The vertices of -y(Q) are 

the polymers P1 , ••• , Pk. P; is n; times represented in 'Y( Q) for all i E {1, ... , k }. Polymers P; and Pi are not 

admissible if P; n Pi ;t 0. P; is not admissible with itself. Not admissible polymers are connected by a line in 

-y( Q). Reduced activities are defined by 

A(PI.P) = A(XI.P)/ II A({:t}l!/1). (2.15) 
xEP 
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For a cluster Q = (P;'', . .. ,Pi:') we use the notation 

k 

A(Q[.P) = fl:A(P,[W'. 
i=l 

The expansion for In Z(AI.P) is 

lnZ(A[.P) = :L)nA({x}[.P) + 

where 

Q 

with IP;I~2 

a(Q)A(Q[,P), 

if 7( Q) is not connected 
if 7( Q) is connected. 

(2.16) 

(2.17a) 

(2.17b) 

The sum in (2.17b) is over all connected subgraphs C of 7(Q) with the same set of vertices as 7(Q). I(C) 
is the number of lines in C. A theory described by the partition function Z(A[,P) is translation invariant if 
v(x,y) = v(x- y) and the functions F. are not x-dependent. For translation invariant theories the expansion 
for the density of the free energy on the lattice Atot = ( a:IZ)" is (if the limit exists) 

with 

lim [A
1

[lnZ(A[,P) = 
A/Aeot 

{ 
lnA({x}[.P) 

Vx = LQ a(Q)A(Q[,P) 
if [XI= 1, X= {x} 

otherwise. 

limA/A,o, denotes the thermodynamical limit (in the sense of van Hove). 

Let F.(¢.) (for all x E (a:IZ)") be holomorph functions in the complex strip 

S.~ = {¢. E(C I [Jm ¢.1 :o; ~<}, 

(2.18) 

(2.19) 

(2.20) 

(i.e. it exists an open neighborhood U of S~, such that F. is holomorph in U). Furthermore, let F. be bounded 
in S~. It follows from the convergence of the integral f dl'• ( q\) Il.EX F.(¢x) for finite X C (a:IZ)", .Px E S~, 
that Z(X[,P) is holomorph in S~. Assume that 

3E > 1 : B(E, .P) < Ke < 1, (2.2la) 

where 

B(E,.PJ=i[1+ sup xi: [A(X[.P)IErxrJ. 
I,; :tEAtoe 

%€XCAtot !XI0!::2 

(2.21b) 

Gruber and Kunz [4[ have shown that (2.21a,b) is a sufficient condition for the existence of the thermodynamical 
limit (in the sense of van Hove} X /' Atot for the reduced correlation functions 

Px(Y[,P) = Z(X- Y[,P)/Z(XI,P), (2.22) 

which fulfill the bounds 
IPx(Y[.P)[:-s;[l-Ke]- 1 IT A({x}[.p)- 1

• (2.23) 
xEY 

Furthermore, the thermodynamical limit in (2.18) exists and the expansion (2.17) is convergent for finite A 
(this assertion is non trivial, because there are infinite summands in (2.17)). The following Theorem shows 
the existence of the thermodynamical limit and the holomorphy of the generating function for free-propagator
amputated Greens functions if the convergence condition of Gruber and Kunz (2.21a,b) is fulfilled. 

22 



Theorem 2.2.1. Lei F.(¢.) be holomorph functions for all "' E ( a:1Z)v in the complex strip 

S~ = {¢z E€ [[Jm¢z[ :<:; 1<} (2.20) 

and let'¢ be an external field with finite support supp '¢.Furthermore let the condition.(2.21a,b) be fulfilled. 

Then the thermodynamical limit (in the sense of van Hove) A/ Aeot exists for the function 

F.o.('¢) = ln[Z(A['¢)/Z(A['¢ = 0)] (2.24) 

and lim.o.;-4 ,., FA ( '¢) = F( '¢) is holomorph in a neighborhood of'¢ = 0. 

PROOF: From (2.21a,b) follows the existence of the thermodynamical limit A/ Atot for the reduced correlation 

functions p4 (X['¢) (cf.[4]) and the estimates (2.23) are valid. Therefore p.o.(X['¢) is uniformiy bounded inS~. 

Since p.o.(X['¢) is holomorph in S~ for finite A, it follows from Vitali's Theorem that lim.o.;-A,.,PA(X['¢) is 

holomorph in S~. Let X be a finite subset of Atot, such that 

X2 supp '¢. (2.25) 

By this assumption follows 
Z(A- X['¢)= Z(A- X['¢= 0) (2.26) 

and with the definition of the reduced correlation function (2.22) follows 

PA(X['¢)Z(A['¢) = P.o.(X['¢ = O)Z(A['¢ = 0). (2.27) 

The function p4 (X['¢ = 0)/p.._(X['¢) is# 0 in a suitable neighborhood of'¢= 0 and we have 

ln[Z(A['¢)/Z(A['¢ = 0)] = ln[pA(X['¢ = 0)/ P.o.(X['¢)]. (2.28) 

The thermodynamical limit exists for the rhs of (2.28) and the function limA/A,.,PA(X['¢ = 0)/P.~o(X['¢) is in a 

suitable neighborhood of'¢= 0 holomorph and# 0. Therefore lim.~o;-A,., in[p4 (X['¢ = 0)/ p4 (X['¢)] is holomorph 

in a neighborhood of '¢ = 0 and the assertion follows from (2.28).y' 

From Theorem 2.2.1. follows immediately 

Corollary 2.2.2. Let F.(¢.), "'E (a:1Z)v, be holomorph functions ins~ and let the convergence condition of 

Gruber and Kunz (2.21a,b) be fulfilled. Then the thermodynamical limit A/ Atot (in the sense of van Hove) 

exists for the free-propagator-amputated Greens functions 

on Z(A['¢) 
Gc(!!i.,, · · · ,%) = 6'¢(x,) ... 6'¢(xn) In Z(A['¢- 0) I.P=O (2.29) 

for all n E IN* and "'', ... , Xn E A. 

Corollary 2.2.8. Let the convergence condition of Gruber and Kunz (2.21a,b) be fulfilled. Let'¢ be an external 

field with finite support supp '¢. The following expansion for the generating function for the free-propagator· 

amputated Greens functions is convergent for translation invariant systems and in a small neighborhood of 

'¢=0: 

.!.~~ •• In z~\!1~ o) = L [lnA({x}['¢)- A({x}['¢ = O)] + La(Q)[A(Q[.P)- A(QI.P = o)]. 
:w:Esupp f/J Q 

(2.30) 

PROOF: Because of Theorem 2.2.1. the thermodynamical limit exists. It follows from the convergence condition 

of Gruber and Kunz (2.2la,b) that the reduced correlation functions P.o.(X) are analytic in A(Y), [Y[ 2: 2, Y C A 

for finite A ( cf. [4]). For a finite subset X 2 supp '¢ we have 

in[Z(A['¢)/Z(A['¢ = 0)] = in[PA(X['¢ = 0)/ PA(X['¢)]. (2.28) 
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If t/J is in a sufficient small neighborhood of t/J = 0, then 

In Z(~\~1~) O) = L [inA({x}lt/J)- A({x}lt/J = 0)] + La(Q)[A(Qit/J)- A(Qit/J = 0)] (2.31) 
%EBupp t/J Q 

and the series in the rhs is convergent. For translation invariant polymer systems exist a positive monotone decreasing function e(A), such that 
lim e(A) = 0 

)HOO (2.32) 
and 

IPa(X)- PA,
0
,(X)I :'> (fXfe(dist (X,8A)) (2.33) 

with dist(X, 8A) = inf{llx- Ylllx EX, y E 8A} , 8A =boundary of A. Therefore we obtain 

Z(Atotlt/J) Z(Ait/J) 
In Z(Atot lt/J = 0) = In Z(Ait/J = 0) + R(A) (2.34) 

with 

lim R(A) = lim In [ 1 + PA,, (x~~(;l;'~\Xf,P=O)] = 0. 
A/A:ot A/Atot 1 + PAw (X/¢) PA(X/f/J) PA(Xf,PJ 

(2.35) 

The assertion follows from (2.31), (2.34) and (2.35).v' 

2.3. EXPANSION IN THE NUMBER OF LATTICE POINTS 

The polymer representation (2.5) for Z(Ait/J) may be reformulated as an expansion in the number of lattice points: 

Lenuna 2.3.1. Let A C Atot be finite. Then 

[A[ 

Z(Ait/J) = 1 + L ~! L ... ,.eA L II{IXI! M(XIt/J)} 
n=l diftinct {y1, ... y,.}=l::X X 

with 
a-vn 

M(XIt/J) = --;;JI-S,,n + A(XIt/J)], lXI = n. 
M(XIt/J) is called Mayer amplitude for the polymer X. 

PROOF: By, the polymer representation (2.5) we obtain 

Z(Ait/J) = L II A(XIt/J) = L L [ II. A({x}lt/JlHII A(XIt/J)J = 
A=~ X X Y~A Y=~X xEA-Y X 

IXIS2 

= 1 + L L ITf-8qxr + A(XIt/Jll = 
0;'Y~AY=~X X 

[A[ a-vn! 
= 1+ L--;;! .,,.,..A L ITf-oqxr +A(XIt/Jll = 

n=l di•tinct {y 1 , •.• y,..}=l:X X 

(2.36a) 

(2.36b) 

[A[ 

= 1 + L ~! L ,.eA L II{IXJ! M(XItfJ)}.y' (2.37) 
n=1 di•to'nct {fllr···Y ... }=l:X X 
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In the proof of Lemma 2.3.1. we have shown 

Z(Ait/1) = 1 + L L II M(XIt/1) (2.38) 

0;W£;Ay=I;X X 

with 
M(XIt/1) = -6qx1 + A(XIt/J). (2.39) 

The expansion (2.38) may be interpreted as a polymer representation of a new polymer system. The lattice 

sites of the original lattice are split into two sites. Polymers, which contain more than one site, consist only of 

double sites. Monomers consist of only one of the doubled sites. The monomer activities are set to one. The 

activity of a polymer P' is M(P) if P' emerge from P by the doubling procedure. We obtain 

Z(Ait/1) = L II M(XIt/1). (2.40) 

A=I;X X 

The sum is over disjoint partitions of the doubled lattice A in polymers X of the new polymer system. The 

sufficient condition for convergence for the new polymer system is 

:Je > 1 : ~[1 +sup L IM(XIt/llle"IXI] < 1. 
1,. a:EA X 

(2.41) 

.. ex!!;A 

The expansion of the free energy lnZ(Ait/1) for the new polymer system is 

lnZ(Ait/1) = La(Q)M(Qit/J). (2.42) 

Q 

The series is convergent for finite A if (2.41) is fulfilled. In the follwing we reformulate (2.42) as an expansion 

in the number of (not necessarily distinct) lattice points. Let supp Q be the disjoint union of polymers in the 

cluster Q. The point z in supp Q has the multiplicity n(x). n(z) equals the number of polymers P E Q with 

z E P. Let X be a set of points with multiplicities. The expansion (2.42) is reordered by 

lnZ(Ait/1) = LM(Xit/1) (2.43) 
r 

with 
M(XIt/1) = L a(Q) II M(Pit/J). (2.44) 

q PEQ 
•"PP q ... ;l: 

By Eq. (2.43) we obtain 

lnZ(Ait/1) = L II M(z., ... , z.,lt/1) (2.45) 
n;'::l :w: 1 , ... ,x,.EA 

with the definition of the augmented Mayer amplitude 

M(x,, ... , x,.lt/1) = M(XIt/1)[ II n(z)!]/(n! a"") (2.46) 

for X = {z, ... , z,. }. If the condition of convergence (2.41) is fulfilled, the series 

A~T,", z(~\~~~ O) = La(Q)[M(Qit/J)- M(Qit/J = O)J 
Q 

(2.47) 

is convergent for finite supp t/1 in a small neighborhood of t/1 = 0 (cf. Corollary 2.2.3.). For translation invariant 

systems the augmented:Mayer amplitude is translation invariant and with the notation 

(2.48) 
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we obtain for the density of the free energy in the whole lattice Atot =(allY 

1 1 "' lim -IAI!nZ(A[.P) = 1+ L M(x1 , ••• ,x,[,P). 
A/Ao• E" n~l :tl,••••Xn ~~t<>t 

(2.49) 

This series is convergent, if (2.41) is fulfilled. 

2.4. CONNECTION OF PERTURBATION AND MAYER EXPANSION 

In this section we will carry the perturbation expansion in the form (2.40) by formal resummation and 
we will show how Mayer amplitudes (rsp. activities) are represented by Feynman diagrams. The perturbation 
expansion of the Mayer amplitude is not convergent, but it is an asymptotic expansion ( cf. chapter 4. ) . We 
suppose that the functions F, in the definition of the partition function (2.1) are of the following form 

(2.50) 

A is a dimensionsless coupling constant". Per substraction of a constant in the propagator the distributions Fx of 
examples b) and c) (p. 19·20) are transformed in the form (2.50) (cf. chapter 3. ). We consider the expansion 
in >. of the partition function 

Z(AI.Pl =I dp..(¢) IT .-~11(~.+¢.)_ 
xEA 

(2.51) 

In the following we abbreviate V(x) for "\I(<Px + ,P,). Formal expansion in power series yields 

(2.52) 

This perturbation series is generally not convergent. For example the radius of convergence for the >.¢4 -theory 
on the lattice with single site is zero, since the integral f dp..(¢)e-~(~.+.P.)' is divergent for>.< 0. With partially 
formal resummation of the perturbation expansion we can get convergent expansions for non vanishing coupling 
constants >.. With the help of the relation (Wick-theorem) 

the partition function Z(AI.P) is represented by (not necessarily connected) Feynman diagrams. 

PROOF OF (2.53): Let the Fourier transform V(q,) for V(¢,) be defined by 

With the help of the Gaussian integral (1.13) we obtain 

(IT V(¢x + .Px)) =I IT [dq, ii(q,)e'•·"'•Je-f<q,•q) = 
xEX :z:EX 

=I IT [dq, ii(q,)e'•·"'·Jet<h·•*le'••¢•[¢.=o;, 
xEX 

(2.53) 

(2.54) 

= et<-k·•hl IT V(¢x+ .Px)[¢.=0• -./ 
xEX 
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We get 
Z(AI.P) = 1 + L (Feynman diagrams with n vertices). 

n.~l 

For example a) the .A¢4 -theory without counterterms and external field .p = 0 

Z(AI.P) = 1 + { 6 + { [ f1\\ + g + @ ] + .... 
J%,EA 1%.,%,EA '0:J) ~ ® 

(2.55a) 

(2.55b) 

The Fer.nman diagrams are related to algebraic expressions by familiar rules. If the connected Feynman 

diagrams F1 •) appear mr times in the Feynman diagram, we obtain a combinatorial factor 1/ ITt mr!. The number 

of vertices in the Feynman diagram equals the order in A. The perturbation series (2.52) will be reordered, such 

that the intE!gration is over distinct points 

Z(AI!/1) = 1 + L L ( ~~tl a-vn /... ... ,.eA {V(y.)b• ... V(y,.)b• ). 

n.;?::l bENIAI dl.tinet 

We have used the function 

the notations 

I••PP 111-n 

b {
A-+ IN= {o, 1, 2, ... } 
y >-+ by 

supp b = {z E AI b% ;1: 0}, 

(2.56) 

(2.57) 

and the abbreviation b•; = b;. bE INA is called occupation function with point set A. For the .A¢4 -theory we 

have 

'rhe Feynman diagrams will be put on the lattice A x IN*, IN* = IN- {0}. The Feynman diagram F with 

occupation function b, i.e. the. vertices occupy the point set supp b and the .point y is covered by vertices of the 

Feynman diagram F, will be put on the lattice 

I= L {y}x{l,2, ... ,b.}. (2.59) 

yEsupp b 

The lattice A X IN* is called indez lattice with base A and I C A x IN* defined above is called indeo; set for the 

occupation function b. Conversely, it exists for every index set I with II n {z} x IN* I < oo for all z E A an 

occupation function b. We can rewrite the expansion (2.5.4) 

Z(AI.Pl= L 
rcAxN*" 

I ind4~ •~t 

(Feynman diagrams F E 11 ). (2.60) 

fi is the set of all Feynman diagrams with the set of vertices = I. The canonoical projection p is defined by 

{
Ax!N*-+A 

p : (y, n) >-+ y • 
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The Feynman diagrams F E 1i on the index lattice A X IN* are related to graphs p(F) with vertices on A by 
the canonical projection p. The set of vertices for the,gra.ph p(F) is p(I) and vertices z, y E p(I) a.re connected 
by a. line if ""• is in the algebraic expression for F. Two vertices in p(F) a.re connected by a.t most one line. 
The graph p(F) emerge from F by omitting self lines and replacing lines which connect the sa.me vertex by 
only one line. The Feynma.n dia.gra.m FE 1i is called point connected, if the projected graph p(F) is connected. 
Therefore 

FE 1i point connected*=* p(F) E 9x with X= p(I). (2.62) 

9x is the set of all Mayer graphs with vertices in X and a.ll points of X are vertices. Fig. 2.1 shows examples 
for point connected vacuum Feynman diagrams for the .\4>4 -theory. 

' • • " 
3~ 

~ 
3 

~ 
l 

© 
l. 

~ ~ 1 1 

r l d 
• 

r•l (b) 

Fig. 2.1 Example of a point <:onnected Feynman diagram (a) and not point connected Feynman diagram (b) and their related 
Mayer graphs for the A¢4~theory. 

The Mayer graphs G E 9x stand for the following algebraic expressions. Every vertex z E A of the Mayer 
graph G E g x stands for 

Lines in the Mayer graph G, which connect z and y, stand for the "super propagator" 

There is no combinatorial factor. Mter integration over q.,, z E X we get the algebraic expression I( G) for the 
Mayer graph G E 9x· Because of Theorem 2.1.1., Eq. (2.6), we obtain 

A(X),P) = L I( G). (2.63) 
GE9x 

Splitting the expansion (2.60) for Z(A),P) in point connected Feynma.n dia.gra.ms we obtain 

Z(A),P) = L L fl[ L I(F)). (2.64) 
YcAy=EX X FEr}/'' 

;)rl is the set of all point connected Feynman diagrams with vertex set X. I(F) is the corresponding algebraic 
expression for the Feynman diagram F. As in the proof for (2.38) we have 

Z(A),P) = L fi[6,,1XI + L I(F)). (2.65) 
A=Ex X FeFjtc) 
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If the coupling constant ). is replaced by the point dependent coupling constant (Y c A) 

>.v(z) = {). if y E y (2.66) 
0 otherwise 

(the interaction is switched off outside Y), then the partition function Z(AI¢) equals Z(YI¢) a.nd the repre

sentation (2.64) is also correct, if A is replaced by Y. From (2.63), (2.65) a.nd the uniqueness of the polymer 

representation, follows 

a.nd for Mayer amplitudes 

A( XI¢)= 6qx1 + L !(F) 

FET}l"'' 

a-viXI 
.M(XI¢) = lXi! L I(F). 

Fe'F}/c) 

The representation ( 2.36) for the partition function is equivalent to 

1 f .. .M(y,, ... ,y .. ,) 
IT ·-1 m;({nz})l ">•···~··• 

3- d••tt,.,.e~ 

(2.67) 

(2.68} 

.M(y,.,+l' • · ·, Yn,+n,) · • • .M(Y..,+···+n•-•+'• ... , Yn) (2.69} 

where m;( {nz}) = l{rln,. = j}l is the number of n, = j in the partition {nz} a.nd .M(YI¢) = .M(y1 , ••• , y,.l¢)for 

{y1 , ••• y,.} = Y. The Mayer amplitude ma.y be represented a.s a formal power series. This (divergent) expansion 

is Borel summable in ). (see ch. 4. ). We obtain the following Theorem. 

Theorem 2.4..1. The Mayer amplitudes .M a.re represented by Feynman diagrams 

a-viX! 
.M(XI¢) = lXi! L I(F). 

