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1. INTRODUCTION

Mayer expansions in Euclidean quantum field theory on the lattice lead to convergent expansions and to the
existence of the thermodynamical limit of the generating functional for connected amputated Greens functions
for sufficiently weak coupling. It is essential for convergence that the mass m in units of inverse lattice spacings
a~! is nonzero. The region of convergence for the coupling constant shrinks to zero if m or a goes to zero.
Moreover, terms of the expansion may become infrared or ultraviolet divergent. For handling these problems
methods of the renormalization group are necessary. We ghall only regard massive models on the lattice in this
paper. However the results of this paper are useful for single renormalization group steps. The convergence
condition of Gruber and Kunz [4] furnishes a condition for the existence of the thermodynamical limit and for the
convergence of the Mayer expansion of the generating function for connected free-propagator-amputated Greens
functiong if the external field # is in 2 (coupling constant and ma-dependent) bounded complex neighberhood
of 4 = 0. Moreover, the thermodynamical limit of the connected free-propagator-amputated Greens functions
exists. Using the tree estimate with extra factors n! of Battle [14] the proof of convergence will be easy for
simple Mayer expansions. We will show that this estimate is in fact an immediate corollary of the tree estimate
used and derived by M. Gépfert and G. Mack [8]. The extra factors n! permit to absorb the factors n! due
to the Cauchy formula for the n-th derivative of a holomorph function. It will be shown that the condition
of convergence is fulfilled for the A¢*—theory, the discrete Gaussian model and the nonlinear c—model in a
(coupling constant and ma—dependent} real neighborhood of 4 = 0 for sufficiently small coupling constants.

The activity of a polymer equals the sum of all ” point connected” Feynman diagrams whose vertex positions
occupy all points of the polymer. A Feynman diagram with given positions of its vertices is called potnt connecied
if it is connected or becomes connected after all vertices that are positioned at the same points of space are
identified. It will be shown how to express Mayer amplitudes by Feynman amplitudes. For A¢g*—theory it will
be shown that the perturbation expansion of the activities is Borel summable in A (on the lattice).

For renormalization and Mayer expansion it will be useful to introduce counterterms which are dependent
on subsets of the lattice. The Mayer expansion for the Boltzmannian factor with X-dependent counterterms
will be done and it will be shown that the molecular activities are of order AI*¥! {|X| = number of points in X]
if some renormalization conditions are fulfilled.

After splitting the propagator into pieces of increasing range and decreasing strength one gets effective
actions in the sense of Wilson’s renormalization group approach [21]. We will derive a tree formula for activities
corresponding to the iterated Mayer expansion ([8], [10]). The asymptotic expansion in A of this formula is the
Gallavotti Nicol tree formula of the effective action [11]. The effective action is nonlocal. Appendix B presents
a decoupling expansion for nonlocal interactions (corresponding to the tree graph formula for local interactions).
It is a modified version of the expansion derived by Brydges [22].

1.1. MAYER-AND FEYNMAN DIAGRAM EXPANSION

J.E. Mayer [1) introduced the method of Mayer expansions for statistical mechanics in the fourties. Mayer
considered real gases and their condensation. The essential trick of Mayer in treating the partition function of
real gases is to introduce the factor

f(r)=e P 3 | (1.1)

instead of the Boltzmannian factor e~#*("), where 8 is inversely proportional to the temperature and v is the
pair potential of the molecules. n molecules form a cluster. The partition function is a sum of products of
cluster integrals. The cluster integral is n-dimensional if n is the number of particles in the cluster. Particles
of a cluster are connected by bonds such that the resulting graph is connected and two vertices of this graph
are connected by only one line (Mayer graph). The integrand of the cluster integral consists of a sum over all
Mayer graphs.



Likewise in the fourties, Schwinger introduced the generating functional for Greens functions and their
perturbative treatment for quantum field theory. The generating functional for Greens functions in v-dimen-
sional Minkowski space is defined by

T[J}:-}{—f---f[ H d¢(z)]exp{if

:GRI’ Fd
where N is a normalization constant such that 7'[0] = 1. The Lagrange density £ consists of a free part Ly and
an interaction part (perturbative term) AL;

'z L(6(z)) + f 'z J(=)é(z)} (1.2)
ERY - zERY

L=Lr+ALr. (1.3)

2 labels the coupling constant of the model. According to R.P.Feynman (2] terms of the perturbation expansion
are represented by graphs. These graphs are called Feynman diagrams. The interaction Boltzmannian”

eia\fd"z Lr{¢(z))

has to be developped for the perturbation expansion. It is essential for the representation in Feynman diagrams
that the free term {r of the interaction is quadratically in ¢, Le.

[ trw@n =3 [ @2 @y sz K00, (14

K(=z,y) is the integral kernel of an invertible positive operator K. The inverse operator v = K —1 ig called free
propagator of the model. The perturbation expansion is a formal power series in the coupling constant A. All
terms of the perturbation expansion of order A" are represented by Feynman diagrams with n vertices. The
line {zy) connecting the points x and y in the Feynman diagram corresponds o the propagator v(z,¥).

The two above described expansions for statistical mechanics resp. for the quantum field theory were
independent methods that were succesfully applied to different problems. After Wick rotation (f — it) the
quantum field theory on Minkowski space will turn into the Euclidean quantum field theory. For Euclidean
quantum field theory it is possible to apply methods of statistical mechanics. In the mid-sixties K.Symanzik [3]
introduced the method of Mayer expansion for Euclidean quantum field theory (in the form of iterative solutions
of Kirkwood Salsburg equations). In this connexion the partition function in statistical mechanics corresponds
to the generating functional for Greens functions in Euclidean quantum field theory. The Mayer expansion in
statistical mechanics is an expansion in the number of particles and corresponds to-an expansion in the number
of points in Euclidean quantum field theory. The generating functional for connected Greens functions In I'[J]
corresponds to the free energy In Z in sfatistical mechanics. Terms in the perturbation expansion for Greens
functions can be ultraviolet divergent. This ultraviolet divergence arises from non integrable singularities (not
well defined products of distributions) of the integrand in the Feynman infegral. To circumvent this problem
only quantum field theories on the lattice (aZZ)” will be considered here. In the following section we will
introduce some notations and definitions for the lattice.

1.2. LATTICE NOTATIONS AND DEFINITIONS

Consider a v-dimensional cubic lattice {aZZ)” with lattice spacing a. Differentiation and integration on the
lattice are defined as follows

Vuf(g) =af(z+el) - fl=)], mwe{-1.v} (1.53)
-/:;e(azz)v = a xe(za;).,’ €p = €. | (1.5b)

8



Here e, is a vector of length a in u-direction. The negative Laplacian operator is
w .
—A =Y V_,Y, ' (1.6)
p=1
Operating with the Laplacian on a function f: (aZ)” — € gives
Af=a% Y [fly) ~ f(=)] (1.7)
¥
¥ nn o2

where the sum is over all nearest neighbors of z € (aZZ)¥. The scalar product of two functions f, ¢ on the la.ttlce
iz defined by

(f=[ sEe) (1)
zE{aZ)v
Summation by parts
(Vufr9) = (£, V_ug) (1.9)
shows that Y
(f,—8f) = 3 (Vuf, Vuf) = Y_If(5) - f)Pa™® | (1.10)
p=1 (29)

The sum ):(zy) is over all links (zy) on the lattice. Because of (1.10) the operator —A is positive. If we replace
differentiation and integration ir the Lagrange density on the continuum by the above defined differentiation
and integration on the lattice we get the lattice approximation of the Lagrange density. The Dirac distribution
§(z — y) corresponds to @~ 82y on the lattice, where :

_}1 if x=y
by = { 0, otherwise (L.11)
is the Kronecker symbol. The functional derivative —— 5% ( ) becomes the ordinary derivative a=* 3 1;;5) on the
lattice. Dimensionsless variables are introduced by .
= 0%¢(z), vy =aPu(n,y),  jo = 0" (2), (1.12)

where d = (v - 2).

The (normalized) Gaussian measure du,(¢) is defined by its Fourier transform which is given by the
following Gaussian integral

f dpo ()6'17?) = g2 (@79) (1.13)
for a positive semidefinite operator v. For positive definite operators we obtain
dpo(¢) = det(2rv)™F [ dg(z) e 200770, (1.14)
z€(aZ)¥

. The field ¢ with Gaussian measure du,(4) may be interpreted as Gaussian distributed random variable, In this
propability theoretic interpretation ¢ is called process of covariance v. The moments of the Gaussian distribution .
are simple to calculate using the defining relation (1.13).

Expectation values of observables O{¢) with respect to the Gaussian distribution are defined by

0)= [am#0®) (1.15)
The support of an observable O(¢) is defined by
supp O = {z € (aZL)”| O depends on ¢}. ‘ (1.18)

9



Suppose that supp O is finite and the Fourier transform 5(¢) defined by

Of¢) = f [ I del B(q)e’ Lorernry 0 9% (1.17)

rEsupp O

exists. Then 5(q)'depends only on g;, = € supp O, and the expectation value of O(¢) is an n-dimensional
integral (n = |supp O|)

{0(8)) = f[H dgz]e”} Lewer ™5 B(g), A= supp O. (1.18)
zEA
This follows easily from the defining relation (1.13). With the characteristic function
1 if x€ A
= 1.19
xa(2) { 0 otherwise ( )
A € (aZZ)” and the abbreviation
Vs = XAUXA (1.20)
follows that
(0) = fduﬂnupp O(¢)O(¢)' (1'21)

We sece that the propagator can be restricted fo the support of O.

1.3. EUCLIDEAN QUANTUM FIELD THEORY ON THE LATTICE AND STATISTICAL MECHANICS

After Wick rotation and with the lattice notations of section 1.2. the generating functional of Greens
functions on Minkowski space will be replaced by the generating function for Euclidean Greens functions on the
lattice

1) = - [ dm@FBY, | (1.22)

where N is fixed by the condition T[0] == 1. The Gaussian measure depends on the free part and the function
F(¢) depends on the interaction part of the Lagrange density. Definitions for Greens functions are given in the
following. Euclidean Greens functions are defined by

67!.
Glzy,...,20) = 5T o 6J(zu)T[J]|J=0. (1.23a)
The connected Euclidean Greens functions are defined by
6‘!&
Ge(Z1,.+.,%n) In T[J]|s=0- : (1.23b)

= 5J(z1)...60(zn) .

The connected free-propagator-amputated Euclidean Greens functions are defined by

6“
Ge(Zy,--12n =f vz, 9) . v (En, Un —1In T[J]}s=0- 1.23
Gz = [ ) ) g g TVl (1289
It will be shown in appendix C that
_ " Z(yY)
Gulon20) = gy sy ™ |20 o) o= o (e

10



where

) = [ du () FG+9).  (124b)
Therefore the generating functional for the free-propagator-amputated Euclidean Greens functions is given by
In Z{¢}—-1ln Z{¢ =0).

The connected free-propagator-amputated Euclidean Greens functions are not necessarily 1-particle irreducible.

In the following we will consider local interactions. For local interactions the function F in the generating
function on the lattice has the following form

Fo)= JI  Fuls2). o (129)
z€(aZZ)v
- For finite A C (aZZ)¥ let .
ZA19) = [ duss(@) T] Eule + v (1.26)
€A

i.e. the interaction is switched off outside A. By (1.13) and the definition of the Fourier transform ﬁ;(qz) of
Fo(¢2) '

Fo(¢s) = f dgoFo(gz) e (1.27)
we obtain
Z(Alg) = f [T] dge e 4e=0ext faeta Fi (g,)] T emoem=vss. (1.28)
€A (=9)

The product is over all (unordered) pairs (zy) with z # y, z,y € A. The (non-normalized) generating function
for free-propagator-amputated Greens functions in the form (1.28) can be interpreted as a partition function
for a generalized gas with pair potential g;v.yqy, complex fugacity and continuous charge ¢ (see section 2.1.).
The Mayer expansion of the partition function Z(Aj+) is based on the following polymer representation

zalg) = 3 T axw). (1.29)

A=Ex X

The sum is over all disjoint partitions of A. Finite non empty subsets of the lattice (aZZ)” are called polymers.
A(X[1) is called the activity of the polymer X. For {X| = 1 the activity A(X|¥) is called monomer actiwity.
The activity A(X]|y) is uniquely determined by Z(Y|¢) for all ¥ € X. This follows from

AXI) =3 > ()" Hn- ][ 2(xilw) (1.30)
n>1 X=Z?=1Y" =1

(proof see app. A). (1.30) is the inverse formula of {1.29). Conversely, the partition function Z(X|#) is obviously
uniquely determined by A(Y|¢) forallY C X.

The partition functions

zxiv) = > [[4axw (1.31)
Xx=3v ¥
are the iterative solutions of the Kirkwood Salsburg equations
Z(Xlp)= ) A¥IH)Z(X-Yiy) (1.32)
zeggx

with arbitrary z € X and initial condition
Z(@i) = 1. {1.33)

11



The Kirkwood Salsburg equations in statistical mechanics correspond to the Schwinger Dyson equations in
quantum field theory.

1.4. TREE GRAPH FORMULA, ESTIMATES FOR ACTIVITIES AND CONVERGENCE OF MAYER EXPANSION

The tree graph formula leads to estimates for activities A(X1y), where |X| > 2 {see Theorem 2.5.1. or [5}).
A tree graph with n vertices is defined by the following function

n: {2,...,n} — {l,...,n—1}, n(s) <i. (1.34)

Fig. 2.2 shows a graphical representation of a tree graph. The number of tree graphs with n vertices is {n-1)!
(proof see section 2.5., p.35). Labellings of polymers X are defined by bijective maps

F: {1,...,n} — X, () = z,. {1.35)

Given n — 1 real variables s; € [0,1], £ € {1,...,n ~ 1} we will use the following abbreviation

n

flnls) = H [$a—25a—3 - - - 8p(a)}- {1.36)

a=2

The interpolating covariance v[s] is defined by

88i11 .-+ 851 Va;z;, ifi<y
[5]:1:‘.1:, =y %78%5+1 -+ - Si-1Vgx;s ifi>y (1.37)
Ve.zi» ife=7.

We assume that F.(¢,) is C= for all z € X. Let z € X be an arbitrary point. Then the tree graph formula for
the activity A(X]yY) reads

Ax9 =3 3 [ dor-dns gtale) [ 1o ¢){ (gt 5

a=2

v el H Fay(ay + %,)}

(a) =
N x(1)_=ex e b=

(1.38)

The derivative can be estimated by the Cauchy inequality. Let F be a holomorph function in {z €€ | |2} <
x}, & > 0. Then the n-th derivative of F is bounded by

dﬂ.

P F(z)| < —‘maz|F[z)[ (1.39)

by

The faculties on the rhs of the Cauchy inequality can be dominated by using the following Lemma of Battle

(see [14] or Lemma 3.1.5.).
f ds, ...dsn_y f(n]s) Hd;

Here d;(n) labels the number of links in the tree graph 5 having their origin in the vertex [. For fixed labelling
# the number of derivatives of F, at ¢, in the tree graph formula (1.38) equals d;(n). The Lemma of Battle
is an immediate corollary of the following tree estimate ([6], {8])

sn——l

(1.40)

S [ dos - dsus £6rlo) TTnmn(0) < TTiwCes0=2) (141)
n "0 =3 =2
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with u(i) > 0, L € {1,...,n} (see Lemma 3.1.4.}. For the Ap*—theory one chooses & = O(A—%). The Cauchy
inequality leads then to a factor of order A% for every derivative. Since in the tree graph formula there are
2(n — 1) derivatives and (n - 1)! labellings with #(1) = z, n > 2, we obtain, using

1
Vgy = T (1.42)
ye(azz)" (ma)
the bounds o

|A(XIg)| € (n~ 1)1 O(X7T) {1.43)

and -
A )
Y lAX) < Of [W] ) (1.43")

X, [X|=n
2EXC ()Y

for all real external fields 4. For general estimates of activities we suppose that Fz(¢.) is a holomorphic and
bounded function in the complex strip {¢$. €€ | |Im d.| < &} with £ > 0for all z € (aZZ)” (see Theorem 3.2.1.
and generalization to N-component theories see Theorem 3.2.2.). Notice that these estimates are independent
of real external fields .

We can get better estimates for bounded external fields t. Let us change the assumptions for F slightly.
For all z € (aZZ)” let F, € C* and ¢, ¢ be constants with

ev<Lec<l (1.44)

and e-dependent constants C., h. such that

3d
343

is fulfilled. The Gaussian expectation values are estimated by

Ie'_é'(b:

Fo(¢a)| < (d—1)! Ch, (1.45)

G(S + 9)] < [(ef Lwea®?| sup G + 9) ™5 Loeen 82| (1.46)
e’

for finite A = supp G (suppose G(¢ + ) > 0 or < 0 for all ¢, ¢b). We obtain for the expectation value of the rhs
et eenthy < (1- ) (147)

(see proof of Theorem 3.4.1.). The estimates obtained by this method are represented in Theorem 3.4.1. for
1-component theories and in Theorem 3.4.2. for N-component theories. This method yields for A¢*—theory

without counterterms .
|A(X|$)] S O™ (ma)= 2Dyt ma) s 917 (1.48)

for A € O{ma)*), |X| > 2 and complex external fields ¥ (see Corollary 3.4.5.).

Gruber and Kunz [4] have stated with the help of the Kirkwood Salsburg equations a sufficient convergence
condition for the existence of the thermodynamical limit A 7 {aZZ)¥ (in the sense of van Hove)} of the reduced

. correlation functions

pa(X|Y) = Z(A — X[¢)/Z(X]y)- (1.49)

The convergence condition of Gruber and Kunz is fulfilled, if for some € > 1

B(¢&¥) <1, (1.50a)
where
_ l 2 { a—u(n—l) g"}]
B¢, ¥) = 6[1+|M({x}|¢)|6 . ;-—m(n& ] f — IM({z,23,...,2:}¥)|€ (1.50b)
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and

M(X|y) = -6, x| + A(X|¥). {1.50¢)
For theories defined by the partition function
2419 = [ aua() [] Fulde + ) (L51)
TEA

with holomorph and bounded functions Fi in the complex strip
S5x={¢- €C| [Img;| <k}, ~ £>0 {1.52)

we obtain the following estimate for the terms in the series of (1.50b)

v(n—1)
a__j’ |M({z,23,...,2.}|¥)| < const » (max)~2(»=1)pp (1.53a)
(n—1)! Zg,nEnE (@)Y
with the abbreviation
be=min sup  sup |Fp(dz)—¢ (1.53b)
cEIRY z&(aZm)¥ %ew _
[Tmga1=r

(see Theorem 3.2.1.). Especially for the A¢*—theory without counterterms
be < O(1) (1.54)
for & = O(A~%) (cf. Lemma 3.2.3.). (1.58a) and (1.54) implies

ag—vin—1)

" (n—1)!

/ M({2, 23, .., 2a}[9)] < O™ (1.55)
®24eeerZn E(GZ)Y

for n > 2. Therefore the series in definition (1.48b) will be estimated by a geometrical series, which is small for
small coupling constant. For theories, which fulfill

C Fa(drte) » 0 for fghe| 0 (1.56)
for all z € (aZZ)”, we get

|M({z}|$)] = {Fal$z +9¥s) — 1} = 1 for || — 0. (1.57)

Obvicusly, the convergence condition of Gruber and Kunz is not fulfilled for large external fields (in the renor-
malization group context: "large field problem”). For bounded external fields we get

IM(X|$)| =0  for A > 0. (1.58)

With (1.58) the convergence condition of Gruber and Kuns is fulfilled for small coupling constant and bounded
external field 4.