FE'F}/'"' 

(2.70) 

1}<pc) is the set of point connected Feynma.n diagrams with vertex set X. The representation by Mayer graphs 

is 
ifX={x} 

if lXI;:::: 2. 
(2.71) 

From the expansion of thee-function in the representation(2.6) for A(XI¢) we obtain a.n explicit expression 

for the expansion of the activity A( XI¢) in the number of lines 

A(XIt/1) = E (-1)" 2: [ IT i:~lliT (v.:~~)'• F~2'•+k•l(¢.)]. 
n=]X]-1 o~>eNX"', .. EI'ITx .. 11 , tt connected (zy)EX* *EX 

]tt!+lr]=n, P{lt)""X h]¢0 if ]X]=1 

(2.72) 

X* denotes the set of all lines in X c A, supp k = {(xy) E X*l k,9 i- 0}, P(k) = {z E AJ 3b E supp k : · 

xis point of b},.k.glabels the number of lines in the Feynma.n diagram, which connect x a.nd y, •• labels the 

number of self lines in z. ks = }:
11
ex k11• is the number of lines, which emanate from z and connect a point 

different from z. The number of lines, which connect different points is JkJ = L:(.y)ex• k.y and the number of 

self lines is I•J = E.ex s,. F~k)(.p,) denotes the k-th derivative at ¢,.The possible numbers of lines, which 

ema.na.te from z, a.re fixed by the derivatives of F. at ¢. = 0. For example for the >.q\4 -theory 4n lines, n E IN*, 

can emanate from a point. 

PROOF FOR (2. 72): Expansion of thee-function in (2.6) gives 

A(XI¢) = L j IT [dq.F,(q.)e'•·"'· '£. (-1)'• (q,v.,q~/2)'•1 
••• 

· GE9x ::cEX ,,.:::=0 
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and from distributivity 

After inveree Fourier traneformation we obtain (2.72) . ..; 

The perturbation expansion for In Z(Ait/1) is a sum of truncated expectation values 

(2.75) 

(proof see app. A). The Feynman amplitude 

(2. 76) 

is a. sum of connected Feynman diagrams. Ji same arguments occur in the Feynman amplitude we will write 

.T(yf', ... ,yk"lt/1) = 1"( ~ , ... , 1/k•·:·oYk,ltfi). (2.77) 
n.1 arguments n.,. &rgumen:ts 

After partial formal resummation we obtain for the perturbation expansion (2.75) 

lnZ(Ait/1) = E E 
n.2:1 &-el'«A 

Jt-•p;p b]•m 

( ->.Jibl f b b 
~ .......... ('\l(y,) '; ... ; '\l(y,.) ") = 

di•Hnct 

=E E 
n~l bENA 

/. ......... .T(yt•, ... ,y!•ltfi) (2.78) 
.rt.e;,,ct 

, ... pp 1>].., .. 

with lbl ~ L:zeA bz and definition(2.57) for supp b. Reformulation of the integration over distinct points in a 
summation over subsets of the lattice A gives 

In Z(Ait/1) = L lXI! aviXI L .T(x~', ... ,x~· lt/1) 
.,is;;.t. bEfi"'X 

with X= {x1 , ... , x,.} and IN*= {I, 2,3, ... }. We have shown that 

lnZ(Ait/1) = L Vx 
X 

f9'Xs;A 

(2. 79) 

(2.80) 

with the definition (2.19) for Vx. (2.79) and {2.80) are also fulfilled for arbitrary Y, 0 'f< Y ~A, instead of A. 
By the following Lemma 2.4.2. we obtain 

Vx = lXI a"IXI L .T(x~', ... , x~· lt/1). 
bElN*x 

Lemma 2.4.2. (Moblua inversion formula). Let Q(Y), 0 # Y ~A, be defined by 

Q(Y) = E L(X). 
X 

•¢xs;;v 
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Then we have 
L(X) = L (-l)IXI-IYiq(Y) 

y 
t,w~x 

and the representation (2.83) is the unique solution of Eq. (2.82). 

(2.83) 

PROOF ( CF. [13], [1G]): Uniqueness of representation (2.83}: By definition (2.82) we have L( {z}) = Q( {z} ). 

Let L(Z) be uniquely determined by Q if [ZI ~ n. By Eq. (2.82) we get for X with IX[=' nand z II. X 

L(X + {z}) = Q(X + {z})- L L(Z). 
z 

I';I'!Z!;X 

(2.84) 

So we see that L(X + {z}) is uniquely determined by Q. The uniqueness of representation (2.83) follows by 

induction. 

Proof of {2.89) We have to show 

(2.85) is fulfilled if 

Q(Y) = L L (-l)IXJ-IX'IQ(X'). 
X X' 

fi¢Xs;Y 0fi!X's;;X 

L ( -1)1XJ-JX'J = { ~ 
X 

X'!;;;X~Y 

ifX'=Y 
otherwise. 

(2.85) 

(2.86) 

Let n = lXI, s = IX' I, t = 1Y I be the number of elements in X, X', Y. X is fixed by the choice of n- s elements 

from the t - s elements of Y - X'. This can be done in (!::::) ways. Therefore by the binominia.l Theorem 

follows 

= (1 - 1)'-· = g 
From (2.80) and the Mobius inversion formula. follows 

Because of (2.81) and 

we have 

Vx = L (-1)1XI-IYIJnZ(Y[¢). 
y 

'"'Ys;;x 

connected Feynman diagrams ' 
with vertices :o 1 , ... , .. ,. 

Vx =[X[! L !(F). 
FE'F~.':) 

I(F) 

if t =. 
otherwise. .,j 

(2.87) 

(2.88) 

(2.89) 

1},0) labels the set of all connected Feynman diagrams, whose vertices occupy the set X <;; A. The activities 

A(X[¢) in the polymer• representation for Z(A[¢) may be represented .by point connected Feynman diagrams 

(see Theorem 2.4.1.) and the functions Vx are represented by connected Feynman diagrams. Since all connected 

Feynma.n diagrams are point connected, there are less Feynma.n diagrams required for Vx than for A(X[¢). 

We have only to consider polymers P with IPI ~ n for n-th order perturbation theory. Because of M(XI¢) = 

O(>,IXJ), we obtain 
Z(A[¢) = I: II M(X) + 0(-\"+1).: (2.90) 

A-2:> X 
IXI:S,. 
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Let us remark that the first term on the rhs of (2.90) contains terms of all orders in >.. 

The Mayer amplitude M is a truncated expectation value of the following form 

"(~ - ]·'·) - a-vn (e-AV(z.) - 1· • .->V(zn) - 1) 
J"~ .... 1, · · •, "'n 'f' - 1 , • • ·, n. 

(2.91) 

(proof see app. A). The following Le=a express partial truncated expectation values by complete truncated 

expectation values. For that we will need the following definition: 

Definition: Every matrix can be brought to block form by permutations of rows and/or columns. A matrix is 

called irreducible if it consists of only one block and no row or column is identically zero. 

Lemma 2.4.3. Let F;( <P.J, i = 1, ... , n , be functions and n; E IN* = {1, 2, ... } positive integers. Then we 

have 
n nn .f l n 

;-! n,. IIliiiF.·(" )· 
(IJ7=1 m=l k)!.Ji)l! i=l ;=I ' 'I'Y; ' 

liliFM •. t•;]) = 2: 2: 
i=l 

The sum is over all irreducible n x !-matrices k(l) = (k)?J •.=•·····' with k)? E IN and I::~=t k)? = n;. 
J=::l, ... ,l 

PROOF: For positive integers n; E IN*, i = 1, ... ,n, let us define the following index set 

With the notation 

n 

I= l:{y;} X {1,2, ... ,n;} C {y,, ···Yn} x IN*. 
i==l 

F(x) = F(,Py.) for p(x) = y; 

(2.92) 

(2.93) 

(2.94) 

(p =projection map, seep. 27 ) we obtain from the definition of the truncated expectation value (cf. app. A) 

(F,(yt)"• ... F,.(Yn)"") = 2: il{IIIF(x); ]) (2.95) 

I=l:J J zEJ 

or equivalently 
m I 

(F,(yt)"• · .. Fn(Yn)n") = 2: 2: II (II [F(x); ]) (2.96) 
1::::1 I=~~ I_ j=l xEI; 

W;=l J 

with m = ]I] = 

(k)?J•=•,.,n by 

I::7=t n;. For every partition I = I::!·=l I; of the index set I we define an n x !-matrix 

t=l, ... ,n 

k)? = ]{x E I; ] p(x) = y;}]. 

With this notation it follows from (2.96) 

m I n 

{F1 (y,)"• ... F .. (y .. )"•) = 2: 2: II II 
(I) 

( [F;(y;); ]k•; ) . 
l=l I=~l I· j=l i=l 

L.Jj=l. ) 

For different partitions I: I; we can get the same matrix k)?. We have 

n n I 

ITn;!/lliT II k;;!) I!] 
i=l i=l i=l 

(2.97) 

(2.98) 

(2.99) 

partitions I: I; with m~trix (k)}>J, defined by (2.97). Since permutations of the index j do not lead to new 

partitions, we get a factor 1/11 and we obtain from (2.98) 

(2.100) 
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The matrix (kj!)J can be brought to block form by permutations of rows or columns. Every block form of (kg)) 
defines a· partition L,N = {1, ... ,n}, where N is a set of indices for rows of a block in (k)!-'J. So we obtain 

from (2.100) 

L II{ L L . II· Nn.:' n1 Bn _ , . tE ' 
(F, (y,) ... F,.(y,.) ) - 1(N) 1(N) 

"N={l, ... ,n} N 1(N)2:1 <•~(N)) irreducible CIIoeN IIi= I k;; !)I! 
LJ ., 

~I(N) lt~~N).,.,. 
L.Jf=J. ., 1 

From the definition of the truncated expectation value we get 

" (il[F,(y,J"'; D = L: L: 

1(N) I(N) } II (II [F;(y;); lh,, ) . 
:i=l iEN 

Ex.pansion of thee-functions in Eq. (2.91) for the Mayer amplitude gives 

a-vn 
M(x,, ... ,x,.I.P) = -,n. 

{n,·}i=l, ... ,n 
... ~l 

With the help of Lemma 2.4.3. it follows from (2.103) 

(2.101) 

(2.102) 

(2.103) 

-vn 1 1 L," (!) " (I) 

M(x,, ... ,x,.l¢) = ~ L L 1 " (1) IT!(->.) ;a•h•l {IT!V(x;); ]h'l )]. 

n. 12;1 •<" . (II;= I IIi=I k;; !)II j=l i=l 
Orr.,d.·~;«:ible nXl matr1:t 

(2.104) 
With the definition of .the Feynman amplitude F (see (2.76)) we obtain the following Theorem 2.4.4. for 

representation of the Mayer amplitudes by Feynman amplitudes. 

Theorem 2 . .&.4. The formal power series in >. for the Mayer amplitude is 

M( . I ) a-vn ~~ m=,(L,~=I kJ:'J! rr1 1( k, h"') 
Z1,··· 1 Zn t/J = --;r- L..JLJ l n. (l)f f Zi , ... ,Xn 

12;1 h(l) (II;= I IIi= I k;; .)/. j=l 
(2.105) 

The sum is over all irreducible matrices k(1) whose entries are non negative integers. 

Remark : Feynman amplitudes F are represented by connected Feynman diagrams. The condition of irre
ducibility for the matrices k(1) in (2.105) corresponds to the fact that Mayer amplitudes are represented by point 
connected Feynman diagrams. Eq. (2.105) is an explicit expression for the representation of Mayer amplitudes 

by connected Feynman diagrams. 

2. 5. THE TREE GRAPH FORMULA 

To obtain estimates for the absolute value of activities A( XI¢) the tree graph formnla is more useful than 
the representation (2.6) by Mayer graphs in conjugated space. The activities can be expressed by tree graphs, 
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i.e. Mayer graphs without loops. We will need some notatiollS and definitions to formulate the tree graph 
formula. An n-tree is defined by the following function 

~ : {2, ... ,n}-->{1, ... ,n-1} with ~(i) < i (2.106) 

1, ..• , n are called the vertices of the n-tree ~- Vertex 1 is called the root of the n-tree ~-The links of~ are the 
pairs ( ~ ( i), i), i = 2, ... n. For the n - 1 real parameters s., ... , •n-1 we define 

n 

t<~l·> =II ··-2••-• ..... (•)· (2.107) 
4=2 

Empty products are 1 as usual. For example /(~[•) = 1 if n = 2. Fig. 2.2 shows an example for an n-tree, 
n=8. 

5 6 

1. 

1 

Pig. 2.2 n-tree defined by •'{2, ... ,8)-{1, ... ,7}, •(2)=•(3)=1, •(•)=•(>)=2, •(6)=3, •(7)=•(8)=6. 1 is the root of then-tree 
'1· The vertices 416-,7,8: are called maximal vertices of.,. For /('11.8) we obtain f(ql•)=• 1 •~•:•.c•:•e· 

A tree T with point set X, [X[ = n, is an n-tree ~ together with a bijective map (labelling) 

-. {{1, ... ,n}-+X "' . . 11-+XJ. 

For integration over the parameters •1, •.. , •n-1 E [0, 1) we abbreviate 

J dCTn-1 = fo 1 

dsn-1 · · · fo 1 

ds1. 

We will define a propagator v[s) modified by the parameters s., ... , •n 

{ 

BiSi+l • • • Bj-1 VziXj 

Vz;x1 [s] = BjSj+l ... Si-1 Vz;x; 

Vz;:ti 

if i < j 
if i > j 
if i = j. 

(2.108) 

(2.109) 

(2.110) 

The number of links in ann-tree ~.which emerge from vertex I is denoted by d,(l). With the definitions and 
notations given above we have the following 

Theorem 2.6.1. (Tree graph formula). Let A(X[¢) be the activities in the polymer representation for 
Z(A[!/1) and Jet x EX be an arbitrary point. Then we have 

A( X[¢)= E E f Mn-tl(~l·l f dl-'•l•M> IT [a} . V~(a)!(•(•)) a~ {) ] IT F!(bj(~;;(b) + !/li(bj) 
• • •=2 Y'!(a) ii(•(•)) b=1 

i(l)=.o:EX 

(2.111a) 
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and equivalently 

(2.111b) 

with n =[X[ ;:: 2. The sum is over all n-trees ~ and labellings ii:: {1, ... , n}--> X, ii; bijective with x(1) = x. 

PROOF: see app. B. 

An n-tree ~ with labelling it is related to an algebraic expression I(~, ii:) by the following rules. For all 

vertices "k we set F.,(t/>., +</!.,)and for all links (ij) in~ we set aZ •. ••••; a% •.. The differential operators acts 
. ' 

on the product of the F-terms. After integration by f dcrn-d(~[s) f dp•I•J(t/>) we obtain I(~,x). The activity 

A(X[,P) is 
A(X[,P) = L L I(~,ii:). 

Remark: There exists (n- 1)! n-trees ~ (n;:: 2). 

. ' i(l.)=zEX 

(2.112) 

PROOF (BY INDUCTION): For n = 2 there exists one tree with link (12). Let the assertion be true for n. 

A new vertex (n + 1) can be connected to an n-tree ~ in n ways. We obtain an (n+1)-tree. The number of 

(n+l)-trees ~ is therefore n(n- 1)! = [(n + 1)- 1]l.y' 

3. ESTIMATES FOR SIMPLE MAYER EXPANSIONS 

In this chapter we consider estimates for the absolute value of the activity 

M(X[.P) = -61,\xj + A(X[,P) = (IT [F.(t/>. + .P.)- 1; ]) (3.1) 

•EX 

where X is a polymer with [X[ ;:: 2. From (3.1) we see that estimates for the activity are at the same time 

estimates for truncated expectation values and Mayer amplitudes. 

3 .1. SUBTRACTION TRICK AND TREE ESTIMATE 

We need an assumption to obtain estimates with the help of the Cauchy inequality for the functions 

F.( ,P.), x E (aZlt, in the definition (2.1) of the partition function. 

Assumption: Let F.(t/>.) be holomorph and bounded in 

(2.20) 

for all x E (aZl)". 

F., x E (aZl)", is a distribution for the discrete Gaussian model and the nonlinear cr-model (see examples b) 

and c) inch. 2., p.19-20 ). Nevertheless the above assumption can be fulfilled in this examples, if the propagator 

v is positive definite. For that we have the following Lemma 
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Lemma 3.1.1. (subtraction trick). Let <{! be an N-dimensional field with propagator v. If 

v -on;:: o (3.2) 

for a positive.constant 6 > 0 we have 

I dp..(<f!) II F,(q,. +¢.)=I dp..-sn(<P) II { (2.-o)-'f I de •• -.Jt<e.-~.-..;.J' F.( e.)}· (3.3) 
zEA zEA 

PROOF: From the convolution formula (Lemma 3.1.2.) we obtain 

I dp..(<f!) II F.(<{!.+¢.)= I dP.o-sn(IP)dp.sn(e) II F,(IP. +e.+¢.) 
zEA zEA 

(3.4) 

(3.3) follows from (3.4) and the definition of the Gaussian measure with covariance on . ..; 
Remark: F.(<f!. + ¢.) is replaced by (2.-o)-'f I de •• -t<e.-;;.-..;.)' F.(e.), if" is replaced by"- on. The 
integral I d( •• -t<e.-.P.-w.)' F.( e.) is holomorph for F.( e.)= EnelN 6((.- 2.-n) (discrete Gaussian model) 
and for F.( e.)= o(e~- 1) (nonlinear u-model). Lemma 3.1.3. shows a.n explicit expression for the constant 
6 for propagator v = ( -6 + m 2)-1 • 

The convolution formula used in the proof of Lemma. 3.1.1. is 

Lemma 3.1.2. (convolution formula). 

I dP.o,+o,(<f! +¢)II Fo(</!0 +¢.)=I dp..,(<{!) I dp..,(¢) II F.(<{!.+¢.). 
:tEA zEA 

(3.5) 

PROOF: Let the Fourier transform F0 (q.) ofF,(<{!.) be defined by 

(2.2) 

From the Gaussian integra.! 

I dp..(<f!) II .'•·"'· = .-H•·••)A 
oEA 

with (q, vq)A = E.,.eA q.v •• q. follows 

I dp..,+.,(<{! +¢)II F.(<{!.+¢.)= I II [dq.F,(q.)]e-H•·<••+-•)•)A = 
zEA zEA 

=I II[dq.F.(q.)]l dp..,(<f!) I dp..,(¢) II .... ( ... +;>.)= 
zEA xEA 

=I dp..,(<{!) I dp..,(¢) II F.(<{!.+¢.). v' (3.6) 
oEA 

Lemma 3.1.3. Let v = ( -6 + M")-•a-2
• 6 is the Laplacian operator on the v-dimensional lattice (a2Z)". 

Then we have 
"-on~ o (3.2) 

foro= (4v + (aM)2)-' and 

a-• I. "••- 6 = [(aM)2 (1 +(aM)' w•. 
•E(aZ1:)• 4v 

(3.7) 
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PROOF: From the definition of "•• follows 

The Fourier transform ii(k) of "•• is defined by 

"•• =~I. dvk ii(k)e'"(•-•) 
(z .. )v k E[-"' "'] 

It o:•o 

. From a2 ( -LI.)f(x) =I; • [f(x)- f(y)] (the sum is over all nearest neighbors y of x) we obtain 
11 "" ~ 

v 

a2( -6 + M")e;k(z-y) = [2 l)1- cosk,.a) + (Ma)2]e'k(z-y) 0 

p.=l 

From (3ol0) and 

follows 

Insertion of (3o12) in (3o9) gives 

Because of 
1 > 1 

2I;~= 1 (1-cosk,..a)+(aM)2 - 4v+(aM)2 

and Eqo (3o13) we obtain 
••• - 55 •• ;:: 0 

Since 5•• is the kernel of the operator n, we have 

for 5 = [4v + (aMJ•r•o 

v- 5H ;:: Oo 

From Eze(alZ)" "•• = ii(O) = (a..&)' and (3o15) we get (3o7)o y 

(3o8) 

(3o9) 

(3o10) 

(3oll) 

(3o12) 

(3o13) 

(3o14) 

(3o15) 

(3o2) 

The sum over the trees in the tree graph formula can be estimated by the following tree estimate ([8], [6]): 

Lemma 3olo4. (tree estimate) o We have the following inequality for the sum over all n-trees 'I with vertices 
IE {1,2,o .. ,n} and non negative!'(!) ;::o 

I: { dO'n-d('l[s) ft[!'(l)!'('l(l))] ::::; ft[!'(l)e"(l-l)]o 
fJ 0 1=2 l=:l 

(3o16) 

PROOF ( [8]): We have to find an upper bound for 

[' n 
S(p, n) =I: Jn ds, o o o dsn-1 fl[p(l)•t-oSl-3 o o o Bq(l)l'('l(l))]o 

'1 ° 1=2 

(3o17) 

The summation over n-trees 'I can be replaced by summation over k = '1(1) from 1 to I- 1. Therefore 

1 n. l-1 

S(J', n) = 1 ds, .. o dsn-1 TIII:I'(I)•t-o•l-3 .. o ••l'(k)]o 
0 1=2 k=l 

(3o18) 
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Because of f0
1 dsue•" ~ e" we obtain 

S'(p., n) $ p.(n)e"(n-1) S'(p., n- 1) (3.19) 

with 
1 n l-1 

S'(p., n) = 1 ds1 ... dsn-1 IT II: p.(l)sl-2 ... Bkp.(k)]eE:;;: •• _, ... ,.,.(k) 
0 1=2 k=1 

(3.20) 

From (3.19) follows 
n n 

S'(p., n) $ I1Jp.(l)e"(I-1)]S'(p., 1) = IlJp.(l)e"(l-1)] (3.21) 
1=2 1=2 

and the assertion (3.16) follows from S(p., n) $ S'(p.,n) . ../ 

The following generalization of the Lemma of Battle [14] is a corollary of Lemma 3.1.4 .. 