Suppose that the convergence condition of Gruber and Kunz is fulfilled and the support of the external field
W is finite. It will be shown (in section 2.2.) that with these assumptions the thermodynamical limit A ,/* (aZZ)”
(in the sense of van Hove) exists for connected free-propagator-amputated Greens functions Ge(z1,...,2s) and

the generating function
In Z(AlY) —In Z(A]Y = 0).

Moreover, the expansion

=3 a(Q) [M(Qi¥) - M(Q|y =0)] (1.59)

Z(Al¢) ]
q

A/lflﬂz)" ko [Z(AWJ = 0)

is convergent in a small complex neighborhood of 4 = 0. For notations and definitions of the combinatorial
coefficient a(Q) and cluster Q see section 2.2., p.21-22. ‘
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The ordinary perturbation expansion is not convergent in general. E.g. the perturbation expansion in
) of the partition function of the A¢*~theory on a lattice A = {z} that consists of a single point is only an
asymptotic expansion

T —% o 1,343 . .
Z({z}¥) = (;2;;) f dpe=dm 9 MG N T, (- )" (1.60)
- n>0

The series Engo aa(—A)" is not convergent for A # 0, because the integral is divergent for A < 0 and therefore
the convergence radius of the series is zero. In the same way the following perturbation expansion

Z(AlY) ] (=A)" —un/ ‘
In || = T V(éz, m;;---;v Zn T ) ET9 HEERH Zn
T I R e S L )
(1.61)

with

2(a1) = [ duo($) [T V049 (1.62)

TEL '

is divergent. {...;...) denotes the truncated expectation value (for definition see app. A). Instead of the

expansion {1.61) we use the convergent (for ¢ in a small complex neighborhood of ¥ = 0 and small A) Mayer
expansion (1.59) in the following form

Z(AlY) ] a” " f v v
In|——r—=l = M{z4,...,z —~ M{zg,....zu|p =0 1.63
Foren LT e Mt ) = M omaly =0 (69
with the definition of the augmented Mayer amplitude
Fi(zs,m)= > a@ I n@t ] =bm + AP (1.64)
Q distinct PEQ
rupp Q@={=3:-y2n} TE{L1,rsFn }
The clusters Q consist of points zy,..., 2, where z appears in Q with multiplicity n(z). Therefore
n(z) = |{P €Q| z € P}i. (1.65)

From the polymer representation (1.28) we obtain the following expansion of the partition function in the
number of points

LY
1
Z(Al$) =1 S S e tn SUPURRR 1) B
(Al#) +,§1 “Z‘ [HJ’:I mj(m_)!] L‘«’;L;’f’é‘f" M{y, Ynl¥) MY, 41 Yny+na V) (166)
---M(yn;+...m,_1y-A-synkl'p):

where m;({n;}) = |{r{n, = 7}| and the Mayer amplitudes M are defined by

a—b‘ﬂ-

M(zl,...,zﬂilfz) = [—61’,; +A({31,...,$n}|‘lf))] (1.67)

n!

for n different points zi, ..., Zn € (aZ)”. The Feynman amplitude is defined in terms of Gaussian expectation
values by

n

Fyir- - 9al$) = AT AV, + 9,5 D (168)

J=1
The Feynman amplitude is the sum of all connected Feynman diagrams with n vertices positioned on n distinct
points of the lattice. Written as a truncated expectation value the Mayer amplitude reads

—~vn
M(z1,.-- 5 20l¥) = E‘~;;;,-(~*f’”’““*1’””*1) _1; e AV eatyan) (1.69)
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The Mayer amplitudes may be expressed in terms of Feynman amplitudes (Theorem 2.4.4.,p.33}. From this
representation we see that the Feynman diagrammatic expansion of the Mayer amplitude consists only of point
connected Feynman diagrams. The essential difference between ordinary perturbation expansion and Mayer
expangion is the maintainance of the stability condition (boundedness) for the interaction Bolizmannian factor

[T e*vee+v

z€(aZ)v

for A > 0 in the Mayer expansion. The ordinary perturbation expansion is obtained by developping the e-
function in the Boltzmannian factor. The terms in this expansion are not uniformly bounded in ¢, and this
leads to a divergent perturbation series (see example for the lattice with a single point,p.15). Mayer expansions
leave the e-functions uneffected. The Mayer amplitudes (1.69) remain bounded for arbitrarily large external
fields 4 (stability). On the other hand the Feynman amplitudes are not bounded for large external fields .

The formal power series in A of the Mayer amplitude

M(X|9) = D ca($)A™, (1.70)

n2[X|

where ¢, (%) = O(n}), is also divergent. One can write
1 o0
M(X|¢) = If B(t)e™/ dt, (1.71)
¢]

using the integral representation of the faculty

o0
n! = f thetdt (1.72)
0
and the definition of the Borel transform
B =Y Eﬂi:fltn. (1.73)
, nxx| T

If the series of the Borel transform is convergent the series in (1.70) is called Borel summable. We will show
that for small ¢oupling constants A the perturbation expansion {1.70) for A¢*—theory without counterterms on
the lattice is Borel summable (see Theorem 4.1.4., p.60).

1.5. RENORMALIZATION AND MAYER EXPANSION; RENORMALIZATION GROUP
AND ITERATED MAYER EXPANSION

Estimates of the form (1.52) are useless for the continuum limit a — 0. In particular, as in ordinary
perturbation theory the problem of ultraviolet divergence appears. As a remedy counterterms are infroduced in
the action. In perturbation theory the counterterms are determined, so that some renormalization conditions
are fulfilled and the resulting Feynman diagrams are finite for all orders in A {renormalization). Theories, where
this renormalization procedure is possible with a finéte number of counterterms, are called renormalizable. The
degree of convergence C is defined by

: C=2I-vL, (1.74)

where I is the number of internal lines and L is the number of loops in the Feynman diagram. The Feynman
integral of the Feynman diagram is convergent for € > 0. The theory is called super renormalizable if the
minimal degree of convergence of the subdiagrams increases with the number of vertices. E.g. the A¢*—theory
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is super renormalizable for dimension v < 3, renormalizable for v = 4 and non renormalizable for v > 5. Two
counterterms are sufficient for the A¢*—theory in v = 3 dimensions and the partition function is of the following
form

Z(Al¢) = f dpo ()Y (FHE)-0V(849), (1.75a)
where
V(4) = A #(z)* (1.75b)
zc(aZZ)v
§V(¢) = —fe( m)v[.Ssmzqs(:a:)2 + &é]. (1.75¢)

The coefficient ém? describes the mass renormalization and the coefficient e describes the vacuum emergy
renormalization. Perturbation theory yields an expansion in A for §m? and §e. For small lattice spacings
(theory near to the continuum limit ¢ — 0) the coefficient §m? is positive. The mass counterterm must be
dominated by the quartic interaction for maintainance of stability. Because of ém? = O(A) and de = O(A), we
get
2y2
At 4+ Em2PZ + be < (i%)—-+6e < O(A). (1.76)

For interactions on a finite sublattice we obtain an upper bound for the renormalized action
f [~Agd 4 m292 + be] < O(A) # |A] (1.77)
zEA

(A} = number of points in A). To exploit maintainance of stability we apply the Mayer expansion instead of
ordinary perturbation expansion for the partition function with renormalized action {cf. discussion of stability
in section 1.4., p.16). For that purpose we introduce counterterms depending on finite subsets X C {eZZ)¥. So
we consider the partition functions

2(XI9) = [ dua(@) I &Y Be4eljemt V(49 (1.782)
zeX
with
5Vx(¢) =~ 3. [6m3(P) D 42 + 5¢(P)] (1.78b)
pRPCX =P

for all finite X C (aZZ)”. For the interaction Boltzmannian factor we obtain the following polymer representation

([ eXViestejervxierw) = 3 [ BPIW). (1.79)

zeX x=3.p F

The functions B(P|t) are called molecular activities. Counterterms and molecular activities B(P|y) are fixed
by the renormalization conditions

In Z(X|%)|y=0 = 0 (1.80a)
32
37 B ZXIY)lg=0 =0 (1.80b)

for all finite X C (aZZ)”. In the renormalization condition (1.80b) the external field is supposed to be constant
on the lattice. The number of renormalization conditions equals the number of counterterms. Renormalization
“conditions (1.80a,b} may be replaced by the following ones

A (X)lomo = {1 XKL (1.812)
az ren
a_v,b_?A (X|¥)ly=0 =0 (1.81b)
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with renormalized activities A™"(X|¢) defined by

(3 I8Py = >, T[4 (riv. (1.82)

Xx=>p F x=3v ¥

This formulation of renormalization conditions is appropriate for theories, which are symmetrical under the

transformation ¢ — —¢, le.
2(Xi9) = Z(X| - ¥) (1.83)

(proof see app. D). It will be shown that the molecular activities B(P|[$) are uniquely determined by the
renormalization conditions (1.80a,b) or (1.81a,b) and are of order APl (Theorem 5.1.1.). Therefore the order
of the following rencrmalized activity

Mmrenixlgy = . ([[IBPI¥); 1 (1.84a)
X:ZP P
with
M™™(X|9) = —8; x| + 4™ (X|¢) (1.84b)

is A1¥1, In this way the existence of suitable counterterms, and the consistency of the renormalization procedure
with X-dependent counterterms is shown.