Lemma 3.1.5. We have for all n1 E lN U { -1}, I= 1, ... , n 

(3.22) 

The sum is over all n-trees ~ and d1( ~) = number of links in ~. which emerge from vertex I. 

PROOF: From Lemma 3.1.4. follows (p.(l) = t,) 

(3.23) 

Multiplication of inequality (3.23) with tn•+'[f1?=1 ti•e-2'•Je'• yields 

Because of 
(3.25) 

we obtain from integrating (3.24) over t, ... , tn from 0 to oo 

(3.26) 

From the relation 
n-1 
l:d,(~) = 2(n-1) -1 (3.27) 
1=1 

follows 

2: { do-n-d(~]s)(d1('1) + n1 + 1)! Tildl('l) + nt]l $IT [2n'+3 (n, + 1)1](nn + 1)1 . (3.28) 
, 0 l=2 l=l 

The assertion (3.22) follows from (3.28), since d1 ('1) 2:: 1.../ 

The following special cases of Lemma 3.1.5. will be used 

(3.29) 
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and 
(3.30) 

3.2. ESTIMATES WITH THE HELP OF THE CAUCHY INEQUALITY 

For the following Theorem 3.2.1. we will define the distance L(x., z2 , ••• , x,.) of n points z1 , z2 , ••• , x,. E 

(a1l)v. L(x1 , ••• , x,.) is the length of the shortest polygon, which connects "'', zo, ... , :z:,.. Thus 

L(X) = L(x,, ... , :z:,.) = "¥n 2: liz;- z;[[, 
(ij)ET 

11-11 is the euclidean norm on the lattice. T denotes trees with n vertices z1 , ••• , x,.. 

(3.31) 

Theorem 3.2.1. (Estbnates for truncated expectation values). Let Fz(1>z) beholomorph and bounded 

functions in the complex strip 1Im1>zl :51< for x EX= {:z:1 , ••• ,z,.} C (a1l)v,n;:: 2. The constants b~and li,f 
are defined by 

and 

b 
def • 

~e = mm sup sup 
cElR 2:E(a2Z)" fo"'E (C 

b
x def • 
,... = mmsup 

cER!tEX 

lim .. <rl""..: 

For the truncated expectation value 

M(XI¢) = ( fl !Fz(1>.+ .Pz); ]} 
zEX 

real ¢z, we have the following estimates 

(i) Let the propagator v be exponentially decreasing and 

lvzyl :5 De-miJz:-•11' 

Then we have 

IM(XI¢)1 < (n- 1)1"' e --~ 2 -mL(X) [8DIJ.f]" 
- . 16D ~<2 

(ii) If 

then we have 

a-v(n-1)!. IM(X[¢)1 < (n-1)!(ma1<)2 [ 8b~ ]" 
( -). - 16 (ma1<)2 

2:2, ••• ,:t.,E aao 

PROOF: Because of 

min sup sup 
cElR :r;EX . fo:E aJ 

Jlm foa-l•..: 
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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the constants b~ and ~ are independent of .Pz E JR. Thus we can suppose .P = 0. Let us set M(X) = M(XI.P = 
0). 

(i) From Theorem 2.5.1. (tree graph formula) and (3.34) follows 

IM(X)I :<::; Dn-1.-mL(X) L L 

The Cauchy inequality reads 

. ' <i(l.)=.,..ex 

a••(•J d,(,)! x 
I o</>~! (q) Fz, (¢>.,,)I :<::; ,.., (•) b~ • 

The Gaussian expectation values are estimated by 

From (3.39), (3.40) and (3.41) follows 

I{F(</>)}1 :<::;sup IF(</>)1. 
4> 

(3.39) 

(3.40) 

(3.41) 

IM(X)I :<::; (n- 1)!D"-1
_-mL(X) L { du,._.J('II•) IT [d~~~::.~]. (3.42) 

~ 0 1=1 

The relation E7=1 d1(11) = 2(n- 1) yields 

IM(X)I :<::; (n- 1)! Dn-1.-mL(X)(~)" ,.o(! 1) L { du,._.J('II•) fi dl('l)!. {3.43) 
., 0 l=l 

From the special case (3.29) of Lemma 3.1.5. we obtain 

IM(X)I < (n- 1)! Dn-1.-mL(X) (~)ngn-1 
· - 2102(n-1) 

(ii) The tree graph formula for M(X) reads 

(3.44) 

(3.45) 

Anaiog to the proof for (i) we obtain from the Cauchy inequality (3.40) and the estimate (3.41) for 
Gaussian expectation values 

(3.46) 

Integration of inequality (3.46) over "•• ... , x,. E (a:ll)v gives a factor (ma)-2(n-l) on the rhs. Thus 

(3.47) 

From the special case (3.29) of Lemma 3.1.5. follows the assertion (ii) . ..; 

Remark : For translation invariant theories the constant ~ is independent from X. H ~ (b~) is replaeed by 
~+~·(b~+~') in the inequalities (3.35) and (3.37) the assertion of Theorem·3.2.1. is valid for ali 1/Jz E S~·· 
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Theorem 8.2.2. (Estimates for truncated expectation values of ll.elds with N components). Let 
the functions 

F . {q;N -+f!J 
• . (if>.,,, ... ,if>.,N) ..... F,(q,.,,, ... ,if> •. N) (3.48) 

be holomorph and bounded ins:= S, x .. · x S, with S, = {4> Ef!J [[Im 4>1 :'> 10} for all x E (all)". The 
constants b., /?,; are defined by 

and 

b dd • I • = mm sup sup [F.( if>,,, ... , 1/>.,N) - c 
cElR :tE(a2Z)~~' +:,;E (/J, 11m <l>:z,il"'".oo: 

iE{l., ... ,N} 

b;~'minsup sup IF.(if>,,,, ... ,q,,,N)-c[. 
cElR..zeX ?,.,,e (JJ, 11m +:e,il=~< 

OE{l, ... ,N} 

Let the kernel of the propagator be defined by 

i,j E {1, ... N}. 

We have for the truncated expectation value 

M(X[¢) = (II [F.(I/>. + ¢.); J) 
•EX 

where X= {x1 , ... ,xn} C (all)", n~ 2, and {.) =fdl',(4>)[. J the following estimates 

(i) Let the propagator v be exponentially decreasing and 

IV I < n.-mll•-•11 
~'!J - ' x, y E (all)". 

Then we have 2 -mL(X) [8D N2~]n 
[M(XI¢)1 :'> (n- 1)! " e 'Y " 

16'YDN2 102 

(ii) Let 

a-v { l••ul = -( 1 )2 < oo. J :~:e(aZl)" ma 

Then we have 

a-v(n-1) { [M(X[¢)I :'> (n _ 1)! (ma10)
2 [8b,'YN:]n 

J.,,. .. ,•.E(aW.)• 16'YN2 (ma10) 

PROOF: We can suppose¢= 0 (see proof of Theorem 3.2.1.). Abbreviate M(X) = M(XI¢ = 0). 

(i) From the tree graph formula (Theorem 2.5.1.) and (3.34) we obtain 

[M(X)[ :'> ('YD)n-1e-mL(X) L L 
" . .i(l)=l<EX 

From the multinominial Theorem follows for the bracket { ... }in (3.54) 
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Because of 

and the Cauchy inequality 

we obtain from (3.55) 

Inserting (3.58) in (3.54) yields 

m1•···•mN 

L:mj'=d.t('l) 

{ } < dr('I)!Nd•(•)bx 
• • • - K,dt('l) IC' 

(3.56) 

(3.57) 

(3.58) 

IM(X)I ~ (1D)"-1 (-:: )"-1 (~)"(n -1)! .-mL(X) L { do-,._.J('II•J IT de( 'I)!. (3.59) 
'I 0 l=l 

From the special case (3.29) of Lemma 3.1.5. follows the assertion (3.52). 

(ii) Integration of the tree graph formula over :z:2 , ••• , :z:,. E (aZljV gives 

a-v(n-
1

) L ..... ~.E(a'O.)v IM(XI.Pll ~ ((m:),l"-
1 ~ ~ I Mn-d('ll•) I di'..,•[•J(<P) 

:'t(l)=zEX 

{ 

" N a a " } 
I!!<~ a.p~ .. • a<P~.c,) ll. F~,(<P~,JI . 

The proof of (3.53) is analog to the proof of (i) if we replace 

Remarks: 

0-mL(X) _, 1 
' 

(i) The remark after Theorem: 3.2.1. is also valid for fields with N components. 

(3.60) 

(3.61) 

(ii) If we replace 1<2 by 1<2 /( "'N') we get the assertion of Theorem 3.2.2. from the assertion of Theorem 

3.2.1. . 

(iii) The assertions of Theorems 3.2.1. and 3.2.2. are also valid after substracting the propagator v by 6lL 

We will now present upper bounds for the constant 

b.= min sup sup IF.(,P .. )- cl. 
cElR ~E(a~)" .P.,efC 

(3.62) 

lim ¢>.,1=>< 

In the case of the >.,P4 -theory without counterterms, the discrete Gaussian model and the nonlinear u-model : 

Lemma 3.2.3. 

(i) >.,P4 -theory without counterterms: 

For F.(<P~) = .-~<>: we have 
(3.63) 

(ii) discrete Gaussian model: 

For FJ6l (,P.) = (2 .. 6)-t Ene(a'O.)V f de •• - t(e.-<>.)' 6(e. :_ 2 .. n) we have 

(3.64) 
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(iii) nonlinear a-mode/: 

For F~6>(,p.) = (2 .. .5)-'l' fs·-• d{.e-tce.-.;.)' (sN-l = (N- 1)- dimensional unit sphere} we have 

2eN~e:2/26 

b~ ~ (26)Nf•r(N/2) (3.65) 

PROOF: 

(i) 
b~ ~max I•-~(.;.+;~)' I= max{e-~<P!+O~~·<P:-~~·}. 

~em ¢~em 
(3.66) 

Since ,;~ - 6102 ,;~ ;:.: -9~<4 , we have 
(3.67) 

(ii) From the relation (115]) 

(3.68) 

follows 

e'f'~ /26 L 2 • 

= -- ~ .-,(m+~) e•m<i>.. (3.69) 
2 .. £.... 

mEl!Z 

Therefore 

(3.70) 

(iii) We obtain for the nonlinear a-model 

b~ ~ (2 .. 6)-~ { d{zi<- .... (E.-,P.+;~)'I ~ (2 .. 6)-~0N-l<N~'foS 
lsN-l 

(3.71) 

ON-I= 2.-'i'r(~)- 1 is the surface of the (N -i)-dimensional unit sphere . ..; 

3. 3. ESTIMATES FOR ACTIVITIES AND EXISTENCE OF THE THERMODYNAMICAL LIMIT FOR THE 

-\,P4-THEORY, THE DISCRETE GAUSSIAN MODEL AND THE NONLINEAR a-MODEL 

ON THE LATTICE 

We can obtain conditions for the constants b~, (ma) and"' such that the convergence condition (see section 

2.2. ) 

!. [1 + sup L JM(XI.Plle"fXfl < 1 e zE(al!Z)• X 

(3.72) 

:rEXC(a.2Z)"' 
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is fulfilled, if we use the estimates for the activities given in the Theorems 3.2.1. and 3.2.2 .. 

For the following Lemma we need estimates for the monomer activity M({z}I,P). We suppose 

F.(o) = 1 (3.73a) 

for all z E (a1l)v and we consider only theories, which obey the following symmetry 

(3.73b) 

With this assumptions we obtain by Taylor expansion 

with somes E [0, 1]. The derivative in (3.74) will be estimated with the help of the Cauchy inequality. For that 

we use the notation 
b,. =min sup sup IF.(¢.,, ... , ¢.,N) - cl. 

cE1Et:z:e(aZ<)• IE ,.,,,E 

(3.49a) 

Jim <P.z,il=~ 

From (3.74) follows 

with t/J~ = L:;f., 1 t/J~,;· If~= 1(-6 + m2 )-1 , then v •• $~-Therefore 

IM({z}lt/Jll :<> !~ [(!~2 +lt/J.I 2
]· (3. 75) 

Estimate (3.75) is useful for not too large external fields .p. 

LeiDDla 3.3.1. Let t/J. E JRN be an external Jleld for a model with N components and propagator 1( -6 + 
m2 )-1 , which ful!llls 

b,. .p• < ..!.. 
tt2 :t - 20 

for all z E (a1l)v. The convergence condition (3.72} is ful!llled, if 

(16b 1} 128N"1b,. 1 
« + ( )2 < . mal< 

PROOF: The condition (3.72) is expressed by integration over the lattice 

(3.76a) 

(3.76b) 

1 [ a-v(n-1) r ] 
(3.72)-<=> 3€ > 1 : c 1 + IM({x}lt/J)I€" + L (n _ 1)! ], .IM(x,z2, ... ,x,.I.Plle"" < 1. 

1, n~2 :C2, ... ,:1:nE(tt2Z) 

From (3.75) and (3.76a,b) follows 

IM({x}I.Pll :<> 1~-
With the help of inequality (3.53) (Theorem 3;2.2. ) follows that the convergence condition (3. 72) is fulfilled, if 

This is equivalent to 

3€ > 2 
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Especially for e = 4 

This is equivalent to 

RIP"( 
16h" 128b N' < 1. 1 - {ma"j\1 'Y 

(16b 1) 128N2-yb" 1 . I "+ ( )• < . v ma10 

Remark : From Lemma 3.2.3. follows that the condition 

b" 2 1 
-·'· <K,2 'f'z - 20 (3.76a) 

has the following form for the -\¢4 -theory without counterterms , the discrete Gaussian model (with extra mass 
m) and the nonlinear u-model : 

(a) ,\</>4 -theory without countertenns 

(b) discrete Gaussian model 

(c) nonlinear u-model 

,\·'·· < _1_ 
'f'z- 802 e 

./,2 < (2?r)t 8~ 
'~'~- 20e 

.p• < r(f)2'¥- 8'l'+• 
~- 20eN · 

(3.77a) 

(3.77b) 

(3.77c) 

For an optimal choice of the constant K. we have to determine 

x-•.a~', a> 0, x E IR~ = {x E IRI x > 0}. We have 
the minimum of the function f( x) = 

PROOF: 
3 3 .. 2 J,.. 

f'(x) = [-2x- + naxn- Jea~ = 0 => x = (-) •. -/ 
na 

(3.78) 

We will ehow the following assertion B for the ,\¢4 -theory with/ without counterterms, the nonlinear 
u-model and the discrete Gaussian model with extra mass: 

B : Let .p be a real external field, which fulfills the inequality 

(3.76a) 

for all x E (a:IZ)". The thermodynamical limit (in the sense of van Hove ) exists for the free-propagator
amputated Greens functions Gc(iii.10 ... ,i/i.n) and the free energy fhlnZ(Ait/J). If the support supp .p of the 

external field .p is finite, the thermodynamical limit (in the sense of van Hove ) exists for the generating 
function 

lnZ(AI.Pl -lnZ(AI.P = o) 

for the free-propagator-amputated Greens functions and the expansion 

(2.47) 

is convergent in some neighborhood of t{l = 0. 
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Corollary 3.3.2 .. Let the partition function for the >.,P4 -theory without counterterms on the lattice A ~ 
(a:IZ)" be 

Z(A].P) =I d,_..(.p) II .-~(4>.+V>.)'. 
~EA 

(3.79) 

If 
>.f(ma)4 < c , (3.80) 

where c = [512ef(16et + 1)]-2 , then the assertion B is valid for real external fields .p, which fulfill >..P! ~ so'•,· 
PROOF: From Lemma 3.2.3. (i) follows 

b~e $ e8 >.~e'. 

Because of (3.78) we choose 1< = ( rb;)i. Therefore 

b" .... -<4>.•e' 
tt2 - ' 

From Lemma 3.3.1. with 7 = N = 1 follows that the convergence condition (3.72) is fulfilled, if 

>.t 
(16ef + 1)512 ef (ma)' < 1. 

(3.81) 

(3.82) 

(3.83) 

(3.83) is equivalent to (3.80) and assertion B follows from Theorem 2.2.1., Corollary 2.2.2. and 2.2.3 .. y' 

For the >..p4 -theory with counterterms we obtain 

Corollary 3.3.3. Let the partition function for the >.,P4 -theory with counterterms on the lattice A C (a:IZ)" 
be 

Z(A],P) =I d!-'.(</1) II .-~(4>.+¢.)'+!om'(4>.H.)'+6• 
•EA 

with v = (-b.+ m2)-1 and 
om2 = 0(1). 

For coupling constants 
>. < min(2/(om2 ) 2 ,c(ma)4 ) 

with c = [512el+6'(16el+6• + 1]-2 the assertion B is valid. 

PROOF: We have 

(3.84) 

(3.85) 

(3.86) 

b~e $ max !e->.(tP..,+i~e)'+t6m"(t;..,+i~e)2+6el = max{e->.?:+6>.~e,t~;!-.l.IC•+>.~tf;!-.l.~~e,+6e}. (3.87) 
tf;..,Em. . ~ .. Em. 

From -.P! + 61<2 </1~ + •;-.p~ ~ (3~<2 + 6Z'J" we obtain 

(3.88) 

Let us choose 1< = ( 1 !~) t. From (3.88) follows 

(3.89) 

Because of assumption (3.86) we have 

om• >. t + [om
2

]
2 

>. < ~. 
4 16 2 

(3.90) 

From (3.89) and (3.90) follows 

b" < 4>.fel+6' and b" < e1+6'. (3.91) 
1<2 

with 1< = ( ,i,.) t. Because of Lemma 3.3.1. with 7 = N = 1 the convergence condition (3.72) is fulfilled, if 

>. .. 
(16e1+6' + 1)512el+6•--'- < l. 

. · (ma)2 
(3.92) 

This inequality follows from assumption (3.86). Assertion B follows from Theorem 2.2.1., Corollary 2.2.2. and 
2.2.3 .. y' 

The following corollary presents an estimate of the activity for the nonlinear u-'-model with extra mass m : 
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Corollary 3.3.4. Lei the partition function for the nonlinear 0'-model on the lattice li C (a:ll)v be 

Z(lil¢) =I dp¥,;-.(¢) II 6((¢. + ¢.)2
- 1). 

zEA 
(3.93) 

6 is the Dirac distribution, (l/l.)zEA• ( ¢z)zeA are fields with N components and the propagator v = ( -Ll.+m2)-1 

obeys the following inequality 
(3.94) 

with m = m + O(a). Then we have for the activity M(XI¢), XC (a:ll)v, lXI = n;::, 2, the following estimate 

.-mL(X) [[4v+(am)2J'l'+1De]" N/2 

IM(XI¢)1 :-:; (n - 1)1sDN2 [4v +(am)'] r(~)(2N)'l' 3 t:; (3.95) 

for real external fields¢. 