To obtain estimates for activities we use the basic inequality

(Fe)) < sup |F(4)]- (1.85)

Suppose that the maximum of |F{¢)[ is at ¢ = 0. The Gaussian measure with mean value ¢¢ may be used if
the maximum is at ¢g # 0. (1.85) yields
{(F(#)) < F(0). (1.86)

The Gaussian measure with covariance v = ¢ is the Dirac measure

ditamo(#) = [ 46(2)6(8(z). (1.57)

So we see that the estimate (1.85) is suitable for small propagators v. For small (ma) the propagator (—A+m?) 1
is large and the estimate will become poor. In particular, estimates based on inequality (1.85) are not suffi-
cient to handle the continuum limit and/or massless theories. The same problem exists for the convergence
of the Mayer expansion for Yukawa gases at low temperatures in statistical mechanics. The propagator corre-
sponds in statistical mechanics %o the product of § and a pair potential. Since 8 is inverse proportional to the
temperature, this product will be large for low temperatures and estimates of the form (1.85) are unsatisfac-
tory. A procedure for handling this problem in statistical mechanics is (for a large region of applications) the
method of sterated Mayer expansion (see [8], (9], [10]}). The corresponding method for euclidean quantum field
theory ig renormalizetion group approach [21]. For this method the propagator v will be aplit in N propagators
v,i=1,...,N

v=ol 4ol (1.88)

For the propagators v* the range decreases and the strength increases if the index i increases. By the convolution
formula of Gaussian measures (see Lemma 3.1.2. for N=2)

[t F@) = [ auas (@) .. duar $IF(S - . 47 (1.89)

the expectation value {F(4)) may be computed or estimated successively. For this the Gaussian measure
dge~(¢7) will be computed resp. estimated first, then dp,v-2(¢™ ') etc. . Every integration over the
Gaussian measure in this procedure will be called a renormalization group step. So we obtain for the partition
function

Z(Al9) = [ dua($)eV e+ (1.90)
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after k renormalization group steps
Z(AlY) = fdn,,x+__,,,~_k(¢1 i i (e (1.91)
with the effective action

'vN—k = ——ln(e—v)”ﬂ—k+1+,._+u!v- (192)

We see that after k renormalization group steps the propagator is v! + ...v¥ ~k and the action is V¥ —%. For
Pauli- Villars regularized propagators

v=(—A)" — (A 4+ MH)! (1.93)
with Pauli- Villars cutoff M and the partition
vyt d o, W= (A +m) T (mA+miy) T ‘ (1.94)

" where m; =0€< me < - <My SmMy <My = M, we obtain after k renormalization group steps the

propagator
vt VRS (AT (A mE )T (1.95)

Thus the Pauli-Villars cutoff M is decreased to my_x41 after k renormalization group steps. A perturbative
representation for the effective action is the Gallavotti Nicold tree formula [11] (see Corollary 5.3.3.). Therein
the effective action is the sum of tree graphs of depth k. The trees stand for truncated expectation values and
the order in A equals the number of maximal vertices (= degree of the tree). We obtain a tree formula for
the activities (Corollary 5.3.4.) with the help of a partition formula for truncated expectation values (Lemma
5.3.1.). The trees of this formula correspond to partitions of partitions.... of partitions of polymers. The k-fold
iterated partitions will be called k-cluster (cf. [8]). They correspond to the polymers in the simple Mayer
expansion.

2. SIMPLE MAYER EXPANSION AND THEIR RELATION
WITH PERTURBATION THEORY

We will consider here quantum field: theories without derivative couplings on. the »—dimensional lattice
A C Agor = (aZZ)¥. The generating function for free-propagator-amputated Greens functions is

2ai) = [ dun(®) [ el +9) 21)

&€EA
(see app. C,p.94). F is a function or distribution. Examples for theories described by Z(A|y) are
a) A¢*—theory with counterterms:

¢ is a real scalar field,
Fp(¢z) = e—,w(m), V(¢z) = $% — §m242 + eo

v(z,y) = kernel of (—A +m?)~!, A= Aea” —4 dimensionsless coupling constant.
b) discrete Gaussian model:

¢ is a real scalar field,
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Fo(¢z) = Enez 6(¢s — 27n)
v = Bugs, vos = kernel of (—A)~L.

c¢) nounlinear c—model:

¢ is an N-component real field,
Fz(¢m) = 6(¢g - 1)

v = '}@-vc;,, vos = kernel of (—A)7L.

2.1. QUANTUM FIELD THEORY AND POLYMER SYSTEMS

We obtain from the Gaussian integral (1.13) and the definition of the Fourier fransform Fy(gz) of Fu(ds)

Fw(¢w) = /dq:l: ﬁz(q:z)eiq:é’ (2.2)
the following relation
Z(AI‘V’}) = f [H dqzﬁ'(qm)] e—%Z:,wEA q:?:yq!l" (2.3)
TEA
where X ) .
F(Q’a:) = Fz(‘h)e’q’#}z- (2-4)

The representation (2.83) of the generating function Z(A|y) is called gas pseture (cf. [11]). The generating
function Z(A|#) may be interpreted as a partition function of a generalized gas, whose particles sit on lattice
sites £ € A and carry (not necessarily d1screte) cha.rge gz # 0. Lattice sites are not occupied by particles if
gz = 0. The pair potential of the lattice gas is given by the propagator v. Per definitionem different particles
sit on different sites. The charge dependent fugacity is Fz(q,,) The notions generating function and partition
function are synonym in this context. With this interpretation of a quantum field theoretic model as a model of
statistical mechanics the methods of statistical mechanics may be applied fo problems in quantum field theory.
A model on the lattice A described by the partition function Z(A|¥) may be considered as a polymer system,
where the activities are derived by simple Mayer expansion (without use of the renormalization group).

Theorem 2.1.1. The polymer representation of the partition function Z(A|y) is

z(Alp) = > J]AXI¥) (2.5)
A=) x X
with
X|¢) Z f[H dq:l: qx)elq:db:ce_éq.!'ﬂgzqm] H [e—q,v,yq, — 1] (2.6)
Gegx TEX (zg)ec

F.(q.) is the Fourjer tranform of Fz(¢;) (see Eq. (2.2)). The sum 5 A=Y x is over all partitions of A into

disjoint non empty subsets. Gx is the set of all connected graphs (Mayer graphs) with vertices in A and two
vertices are linked by only one line.

Remark: The functions A(X|¢) may be interpreted as (not necessarily positive) actsviites of a polymer system.
The polymers are non empty subsets of the lattice A. The activity for monomers (=polymers with only one
constituent) {z}

A({Z}ltﬁ) = fde ﬁz(qx)el'qﬂhe—-}q,vgzq, (2.7)

20



is called monomer activily.

PROOF: Splitting the representation (2.4) for the partition function Z(A|¢¥) in point and line dependent factors
gives

2a9) [(T] padll I e, (2.9)

zEA (zy)EA~

where Dg, = dgsFy(gs)ed=Y=e~ $9:7222 3pd A* is the set of all unordered pairs (zy), z,y € A. By the definition

e=TV=v W =1 + f,.(q) (2.9)
we obtain
zAl) = Y 1]] Pgel ] Fewlo)- (2.10)
a8y~ ©€F {ay)ep

B is a disjoint union of Mayer graphs G; € §x,, >, X: = A. The g-integrations factorizes and we obtain

" zaly) = Y. [Axw) | (2.11)
A=Exx
with
AX) = > I 0l II fawl®) v (2.12)
GeGx z€X (zy)ec

The partition functions for subsets ¥ C A are defined by

20019) = [ au(®) [] Fulge+ ) (2.13)
z€Y
and the polymer representation is
z(yly)= Y. JJA(Xly) forall¥, 0#Y CA (2.14)
Y= x X

Empty products are 1. This yields Z{B|¢) = 1 for the empty set @. The activities A(Xl|¢) are uniquely
determined by Z(Y|¢), @ #Y C X (see section 1.3., p.11).

2.2. EXPANSION OF THE FREE ENERGY In Z({A{¢)) AND THE GRUBER KUNZ CONVERGENCE CONDITION

The free energy In Z(A|¢) may be represented by a sum of products of activities A(X %), ®# X € A. For
that we will define a cluster Q of polymers P C A (cf. [13)). Q@ = (P["*,...,Pg*) is a collection of polymers
P; with multiplicities n;. In the following we adjoin a graph (Q) for each cluster Q. The vertices of ~4(Q) are
the polymers P, ..., Pi. P; is n; times represented in ¥(Q) for all i € {1,...,k}. Polymers P; and P; are not
admissible if P; N P; # 0. P; is not admissible with itself. Not admissible polymers are connected by a line in
v 4(Q). Reduced activities are defined by

APly) = A(X|9)/ [] A{z}¥)- (2.15)

zEP
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For a cluster @ = (P{'*,..., Py*) we use the notation

k
AQly) = [T AlRIvy™. (2.16)
The expansion for In Z(A[¥) is
mZ(AlY) =) WA{}¥)+ D  «(QVA(QY), (2.17a)
TEA Q
with |»; 22

where
0 if ¥{Q) ie not connected

a(Q) = {Ec_c_q(q)(_l)l(c)/ [I5., n  if %(Q) is connected.