PROOF: With the help of the i<!btraction trick (Lemma 3.1.1. ) follows 

Z(!il¢) =I dpf,;-o-6n(¢) II FJ6l(¢.+ ¢.) 
•EA 

(3.96a)) 

with 
(3.96b) 

Because of Lemma 3.4.1. we choose 
N 

6= . 
fo[4v + (am)2] 

(3.97) 

By Lemma 3.2.3., (iii) we have 

~=min sup sup IF.(¢.,I, ... ,¢.,N)-cl =b.:<> (27r6)-'l'oN-leN•'I28 (3.98) 
cEJR. zEX <i>,.,,e<V,;e{l, ... ,N} 

]lm <1>.,,;1=~~: 

where ON-I= 21r'l'r(~)- 1 is the surface of the (N -1)-dimensional unit sphere sN-l, By Theorem 3.2.2., 

Eq. (3.52), with"'= f., follows 

(3.99) 

We choose 
2 26 2 

It = -= 
N fo[4v +(am)'] 

(3.100) 

We insert (3.100) into (3.99) to obtain 

.-mL(X) [23-~ DN•5-1-~e]" 
IM(XI¢)1 :'> (n- 1)! 8DN3[4v +(am)'] for(~) ' (3.101) 

With the choice of (3.97) for 6 the assertion (3.95) holds . ..; 

Corollary 3.3.6 .. Let the partition function Z(!il¢) for the nonlinear 0'-model on the lattice /i C (a:ll)v be 

defined by (3.93}. Let the following inequality for the coupling constant fo be fulfilled 

Info <min(; In [ 2~~tL [4v ~7~:)2]] -In [2~ [4v + (am)'J],; In [r~~)] In [ 2~[4v+ (am)'J] ). (3.102) 
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Then assertion B is valid for allf{l. E JR. with .P~ ~ r•:c,~t [(4v + (am)2)f0[-N;t•. 

PROOF: By Lemma 3.3.1. we have to show 

128N3b~ 
(16b~ + 1)Ji ( )• • < 1. 

o ma "' 

From Lemma 3.2.3. (iii) with 1<
2 = ",:, 5 = lol<v.ftamJ'I (cf. Lemma 3.1.3. ) follows 

b < ~[(4v+(ma)')ii)t· 
~- r(Jt) 2N ° 

From (3.102) follows 
(16b~ + 1) < 2. 

Because of (3.103) and (3.104) we have to show 

lY. 
256e [4v + (am)2 JN3 [4v + (am)2 Ji] ' 
r(Jt) (am)2 2N ° < l. 

(3.106) is valid, because of assumption (3.102) . ..; 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

In the next corollary an estimate of the activity for the discrete Gaussian model with extra mass is given. 

Corollary S.S.6.. Let the partition function for the discrete Gaussian model with extra mass m on the lattice 
A C ( a:IZ)" be 

Z(A],P) =I d~tp.(t/!) ITIL 6(</J.-2.-n)]. 
:~:EA. n.E2l 

5 is the Dirac distribution and the propagator v = ( -6 + m•)-1 obeys the following inequality 

[v •• l ~ n.-mll•-•11. 
Then we have for the activity M(X],P), XC (a:IZ)v, ]X]= n 2': 2, the following estimate 

e-mL(X)+1 [ 4eD L] n-1 
]M(X],P)]~(n-,-1)! 

2
..;2.r pat2 [4v+(am)2

]• [4v+(am)2 Jf 

for real external fields .P. 

PROOF: With the help of the subtraction trick (Lemma 3.1.1.) follows 

Z(A].P) =I d~tp.-6 n(t/!) II FJSl(.p. + .p,) 
•EA 

with 

FJ6l(.p. + .p.) = (2.-6)-t 2: I de •• -w.-,;.)' 6(e.- 2.-n). 
nE(aZ<:)• 

By Lemma 3.1.4. we choose 

6 = p 
4v + (am)2 

From Lemma 3.2.3. (ii) follows 

By Theorem 3.2.1., Eq.(3.35), we obtain 

,.•.-mL(X) [ 8n.~'t•6]" 
]M(X]f{l)] ~ (n- 1)! 16D ,.o..jW . 

The assertion (3.108) is valid, if we choose ~<2 = 26. ../ 
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Corollary 3.3.7. Let the partition function Z(AI.PJ for the discrete GauSBian model with extra mass on the 
lattice A C (a2Zt be defined by (3.101). Suppose that 

" (128e
2

(4 ( )2 ) (128e)
2 

(4v+(am)')
3

) 
">max v+ am , 2 ( )• • 

1r . 1r ma 

Then the assertion B is valid for .Pz E lR, .P~ :"; (22~~! { [<v+fam)']} t. 

PROOF: Because of Lemma 3.3.1. with 1 = (3, N = 1 we have to show 

128f3b~ 
(16b~ + 1)( )• 2 < l. ma 1< 

Because of Lemma 3.2.3., (ii) with 1<2 = 25 we have to show 

(~+ 1) 64e(3 
-/2ir6 (map yl2;;:5 ~ 

<1. 

(3.115) follows from assumption (3.113) if 5 = <v+f.m)'. ,J 

3.4. IMPROVED ESTIMATES FOR ACTIVITIES 

(3.113) 

(1.114) 

(3.115) 

In the contrast to the supposed boundedness of F.(¢>.) in section 3.2. we will suppose here that the 

derivatives of F.(¢>,) increase not faster than eH: (for some<) in this section. For example F,(¢>.) may be a 
polynom. We have the following improved estimate for truncated expectation values: 

Theorem 3.4.1. Let F, E C00
• We consider the truncated expectation value 

M(XI.Pl = (II IF.(¢>.+ .P.); I} 
zEX 

for X= {:~: 1 , ••• , :~:,.} c (a2Z)v, n;?: 2. The expectation value is de!lned by 

(.) = f dp,.(¢>)1 -I. v = (-/':,. +m2 )-1• 

Let < > 0 be a constant, which fulfills 

and 

3 (ma) 2 

<<--
- 4 1 

' a• 
c,(d) = sup sup le-H• a"'"F.(¢>.)1 ~ (d -1)! C~h, 

:llE(a.2Z)" ¢.,em. 'Pz 

where C, and h, are •-dependent constants. Then we have the following estimates 

(i) Let D and m(= m+ O(a)) be constants, such that 

lv •• l :"; v.-mll•-•11 

is fulfilled. Then 
-mL(X) " , 

IM(XI.Pll :"; (n- 1)!. c• [SDC~h,]"et Wzex [¢.[ . 
4D1 < 

(ii) We have 

a-v(n-•l 1 IM(XI.Pll :<> (n- 1)!t;~: [ 81C~;·.t~' I" 
z,, ... ,z.E(a!Z)" 1 , ( J 

for all m > O, .Pz E(/1 with I.Pzl ~ 1<, x E (a2Zt. 
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PROOF: Let us set a= 1. 

(i) Thorn the tree graph formula (Theorem 2.5.1. ) and the inequality (3.94) follows by extracting of a 

Gaussian factor e- t~; 

We will estimate the Gaussian measure by the following method : 

I(F(.P)G(¢))1::; I(G(¢))1 sup IF(¢)1. 
~ 

(3.122) 

(3.123) 

Since the propagator ~[•] may be exhibited as a convex combination of partially decoupled interactions 

(see app. B or [8], Eqs. (3.8)-(3.12)), we get by the assumption (3.118) the inequalities 

er~!•l ::; • ~. n::; ~n. (3.124) 

We obtain with then X n-matrix vx = (v •• J •.• ex and nx = (c •• J ••• ex 

1 J dp~.(.P)•t 2: •• x ~; 1 = 1 det ['l'~x !•Hb~x!•ll- 1 
- •Rxlrt 1 = 

=I det(Rx- qvx[•])-tl::; det(~Rx)-t = 2". (3.125) 

We insert this on the rhs of inequality (3.122). Thereby 

IM(XI¢)1 :0; 2"('l'D)"-1e-mL(X) L L 

We have for the bracket { ... } 

. ' z(l)=o:ex 

Thorn -!.P~, + •¢.,¢.,::; •¢~, and (3.119) follows 

Therefore 

(3.127) 

(3.128) 

1 " 

IM(XI¢)1::; (n- 1)1 ('l'D)"-1e-mL(X)(2h,)"et 2: •• x I.P.I' I: r du,._.f('ll•) II c~·<•l(dr('l)- 1)1. 
" Jo l-1 

(3.129) 

Because of 

(3.130) 
1=1 

and the special case (3.30) of Lemma 3.1.5. , we obtain 

(3.131) 
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This is equivalent to the assertion (3.120). 

(ii) Because of f•E(a7J;)• [v,[ =~.from the tree graph formula (Theorem 2.5.1.) follows 

/.,, ... ,."E(a7J;)" [M(X[¢)[ :5 (,;;2 )''-
1 ~ ~ J dcrn-d('1!•) J di-'~•I•J(cP)efL.ex>~>! 

~(l)=~ex 

We get (3.132) from (3.122), if we replace 

e-mL(X) --+ 1 and D --+ -\. 
m 

(3.132) 

(3.133) 

Therefore (3.121) follows from (3.120), if we replace e-mL(X) by 1 and D by~ on the rhs of inequality 

(3.20). y' 

In the next Theorem we present a generalization of Theorem 3.4.1. for models with N components. 

Theorem 3.4.2. Let 
(3.134) 

be functions with N arguments and F. E c~ for all X E ( a1l)". We consider the following truncated expectation 

value 
M(X[¢) = (IT !F.(.P. + ¢.); ]) 

•EX 

for X = { x1 , ••• , x,} c ( a1l)", n ~ 2. The expectation value is defined by 

(.) = J d!-',.(<P)[ .]. 

The kernel of the propagator v is 

Let e > 0 be a constant, which fulfills 

and 

3 (ma)2 

•<--
- 4 1 

where C, and h, are •-dependent constants. Then we have the following estimates 

(i) Let D and m( = m + 0( a)) be constants, such that 

1 "••I :;; De-mll•-•11. 

Then 
-mL(X) " "' , 

IM(X[·1·)[ < (n- 1)' • [8D 2N1C2 N 2 h ]"ef L..ex w;-• lw.,;[ 
"' - . 16D1C~N2 ' ' 

(ii) We have 

a-v(n-1) r [M(X[¢)1 :;; (n- 1)! (m~2 
2 [812N C~h,~etN~' ]''. 

J.,, ... ,•nE(a7J;)" l61C, N (ma) 
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PROOF: Let us set a = 1. 

(i) With the help of the tree graph formula (Theorem 2.5.1. ), inequa.lity (3.94) and the multinominial 
theorem we obtain by extracting of a Gaussian factor e-H! 

JM(XJ.P)J :5 ('yD)"-•e-mL(x) L L 
• % 

Z(1)=~ex 

(3.139) 

n 

:5 enNt~'(NC,)2(n-l)h~ IT dl('l)!. (3.140) 
l=l 

Estimation of the expectation value in (3.139) as in the proof of Theorem 3.4.1. (see (3.123),(3.125)) 
yields 

JM(XJ.p )J :5 (n- 1}! ("'ID)"-1e-mL(x) (NC,)2(n->) (2N h,)"e! I:.ex I;::,, J.P •. ;J' 

I: { do-,._>f('ll•) fi dl('l)!. (3.141) 
q 0 l=l 

By the special case (3.29) of Lemma 3.1.5. we obtain 

JM(XJ,P)J :5 (n- 1)! (B'J~)n-1 .-mL(Xl(NC,)2(n-1)(2N h,)"et I:.ex I::,J.P •. ;J'. (3.142) 

Therefore assertion (3.137) holds. 

(ii) The assertion (3.138) follows from (3.137) by the following substitution 

.-mL(X) __, 1 and D--> _1_ 
m2 (3.133) 

(cf. proof of Theorem 3.4.1., (ii)). y' 

Remark : We get the estimates of Theorem 3.4.1. from the estimates of Theorem 3.2.1., if we substitute: 

1<2 --> c4 
2 and b~ --> 2h,eti.P.J'. 

')" ' 
From this remark follows a lemma, which corresponds to Lemma 3.3.1. : 
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Lemma 3.4.3. Consider a model with 1 component, propagator v = 'Y( -L> + m2 )-1 and external field .p, 
which fulfills 

b~ I 12 . ( 1 J 
"'2 '1/1. ::;; mm 20' b~ (3.144) 

for all x E (a:IZ)". Suppose (with the notation of Theorem 3.4.1. ) that 

(32h t~' 1) 128h,c~.t~' 
,e + (ma)" 'Y < 1. (3.145) 

Then the convergence condition (3. 72} is fulfilled. 

We want an improved estimate for the activities of the .1.¢4 -theory without counterterms. For that we will 
need the following lemma. 

Lemma 3.4.4. We have form, n E lN* = {1, 2, ... } and positive constants A, e 

if 

is fulfilled. 

A< _•_,2 
- 128 

PROOF: Consider the function f(x) = x"e->•', x 2::0. Because of /(0) = f(oo) = 0 and 

/'(x) = x"- 1 (n- 4Ax4 )e->-•' = 0 ==> x = ( -~--)'/ 4 
4.1. 

the maximum of /( x) is at x = ( 4~) t. Hence 

' • n .. 
lx"e-'" I::;; (

4
,\e)'. 

With the help of the Cauchy inequality we obtain 

From x4 - 6~~:2x2 + 911:2 2:: 0 follows 

I d" ->-•'I < n! s>.~' -e -maxe . 
dxn - ltn ::r:ElR 

By the special choice 1< = ( 3~>.) t follows 

I d" ->.•'I 1 (32Ae),.. -e <n. -- •. dzn - n 

With the help of the Leibniz' formula we have 

dn m;n(m,n) ( ) 1 ~-; 
-~::r::l ( m ->..x") -A-x2 L n m. m-i u.-- ->...z" e • - x e =e " x --.e = 

dx" . j (m- j)! dx"-3 
J=O 

- I -tz2 m m-j -.\z., 
m;n(m,n) ( ) 1 a,n-; 

- n. e ~ j x (n-j)!dx" ;• . 

From (3.154) follows 
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Hence with the help of (3.149) 

We have to consider two cases : 

2. (32e>.)-t > ( ,;j2 )1 

f ... [ $ n! (32e>.) "<m 2m $ n! ( {fJm( ~)n. 
The second inequalities of (3.156), (3.157) follows from the assumption >. $ 1; 8 <". y' 

Because of 

we obtain by Lemma 3.4.4. 

for all dE IN*= {1,2, ... } if 
e 

>. < -·· - 128 

(3.156) 

(3.157) 

(3.158) 

(3.159) 

(3.147) 

is fulfilled. Therefore the inequality (3.119) of Theorem 3.4.1. is fulfilled for the >.¢4 -theory without countert
erms with the constants 

h' = 33 , 2 4( -~-f >.. .. (3.160) 

We obtain by Theorem 3.4.1. with '"1 = 1 the following estimate for the activities of the >.¢4 -theory without 
counterterm.s : 

Corollary 3-4-5. Let the following inequalities for the coupling constant >. > 0 and the propagator v = 
( -!:. + m 2 ) -I be fulfilled 

and 

9e >. < -(ma)4 

- 2048 

[v •• f :s; ve-mll•-•11. 

Then we have for the >.¢4 -theory without counterterms 

[M(XI.PJI $ (n- 1)1 2e-mL(X) (256v'aD )net(ma)' L.ex I.P.I'[-"'-Jn 
. 3De(ma)" e (ma)2 

for all ,p, E C, x EX, lXI = n ~ 2. 

PROOF: Substitution of (3.160) in (3.120) with '"1 = 1 and • = i(ma)2 gives the assertion. y' 

Substitution of (3.160), '"1 = 1 and < = ~(ma)" in Lemma 3.4.3. gives the following corollary : 
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Corollary 3.4.6. Suppose 

and 

A 1 _a(ma~)' --< --e' 
(ma) 4 6747 

lt/1$1 2 :S min( 
1
r>, ~<2) 

80ve>. 

for all x E ( a2Z)". Then the assertion B is valid for the >.¢>4 - theory without counterterrns. 

4. BOREL SUMMABILITY AND ANALYTICITY 
OF THE ACTIVITIES ON THE LATTICE 

(3.163) 

(3.164) 

The perturbation expansion of the partition function Z(Ait/1) for the >.¢>4 -theory is divergent (see intro

duction). Likewise the perturbation expansion for the activities is .divergent. In this chapter we will show, 

that the perturbation expansion for the >.¢>4 -theory on the lattice is Borel summable in >.. For the proof we 

will use the methods of section 3.4. and we will show that the sufficient condition for Borel summability by 

Nevanlinna-Sokal [71 is valid for small coupling constants A. 

We obtain an analytic expansion for the activities, if we introduce a new coupling constant I· For that we 

replace the propagator v by 
(4.1) 

We have v[11 = v. In this manner all lines in the Feynman diagram, which connect different points, get a factor 

I· In section 2.4. we have shown that the activities consist of point connected Feynman diagrams. Therefore 

all activities A(XIt/1) with lXI 2:: 2 vanish if 1 = 0. Hence the polymer system consists only of monomers if 

1 = 0. We will show in section 4.2. that the activities are holomorph if 1 is in a small complex strip around the 

imaginary axis. 

4.1. BOREL SUMMABILITY OF THE ACTIVITIES FOR THE >.¢>4-THEORY ON THE LATTICE 

We will use the following Theorem by Nevanlinna-Sokal [71, which presents a sufficient condition for Borel 

summability : 
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Theorem 4.1.1. (Nevanlinna·Sokal). Let f be analytic in CR = {z EIIf I Re z-• > R-1} and let the 

~ ... 

Fig. 4.1 Region of analyticity for f. 

following estimate 
N-1 

f(z) = L akz" + RN(z), 
k=O 

be full filled uniformly in N and z E CR. Then 

(1) B(t) = I:::"=o antn /n! is convergent for ltl < lfu. 

(2) B(t) has an analytic continuation in the complex region 

Su = {t E Cl dist(t,IR.+) < 1/u}, 

s, 

Fig. 4.2 Region of analyticity of the Borel transform 

and is satisfying the bound 

B(t) ::; K exp(ltl/ R) is uniformly in Su• with u' > u. 

(3) f is represented by the following absolutely convergent integral : 

for all z E CR. 

f(z) = ~ {oo .-•1• B(t)dt 
z lo 
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We consider the activities .A( X[¢) for the partition function 

Z(A[¢) = f dp.. ( <{!) II .-•(•!>.+¢.)' 
zEA 

(4.6) 

with v = (-b. + m2 )-1 • We need two lemmata for the proof of the Borel summability of A( X[¢). The first 
lemma presents the region of analyticity for the activities. 

Lemma 4.1.2. The activities .A( X[¢), X~ A, for the >.<{!4 -theory are analytic in {>. E€ I Re >. > 0}. 

PROOF: The integral on the rhs of (4.6) is convergent for Re >. > 0. From the analyticity of .-.>.(.P.+.P.)' follows 
the analyticity of the partition function Z(A[¢) for Re >. > 0. Because of the inversion formula (2.14), the 
analyticity of .A(X[¢) in Re >. > 0 follows . ../ 

The next lemma sbows, that the assumptions of the Theorem by Nevanlinna·Sokal are fulfilled for the 
>.<{!4 -theory : 

Lemma 4.1.3. Let .A( X[¢) be the activity for the >.<{!4 -theory without counterterms. The partition function 
Z(A[¢) is defined by (4.6). Suppose that positive constants <, c, K exist, such that 

0 < w :o; ell < 1!, (4.7) 

Let the asymptotic expansion for A( X[¢) be 

N-1 

.A( X[¢)= L ak>.k + RN(>.). (4.8) 
k==:O 

Then the following estimates are fulfilled for real¢., z E A, and>. E {z E€ I Re z- 1 > R- 1
} = CR with R = 

e .,2 . 
128'" . 

(i) For monomers X= {x}: 

with 

(ii) For polymers X with [X[ = n 2': 2 : 

with 
- _ (n- 1)! (4Ke<)n- 1 [II t¢!] -mL(X) 

.A2 - 47rN (1- c)nf• e e 
zEX 
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€ 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

( 4.13) 

(4.14) 

where L(X) =min, I:(••JE• [[x- y[[ (the minimum is over all trees 1J, which connect all points of X). 

PROOF: Let us denote the >.- dependent activity .A(X[¢) by A.>.. The function h(t) = Au possesses for 
Re >. > 0 derivatives from the right in t = 0 of every order. The Taylor expansion is 

(4.15) 
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with the Lagrangian remainder 
hN(t) = ...!._h(N)(s)tN 

Nl 

with somes E [0, t]. Therefore we obtain for the power series of the activity 

N-1 

A~ = h(1) = L akAk + RN(A). 
k=O 

The remainder term RN(A) fulfills 

(i) : For X= {z}: 

IRN(A)I:,; ma.x I aN (e-<>(4>.+ ... )')1 2..:,; I((.P. + .P.).N) lAIN :,; 
<E(o.IJ atN m N! 

:,; 1/ dp.(.p)eH!I ma.x I(.P. + .p,)'N .-t<>!l IANI~. 
~em . 

Computation of the Ga.ussia.n integra.! yields 

( 4.7) implies 

The maximum in (4.19) is bounded by 

ma.x I(.P. + .P.)•N .-t<~>! I = ma.x I.P~ .-t<<>·-"'·l' I :<;; 
~,..Ent 1/>.,EIR 

(4.16) 

(4.17) 

( 4.18) 

(4.19) 

(4.20) 

(4.21) 

Since -~.P~ + •.P.o/1. = -•(~- ¢,)2 + •¢;, the first maximum on the rhs of inequality (4.22) is bounded by 

et"'!. The second maximum is bounded by (8,';' )2N. Hence 

From ( 4.20), ( 4.22) a.nd { 4.24) follows 

From Stirling's formula. [20] 

follows 

Hence 

This proves assertion (i). 

(ii) : For lXI = n ~ 2: 

( 4.23) 

( 4.24) 

0<8<1 ( 4.25) 

( 4.26) 

( 4.27) 
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With the help of the tree graph formula (Theorem 2.5.1.) and the multinominial Theorem, it follows from ( 4.18) 

( 4.28) 

Extraction of a Gaussian factor .- t.P! yields 

( 4.29) 

Computation of the Gaussian integral yields 

J dp,.(¢) II eH; = det(2.-v[s])-t det(2.-(v[s[- 1
- •))-t = 

zEX 

= det(v[s[(v[sr'- •Wt = det(lJ:- w[s])-t. (4.30) 

Since the propagator v[s] is a convex combination of partially decoupled interactions (cf. app. B or [8], Eqs. 
(3.8}-(3.12)), from assumption (4.7) follows 

<v[s] ::; •v::; ell. ( 4.31) 

Hence J dp,.(¢) II ef<>;::; (1-c)-'t. 
zEX 

( 4.32) 

Furthermore 

Since-~¢!+ •¢.¢, = -<(~- ¢,)2 + •¢;, the first maximum on the rhs of inequality (4.33) is bounded by 

et.P!. From this and Lemma 3.4.4. we obtain for >. ::; ,;8 •
2 

We insert ( 4.34) on the rhs of ( 4.29). This gives 

[RN(>.)[ ::; L L II [vx,z; [ J du,_tf(~ls)(1- c)-'f 

" ,,,,!.ex (ii)E• 
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Because of I:.ex d.('7) = 2(n -1) and Jv%y] :5 Ke-mlJ%-•11, we obtain 

(K")n-1 -mL(X) 2 8 2n. 
]RN(A)]<(n-1)! 2 e [IT•t"·J(-)2N]A]N( L IT~J 

- (1- c)n/2 •EX <e <•.> •EX n,! 
l:nk=N 

L: [ do'n-.t('ll•l IT d,("l'. (4.36J 
, 0 zex 

Applying the multinominial Theorem we obtain 

With the help of Stirling's formula [20] 

follows 

NN+t = ~N! .N.-Uf12N, 
v 2.-

0<9<1 

2n... 2N L IT~< -"-N!. 
{ } nz! - 2'11"N 
"" zEX En 11 =N 

We insert (3.29) and (4.38) on the rhs of (4.36) to obtain 

( 1)1 (4K )n-1 -mL(X) 8 
]R (A)] < n- . e< e [ IT•tii>!J( -)2N]A]N Nl 

N - 4.-N (1- c)"/2 < 
•EX 

for ]A] :5 1 ~8 • 2 • Thls proves as<ertion (ii) .,j 

( 4.37) 

( 4.25) 

( 4.38) 

(4.39) 

By Lemma 4.1.2. and 4.1.3. the assumption of the Theorem by Nevanlinna-Sokal are fulfilled. Therefore 
the activities A( X]¢) are Borel summable in A and we have the following Theorem: 

Theorem 4.1.4. Let A(X]¢), X~ A C (a2Z)" be the activity for the partition function 

Z(A]¢) = f d!J,(¢) IT•->.(~.H.)' 
%€A 

(4.6) 

(i.e. for the A¢4 -theory ). Suppose that for positive constants<, c, K the following inequalities 

0 < w :5 en< n, (4.7) 

are fulfilled. Then the perturbation expansion 

00 

A(X]¢) = La•Ak ( 4.43) 
k=O 

is Borel summable. More precise, with the notations 

(4.44) 

the following assertions are valid 

(i) 
00 . 

B(A) = L ~~ Ak converges for ]AI < 1/u. 
k=O 

( 4.45) 
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(ii) B(>.) bas an analytic continuation in the complex region 

Su = {>. ea: I dist(>., lR+l < 1/u}, (4.46) 

and is satisfying the bound 

[B(>.)[ ~canst. exp(J>.J/R) uniformly in Su•, u' > u. ( 4.47) 

(iii) A(X[,P) is represented by the following absolutely convergent integral 

A(X[,P) = [o e-• B(>.t)dt ( 4.48) 

for all>. E Cn = {z ea: 1 Re z-1 > R-1 }. 

4. 2. AN ALIT! CITY OF THE ACTIVITIES 

We consider for finite sublattices A C ( a:IZ)" the partition function 

Z(A[,P) =I d~•[7[(cp) II F,(<Px + .Px) 
xEA 

( 4.49) 

with 
(4.1) 

Theorem 4.2.1. Let v = (-6 + m 2
)-

1 be the propagator and A(X[,P), X~ A c (a:IZ)", the activities for 

the partition function Z(A[,P), which is defined by (4.49). Let F, be bounded functions for all o: EA. Then the 

activities A(X[,P) are bolomorpb in"( in the complex strip -vxx(ma) 2 < Re "I< vxx(ma) 2 • 

PROOF: Because of the inversion formula {2.14), it is sufficient to show the analyticity of.Z(AJ.P) in "I· By 

Fourier transformation we obtain 

Z(X[,P) =/III dq, F,(q,)e'•·"·e-t•·•"•']e-H•·•hl•l. 
xEX 

( 4.50) 

From (4.49) follows for positive definite quadratic forms (q,v["f]q) 

[Z(X[,P)[ ~ II sup JFx(<Px)[ < oo, 
xEX tP=ER 

( 4.51) 

since F, are supposed to be bounded functions. Since the integral on the rhs of ( 4.50) is convergent and the 

e-function e-H•·•hi•J is analytically in "(, Z(A[.P) is an analytic function in "I· By Frobenius' Theorem [19] the 

following inequality is valid for an eigenvalue 8(Re"() of the matrix ( v(Re "!)xy)x,yEX : 

min([vxx[- L [(Re "f)vxxl) ~ [8(Re "!)[. 
xEX 

yEX 

(4.52) 

The lhs of this inequality is positive for [Re "fl < [vxx(ma) 2 [, since EyEX Jv,.J ~ EyE(•lZ)•I"""I = (m~)'' 

Hence [8(Re "!)[ > 0. Because of 8(0) > 0 and the continuous dependence of the eigenvalues from Re "(, we 
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obtain 6(Re 7) > 0, if [Re -y[ < [v •• (ma)2 [. Therefore the quadratic form (q, v[Re -y]q) is positive-definite for 

[Re -y[ < [v=(ma)2 [. This proves our assertion. v 
Remark : The activities A(X[,P) are an analytic continuation of a convergent power series in 'Y· 

6. RENORMALIZATION GROUP AND MAYER EXPANSION 

5 .1. RENORMALIZATION WITH X-DEPENDENT COUNTERTERMS 

We will consider a theory with X-dependent mass and vacuum energy counterterms. The partition function 

for a finite sublattice XC (a?l)v have the following form 

Z(X[,P) = / dp.(,P)[ IT 0-A'II( ... H.)j0-6Vx(<l>+¢) 

zEX 

(5.1) 

with X-dependent counterterms 

6Vx(.P + .Pl =- L.: [6m2 (P) L(¢. + .P.)2 + 6e(P)[. (5.2) 
PCX :E:EP 

The counterterms can .be fixed (for small coupling constants >. and (8;J',·) ;:: 0), such that the following 

renorma.lization conditions 
lnZ(X[,P)[,P=o = 0 

IJ2 
IJ,P• 1nZ(X[.P)I¢=o = o 

( 5.3a) 

(5.3b) 

are fulfilled for all finite X c ( a?l)v. In ( 5.3b) we differentiate with respect to constant fields .Pz = .p for all 

zeX. 

PROOF: (i) : We will show that we can find mass counterterms 6m2 (P), such that (5.3b) is fulfilled. Let us 

set 6e(P) = 0. Reformulation of the mass counterterms yields 

" 2 · " 2 " " 6m
2
(P) 2 

L.. 6m (P) L.. ( ¢. + ,P.) = L.. ( L.. [P[ )(!P. + ,P.) . 
P~X :t:EP zEX P~X 

In the following we will use the notation 

6m•(P) = L 6m•(Y). 
Y\;P [Y[ 

The renormalioation condition .(5.3b) is equivalent to 

{ L.: ((>.2 ~~ ~~ :__ 2>.6m2 (X) ~~ .P.- 2>.6m2 (X) ~~·.p. +4[6m2 (X)]2 .P • .P.))I,;=o+ 
z,yEX 

(5.4) 

(5.5) 

L.: ((->. ~:.· + 26m2 (X)))- «L.:C->.~~ + 26m2 (XJ4>•))2 .}I,;=o = o (5.6) 
:~:EX zEX 
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with 

This is equivalent to 

with 

{{.}}=I dtJ.(91)[ IT e->li,(~.)Hfi>'(X)~!J[.]. 
xEX 

A[cm2 (X)J2 + B8m2 (X) + c = F(cm2 (X)) = o 

A= 4 E {{{91.91.}}- {{91.}}{{91.})} 
~.yEx 

B = 2]X]{{1}} + O(A) 

a•v 
c =-A E {{ a¢;JJI<~>=o· 

xEX 

(5.7) 

(5.8) 

(5.9a) 

(5.9b) 

(5.9c) 

The function F defined by (5.8) is continuous. For small coupling constants A and {a;;)'t} 2': 0 we have 

F(8m2 (X) = 0) :50 and F(8m2 (X)) 2': 0 for large 8m2 (X). By the mean value theorem exists a positive real 
solution Sm2 (X) of Eq. (5.8). By the Mobius inversion formula (Lemma 2.4.2.) we obtain from Eq. (5.5) the 
mass counterterms om2 (P), P ~ X. 

(ii) : We will show that vacuum counterterms 8e(P) exists , which fulfilis (5.3a). Eq. (5.3a) is equivalent to 

Se(X) = L 6e(P) =-In{/ dtJ.(91)[IT .->li,(~.)+EPs;x 6m'(PJE.eP~;l}· (5.10) 
Pf,;X xEX 

The coefficients 6e(P) are determined with the help of the Mobius inversion formula (Lemma 2.4.2.) . y 

With 
Z(X]¢) = [IT 0->li(~.H.)j 0-6Vx(4>,+¢,) (5.11) 

<EX 

the partition function reads 
Z(X]¢) = {Z(X]¢)} (5.12) 

where { . ) denotes the Gaussian expectation value. The polymer representation for Z(X]¢) is defined by 

Z(X]¢) = E IT B(Y]¢). (5.13) 

X=EY y 

Polymers of this polymer system are called molecules and the activities B(Y]¢) are called molecular activities. 

The following Theorem gives an expression for B(Y]¢) and shows B(Y]¢) = O(AIYI). 

Theorem li.l.l. The molecular activities of the polymer representation (5.13} are 

B(P]¢) = [IT e->ll,(4>.+¢,)] { 61,JPI + L IT [e-om'(M) E.eM(4>,+¢,)'+6o(M) - 1]} (5.14) 

xEP P MEP 
'"1>1> P=P 

for all P ~ X. The sum is over all sets P, which consist of sets P ~ X, such that the graph 7(P) is connected 

( cf. section 2.5. 5. ) and 
supp P = {:z; EX ]3M E P with :z; EM}= P. (5.15) 

Suppose that the renormalization conditions (5.3a,b) are fulfilled. Then 

(5.16) 

PROOF: We split the e-function 

.Om'(P) E,.p(4>,+¢.)'+6e(P) = 1 + fp(91 + ¢). (5.17) 
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Therefore 
.-Wx(Hol>) = II [1 + /M(¢1 + ¢)] = L II /M(¢1 + ¢), (5.18) 

M~A Q MEQ 

where the sum is CJVer all sets q which consist of subsets of X. For q we define the graph 7(Q) (see section 
2.2. ). Vertices of 7(Q) are the elements of q and two vertices P;, P; E q are connected by a line, if P;nP; i' 0. 
The partition of 7(Q) in connected subgraphs 7(P;) defines the partition 

(5.19) 

where 'Y(A) is connected. Hence it follows from (5.18) 

.-Wx(M.P.) = L II II fM(¢ + ¢). (5.20) 
Q=l:P P MEP 

By the distributive law follows 

.-6Vx(H.P) = L II[ L II fM(¢+¢)]. 
x:>" p P P MEP -W n•PP P=P 

(5.21) 

In the same way as in the proof of Lemma 2.3.1. follows 

(5.22) 

This proves assertion (5.14). In the following we will show 6m2 (P) = O(AIPI) and 6e(P) = O(AIPI) by induction. 
The renormalized activities are defined by 

Z(X[¢) = L II A"'"(Y[¢) 
X=l:Y Y 

and the renormalization conditions (5.3a,b) are equivalent to (see section 1.5. ) 

if[X[=1 
otherwise 

:;. A"'"(X[¢)[¢=o = 0. 

(5.23) 

(5.24a) 

(5.24b) 

We. will show 6m2 (P) = O(AIPI). Since 6m2 (P) is not dependent from 6e, we can suppose 6e(X) = 0 for all 
X c (a?Zr. Suppose [PI= 1, P = {x}. We have 

B( {x}[¢) = .->'II,(<P.+o>.)Hm'(•)(.;.+¢.)'. (5.25) 

Since A"'"({x}[¢) = {B({x}[¢)), it follows from (5.25b) 

:;. A"'"( {x}[¢)[¢=o = {-A::~ 11,(¢,) + 6m2 (x)) + 0(A2
) = 0. (5.26) 

Therefore 6m2 (x) = O(A). Let 6m2 (X) = O(AIXI) for all X c (a?l)" with [X[ < n. Consider P c (a?l)" with 
[PI = n. Because of Eq. (5.14) and the induction hypothesis, we have 

B(P[¢) =II .->'\I(.O.+.P.)[e6m'(P)(.;.+.P.)' -1] + O(A"+l). 
•EP 
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Hence 

Since 
A"n(PI.P) = L CIIiBCYI.Pl; ]} 

P=EY y 

(see app. A ), we obtain from (5.27) and (5.28) 

(5.28) 

(5.29) 

By induction hypothesis follows B(YI.P) = O(AIYI) for allY C P, Y foP. Therefore the rhs of Eq. (5.30) is of 

order An. This proves 6m2 (P) = O(An). 

We will now show 6e(P) = O(AIPI). If IPI = 1, P = {x}, we have 

(5.31) 

From (5.24a) follows 

A"n({x}I.P)I¢=o = (B({x}I.Pl)I.P=o = 1 + (-A'V~(cf>~) +6m2 (x)cf>~ +6e(x)) + 0(A2
) = 1. (5.32) 

Therefore 6e(x) = O(A). Suppose 6e(X) = O(AIXI), if lXI < n. Let us consider PC (a2Zt with IPI = n. From 

(5.24a) and (5.14) follows 

B(PI'fi) = IJ .->.V(~.H.)[0Sm'(P)(~.H.)'+S•(P) _ 1] + O(An+l). 

~EP 

With the help of (5.30) we obtain 

(5.33) 

(B(PI.Plli.P=O = oe(P) IPI + 6m2 (P){cf>~,) + O(An+l) =- L: (IJ[B(Y[.P); ]}l¢=0· (5.34) 
,.~Ey y 

Y,OP 

By induction hypothesis the order of the truncated expectation value is An. From 6m2(P) = O(>.n) follows 

6e(P) = O(An) . ..j 

The molecular activities B(PI.P) are determined by the following recursive equations 

for all x E ( a2Z)" and 

(B({x}I.P))I.P=o = 1 

(B(PI.Pl)l¢=0 =- L: CIIiBCYI.Pl; lli.P=O 
P=EY y 

Yo'P 

The renormalized activities are determined by 

M'"'n(P[!/1) = A"n(PI!/1)- Ot,IPI = L (IliB(YI'fl)- 1; ]} 

P=EY y 
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with the renormalization conditions 
M'"•"(PI.P)I.P=o = 0 

:;.M'"•"(PI.P)I.,=o = o 

for all P c (a7Z)v, IPI < oo. The renormalized Mayer amplitude is defined by 

-viXI 
.Mre"(XI.Pl =a lXI! M'" ... (XI.P) 

and the renormalized augmented Mayer amplitude is defined by (cf. (2.46)) 

with 

Mre"(XI.P) = M'"•"(XI.P) IT n(x)!/(n! av") 
•EX 

oti•Hnct 

M'"•"(XI.P) = I: a(Q) IT M'".,.(PI.P) 
Q PEQ 

••PJ> Q•X 

(5.37a) 

(5.37b) 

(5.38) 

(5.39) 

(5.40) 

(for the definition of n(x), Q, a(Q) see section 2.2. ). From the renormalization conditions we obtain a simple 
relation for the two point renormalized connected free-propagator-amputated Greens functions, if the theory is 
symmetrical about the transformation .p --+ -.P on the lattice A C ( a7ZY: 

G~·"(~,.!:;,) =a·'· a;.,. I: M"•"(PI.P)I.,=o· 
'f"Z1 't'Z2 p 

(5.41) 

.fl•"2EP!j;A. 

In general 

(5.42) 

with z = {z,, ... ,zk}, Cluster Q.= (P, ... ,Pk), ax,= ILex,k· Fig. 5.1 shows the both poss.ib· 
le forms of the cluster for the 4 point renormalized connected free-propagator-amputated Greens function 
G~"(~1 ,!:;,,&ao&4), if the theory is symmetrical about the transformation .p--+ -1/1. 

Pig. 5.1 Cluster for the 4 point renorm.alized connected free·propagat~r·amputated Greens function G~t!"(£1 , •.. ,,L), if th~ theory 

is symmetrical about t/J--¢. 
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5.2. GENERALIZATION OF THE TREE GRAPH FORMULA AND ESTIMATES 

Because of 
Z(X[t/1) = { L IT B(P[t/1)), (5.43) 

X=l:;P P 

the renormalized activities Ar"'(X[t/1) are represented by truncated expectation values (see app. A) 

Ar'"(X[t/1) = L til[B(P[t/1); ]). (5.44) 
X=LP P 

The activity M'"<n(X[t/1) = -6qx1 + Ar'"(X[t/1) on the doubled lattice is 

M'"'"(X[t/J) = L tiliB(Pit/1)- 1; ]). (5.45) 
X=l:;P P 

For these truncated expectation values exist a generalization of the tree graph formula of section 2.5 .. 

Theorem 5.2.1 .. Let M1 , ••• , M, be disjoint subsets of (a:IZ)v and B(.M;[t/1) molecular activities, whicb de
pends only from¢>., t/J. with x EM;. Then 

r' a a n 
{[B(M;[t/1); ]) = LL Jn d<T,-d(1J[s){ IT Ia¢> •M.u>M•u> a¢> ] IT B(M;[t/1)).1•1 

tr f1 0 (ij)E'I M ... (i) M.,.(i) i=l 

where 

with VM;Mi = Xu;'VXMt' x =characteristic function and 

The sum is over all permutations 

with .-{ 1) = 1 and over all n-trees 1J 

with 1J(k) < k. 