The sum in (2.17b) is over all connected subgraphs C of ¥(Q) with the sarme set of vertices as (@). I{C)
is the number of lines in C. A theory described by the partition function Z(Af) is translation invariant if
v(z,y) = v(z — y) and the functions F, are not x-dependent. For translation invariant theories the expansion
for the density of the free energy on the lattice Asor == (aZZ)” is (if the limit exists)

(2.17b)

Vx

1
lim —InZ{Al¢) = bR .
Wm T Z(AlY) ; ] (2.18)
TEA GAror
with -
v _ (A1) i |X| =1, X = {z) 219
| X T\ 2o @)A(Ql¥)  otherwise. :
limy »a,,, denotes the thermodynamical limit (in the sense of van Hove).
Let Fy(¢s) (for all z € (aZZ)") be holomorph functions in the complex strip
Se={¢=€C|Im ¢s| <}, &>0 (2.20)

(i.e. it exists an open neighborhood U of Sy, such that F, is holomorph in U). Furthermore, let F; be bounded
in 8. It follows from the convergence of the integral [ du,(¢) [Loex Feldz) for finite X C (aZZ)¥, ¢, € S,
that Z(X[) is holomorph in S.. Assume that

dE>1: B(E,¥) < Ke <1, (2.21a)
where
Blew -+ s ¥ AXWIEN]. (2.21b)

TEXCAgor [X]z2

Gruber and Kunz [4] have shown that (2.21a,b) is a sufficient condition for the existence of the thermodynamical
limit (in the sense of van Hove} X 7~ Agor for the reduced correlation functions

px(Y|9) = Z(X - Y|9)/Z(X|¥), (2.22)
which fulfill the bounds
lox(Y19)] < [t ~ K¢~ T] A({=z}w)~*. (2.23)
zeY

Furthermore, the thermoedynamical limit in (2.18) exists and the expansion (2.17) is convergent for finite A
(this assertion iz non trivial, because there are infinite summands in (2.17)). The following Theorem shows
the existence of the thermodynamical limit and the holomorphy of the generating function for free-propagator-
amputated Greens functions if the convergence condition of Gruber and Kung (2.21a,b) is fulfilled.
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Theorem 2.2.1. Let Fy(¢.) be holomorph functions for all z € (aZZ)” in the complex strip
Sk = {¢. €C | [Imd| < &} (2.20)

and let ¢ be an external field with finite support supp ¢. Furthermore let the condition (2.21a,b) be fulfilled.
Then the thermodynamical limit (in the sense of van Hove) A /* At exists for the function

Fy(v) = 1n[Z(A]¢$)/Z(A]¢ = 0)] (2.24)
and lima ~a,,, Fa(¥) = F(4) is holomorph in a neighborhood of P =0.

PROOF: From (2.21a,b) follows the existence of the thermodynamical limit & * A¢es for the reduced correlation
functions pa(X[t) (cf.[4]) and the estimates (2.28) are valid. Therefore g (X |#) is uniformly bounded in S.
Since pa{X|%) is holomorph in S, for finite A, it follows from Vitali’s Theorem that lim, 4, pa(Xy) is
holomorph in Sk. Let X be a finite subset of A¢ot, such that

X 2 supp ¥. (2.25)

By this assumption follows _
ZA-X|9)=Z(A—-X|¢=0) {2.26)

and with the definition of the reduced correlation function (2.22) follows
pa(X|¥)Z(AlY) = pa(X|Y = 0)Z(Aly = 0). (2.27)
The function ps(X|¥ = 0)/pa(X|¥) is # 0 in a suitable neighborhoed of ¢ =0 and we have
In[Z(A|$)/Z(Al$ = 0)] = In[pa(X|P = 0)/pa(X]¥)]. (2.28)

The thermodynamical linit exists for the rhs of (2.28) and the function limg p,,.pa(X|¢ =0)/pa(X|Y) isin a
suitable neighborhood of 4 = 0 holomorph and # 0. Therefore limy 4., In[pa (X |4 == 0)/pa(X|¥)] is holomorph
in a neighborhood of ¥ = 0 and the assertion follows from (2.28)./

From Thecrem 2.2.1. follows immediately

Corollary 2.2.2. Let Fo(é;), z € (aZZ)”, be holotnorph functions in S, and let the convergence condition of
Gruber and Kunz (2.21a,b) be fulfilled. Then the thermodynamical limit A /7 Asor (in the sense of van Hove)
exists for the free-propagator-amputated Greens functions

i Z(AlY)

Gl 120) = Gy 0(en) " (MG =0) ¥~ (229)

for all n € IN* and z1,...,%n € A

Corollary 2.2.3. Let the convergence condition of Gru ber and Kunz (2.21a,b) be fulfilled. Let 1 be an external
field with finite support supp ¢. The following expansion for the generating function for the free-propagator-
amputated Greens functions is convergent for translation invariant systems and in a small neighborhood of

Yv=0:

im M: —_ x = a A — A = .
e = T [ AUa) - Atally =0+ BeQAQM) ~ Qi =0l (20

PROOF: Because of Theorem 2.2.1. the thermodynamical limit exists. It follows from the convergence condition
of Gruber and Kunz (2.21a,b) that the reduced correlation functions g5 (X) are analytic in AY)L, Y22, YCA
for finite A (cf. [4]). For a finite subset X D supp ¢ we have

n[Z(A|9)/Z(Al$ = 0)] = In[ps (XY = 0)/pa(X|¥)]- (2.28)
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If 4 is in a sufficient small neighborhood of ¢ = 0, then

te Z(i_‘_(ifi)o) = 2. [mA({=}) - Al{=}¥ = 0)] + 3 a(Q)A(QI¥) — A(QY = 0)] (2.31)
ZEsupp 1 Q

and the series in the rhs is convergent. For translation invariant polymer systems exist a positive monotone
decreasing function e()), such that

)‘li,ngo eA}y=0 (2.32)
and
|24 (X) ~ pa,..(X)| < E¥le(dist (X,0A)) (2.33)

with dist(X,8A) = inf{|lz ~ y|lz € X,y € 94} , A = boundary of A. Therefore we obtain

o Zleal¥) - (Aly)
B(Realt =0) ~ " Z(AIg = 0)

+ R(A) (2.34)

with
+ PArige (x|¢(=£f‘;m§x|¢=o)
lim R(A)= Iim In £y 0 -0 (235
Asor A/ Beo Pag . (X|10)—pa (X|e)
A/ /A 1 + A = (th)A

The assertion follows from (2.31), (2.34) and (2.35)./

2.3. EXPANSION IN THE NUMBER OF LATTICE POINTS

The polymer representation (2.5) for Z (A|¢) may be reformulated as an expansion in the number of lattice
points:

Lemma 2.3.1. Let A C Ay, be finite. Then

14|
Z(Aly) = 1+Z f en > [TUx1 M(x19)} (2.36a)
d Dhnct {yl yn}=Ex X
with
M(X]y) = ———[ b0 + A(X]Y)], (X]|=n. (2.36b)

M(X|4) is called Mayer amplitude for the polymer X.

PROOF: By, the polymer representation (2.5) we obtain

zAawy= 3 TJaxw=3% S I 11 A({w}|¢)][HA(XIw
A=3x X YCaA "‘E’f LEA-Y
1X|g2

=1+ Z Z H[~51,1x|+A(X|¢)]=

PEY CA Y:Z x X

a—vn
_1+z n! ./-;1 NPT E H 51,|x|+A(X|\1))]=
n=1 du:mc: {!hn y,.} ZX X3
1A]

=1+ Z nr/ ymEA > IT(x Mxi)}y  (2.37)

@ietince {¥1yn )= Ex X
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In the proof of Lemma 2.3.1. we have shown

zAlw =1+ Y. > [I[Mxiw (2.38)

PEYCAY=Y"x X

with

M(X|¢p} = —b, x| + A(X][¢). (2.39)
The expansion (2.38) may be interpreted as a polymer representation of a new polymer system. The latfice
sites of the original lattice are split into two sites. Polymers, which contain more than one site, consist only of

double sites. Monomers consist of only one of the doubled sites. The monomer activities are set to one. The
activity of a polymer P? is M{P) if P’ emerge from P by the doubling procedure. We obtain

zalp) = Y. [[Mx1e). (2.40)

I:EX X

The sum is over disjoint partitions of the doubled lattice A in polymers X of the new polymer system. The
sufficient condition for convergence for the new polymer system is

UH>1: %[Ms:g > |M(X1¢)|52|xl] <1 (2.41)

IEXCA

The expansion of the free energy In Z(A|t) for the new polymer system is

In Z(AlY) = ) a(Q)M(QI¥)- (2.42)
Q

The series is convergent for finite A if (2.41) is fulfilled. In the foliwing we reformulate (2.42) as an expansion
in the number of (not necessarily distinct) lattice points. Let supp Q be the disjoint union of polymers in the
cluster Q. The point z in supp @ has the multiplicity n(z). n(z) equals the number of polymers P € Q with
z € P. Let X be a set of points with multiplicities. The expansion (2.42) is reordered by

In Z(Aj) = ) M(X1¥) (2.43)
X
with —
Mxiwy= 3 o@ J] M(Pl¥). (2.44)
HFPQQ=Z Feq
By Eq. (2.43) we obtain .
wz@Aly) =Y. [I M. zald) (2.45)

l’l-zl a:;,...,:c,.GA

with the definition of the augmented Mager amplstude

iz zal) = B TT (/000 0™) (2.46)

for X = {z1,...,%4}. If the condition of convergence (2.41) is fulfilled, the series

Z(AlY) N
A b E(A[Y =0) %:“(Q)[M(Ql‘f’) ~ M(Qy = 0} (2.47)

is convergent for finite supp ¥ in a small neighborhood of ¥ = 0 {cf. Corollary 2.2.3.}. For translation invariant
systems the augmented:Mayer amplitude is translation invariant and with the notation

M(zZ1,.., Tnl¥) = @ M(21 ~ Znt1, .01 Bn — ZTnt1,019) (2.48)
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we obtain for the density of the free energy in the whole lattice Agoe = (aZ2)”

Im —InZ(Aly) —1+Ef i’{(zl,...,znw). {2.49)

A/A=ot|11| 251V 812l

"This series is convergent, if (2.41} is fulfilled.