.. {
{1, ... ,n}-+{1, ... ,n} 
i ,... .-{i) 

{ 
{2, ... , n}-+ {1, ... , n- 1} 
k,... 1J(k) 

PROOF: The Fourier transform B(M[q) of B(M[t/1) is defined by 

B(Mit/Jl = Jr IT dq.e;•.<M.P.>Jii(Miq). 
•EM 

We insert (5.51) on the rhs of (5.43). This gives 

Z(X[t/1) = L j ITt IT dq.)B(M[q)e-t(m). 
X=LM M •EM 
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(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 

(5.52) 



(5.53) 

(5.54) 

(5.55) 

B, is the set of all graphs with n vertices. We decompose Bn into connected Mayer graphs 9I, I~ {1, ... , n} ~ 

!!·Hence 

[X[ [ ] 
Z(X].P) =I: I: . I: TIL: I nn dq •• -t(q,•u,.v,•lii,(M]q) n [e-t(•·•M;M,•)-1]. (5.56) 

n=tx=I::;~,M; !!.=I::I I ih I iEI (i;)Ei!I 

We omit the indices in (5.56). This gives 

with 

z(x].p) = I: I: n A(Q,{M}) 

X=I:M {M)=I:;Q Q 

A(Q, {M}) =I: I [ n ( n dq.)e-+<•·•MMq) B(M]q)] n 1·-t(•·•M;Mjq) - 1] 

i}q MEQ zEM (RS)Ef!q 

(5.57) 

(5.58) 

where Q is a subset of the partition {M} of X and I: Q is a partition of {M}. 9x labels the set of all Mayer 

graphs with vertex set Q. By the distributive law follows 

I: I: fll(Q,{M}) = I: n[ I: A(Q,{M})]- (5.59) 

X=I:;M{M}=I:;Q Q X=I:;Q Q Q=I:;M 

From (5.43), (5.57)-(5.59) a.nd the definition of the truncated expectation value follows 

I: (il!B(M],P); ]) = I: A( X, {M}) = 
X=LM M X=I:;M 

I: I: I [ n ( n dq.)e-H•·•MMq) B(M]q)] n ].-t<•·•m) - 1]. (5.60) 

X=I: M i!{M) ME{M} zEM (RS)Ei!{M) 

Let us set B(M]!/1) = 0, if M # M; for all i = 1, ... , n. Therefore Eq. (5.60) yields 

(IT!B(.M;]!/1);]) = I: I rftc n dq.)e-t(q,•M;M;•lii,(M]q)] n [e-t<•·•M;Mjq) -1]. (5.61) 

t=l GE!),. w=l zEMt (si)EG 

9n labels the set of all Mayer graphs with vertex set !! = {1, ... , n }. We obtain by the abstract tree graph 

formula (see app. B, Corollary B.S. ) 

(g[B(M;I!/J); n = ~ ~ { du,_tf('ll•) 1 W,c.u. dq.).-t<•··.v,.v,q) ii,(M]q)] 

n [- I: q.v •• q.Je-t<•·•l•l•l. (5.62) 
(if)E'l zEM,.(i) 

II'EM,.(i) 

We apply the inverse Fourier transformation on the rhs of Eq. (5.62). This proves the assertion. y' 

In the same way we obtained estimates for the truncated expectation value (Il.ex [F.(¢>.); ]) by the tree 

graph formula, we obtain estimates for the truncatedcexpectation value (IJ~= 1 [B(M;],P); ]) with the help of the 

generalized tree •graph formula ( 5.46). 
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Theorem 6.2.2. Let M1, ... ,M,. be disjoint subsets of (a1Z)" and B(M;[!/1) molecular activities, which 
depend only on ¢a, !/Ia with x E M;. Suppose that B(M;[!/1) are holomorph and bounded functions in 
s.lM;I = {(¢a)aeM; ea;IMd [[Itn ¢a[ :51<}. We introduce the notations 

for all i E {1, .. ,, n} and 

c~' ~f min sup sup 
cEnt zEM; .P~e (fJ 

flm .,.;~:1="' 

n 

[B(M;i!/1)- c[ < oo 

C(M1 , ••• ,M,.) = (JJ[B(M;i!/1); [). 
i=l 

Then we have the following estimates : 

(i) Suppose that for positive constants D, m the following inequality 

is fulfilled. Then 

with P = 2:::7=1 M;. 

(ii) Let 

Then 

IV [ < De-mila-vii ay -

SDemL(P)[C(M1, ... ,M,.)[ < (n-1)! n" [8DemL(M;Jc!f_M,I] 
K-2 - 2 K.2 

i=l 

a-" r [v •• l = -( 1 )2 < 00. 
lxe(a~)v ma 

a-v(•-1) f 8[C(M1 , .•. ,M,.)[ < (n-1J!ft[sc!f_Md] 
J.,, ... ,z,E(a"O,)• (ma1<)2 - 2 i=1 (ma1<) 2 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

with M; = {xn,+···+n;-<+1> ... , Xn,+no+··+n; }, [M;[ = n;, for all i E {1, ... , n} and 8 = 2:::~=1 n;. 

PROOF: (i) : By Theorem 5.2.1. and (5.65) follows 

D"-1.-mL(M,, ... ,M.) (5.69) 

where d;(f!) =number of lines in then-tree l"/, which emerge from vertex i, and 

L(M1 , ••• , M,.) = min " min [[x- y[[ 
" L =EM, 

(if)Eq liEMj 

(5.70) 

i.e. L(M1, ... ,M,.) is the length of the shortest polygon, which connects M1, ... ,M,.. By the inultinominial 
theorem follows 

The Cauchy inequality for several variables implies 
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M· 
c~IM•I 

[M;[••(•J. 

(5.71) 

(5.72) 



Because of 

we obtain 
I( " _!!_)4•<•> B(McJ•'•)I < d;('7)! eM.• • 

L- 8¢. ' " - "<!;(•) ~IMd 
xEMo 

We insert this on the rhs of (5.69) and use (3.29). This gives 

Dn-1e-mL(M1 , ... ,Mn) n 

IC(M, ... ,Mn)l :<:; (n- 1)! 2102(n 1) 8n-
1 II c!j'M<I' 

,=1 

From the definition of L follows 

n n 

L(l:M;) :<:; L(M1, ... ,Mn) + l:L(M;). 
i=l i=l 

Therefore (5.74) proves the assertion (5.66). 

(5. 73) 

(5.74) 

(5. 75) 

(ii) : The assertion (5.68) follows in the same way as in the proof for (i), if we integrate over "•• ... , "•-1 E 

(a~)". J 

5.3. RENORMALIZATION GROUP AND MAYER EXPANSION 

The Fourier transform 'i of the field <P on the lattice (a~)" is defined by 

(5.76) 

with px == Er=.-p;x;. The field <Pis called high frequent if the dominant part of the Fourier integral (5.76) is at 

large p. The Fodrier transform v of the translation invariant propagator v is given by 

•• - -
1-!. d"p v 1•<•-•> 

•<y - (2 )V p • 
1r pE[-~.~]~ 

(5. 77) 

The momenta. p of the field <P on the lattice (a~)v are bounded by 

.. 
IIPII < -. -a 

(5.78) 

Therefore the UY·cutolf on a. lattice with lattice spacing a Js ;;. UV-divergences emerge from the continuum 

limit a -+ 0. They are removed' by suitable counterterms. 

Corresponding to Wilson's renormalization group approach [21] the UV-cutolf decreases, if a renormaliza· 

tion group step is done. For that we split off the propagator, v 

V = V
1 + · · · + VN (5.79a) 

where 
;;; = 0 if IIPII <1. [K;-1, K;], • = 1, ... ' N (5.79b) 
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with 0 = Ko < K 1 < ... KN-1 < KN =;.Let</>; be the process of the covariance v'. Then we have 

(5.80) 

The propagator v' connects only fields, whose momenta lies in the section [K,_1 , K;]. The momenta of the fields 

4>' increase with increasing index i (in the contrary to the notation of [8]). By the partition formula (Le=a 

3.1.2. ) we have 

(5.81) 

After integration over the field q,N the propagator v with UV-cutoff ; proceeds to the propagator v- vN with 

UV-cutoff KN _1 < ;. This is called the first renormalization group step. Thereby, the action V = V N proceeds 

to a new (in general nonlocal) action yN-l. This new action yN-l is called the effective action. Next, we 

apply this procedure to the new form of the partition function. After k renormalization group steps we get an 

UV-cutoff KN-k· The free energy In Z(A[.,U) equals the negative effevtive action after N renormalization group 

steps. The form of the partition function after N- k renormalization group steps is 

with the field 

and the propagator 

k 

q,I:Sk] =I>' 
i=l 

• 
vi:SkJ = I: v'. 

i=l 

The effective action v• is recursive determined by 

v•-1(q,I:Sk-1J +.,U) =-In f d!L.•(<i>')e-v'(~I~•-•IH'H) 
with k E {1, ... , N}. Therefore we have after N renormalization group steps 

V 0 (.,U) = -lnZ(A[.,U). 

Instead of (5.79a,b) we may split off the propagator v = ( -t:. + m 2 )-1 in the following manner 

V = v1 + · · · + VN 

where 
if i = N 
ifi < N 

(5.82a) 

(5.82b) 

(5.82c) 

(5.83a) 

(5.83b) 

(5.84) 

(5.85a) 

(5.85b) 

with m = Mo < M1 < · · · < MN-1 < MN = M = O(a-1). The propagator after k renormalization group 

steps is 
v1 + · · · + vN-k = ( -t:. + m2)-1 - ( -t:. + Mk+1-k)-1• (5.86) 

This is a propagator for a theory with Pauli-Villars cutoff MN+l-k· Momenta which are larger than MN+1-• 

are suppressed in this case. The Pauli-Villars cutoff will decreases after application of a renormalization group 

step. 

Mayer expansion yields a decomposition of the configuration space and the renormalization group approach 

yields a decomposition of the momentum space. Combination of the Mayer expansion with the renormalization 

group yields therefore a decomposition of the phase space ('phase space cell expansion'). For estimates of the 

activity M(X[.,U) we have used the same propagator v for all Polymers P. These estimates are bad for large 

polymers P and high frequent fields </>. Decomposition of the phase space carry to improved estimates for the 
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activities. In this sense the method of iterated Mayer expansions leads to an improved estimate of the activity 
([8], [9]). For that the polymers are decomposed in polymers, which are again decomposed in polymers, 
etc. . Points of the lattice are called 0-vertices. Ordinary polymers are called 1-vertices. k-vertices are 
collections of (k- I)-vertices. The points of a k-vertex are called constituents. Every k-vertex corresponds 
to an activity. k-vertices interact over the propagator vN+I-k. Since the strength of the propagator vN+I-k 

increases and the range decreases if the index k decreases, it follows that the elements P' of a k-vertex P interact 
over a propagator whose range is less and whose strength is larger than the corresponding range and strength of 
the propagator, which defines the interaction for the k-vertices. The activities for the k-vertex Pare expressed 
by the activities for the (k- I)-vertices, which are elements of the k-vertex P. Therefore the estimates for the 
k-vertices are recursive. For the k-th recursion step an estimate for the propagator "N-k+I is used. This gives 
better estimates than the estimates obtained by simple Mayer expansion, where we have used bounds for the 
whole propagator v. 

A perturbative formulation for the renormalization group steps was given by Gallavotti and Nicol6 [11]. 
For the proof of the Gallavotti Nicol6 tree formula the following partition formula for the truncated expectation 
value is useful. 

Lemma 6.3.1. (Partition formula for truncated expectation values). LetS be finite set and B;, i E S, 
random variables. Then we have for positive propagators "', "• 

(fiiB;; ]}.'+•' = L (II[(fiiBj; ]) •• ; ]) ... 
iES S=I: J J iEJ 

PROOF: By the distributive law follows 

By the definition of the truncated expectation value ( ; ) •• we obta.in for the rhs of (5.88) 

rhs = L (fll II [B;; ]) •• ).• 
R=L;K K iEK 

and once more by the definition of the truncated expectation value ( ; ).• follows 

rhs =((II B; ).•) ... 
iER 

By the partition formula for expectation values (Lemma 3.2.2. ) follows 

Hence 

rhs = (II B;)•'+>'. 
iER 

L II { L (ITI<ITIBi; ]) •• ; ]) •• ]}=(II B;)•'+•'· 
R=L;I I I=L;J J iEJ iER 

The definition of truncated expectation values proves the assertion {5.87). ,; 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

The partitions in the partition formula (5.87) are related to tree graphs with depth 2. The maximal vertices 
of the tree graphs represent the elements j E S and the vertices with depth 1 represent subsets J S";; S, sueh that 
for the direct successor which represents j, the relation j E J holds. The generalization of the partition formula 
for truncated expectation values for the splitting (5.79) of the propagator" leads to the notion of the Gallavotti 
Nicol6 tree. Let us set r(lc, I) for the set of all trees with the depth k and maximal vertices E /.For the splitting 
(5.79) of the propagator " and the random variables B;, i E I we will call a tree '1 E r(lc, /), 1 :5 k :5 N, 
Gallavotti Nicol6 tree {GN-tree). Two trees '11> 'Y2 are put together by introducing a new root where the old 
roots of 'Y• and 'Yo are direct successors of the new root. The new tree is labeled by 'It o 'Yo· In the same way 
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we put together more than two trees. The depth of the new tree 71 o 72 is increased by 1. The truncated expectation value er(B, 7), B = { B;, i E I}, which corresponds to 7 E r(k, I) , is recursively defined by 

(5.93a) 
iEI 

r 

(ii) eT(B,7)={fl[eT(B,7;); ]).N-> if 7='Y10···0'YrEr(k+1,J), 7;Er(k,I;) (5.93b) 
i=l 

and J = E;=1 I;. For 7 E r(k, I) the truncated expectation value er (B, 7) depends from the field q,IN -k] = 2:7=-,k .pi. The generalization of the partition formula for truncated expectation values is 

CorolJary 5.3.2. (GN tree formula for truncated expectation values). 

{fl[B;; ]).N-k+>+ ...• N = L er (B, 'Y) (5.94) 
;Ef 7Er(k,I) 

forallkE{1, ... ,N}, B={B;, iEI}. 

PROOF (BY INDUCTION): For k = 1 follows the assertion by definition (i) of the truncated expectation value er(B, 7). Suppose that the assertion is valid fork. By Lemma 5.3.1. we obtain 

(5.95) 

From the induction hypothesis follows 

{fl[B;; ]).N-·+··+•N = L {fl[ L er(B,'Y); ]).N-k. (5.96) 
;ei I=E J J ,er(k,J) 

By the definition (ii) of the truncated expectation value er (I, 7') for 71 E r(k + 1, I) follows the assertion for 
k + 1. .,; 

We consider now the special case B; = V for all i, where V is the action. The GN-trees are characterized by the depth and the number of maximal vertices in this case. Let us denote f(k, n) for the set of all GN-trees with depth k and n maximal vertices. We use the notation 

7"=70 .. ·07· ..__.,_, 
p arguments 

With this notations we have the following corollary for the representation of the effective action. 

(5.97) 

CorolJary 5.3.3. Let the combinatorial factor 0(7) for 7 E f(k, n), n E IN, k E {1, ... , N} be defined by 

(i) 0(7)=n! if7Ef(1,n) 
r 

(ii) O{T,'' o · · · o 'f.•) = flp;! O('Y;)P; if 7; E f(k,n). 
i=l 

Then we have with the notations (5.79)-(5.84) 

Vk(q,f~k] + t/J) =" " (-1)n+l er(V, 7) L- _L- 0(7) 
n;;::o '7Er(N -k,n) 

for all k E {1, ... , N}. 

PROOF (BY INDUCTION): Let us set / = N- k. Suppose / = 1. Then 

vN-1(q,~fN-1] + t/J) = -Jn{e-V(,+¢)}.N. 
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(5.98b) 

(5.99) 

(5.100) 



With the help of the perturbation expansion (2.75) follows 

yN-1(.p:51N-1[ + t/1) = 2: (- 1)~+1 ( V; ... ;V ).N. 
n. '--v-' 

n~O n. arguments 

(5.101) 

By the definition of eT(V,1) for 1 E f(l,n) and 0(1) = n! follows the assertion for l = 1. Suppose that the 

assertion is valid for I, 1 ~ l < N. By the induction hypothesis a.nd the perturbation expansion (2.75) follows 

Let V be of order>.. Comparison of the terms of the order>." in (5.102) yields 

{ V; . .. ;V }vN-I+l+···+vN = n! 
'--v-' 

n arguments 

Furthermore by the definition of the effective action yN-(I+1) follows 

yN-(I+l)("'I:5N-(I+!)J +·'·) = -ln(e-V(~+.P)) N-1 N =""" (-1)"+
1 

( V· ·V) N-1 N 

¥' '+' v +···+t~ L- I ' • •.' " +···+t~ . n. 
n~O n argUments 

By Lemma 5.3.1. follows 

(5.102) 

(5.103) 

(5.104) 

(5.105) 

where P; = \{n;\ n; = j}\, i.e. p; equals the number of integers j in the partition {n;}. We insert (5.103) on 

the rhs of (5.105). This gives 

(5.106) 

We put together the GN-trees 1<· This gives 

(5.107) 

The assertion for l + 1 follows by the definition of the combinatorial coefficient 0(1) . .,; 

Remark: (i) If the action V is of order >., then it follows that eT (V, 1) is of order >." a.nd the expansion (5.99) 

for the effective action yk is a perturbation expansion. 

(ii) Corollary 5.3.3. implies a perturbation expansion for in Z(A\t/1): 

(5.108) 
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Fig. 5.2. shows an example for a GN-tree. 

t---

i 
l 

j_ __ 
i 
I 

- - - - "3 

- - - - - - vl. 

- - - - - 1)1 

Fig. &.2 Example for a GN¥tree -rEr(3,6) . .., represents the truncated expectation value 

Let A C (a:IZ)" be a finite sublattice. Let the maximal vertices of a GN-tree represent elements of A. The set 
of all GN-trees 1 with depth k and maximal vertices in X f A is denoted by r(k, X). Let B(XI¢) be random 
variables which depend only from </>. + ¢., x EX. For the splitting (5.79) of the propagator v we define the 
truncated expectation value for theGN-trees 1 and random variables B(XI.P) 

(i) eT(B,-y) = B(XI.P) if-yEr(l,X) (5.109a) 
r 

(ii) tT(B, 'Y) = (II[tT(B, ');); ]},N->+> 
i=l 

r 

if 1 = 11 o · · · o 'Yr E r(k + l,X), 'Yi E r(k, Y;) with I: Y; =X and k E {1, 2, ... , N}(5.109b) 
i=l 

r 

(iii) eT(B, 1 ) =II eT(B, 1;) if 1 = 1• o ... o 'Yr E r(N + 2, X), 1, E r(N + 1, Y,) 
t'=l 

r 

with I: Y; = X. 
i=l 

With this notations we obtain for the activities A( XI¢) after N renormalization group steps: 

Corollary 6.3.4. (GN-tree formula for activities). Let the partition function be defined by 

with 

Z(AI.P) = f dp,(<f>)Z(AI.P) 

Z(AI¢) = I: II B(XI¢). 
4=I;X X 
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Then the activities A( X[¢) of the polymer representation 

Z(A[¢) = L II A( X[¢) 
A=I:;X X 

are 
A(X[¢) = 

7EI'(N +l,X) 

PROOF: The assertion follows immediately from 

A(X[¢) = L (IliB(Y[¢); )}. 
X=I:;Y y 

and theGN-tree formula for truncated expectation values (Corollary 5.3.2. ) . ../ 

Remarks: 

(i) By definition (iii) of the truncated expectation value t;T (B, 1) for 1 E r(N + 2, A) follows 

Z(A[¢) = 

(5.111) 

(5.112) 

(5.113) 

(5.114) 

(ii) With the help of the recursion relation (5.109) for the truncated expectation value t;T(B,'Y) and the 
generalization of the tree graph formula (Theorem 5.2.1.) the activities A(X[¢) may be expressed by trees, 
whose vertices consist of trees, whose vertices consist again of trees, etc .. Then the tree estimate for truncated 
expectation values (Theorem 5.2.2. ) leads to a recursive estimate for the activities, if there is a suitable 
estimate for the molecular activities B(Y[¢) for allY c;:: X. 