2.4. CONNECTION OF PERTURBATION AND MAYER EXPANSION

In this section we will carry the perturbation expansion in the form (2.40) by formal resummation and
we will show how Mayer amplitudes (rsp. activities) are represented by Feynman diagrams. The perturbation
expansion of the Mayer amplitude is not convergent, but it is an asymptotic expansion (cf. chapter 4. ). We
suppose that the functions F, in the definition of the partition function (2.1) are of the following form

Fo($s) = e V%), (2.50)

A is a dimensionsless coupling constant. Per substraction of a constant in the propagator the distributions F of
examples b} and c) (p. 19-20) are transformed in the form (2.50) (cf. chapter 3. ). We consider the expansion
in A of the partition function

Z(AlY) = fdy" e~ AV(d=+va) (2.51)
s:eA

In the following we abbreviate V(z) for _'l{(g‘)z + %), Formal expansion in power series yields

o) =1+ D EL e [ (v Ve (252

n>1

This perturbation series is generally not convergent. For example the radius of convergence for the A¢g*—theory
on the lattice with single site is zero, since the integral [ du,(¢)e—*(#=+%:)" is divergent for A < 0. With partially
formal resummation of the perturbation expansion we can get convergent expansions for non vanishing coupling
constants A. With the help of the relation (Wick-theorem)

(TT V(¢s + ) = 2503 T V(2 + v)lgums (2.53)

zEX zEX
the partition function Z(A|¢) is represented by (not necessarily connected) Feynman diagrams.

PROOF OF (2.53): Let the Fourier transform V(g;) for V(é;) be defined by
V(o) = [ daaTias)ee. (2.5)
With the help of the Gaussian integral (1.13) we obtain
H V(de + 92)} = f H dqu(q )etq=w=]e ta0q) _
zEX zeX
= [ T 1daeVige)eineveiedGordo) e _

:cEX
"‘62(3% 3%) H v ¢’z+'|bz)|¢>==0' \/

aeX
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We get
Z{AlY) =1+ Z (Feynman diagrams with n vertices). : {2.55a)
n>1

For example a) the Ag*—theory without counterterms and external field ¢ =0

@),
Z(A[¢)=1+Lea @ +L1Ma[® + @ +@ ] + ... (2.55b)

The Feyaman diagrams are related $o algebraic expressions by familiar rules. If the connected Feynman
diagrams F] %) appear my times in the Feynman diagram, we obtain a combinatorial factor 1/ ], m!. The number
of verticés in the Feynman diagram equals the order in A. The perturbation series {2.52) will be reordered, such
that the integration is over distinct points

— )l :
ZAW =1+, 3 LT;‘er_.a-un /; A V). (2.56)

n>1  sewlal
{eupp b|mn

dvstinet

We have used the function
- {A—+IN= {0,1,2, ...}

y by

the notations
suppb={z € A b, £0},  |bl= Y. ba (2.57)
zEsupp b

and the abbreviation by, = b;. b € IN* is called occupation funciton with point set A. For the Ag*--theory we
have

Z(AI¢=0)=1+£;1€A[ @4_“»'(@4_@*' %)+"'] +@
+L.y,eﬁ@+ + 4] 4o (2.58)

©

" 'The Feynman diagrams will be put on the lattice A x IN*, IN* = IN — {0}. The Feynman diagram F with
occupation function b, i.e. the vertices occupy the point set supp b and the point ¥ is covered by vertices of the
Feynman diagram F, will be put on the lattice

I= Y, {y}x{L2....b} (2.59)

yEsupp b

B3] =

"The lattice A x IN* is called indez lattice with base A and I C A x IN* defined above is called sndex sef for the
occupation function b, Conversely, it exists for every index set I with 1In{z} x N*] < co for all z € A an
occupation function b. We can rewrite the expansion (2.54)

Z(Aly) = Z (Feynman diagrams F' € %). (2.60)

FOAXINT
I indez wot

#; is the set of all Feynman diagrams with the set of vertices = I. The canonoical projection p is defined by

CHIEP e
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The Feynman diagrams F' € 7; on the index latfice A x IN* are related to graphs p(F) with vertices on A by
the canonical projection p. The set of vertices for the graph p(F') is p(I) and vertices z, y € p{I) are connected
by a line if v;, is in the algebraic expression for #. Two vertices in p(F') are connected by at most one line.
The graph p(F) emerge from F by omitting self lines and replacing lines which connect the same vertex by
only one line. The Feynman diagram F € 7; is called poinf connected, if the projected graph p(F) is connected.
Therefore

F € ¥ point connected <= p(F) € Gx with X = p(I). (2.62)

Gx is the set of all Mayer graphs with vertices in X and all points of X are vertices. Fig. 2.1 shows examples
for point connected vacuum Feynman diagrams for the A¢*~theory.

-

L} [} L4 - - . . 4 . . . . . )

N 0

" 'l

° - - - T gy . ey

P
|

- ~
=N o~

(a) (b)

Fig. 2.1 Example of a point connected Peynman diagtam (a) and not point connected Peynman diagram {b) and their related
Mayer graphs for the )(¢4-theory.

The Mayer graphs G € §x stand for the following algebraic expressions. Every vertex z € A of the Mayer

graph G € §x stands for . ]
Folgz) T2 Pe g $02V2alx

Lines in the Mayer graph G, which connect z and y, stand for the *super propagator®

e"‘ﬁu’:yﬂ'y - 1.

There is no combinatorial factor. After integration over ¢, € X we get the algebraic expression I{G) for the
Mayer graph @ € §x. Because of Theorem 2.1.1., Eq. (2.6}, we obtain

AXl¥)= 3 KG). (2.63)
Fegx )
Splitting the expansion {2.60) for Z(Al¢) in point connected Feynman diagrams we obtain

zalw) =Y 3 T X 1w | (2.64)

YCAy=Ex X FeFl

7 () i3 the set of all point connected Feynman diagrams with vertex set X. I{F) is the correspondmg algebraic
expression for the Feynman diagram F. As in the proof for (2.38) we have -

zaw) = 3> Hewx+ > 1@ (2.65)

A=y"x X C FeFIY
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If the coupling constant A is replaced by the point dependent coupling constant (Y CA)
_[A ifyeY
d ()= { 0  otherwise (2.66)
(the interaction is switched off outside Y), then the partition function Z(A|¢) equals Z (Y|¥). and the repre-
sentation (2.64) is also correct, if A is replaced by Y. From {2.63), (2.65) and the uniqueness of the polymer
representation, follows

AX|Y) =6 x + », I(F) (2.67)
FeFy®
and for Mayer amplitudes x|
MX) = e 3 I(F). (2.68)
IX“ {pe)
FeFyg

The representation (2.36) for the partition function ie equivalent o

1
Z(A =1+E E E S ——— M yees s ¥ng
(49 a2lk2i _ () [I5=1 mi({na})! adnst s o)

1=1 ni=n

M(yn1+ll seey ynx-}-ny) s M(yﬂ1+“~+ﬂh..1+1) ey !In) (269}

where m;{{n}) = |{rln, = 7} is the number of n, = j in the partition {n;} and M(Y|¥) = M(y1,...,yn|¢}for
{91, .--¥n} = Y. The Mayer amplitude may be represented as a formal power series. This (divergent) expansion
is Borel summable in X (see ch. 4. ). We obtain the following Theorem.

Theorem 2.4.1. The Mayer amplitudes M are represented by Feynman diagrams
a""pq

MXW) =~z 3 IF). | (2.70)

FE ?;‘F")

?J{{pc } is the set of point connected Feynman diagrams with vertex set X. The representation by Mayer graphs

18

(i) = L[ 214 ] ds Fufgo)saetem b | if X = {z}
= T\ Secay [Moex dte Falgn)etetzebtoonte] Tl e glemtemovts =1 | X]2 2
(2.71)

From the expansion of the e-function in the representation(2.6) for A(X|) we obtain an explicit expression
for the expansion of the activity A(X]#) in the number of lines

e Koy 8.
AXW)= Y (-1 > T Sy 2 pget e @72)
n=|X}-1 AeRX", ven® upp & cODnected (zy)€X* Y 2€X =

Yl lel=n, PU=X rso I 121=1

X* denotes the set of all lines in X C A, supp k = {{zy) € X*| kzy # 0}, Pk) ={z €Al Ibecsuppk:
z is point of b}, kg labels the number of lines in the Feynman diagram, whick connect z and y , &, iabels the

number of self lines in 2. ky = 2, cx kyz is the number of lines, which emanate from z and connect a point

different from z. The number of lines, which connect different points is {k| = E(zg)GX* kyy and the number of

gelf lines is |8 = }, cx %2- Fi.k)(rp,) denotes the k-th derivative at ¥,. The possible numbers of lines, which
emanate from z, are fixed by the derivatives of F, at ¢y = 0. For example for the A¢*—theory 4n lines, n € IN*,
can emanate from a point.

PROOF FOR (2.72): Expansion of the e-function in {2.6) gives

a9 = 5 [ TaRaees: 35 apelsteste/ 2

Gegx ® zEX 2,=0 8z

I 13 ot o

(2¥)EG bay=1
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and from distributivity

o0 E

. oy
AXl = 3 (-1) )y I 75
n=|xf—'1 he:\:‘: . -en:‘" Tl +e (zp)EX* Y

|mn, Plk)mX

(11 (v"m f dgagz'=t"*= Falga)e¥e]. (2.74)

zeX
After inverse Fourier transformation we obtain (2.72). /

The perturbation expansion for In Z{A|¢) is a sum of truncated expectation values

w2 =Y Gl [ (g veen) (2.75)
ot IS

(proof see app. A). The Feynman amplitude

Flarsosmnld) = S0 (Vz); - Viza)) (2.76)

is 2 sum of connected Feynman diagrams. If same arguments occur in the Feynman amplitude we will write

FOT ) = FO g1 5oy Yroeenr ¥k |9). (277}
s, et N— m—
iy arguments Ny arguments

After partial formal resummation we obtain for the perturbation expansion (2.75)

~ Xl
mzaw =Y ¥ S [ V) =

n>l  eNd distinct
=X X [ LTl 2

Jeupp B|=n
n>1 bENA di ﬂ,mce
leupp ble=n

with |b| Zze a bz and definition(2.67) for supp b. Reformulation of the mtegrat]on over distinct points in a
summation over subsets of the lattice A gives

In Z(Aly) = ): |XJt e D7 F b, e y) (2.79)

X
e#xgn bEN

with X = {z1,...,2,} and N* = {1, 2,3, ...}. We have shown that
mZ(Alg)= Y Vx (2.80)
l;u’gg.m

with the definition (2.19) for Vx. (2.79) and (2.80) are also fulfilled for arbitrary Y, @ £ ¥ C A, instead of A.
By the following Lemma 2.4.2. we obtain ‘

Vi = X[ X ST F(a, L 2ty (2.81)

bem*x
Lemma 2.4.2. (M3bius inversion formula). Let Q(Y); @ # Y C A, be defined by

()= 3 LX) (2.82)

X
XLV
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Then we have
LX) = Yy (-)¥-Fle)  (2.83)

and the representation (2.83} is the unique solution of Eq. (2.82).