(iii) Every GN-tree 1 E r(k, X) corresponds to a k-vertex" with constituent set X. Fig. 5.3 shows an example 
for a GN-tree 1 and the corresponding k-vertex cr. 

- - - ,-~ 

(b) 

Fig. 6.3 Example for & 4-vertex o: with constituent set X={:z: 1 , ... ,:z:J.o}(a) and the corresponding GN-tree "' with depth 4 (b). 
The GN-tree "'' or 4-vertex a represents 
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APPENDIX A. *·CALCULUS, TRUNCATED EXPECTATION 
VALUES AND COMBINATORIAL COEFFICIENT a(Q) 

A .1. *·CALCULUS [17) 

Let r be an arbitrary finite set. Functions X : r _, IN are called multiindices. For a finite multiindex X 

we define 

The addition of multiindices X 1 and X2 is defined by 

for all1 E r. Let Am be the set of all complex valued functions on the set of all multiindices, i.e. 

Am = {f : {X : r _, IN} _, <V}. 

The -k-product of two functions /J, h E Am is defined by 

(/! * t.)(X) = L ll(X!)f(X.). 
X=X1+X2 

Addition and multiplication by scalars on Am are defined by 

U1 +f.)( X)= !1(X) + h(X) 

(>.f)( X)= >.j(X) 

for all /J, h, f E Am, >. E <IJ. By this definitions Am is an algebra with unit element n, 

n(x) = {! if X=O 
otherwise. 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

Let us restrict on multiindices X with X! = 1. Then X corresponds to a subset of r and the familiar -k-aigebra 

( A,*) is defined by 
A= {f : {X : r _,IN}_, IN}_, <IJ I /(X)= 0 if X! ;io 1}. (A. B) 

Clearly, A is a sub algebra of Am. 

To each function f E Am we may associate a formal power series 1 E P[(z, ),Er] in the variables z,, 1 E r: 

f E Am,.... J(z) = L f(X)zx, (A.9) 
X 

X' r-N 

where zX = Il,Er4"('l. Conversely, to each formal power series 1 E P[(z,),Er] we associate a function 

/E Am: 
(A.10) 

where ax= 11 Er 8",\~,. The set P[(z,),Erl of all formal power series is an algebra and the multiplication 
'1 fJz..., 

(f,_ · h)(z) = J,. (z)h(z) (A.ll) 
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for all J,.,J. E P[(z7 ) 7 Erl corresponds to the *"Product on Am. Let f E A~ = {! E Am I /(0) = 0} and 

J E P[z] the corresponding formal power series. The exponential function exp A~ --> n + A~ is defined by 

or equivalently 
exp/(X) = I: II!(YJ. 

X=I> y 

From the algebra-isomorphism of P[z] and Am follows 

(exp f)(z) = exp(J(z)). 

The logarithm 1n n + A~ --> A'f is defined by 

( l)n+l 
ln(fi+f) =I: - n ([* -~·*/) 

n~l n factors 

or equivalently n 

ln(H f)( X)= I: I: ( -l)n+l(n- l)l II f(Y;) 
1'=1 

for all multiindices X with X # 0. We have 

[ln(U f)](z) = ln(l + J(z)). 

By Eqs. (A.l4) and (A.l7) we obtain the following inversion formtllM 

expln(n+f) = n+f 

lnexpf=/ 

for all f E A'f. Especially, for A E A+ ~ {! E A I /(0) = 0} and z E n +A+ follows that 

is equivalent to 

Z(X) = (expA)(X) = I: II A(Y) 

X=I> y 

n 

A(X) = (lnZ)(X) =I: I: (-l)n+'(n-lJ!II Z(Y;). 

n?:l X="~ Y; i=l 
L..J,.,1 

The multiindices may be interpreted here as sets and the sums as disjoint unions. 

A.2. TRUNCATED EXPECTATION VALUE 

(A.l2) 

(A.l3) 

(A.14) 

(A.l5) 

(A.l6) 

(A.l7) 

(A.lS) 

(A.l9) 

(A.20) 

(A.21) 

Let A C (a:/Z)v be a finite sublattice and d~'• the Gaussian measure with covariance v. Let A(A) = {/ : 

p(A) --> (L'} be the *"algebra for the power set p(A) = {X I X~ A}. Let B(XI4>) be a random variable for all 
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X 5; A with B(0]¢) = 1 and B(X]¢) depends only from¢., x EX. For another random variable Z(X]¢) the 
expectation value is defined by 

t[Z(X]¢)1 =I dp.(¢)Z(XI¢). (A.22) 

We will use the abbreviation t(Z(X]¢)1 = t(X). e is an element of the *-algebra A(A). The truncated expec
tation value is defined by 

tT (X) = (In t)(X) 

for all X 5; A. Equivalently, the truncated expectation value is completely determined by 

e(x) = I: IT eT(Y). 

X=I> y 

This follows from the inversion formulas (A.20), (A.21). Furthermore we have 

n 

eT(X) =I:< -1t+1(n- 1)! L IT t(Y;). 
X="" y i=l Wi=l ' 

For Z(X]¢) = I:x=I;Y IJy B(Y]¢) we use the notation 

eT(X) = I: (IJIB(Yl<Pl; JJ. 
X=I:Y y 

By the isomorphism of section A.l. (see Eqs. (A.9), (A.lO)) follows 

Especially for 

follows 

eT(X) =ox ln(exp( L B(Y)zy))lz=O· 
Y~X 

B(X) = { ~x(¢x) if ]X]= 1,X= {x} 
if !XI 2>: 2 

an ""' (IT [F,(¢,); ]} = ()zn ln(exp(z L- F.(.p.)))],=o 
zEX zEX 

Let the partition function be defined by 

Z(A]¢) =(IT e-AV(x)}. 

zEA 

Because of (A.29), the perturbation expansion for In Z(A]¢) is 

ln Z(A[¢) = L ( -y :: ln<IJ e•V(x)} [,=o = L ( -~)n (L 'V(x); · · ·; L 'V(x)). 
n. us n. 

n;:::l xEA n;:::l xEA :t:EA 

n arguments 

This proves the relation (2.75). 

A. 3. COMBINATORIAL COEFFICIENT a( Q) 

Theorem A.3.1. Let r be a Jlnite set and 

g rxr--+{0,1} 
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(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 



with g(-y, '1) = -1 for all '1 E r. We associate to a multiindex X: r -+.lN a collection of vertices '11> ••. , '"IIXI 
and Jinks h'"l'), if g('"f, '1') = -1. This graph is labeled by G(X). We define a function ~by 

~(X) = IT (1 + g('"f;, '1;)). (A.33) 
'<i 

X{7;),X(7J)>l 

Clearly, ~(X) = 0 holds for X! > 1. Let us define 

Z = 2: ~(X)z'C. 
X 

Then we have 

with 
~T(X) = ~! 2: (-1)'(c). 

C>;G(X) 

(A.34) 

(A.35) 

(A.36) 

The sum is over all connected subgraphs C of G(X) with the same set of vertices as for G(X) and I( C) equals 
the number of links in C. 

PROOF [18]: Let ..,, , ... , '"In be the vertices of G(X) with n = ]X]. Expansion of the product on the rhs of 
(A.33) yields 

~(X) = 2: IT g(I) 
N=2:;I I 

withN={1, ... ,n} and 
if III ;::: 2 
otherwise. 

We insert (A.37) on the rhs of (A.34).. This gives 

z = 2: 2: ITWl IT z.,,] 
X N=I;I I iEI 

After resummatioii we obtain an expansion in the number of vertices 

1 { } n z = 2:' 2: ... 2: 2: II g(I) IT z~·· 
n~o -n..1'1Er .,.,.,Er {l, ... ,n}=l::I I i=l 

For every partition {n;} with n = I:~=• n; exists rr:_, n,~h;_,p.l partitions X= I;~=• Y; with lXI = n, 

n; and p, = l{nrlnr = r}l· Therefore we obtain 

with the abbreviation 
g('"f,, ... , '"In) = { fceg 1 ITu;)eG g('"f;, '1i) 

By the multinominial theorem follows 

Hence 

if III 2: 2 
otherwise. 

n; 

lnZ = 2: ~! 2: g('"l,, ... ,..,n) IT z~i" 
n~l "l'l•···•lnEr i=l 

Comparison of the coefficients with ln Z = Ex ~T (X)z'C yields 

~T(X) = ~!g('"l,, ... ,'"fl•l)· 
This proves the assertion . ..; 

By Theorem A.3.1. follows the representation (2.19) of ln Z(AI.P) : 
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(A.37) 

(A.38) 

(A.39) 

(A.40) 

IYil = 

(A.41) 

(A.42) 

(A.43) 

(A.44) 

(A.45) 



Corollary A.3.2. If 

then 

Z(AI.P) = L IT A( XI¢), 

A=I:X X 

In Z(AI.P) = LIn A( {x}I.Pl + L a(Q)A(QI.P) 
xEA Q 

with the notations of section 2.2 . . 

PROOF: We will use Theorem A.3.1. with r = ~(A)(=power set of A). By the definition 

follows 

if 

is chosen. X denotes the multiindex 

By Theorem A.3.1. follows 

if lXI ~ 2 
otherwise 

L <P(X)i" = L IT A( X), 
X A=l:;X X 

g(X,Y)={~ 1 

- { 1 X(x) = 
0 

ifXnY;i0 
ot,h~rwise 

if x EX 
if x ct X. 

lnZ(AI.Pl = LinA({x}I.P) + L<PT(X)i" = LlnA({x}I.P) + La(Q)A(QI.P) 
:r.EA X xEA Q 

where the sum is over all clusters Q = (P~', ... ,P;:•) with IP;I2: 2 . ..; 

(A.46) 

(A.47) 

(A.48) 

(A.49) 

(A.50) 

With the help of the abstract tree graph formula (Corollary B.4.2. ) we obtain an estimate for the 

combinatorial coefficient a( Q) 

Corollary A.3.3. We have 

for the cluster Q = (P~', . .. , P;:•), n = 2::7= 1 n;. 

PROOF: Let G be a Mayer graph with n vertices 1, ... , n. We define 

Because of 

we have 

if(ij)EG 
otherwise. 

if(ij)EG 
otherwise 

(A.51) 

(A.52) 

(A. 53) 

(A.S4) 

where Gn denotes the set of all Mayer graphs with n vertices. By the abstract tree graph formula (Corollary 

B.4.2. ) follows 
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The sum is over all permutations 
. {{1, ... ,n}-+{1, ... ,n} 

... i>-+.-(i) (A. 56) 

with .-(1) = 1. Since [w;il $ 2.- and lew;; I = 1 we obtain 

(A.57) 

The special case 

(A. 58) 

of the tree estimate (Lemma 3.1.4. ) proves the assertion . ..; 

APPENDIX B. DECOUPLING EXPANSION FOR NONLOCAL INTERACTIONS, 
TREE GRAPH FORMULA AND ESTIMATES 

B. 1. INTERPOLATING INTERACTION 

~ 
For evety finite point sets X we define the multiparticle interaction by 

E(X) = L L t 1(x,, ... ,xt). 
l rol•••••XJEX 

(B.1) 

e1 is symmetrically in the arguments x,, ... 'x,. The points x,' ... 'Xt are not necessarily distinct. The point 
set occupied by x1 , ••• , Xt is denoted by p(x,, ... , xt). A disjoint partition of Y in n subsets Y; is labeled by Yn, 
i.e. 

for Yn = (Y,, ... , Yn)· 

We will use the notation 
k 

y(k) = I:Y; 
l=l 

for all k E {1, ... , n}. For s E [0, 1[ and a subset Y s;; X the /-particle interaction is modified by 

I 

t 1(x., ... ,xt[sxy) =II sXY(ZJlt1(x,, ... ,x,) 
i=l 

with the characteristic function XY. Corresponding to (B.4) we define 

E(X[sxy) = L L t 1(x,, ... ,xt[sxy). 
l x 1 , ... ,x1EX 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

The multiparticle interaction defined by (B.5) is called an interpolating interaction. In the following we define 
an interpolating interaction. 
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Definition (of an Interpolating Interaction) 

Let :Y,. be a disjoint partition of y(n). For ••, ... , s,. E [0, 1] the interpolating interaction E(Y("lJs1 , ... , Bn-d 

is defined recursively by 

E;(Y(")) = E;-1 (Y(n) J•;Xy«l) +Eo-I (Y(')J - E;-1 (Y(i) J•;Xy(')) 

for all i E {1, ... , n} and 

We will use also the following notation 

for X= y(n). The following Lemma shows that E(Y(n) Js 1 , ••• , s.,) is independent from s,. : 

Lemma B.l.l.. An explicit expression for the interpolating interaction is 

n-1 

E\>. (XJs,, ... , •n-d = L L IT s~\ t'1(x., ... , xz) 

with 

With the notation 

the following conditions are fulfilled 

(i) Decoupllng 

l ::z:r, •.. ,::eJEX i=l 

N! = J{j E {1, ... , I}J x; E y(i)}l. 

Suppose that for x1 , ... , "'' EX, it exists j,, h E {1, ... , n- 1}, ii < j,, with 

Then 

for all i E {ii, ... , j, - 1}. 

(iiJ Reduction 

For 

we have 

(iii) Locality 

Suppose that for x,, ... , "'' E X 

Y,. 1\ X~~ {Y1, .. . , Y.,,X- y(n)} 

p(x1 , ... , x,) n Y; = 0 for all j > i or p(x,, ... , xz) n Y; = 0 for all j :5 i. 

Then 
a,Jy.(x,' ... 'x,Js,' ... ' • .,_.) = 0 

(iv) Positivity 

If E(X) :2: 0 then Ey.(XJs1 , ... , s.,_.) :2: 0 .. 
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(B.6a) 

(B.6b) 

(B.6c) 

(B.7) 

(B.B) 

(B.9) 

(B.10) 

(B.U) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.I7) 



PROOF: Without loss of generality we prove the assertion for 

E(X) = e1(x1, ••• ,xr) 

where X 2 p(x1 , ••• , xr). By the recursive definition of the interpolating interaction we have to show 
n'. 

E;(X) = s, 'E,_, (X) 

(B.18) 

(B.19) 

with nl = Nf(1- 61,N<), Nf = IU E {1, ... , /}I xi E Y('l}l. This follows by consideration of two different cases: 

1. p(x1 , ... ,x!)n(X-Y('l)f'0: 

From Eq. (B.6) follows 

With the notation (B.9) we have 
1 

E ·(X)- I1 Xy(;) (~;)E· (X)- N! li'. (X) , - si 1-1 - s, ~-1 . 

i==l 

This proves (B.19) because of I = N). 

2. Xt, ... , X! E y(i) : 

From Eq. (B.6) follows 
E;(X) = E,_,(Y('l) = E,_J(X). 

Because of/= Nf we have (B.19). This proves Eq. (B.8). We will now show the conditions (i)-(iv) : 

(i): By assumption (B.ll) follows Nf f" /,0 if i E {j1 , ••• ,J2 -1}. From (B. B) follows 

I nrr-1 N:(1-61,N!) l eyJx,, ... ,xr~s,, ... ,sn-d = s, . e (x,, ... ,x,). 
i=l 

This proves Eq. (B.12). 

(ii) : If N! = /, then n~ = 0. This gives (B.14). 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(iii) : By assumption (B.15) follows Nf = 0 or = /. Therefore nl = 0. By Eq. (B.10) the expression 
t'y.(x1 , ... , xtls1 , ... , sn-d is independent from s;. This proves Eq. (B.16). 

(iv): This follows immediately from the recursive definition of Ey.(XIs,, ... ,sn-d and the fact that convex 
combinations maintain inequalities. y' 

The interpolating interaction may be represented graphically. Every point set Y; is represented by a 
horizontal line. Every point Xj E Y; of an interaction term e1(x,, ... , xr) is represented by a point on the i-th 
horizontal line. Because of the symmetry of e1, the labelling of the points on the lines is unessential. Let us 
denote the maximal index of lines which have points by max. We associate to every point on the line i the term 

' 8t8i+1 ... Bma:a:-1• The product of this terms gives rr::::-11 s:i. This is the s~factor of the interpolating interaction 
(see Eq. (B.lO)). Fig. B.1 shows an example of this construction for a 4-particle interaction. 

1 

3 

5 

Fig. B.l Example for the graphical representation of a 4-particle interaction with the a-dependent coefficient • 1 ~t 2 s:. 
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Let us consider the 2-particle interaction 

E(X) = L e2 (z,y) 
3:,yEX 

with X= {x1 , ••• , x,.} and the partition 
Y,. = (Y1 , ••• , Y,.) 

withY;= {x;}. Then the interpolating interaction is 

n 

E-y.(XIs,, ... ' s,._,) = 2 L S;Si+l .•. •;-d2 (x;, x;) + L e2 (x;, x;). 
l::5i<i:S:n i=l 

This is the modified propagator v[s] for e2 (x, y) = ~Vxy (cf. (2.110)). For an !-particle interaction 

E(¢) = L p(x1 , ••• ,xl)¢., ... ¢., 
3:1, ... ,3:J EX 

the interpolating interaction may be recursively defined by 

E-y,(¢) = E(¢) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28a) 

.Ey, ( ¢1••, ... , s;) = E-y,_,(<Px-Y<') + s;¢y<'J I••, ... , s;-t) + (1 - slJ.Ey,_, ( ¢¥«> I•" ... , s;-,J, i E {1, ... , n} 
(B.28b) 

with the notation 
(¢¥). =xy(x)¢ •. 

This corresponds to (B.6). The conditions (i)-(iv) of Lemma B.l.l. are also fulfilled. 

B.2. REPRESENTATION OF THE MOLECULAR ACTIVITIES WITH 

THE HELP OF THE INTERPOLATING INTERACTION 

Lemma B.2.1. Let the multiparticle interaction be defined by 

E(X) = L L e1(x,, ... ,xl) 
l 3:1,. . .,3:1EX 

for every finite point set X. Consider the polymer representation 

eE(X) = L n B(Y). 
X=L;Y Y 

The molecular activities B(Y) are uniquely defined by (B.31}(cf. app. A). We have 

B(Y) = L L A(Y;) 
i::51YI Yi 

y(i)=Y 

with 
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(B.29) 

(B.30) 

(B.31) 

(B.32) 

(B.33) 



:r.t, ... , .. leYU+ 1> 
P("'l •···•"'l )-y(l') =Y;+l 

(B.34) 

where the sum L: r, is over all disjoint partitions Y = L:{=1 Y; with Y1 = {z}, for a fixed chosen x E Y. 
y(i)_y 

Permutations of Y2 , ••• , Y,- are considered as different partitions. Suppose that the conditions (i) (decoupling) 
and (ii) (reduction) of Lemma B.l.l. are fulfilled for the interpolating interaction e'(x1 , ••• , z<is1 , ••• , s;). 