PROOF (CF. [13], [lé]): Unsqueness of representation (2.83): By definition (2.82) we have L({z}) = @({z}).
Let L(Z) be uniquely determined by Q if |Z| < n. By Eq. (2.82) we get for X with |[X{=rn and « ¢xX

X+ ) =QX+{=})- > L(Z) (2.84)
$22CX

So we see that L(X + {x}) is uniquely determined by Q. The uniqueness of representation (2.83) follows by
induction.

Proof of (2.88) We have to show
Q¥)= 3 3 (-yFigx). (2:85)

X X'
PHXCY gppX’'CX

(2.85) is fulfilled if

n H I o B
_pix-e 1 X =Y .86

EX: (-1) {0 otherwise, (2.86)
X'CXtY

Let n = |X|, 8 = |X'|, t = |Y| be the number of elements in X, X",Y. X is fixed by the choice of n — ¢ elements
from the { — ¢ elements of ¥ — X’. This can be done in ({7%} ways, Therefore by the binominjal Theorem
follows '

x oete e (1) - Do (3) -

xCxcy rgnst k=0

- oyt o 1 ft=2=a
=Q-197= {0 otherwise, - /

From (2.80) and the M&bius inversion formula follows

V= 3 (-D)XYImz(¥iy). {2.87)

¥
PRV CX

Because of (2.81) and
& F(21,...,2al) = > I(F) (2.88)

connected Feynman diagrams »
with vertices «y,....20,

we have
Ve = X! Y I(F). (2.89)
FE?‘;‘)

?,(:c) labels the set of all connected Feynman diagrams, whose vertices occupy the set X C A. The activities
A(X|¥) in the polymer representation for Z(A[y) may be represented by point connected Feynman diagrams
(see Theorem 2.4.1.) and the functions Vx are represented by connected Feynman diagrams. Since all connected
Feynman diagrams are point connected, there are less Feynman diagrams required for Vx. than for A(X]v).

We have only to consider polymers P with |P| < n for n-th order perturbation theory. Because of M( X} =
O(A]}, we obtain
zAlp) = Yy, [IM(X)+00m+). (2.90)

Aa=S"x X
|X|€n ‘
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Let us remark that the first term on the rhs of (2.90) contains terms of all orders in A.

The Mayer amplitude M is a truncated expectation value of the following form

-

n
M(z1,...,2a|9) = E——-——(e_’“"(“”‘) — 1.6 V() ) (2.01)

(proof see app. A). The following Lemma express partial truncated expectation values by complete truncated
expectation values. For that we will need the following definition:

Definition: Every matrix can be brought to block form by permutations of rows and/or columns. A matrix is
called irreducsble if it consists of only one block and no row or column is identically zero.

Lemma 2.4.3. Let Fi(¢y.), 1 = 1,...,n, be functions and n; € IN* = {1,2, ...} positive integers. Then we

* have
y [Ii=y »s! k()
(E[ by )™ ; o %U e, H » k,(;)')l 1:[1(,1:[[ Fi(do); 9 ) (2.92)

The sum is over all irreducible n x I—matrices k) = (k l)) =10 With k(i) € IN and E kg.) = nq.

PROOF: For positive integers n; € IN*, i = 1,..., n, let us define the following index set

n
I=3 {3} x{1,2...,n} C {3, .-y} x IN%. (2.93)
With the notation
F(s)=F($y) forp(z) = (2.94)
{p = projection map, see p. 27 ) we obtain from the definition of the truncated expectation value {cf. app. A)
Fi(y)™ . Falyp)™) = Y. TITIFEE; D (2.95)

I=§:J J ozed

or equivalently

' m i
(Filp)™ - Falya)™) =32 D0 [T FGYE D (2.96)
l=1 Iﬂz;=lfij=1 2€1;
with m = |I| = 3>_i_, n,;. For every partition I = E;m I; of the index set I we define an n x l-matrix
(k) izyoon by
k) =z e I | o) = wi}l. (2:97)
With this notation it follows from (2.96}
m i n
(Fi(y)™ ... Ful(ya)™") =E z H H[F (wi)s (n . (2.98)
=1 1—= vy d=l i=1

Jﬁl 4

For different partitions > I; we can get the same matrix k'w. We have

H n/[( H H kij1) 11 (2.99)

Eml g=1

partitions Y I; with matrix (kg-)), defined by (2.97). Since permutations of the index j do not lead to new
partitions, we get a factor 1/ and we obtain from (2.98)

{(Fi(y)™ ... Fa(ya)™ Z Z ~ IL: =1 na! H(H Fi(yi); ]k . (2.100)

{1)
=1 K8 (Hs’=1 J =1 ktg , _1'—1 =1
E e,
j=1 F N
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The matrix (k“)) can be brought $o block form by permutatlons of rows or columns. Every block form of (km

defines a partition } ¥ = {1,...,n}, where N is a set of indices for rows# of a block in (k( )) So we obtain
from {2.100)

(Fi(y)™ .. . Fu(yn)™) = E H{ z z : H"(fv)u;‘(”h)p

S N (im} N G216, irreducible (Tliew Is=i Kip

z:(N) HN)
PETI

HN)

IT (I iFtw)s ]*55”’}}. (2.101)

J=1 €N

From the definition of the truncated expectation value we get

Meers =Y ¥ =ik - TL T 9)v (2.102)

=1 121 aU)irceducible (Hl'=1 HJ"‘I i35 '): F=1 =1
O Ly
jesr V5

Expansion of the e-functions in Eq. (2.91}) for the Mayer amplitude gives

a” " )‘)E’*l n n
M(z1,...,25|9) = T W(V(a:l) e Vza)™ ) {2.103)

{’”i}isl,...,n
ng>l

With the help of Lemma 2.4.3. it follows from {2.103}
(M= H

=1 &0

irredueible

-n

M(z1,. ., 70 l9) = T H[( N [TV )

nxi matriz =1 g =1
(2.104)
With the definition of the Feynman amplitude F (see (2.76)) we obtain the following Theorem 2.44. for

representation of the Mayer amplitudes by Feynman amplitudes.

Theorem 2.4.4. The formal power series in A for the Mayer amplitude is

,-1 (s k! -
M(z1, -+, 2al$) = 2 ZZ aT H?( ey 2 ) (2.105)

>3 k(‘) 3_1 5—'1 55 )l'

The sum is over all irreducible matrices k") whose entries are non negative integers.
Remark : Feynman amplitudes F are represented by connected Feynman diagrams. The condition of irre-

ducibility for the matrices () in (2.105) corresponds to the fact that Mayer amplitudes are represented by point
connected Feynman diagrams. Eq. (2. 105) is an explicit expression for the representation:of Mayer amplitudes

by connected Feynman diagramas.

2.5. THE TREE GRAPH FORMULA

To obtain estimates for the absolute value of activities A(X|¢) the tree graph formula is:more useful than
the representation (2.6) by Mayer graphs in conjugated space. The activities can be expressed by iree graphs,
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i.e. Mayer graphs without loops. We will need some notations and definitions to formulate the tree graph
formula. An n-free is defined by the following function

n:{2...,n}>{1,...,n—1}  with 9(s) <1 (2.106)
1,...,n are called the vertices of the n-free n. Vertex 1 iz called the root of the n-tree 5. The links of » are the
pairs (n(1},1), 1 =2, ...n. For the n — 1 real parameters 9y,...,8,._;1 we define

n

finls) = ] sa-2%a—s .- 8y(a)- (2.107)

a=2

Empty products are 1 as usual. For example f(n|s} = 1 if n = 2. Fig. 2.2 shows an example for an n-tree,
" n=28,

Fig. 2.2 n-tree defiued by 5:{3,...,8} —+{1,....7}, n(2)=n(3)=1, n(4)=9(5)=2, #(6)=3, n(7)=n(8)=5. 1 is the root of the n-tree
n. The vertices 4,6,7,8 are called maximal vertices of n. For f(n|a) we obtain f(n]s)=sselelscedse.

A tree T with point set X, |X| = n, is an n-tree i together with a bijective map (labelling)

P {{1,...,n}—+X (2.108)

1= 2.

For integration over the parameters s;,...,8,—; € [0, 1] we abbreviate

1 1
fdaﬂ—l =f dsn—l f dsl. (2.109)
’ 0 ]

We will define a propagator v[s| modified by the parameters s;,...,8,
859441 -0 851 Vo, i<y
Uz;z; [8] =8 858541 ... 81 Vg, ifi> j (2110)
' Yz, ifi=1j.

The number of links in an n-tree y, which emerge from vertex ! is denoted by dp(l). With the definitions and
notations given above we have the following

Theorem 2.5.1. (Tree graph formula). Let A(X|y) be the activities in the polymer representation for
Z(A|¢) and let z € X be an arbitrary point. Then we have

n 3 3 n
35|11 F #(6) + ¥z
H [a% @) Yz(a)2(n(a)) 342(n (4))] H 2(0) (P2(5) + Yz(5))

a=1 b=1

AXW =Y 3 [ doastiale) [ dmia (o)
n é(x)i.:ex

(2.111a)
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and equivalently
n gdiln)

S (I1 veee) [ doncsftls) | dnu[.,w)LH-———Fz.-(m‘.+¢x..)] (21110)

d;
2 (i7)en f=1 Bqﬁzi(")

AXI9) =)
n

z
F(1)=mEX

with n = | X| > 2. The sum is over all n-trees n and labellings #: {1,...,n} — X, & bijective with &(1) = =.