PROOF: We will consider the following Kirkwood Salaburg equations with remainder 

eE(X) = L {Kn(W)eE(X-W) + R,.(X, W)} 

for ail n E JN* = {1, 2,3, ... } with 

R,.(X,W) = 

w 
zews;;;x 

Kn(W) = L L A(ij) 
3'5n Yi 

y(J'),w 

(B.35) 

(B.36) 

(B.37) 

Then R,.(X, W) = 0 for n > JXJ. By the unique solution of the Kirkwood Salsburg equations follows the 
assertion. Eq. (B.35) is proved by induction. Let n = l. By reduction (Lemma B.l.l., (ii) ) follows 

(B.38) 

The mean value theorem yields 

eE(X) = eEy,,x(Xf••=O) + fo' ds,8,, eEr,,x(Xf••). (B.39) 

By decoupling (Lemma B.l.1., (i) ) follows 

Ey,Ax(X[s, = 0) = E(Y,) + E(X- Y1 ). (B.40) 

This proves the assertion for n = l. Let the assertion be valid for n. We apply the derivative in sn on the rhs 
of (B.37). Since 

a,.EY.Ax(X[s,, ... ,sn) = L L a •• etAx(x,, ... ,xrJs,, ... ,sn) = 
l :z:l, ... ,x1EX 

= L L L a •• ef.Ax(x,, ... ,x,Js,, ... ,sn) = L a •• E~:~.(Y(n+l)Js,, ... ,sn) (B.41) 
Yn+l l :o1 , ... ,.:r1ey{n+ 1) Yn+l 

P("'l•·•·•"'l )-y(n) ,.yn+l 

it follows 
1 n 

R..(X, W) = L fo ds1 ••• dsn ITIB,;E~~. (Y(i+t)Js1, ... , s;)]eEr.,x(XI••····•·l. 
f"n+l 1=1 

(B.42) 

y(n)=w 

By reduction (Lemma B.l.L, (ii) ) follows 

Ey.(XJs,, ... ,sn) = Ey•+•Ax(XJs,, ... ,sn,•n+t = 1). (B.43) 

We use the mean value theorem. This gives 

R (X W) - " r' d d . rrn I l Ey•+•'x(XI••·····'·+•=O)+ n ' - L Jn S1 ••. Sn ... e 
Yn+1 O i=l 

y(n)=W 

(B.44) 
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By decoupling (Lemma B.l.l., (i) ) 

Ey·+<"x(XI•·· ... '•n+l = o) = E?.+.(y(n+l) I•·' ... 'sn) + E(X- y(n+l)) (B.45) 

follows 

I: Rn(X, W) = I: { I: 11 n E (yl•+•l[ ) 
ds, ... dsn III· .. ]e Y•+• ,., ... , •• eE(X-W) +R..+ 1 (X, W)} = 

0 i=l W S'n+l 
.o~EW5:;;X y(n+l)=w 

The assertion (B.35) for n + 1 follows by induction hypothesis . .,; 

B.3. REPRESENTATION OF THE ACTIVITIES WITH THE HELP 

OF THE INTERPOLATING INTERACTION 

By Lemma B.2.1. for the representation of the molecular activities follows a representation of the activities 

for multiparticle interactions : 

Theorem B.S.l. Let the partition function Z(X) for finite point sets be defined by 

Z(X) =I df.L,(¢)eElX) (B.47) 

with the multiparticle interaction 

E(X) =I: I: e'(~ ..... ,x,). (B.48) 

The activities A(Y), Y <;:X, are defined uniquely by 

zrx) = I: II A(Y). (B.49) 

X=I> y 

The modified propagator v[s] for parameters ••, ... , •n-1 E [0, 1] and partitions Yn of Y is deilned by 

n 

vlslxy = I: SiSi+l ... s;-l]XY, (x)VxyXY; (y) + XY; (x)vxyXY, (y)] +I: XY,(X)VxyXY, (y). (B. 50) 

l:$;i<f5n i=l 

Then 

A(Y) = I: I:,. 1' ds1 ... ds,-_ 1 I df.'.[•J(¢){',D_-,· [a.,E¥~. (Y(i+1)1 81 , ••• ,s;)]eEv,IY'"I••• .. ·•'i-•l} 

jo<;fYf , 
y(i)=y 

with 

[
1 a a " 
2
- a:;:-v[s].,., a:;:-+ L...-

o/!Cl 'YZ'J l 
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~~'l•···'"leY(.:+l) 

1'('"1•···•"'1)-Y(i"},y;+l 

(B. 51) 

(B. 52) 



where the sum L; Y; is over all disjoint partitions Y =I:{= I Y; with Y1 = {x}, for any x E Y. Permutations 
y(i),"'y 

of Y2 , 00., Y,; are considered as different. The interpolating interaction t'1 (x., oo., x.[s1 , 00. s;) is supposed to 
fulfill the conditions (i) and (ii) of Lemma B.l.l . . The differential operators in E~~' (Y(i+l) ls1,. 00, s;) operates 
only on the e-function on the rhs of (B.51). 

PROOF: Consider the multiparticle interaction 

E(X) = -i L q,.p,- ~ L q,v,yqy + L L t'1(x.,. 00, xz). 
:tEX :e,yEX l .z1, ... ,:z:,EX 

(B.53) 

The corresponding interpolating interaction is 

(B. 54) 

and fulfills the conditions of decoupling and reduction (see Lemma B.l.l. ). By Lemma B.2.1. we have 

= 

t' 1(x., 0 00, xd•·· 00 0, s;))l 
...,1 , ... ,::r:1eYU+1) 

P("'l , ... ,"'1)-Y(O:),yi+l 

e LJ L...."'l•···•"'I • 
-i(q,¢-)y(i)- !(q,t~[~Jq) y(i) + ~, 'C"" EY(,.) £ 1 (zl,··••zljal,···•' j)} 

Integration of (B.55) by J IlxEX ~ proves the assertion. y' 

B.4. EXPLICIT S·DEPENDENCE OF THE DECOUPLING EXPANSION 
AND PROOF OF THE TREE GRAPH FORMULA 

(B. 55) 

In this section the interpolating interaction defined by Eq. (B.8) will be used. By Theorem B.3.1. we have 
the following representation of the activities A(Y). 

Corollary B.4.1. Let the partition function be deJlned by 

Z(X) = j dp..(¢)eE(X) (B.47) 

with the interaction 
E(X) = L L t'1(x1 , 00., xz) (B.48) 

l :t1, ... ,.x,EX 

for all 11nite point sets X. Suppose that the interpolating interaction is deflned by 

Ey. (Y(n) Is., oo., Bn-d = L (B.56a) 
l a: 1, ... ,.:c1EY(n) i=l 
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with 
nl = Nj(l- 61,Nf), 

and the interpolating propagator is defined by 
n 

v[s] •• = 2: s;si+, ... s;-dxy,(x)v,.xy,(y) + XY1 (x)v .. xy,(y)] + Exy,(x)v •• xy,(y). 

l~i<i~n. 
i=l 

Then we have for the activities A(Y), Y <;; X 

with 
ifl = 2 "'( ) - {~a:, v.,.,a:, + 02

(x,,x2) 
'- Xl' • .. ' Zt - l 1 2 o ( "', ... , xi) otherwise. 

(B.56b) 

(B. 50) 

(B.57) 

(B. 58) 

l = (12 , ••• ,It) is a (t -1)-tupel ofintegers? 2. Yt = (Y, .. . , Y,) is a disjoint partition ofY with Y1 = {x} for 

some X E Y. Permutations of Y., ... , yt define different partitions Y.. The differential operator in e• operates 

only on the e-function on the rhs of Eq. (B. 57). We have the condition 

1 :-:; \Ya\ :-:; Ia. 

N = (N2 ,, •• , Nt) is a (t- 1)-tupeJ of positive integers with 

1 :-:; Na :-:; la - \Ya\ • 

if are the following land N dependent functions 

1j: 2, ... ,t --+ Wk::::l l, ... ,t-1 
{ 

{ } 'C"max(No){ }' 

a>-+ (•li(a));=l, ... ,N" 

with ~;(a) <a and the notation 

{1, ... ,t-1}'={1, ... ,t-1}x ... x{1, ... ,t-1}. 

k times 

Pj is defined by 
p'} =\{'!;(a)\ ~;(a)= j}\. 

PROOF: By Theorem B.3.1. follows 

A(Y) = 2: 2: 2: { ds, ... ds,_, J dp,I•J(¢J{IT!o,"_' 
t:::;IYI 1 Yt 0 a=2 

y(t)=y 

"J.,. .. •'"I" er<"l 

"'· c~ " I• s )JeE~, (Y<'l],,, ... ,.,_,)} 
" .... 1,••·' l~;~. 1, ... , a-1 · 

p(o:l •···•"'lo; )-Y{"-l)=y" 

Furthermore 

E '{l~~~(xl,·•·,xt.,]sl,···,sa-d = 

"'J.•···•"'t,.Ey(a) 

p(:r1 , ... ,.,1., )-Y(<1-l),..y4 

10 -]Yo] 

= E E 
N,.=l .. ,ey(o-1) for JS.N ... 

P("'Nr:r.+l'''"o"'t,.)=Y,. 
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(B.60) 

(B.61) 

(B.62) 

(B.63) 



We insert (B.64) on the rhs of (B.63). This gives 

A(Y) = L L L L [' ds, ... dst-1 I dl'•l•i(<PJ{ IT Ill,._, 
t$]Yj 7 1'"( N Jo a=:2 

y(t)=Y 

" (I.) "'· (x x I• • ))eE~ (Y''>I••·······-d} (B 65) L- Na to- 1, ... , l., 1, ... , a-l ( · · 

.%1ey(a-l) for J'S.Na 

With 

we obtain 

"'JEy(ct-1) for JSNa 
J>(,.N11 +1•···•"'1., )=Y,. 

P("'N,.+l•····"'l., )=Ya 

a-1 
~ II ~-~ e •(:r;l, ... ,x,.lsl, ... , •• _,) = 8;. e •(x,, ... ,x,.) 

i=l 

n1
.• = N 1

• (1- 61 N'• ), 
' ' ' i 

N:· = l{i E {1, ... ,1.}1 Xj E y(i)}l 

C~)e'·(x., ... ,x,.ls., ... s._.) = L IT(•a-l•a-2 .. ·"kf) 
u•r>•=l, ... ,N0 i=l 

lSiot<a 

(B.66a) 

(B.66b) 

-, e •(x1 , ... ,x,.). (B.67) 

The sum is over all Na·tupel (kf)i=I, ... ,N. with kf E {1, ... , a -1}. p'} equals the number of elements x; in Yj, 
i.e. 

pj = l{kjl kf = j}l. (B.68) 

The tupels (kf) for a E {2, ... , t} may be replaced by functions if. We insert (B.67) on the rhs of (B.65) and set 

'I;( a) = kf. (B.69) 

This proves Eq. (B.57) . ..; 

The decoupling expansion (B.57) is essentially simpler for 2-particle interactions 

. E(X) = L e1 (x) + L e2 (x,y). (B.70) 
xEX x,yEX 

For this special case the conditions (B.59) and (B.60) of Corollary B.4.1. are 

Ia =2, IYal = 1 (B.71) 

for all a E {2, ... , t}. For that the summation overt, T, 1';, and Non the rhs of (B.57) is a sum over partitions 
Y2 , ... , yt with 

t = w<•J I, i'; = ( {x.}, {x2}, ... , {xt} ), la = 2, N. = 1 (B. 72) 

for all a E {2, ... , t}. The sum over if is in this special case a sum over all t-trees 'I· Thereby the tree graph 
formula is a special case of the decoupling expansion. 

PROOF OF THEOREM 2. 5 .1. (TREE GRAPH FORMULA) : Let us set 

E(X) = L ln F,( cp, + ,P,). (B.73) 
<EX 
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By Corollary B.4.1. follows 

A(X]¢) = L L [ dcrn-1 IT[••-•••-3 ···••,(•) J dJL•[•J(tP) 
t"n ;; 0 a=2 

y(n)=x 

{ [ I: a!. v ••• , a! I II F.(<P. + ¢.)}. (B.74) 
:~:lEY'Il(~) l Z2 zEX 

z2EY,. 

where 
Yn = ( {x1 }, {z2}, ... , {xn}) with X1 = x EX (B.75) 

is a partition of X= {x., ... , xn}· The sum over Yn is a sum over permutations of x2, ... , Xn· The interpolating 
propagator v[sl defined by Eq. (B.50) equals the modified propagator defined by {2.110) for the partition Yn. 
With the notations '71 = '1 and 

n 

/('7]•) = II [•·-···-· ... 8 •(•)1 (2.107) 

follows by Eq. (B.74) the assertion {2.111a) . ../ 

The tree graph formula yields a relation of representations by Mayer graphs and by tree graphs. We have 
for complex w;i with 1 S i < j S n, i, j, n E IN 

I: II { I: II [•";' - 11 }· 
{1, ... ,nJ=2> I GE9r (;i)EG 

(B.76) 

9r is the set of all Mayer graphs with vertex set J. By the tree graph formula we obtain the following corollary 

Corollary B.4.2. (abstract tree graph formula). We have 

with 
Wj ·[s] = { SjSi+l ... Sj-1 Wij 

3 w, .. 
if i < i 
if i = i 

for all i, j with 1 s i < j S n. The sum is over all permutations 

. {{1, ... ,n}-> {1, ... ,n} 
1r • i >-> .-(i) 

with 1r(1) = 1 and all n-trees . {{2, ... ,n}->{1, ... ,n-1} 
'I· k>->'l(k) 

with 'l(k) < k. 

B.S. ESTIMATES FOR THE SUM OVER 'fIN THE DECOUPLING 

EXPANSION FOR NONLOCAL INTERACTIONS 

(B.77) 

(B.78) 

(B.79) 

(B.80) 

Thls section presents a generalization of the tree estimate (Lemma 3.1.4) and the Lemma by Battle (Lemma 
3.1.5. ) for the decoupling expansion of nonlocal interactions. 

eject 
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Lemma B.6.1. (generalisation of the tree estimate). Let I= (12 , ••• ,1,) a.nd N = (N2 , ••• ,N,) be 

(t- 1)-tuples of positive integers with Na < Ia for all a E {2, ... , t}. Let !L(a) 2:: 0, a E {1, ... , t}, be non 

negative real numbers. Witb tbe notation 

(B.S1) 

we bave tbe inequality 

(B.S2) 

PROOF: The sum over Tf may be replaced by the sum over •u(a) = k; from 1 to a- 1 for all a E {2, ... , t}. 

Therefore 

Let us set 

1 t+l-i a-1 t-i i 

S/(!L) = 1 ds1 ... ds,_; IT IE Ba-2 ... Sk!L(k)]N" exp(E Bt-i ... Bk!L(k) IT Nt+O-k) 
0 a=2 k=l k=l k=2 

(B.S4) 

for all i E {1, ... , t}. We have 
' 

S,:;;_,(IL) 5 ITINa!L(a)1"-N"]S{(!L)- (B.S5) 

a=2 

Sf(IL) is estimated by recursion. Because of 1 5 f0
1 dse•u (u 2:: 0), we obtain 

1 t-ia-1 

s: 5 r ds1 ... ds):_l,ds):>, ... ds)=:;-•+•) IT IE Sa-2 ... Bk/L(k)]N" 

h -·~1 
t-i Nt-;+1 t-i i 

IE ••-•-1••-i-2 ... ••IL(k)]N,_,+, exp( E E s)~;•t-i-1 ... ••IL(k) IT Nt+2-k)- (B.S6) 

k=l l=l k=l k=2 

"' · t t (B 86) (1 ) (N,_,+,) m th · al•t 
ne m egra e . over st_ 1 , ••• ,.st-i . neuse e mequ 1 y 

and obtain 

Nt-Hl t-i i 

exp( E E ••-i-1St-i-2 ... ••IL(k) IT Nt+2-k)- (B.S7) 
1=1 k=l k=2 

Thereby 

(B.SS) 

92 



Because of Sf(p.) = 1 we obtain 

t ~(t-l)N, 

S.:Fi,,(P.) s IT[N.p.(a)'·-N·J· 1 S~(p.) s 
a=2 

t eJ.'(t-l)Nt eJL(t-2)NtNt-l. 
< IT[N.p.(a)'·-N•] N S~(p.) < ... 
- 1 N t-l -

a=2 t 

' { N ' } ···SIT 1 • . N. [p.(a)]1
·-N• exp(p.(a- 1) IT N;) . y' 

•=2 <TI•=•+I N,) .. =. 
(B.89) 

By the generalization of the tree estimate follows 

Lemma B.5.2. (generalization of the Lemma by Battle). Letl= (12 , ... ,1,) and N= (N2 , ... ,Nt) be 
(t- 1)- tuples of positive integers with Na < Ia for all a E {2, ... , t}. We use the notations 

d- -(a)= c0(a) +Ia-N. 
{

I,- N, 

"'N c
0

(1) 

with 
c0(a) = ]{(b,i)] 'f/;(b) =a}], 

if a= t 
ifl<a<t 
if a= 1 

aE{1, ... ,t-1} 

d-N-(a) equals the exponent of p.(a) on the rhs of Eq. (B.81). Then 

"' 

PROOF: By Lemma B.5.1. follows for the positive real numbers t., a E {1, ... , t}: 

' [ N ' ] S IT IT. " . N. t~-N. exp(ta-1 IT N;) . 
a=2 ( i=a+l N,) i=a 

We integrate (B.93) overt. from 0 to oo and we use 
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(B.90a) 

(B.90b) 

(B.92) 

(B.93) 



This gives 

1 < rr' [ N. (I - N ) •] 
t-1 t &-v ..... (a.)+l - (IT' N )N" a a .. 

rr.=,I(IT;=•+l N;J + 11 ,,N ·=• ;=•+1 ; 

By the definition (B.90) of d-N-(a) follows •• 

Therefore the assertion follows by the inequality (B.94) . .J 

APPENDIX C. GENERATING FUNCTION FOR 
FREE-PROPAGATOR-AMPUTATED GREENS FUNCTIONS 

Lemma C.l.. The generating function for Greens functions is defined by 

where )/ is fixed by T[O] = 1. Then the following relation holds on the lattice ( a7l)v = Atot 

In [z(~(Aj~l.P) )] =In T[J]- ~ [ J(:c)v(:c, y)J(y) 
tot - 0 J :z:,yE(a1l.i)" 

with 

Z(Atotl.P) =I dp.(¢>)F(4> + ,P). 

The generating function for the free-propagator-amputated Greens functions is 

I [ Z(Atotl.P) ] 
n Z(Atot [1/1 = 0) ' 

PROOF: Subtraction of the integration variables gives 

Z(Atotl.P) =I dp.(.f>- ,P)F(4>) = det(211'v)-f I[ IT d.f>,]F(.f>) ,-tf(?-.P),•"'(.P-:.U)) = 
ze(a2Z) ... 

With 
J(:c) =!. v-'(:c,y),P(y) 

uE(al'Z)" 

and (C.1) follows (C.2). The derivative with respect to J(:c) reads 

5 !. 5 -- = v(:c.y)--. 
5J(:c) uE(al'Z)" 51/J(y) 

94 

(B.94) 

(B.95) 

(C.1) 

(C.2) 

(C.3) 

(C.5) 

(C.6) 



This yields 

for n > 2 and 

for n = 2. The n-point fre<>'propagator-amputated Greens function is therefore 

APPENDIX D. EQUIVALENCE OF RENORMALIZATION CONDITIONS 

Lemma D.l.. Suppose that the partition !unction Z(XI¢) fulfills 

Z(XI.P) = Z(XI- ¢) 

for all finite X c ( a:ll)". Then the renormalization conditions 

are equivalent to 

for all finite X C ( a:ll)" with 

ln Z(XI.P)I¢=0 = 0 
{)2 

a.p• lnZ(XI.P)I.,;=o = o 

A''n(XI.P)I.,;=o = { ~ 

:;,A"n(XI.P)I¢=o = o 

if lXI = 1 
otherwise 

Z(XI¢) = 2: IlA"n(YI¢). 
X=I:Y Y 

(C.7) 

(C.S) 

(C.9) 

(D.l) 

(D.2a) 

(D.2b) 

(D.3a) 

(D.3b) 

(D.4) 

The derivative in (D.2b) and (D.3b) is with respect to constant external fields tPz =¢for all z E (a:1Z)". 

PROOF: 1.) Suppose that the renormalization conditions (D.2a,b) are fulfilled. We will show the renormaliza

tion conditions (D.3a,b). From: (D.2a) follows 

Z(XI¢ = 0) = 1. (D.5) 

By uniqueness of the activities A'"' in (D.4) and the renormalization condition (D.2a) follows (D.3a). Because 

of the symmetry (D.l), follows 
a a.p Z(XI.Pllw=o = 0. (D.6) 
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By (D.2b), (D.5) and (D.6) we obtain 
ij2 

0 1/12 Z(XI.P )I.P=o = 0. 

With the help of the inversion formula (see app. A, (A.21) ) 

Aren(XI,P) = L(-lt-'(n-1)! 
n~l 

we obtain the renormalization condition (D.3b). 

X="" p k=l 
L..,k=l k 

(D.7) 

(D.8) 

2.) Suppose that the renormalization conditions (D.3a,b) are fulfilled. By the polymer representation (D.4) and 
(D.3a) follows (D.2a). Because of the symmetry (D.!), we have 

(D.9) 

Therefore (D.3b) and (D.4) prove the renormalization condition (D.2b) . .j 
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