PROOF: see app. B.

An n-tree n with labelling Z is related to an algebraic expression [ (,%) by the following rules. For all

vertices T we set Fi, (#z, + Y=, ) and for all links (47) in 4 we set %vxm -ég——. The differential operators acts
2" IJ‘

on the product of the F-terms. After integration by [ don_1 f(nl8) | duy(s(4) we obtain Hn,%). The activity
A(XIy) s
AXl) =" > %), (2.112)
n &
#(1)==z€X

Remark: There exists (n — 1)! n-trees  {n > 2).

PROOF (BY INDUCTION): For n = 2 there exists one tree with link (12). Let the assertion be true for n.
A new vertex (n + 1) can be connected to an n-tree 7 in n ways. We obtain an (n+1)-tree. The number of
(n+1)-trees 5 is therefore n(n — 1)! = [(n + 1) — 1L/ '

3. ESTIMATES FOR SIMPLE MAYER EXPANSIONS

In this chapter we consider estimates for the absolute value of the activity

M(X|9) = ~61 1% + AX[9) = (][ Fale +¥2) - 15 ]} (3.1)

weX

where X is a polymer with |X| > 2. From (3.1) we see that estimates for the activity are at the same time
estimates for truncated expectation values and Mayer amplitudes.

3.1. SUBTRACTION TRICK AND TREE ESTIMATE

We need an assumption to obtain estimates with the help of the Cauchy inequality for the functions
Fa(¢s), = € (aZZ)”, in the definition (2.1) of the partition function. '

Assumption: Let Fx(¢.) be holomorph and bounded in
Se = {¢2 €€ | |Im ¢:| < x} (2.20)
for all z € (aZZ)”.

F,, z € (aZL)*, is a distribution for the discrete Gaussian model and the nonlinear c—model (see examples b)
and ¢) in ch. 2., p.19-20 ). Nevertheless the above assumption can be fulfilled in this examples, if the propagator
v is positive definite. For that we have the following Lemma
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Lemma 3.1.1. (subtraction trick). Let ¢ be an N-dimensional field with propagator v. If
v—-6L>0 (3.2)

for a positive.constant § > 0 we have -

[ () TL Futba+92) = [ di-sx®) I] {(m)*‘i‘ [ dtae a'ﬂf=-*=-¢=>’me,)}‘ (3.9)

ZEA zCA

PROOF: From the convolution formula (Lemma 3.1.2.} we obtain

J (&) T Futa + ) = [ die-sn(®)dison(e) [T Ful®a + & + ) (3.4)

z€A zEA
(3.3) follows from (3.4} and the definition of the Gaussian measure with covariance § 1.,/

Remark: F (¢, + v.) is replaced by (Zm‘)')_‘g'fclfze_%(&“"%““)zﬁ;(fw), if v is replaced by v — §1. The

integral [ dé e~3&a—¢=~¥=)"F (£.) is holomorph for Fy(¢s) = 2onem 6(€z — 2wn} (discrete Gaussian model)
and for Fy(£;) = §(¢€2 — 1) (nonlinear c—model). Lemma 3.1.3. shows an explicit expression for the constant
6 for propagator v = (—~A 4 m?)~1.

The convolution formula used in the proof of Lemma 3.1.1. js

Lemma 3.1.2, (convolution formnula).

[ dbesson(@+ 0 [T Fulbat¥2) = [ dies(®) [ s (9) [T Fale 0. (25)

TEA TEA
PROOF: Let the Fourier transform ﬁ'x(qz) of Fp(¢z) be defined by

Fy(¢z) = quz ﬁ‘z(qn:)eihé“- (2.2)

From the Gaussian integral
f@‘v(‘ﬁ) H g=bs . o—4(0¥)a

1279

with (9, vq)a = 37, sy Iz¥ayy follows

fdﬂv1+0:(¢ +¥) H Fo(dz + ‘l,b_-g) = f H{dqxfm(qz)]e“%(q,(v1+vz)q)A —
. zEA zEA
o f H[dq:i’z(qx)]fdﬂ,,l(¢)'/'d.uvz(¢) H e£q=(¢’=+¢=) —
zEA zEA
| = fd#”l(gb)fdﬂ"s(q’) 1-_[ Fw(¢z+'§bz)- \/ (3.6)
xEA

Lemma 3.1.8. Let v = (-4 + M®)"*a~?. A is the Laplacian operator on the v—dimensional lattice (aZZ)".
Then we have
v—6L>0 (3.2)

for § = (4v + (aM)?)™! and

—v - 2, (GM)°..
6 [ o v =8 = P+ S (37)
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PROOYF: From the definition of vy follows
a?(=A + M%) lugy = &y,
The Fourier transform #(k) of vz, is defined by

a” ,
Ygy = oo d¥k §(k)ek(z-¥)
v (2m) '/f-cue[—f,{-] (B)e

. From a?(~A) f{z) = Ev > [f(z) — f(y)] (the sum is over all nearest neighbors y of z) we obtain

1
@ (=0 + M)V = 123 (1 - cos kya) + (Ma)]e),
=1

From (3.10) and

a¥ .
e @k &*E=Y) = §,
(2x) f];ﬂe[._.l‘. F3 v
follows 1
(k)

T 23 (1= cosk,a) + (aM)?
Insertion of (3.12) in {3.9) gives

av f Pk ik (z—y)
T @) Soemxm | 2onen (L - coskaa) + (aMP

Because of
® 1 1

>
2 =i (1 —coskya) + (eM)? T v+ (aM)?

and Eq. (3.13) we obfain
gy — 60y 20 for 6 = {4v + (aM)?] 1.

Since 8,y is the kernel of the operator II, we have

v—§1>0.

From 3¢ (az)~ Uay = #(0) = Ia_nlﬂ'f and (3.15) we get (3.7). v/

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.2)

_ The sum over the trees in the tree graph formula can be estimated by the following tree estimate ([8], [6]):

Lemma 3.1.4. (tree estimate). We have the following inequality for the sum over all n-trees 5 with vertices

l€{1,2,...,n} and non negative u(l) > 0

Zf do—1 f(nls) [Tierm) < [Tnet-1).
n "0 =2 1=3

" PROOF {[8]): We have to find an upper bound for

Sy = 3 [ doy. oo doms [TntDs1-a01-a .- sqioutn ()]
L o =32

The summation over n-trees n can be replaced by summation over k = n(I) from 1 to I — 1, Therefore

n {1

S${p,n) = ,/01 dsy ...dep_y H[E p(Dey_asi_a...axp(k)).

i=2 k=1
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Because of fol dsue®® < ¥ we obtain
§'(p,n) < u(n)e* 8" (u,n - 1)
with

n i-1

! (’-‘! "‘) f dsy...dsp_1 H[ZH 1)3!..2 3k,u(k)]e2k=x #n—s..-8n (k)

I=3 k=1
From (3.19) follows

) < [[W®eCD18'(s1) = H[#(l)e“(‘“l)]

=2
and the assertion (3.16} follows from §(g,n} < §'(u,n). v/

The following generalization of the Lemma of Battle [14] is a corollary of Lemma 3.1.4. .

Lemma 3.1.5. We haveforallmy e INU{-1}, I=1,.

> " done flnl) [lde(n) + milt < (( H[zm”(m )
g *0 i=1

The sumn is over all n-trees 5 and di(n) = number of links in v, which emerge from vertex .

PROOF: From Lemma 3.1.4. follows {u(l) = &)
f don—1f(n|s) thtm < H (tr41€")
=1
Multiplication of inequality (3.23) with #*++{[]_, {*e~%]etn yields

n—1

n
f da.n_lf(ﬂla)tdl(ﬂ)+n1+1 —3t; H(td:(n)wu =2t )gda (n) 41 g=tn < Ht?tﬂe_’h‘

=2

b t o 2t n!
dt e = nl f dt the = -
-L. ’ 0 2n+1

we obtain from integrating (3.24) over £1,...,¢, from 0 fo co

Because of

L (da(n) + 71 + 1) T, (de(n) + T
Z/; don-1f(n]s) lz(Z(n)+u11+2 Ly H{ 2;.((?1)%?:1 [@y(n) +ni)! < JJ (e + 1)1
n

From the relation .
-

Sam=2n-1)-1
=1

follows
n—1

=2 i=1

Efl don_1 F(n|8)(d1(n) + ny +1)! H[d, () + mft < T 230 + 1)1 (e + 1)1
P 0

The assertion (3.22) follows from (3.28), since d;(n) > 1./

The following special cases of Lemma 3.1.5. will be used

1 no
Y [ doussale) [Tt <
L o i=1
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



and

1 n
Zj; don—s f(nle) [Jlde(m) — 1]t < 472 ‘ (3.30)
n =1

3.2. ESTIMATES WITH THE HELP OF THE CAUCHY INEQUALITY

For the following Theorem 3.2.1. we will define the distance L(z1,z3,.. ., Zy) of n points 24,%3,...,2n €
(aZY. L(%1;...,%,) is the length of the shortest polygon, which cornects z1,%3;...,%n. Thus

LX) = Lz,...,za) =min > llzi—zl,  X={z1,....%a}- (3.31)
(i)eT

ll.|| is the euclidean norm on the lattice. T denotes trees with n vertices Zy,...,%p.

Theorem 3.2.1. (Estimates for truncated expectation values). Let Fy(¢,) be holomorph and bounded
functions in the complex strip |[Im¢,| < s for z € X = {z1,... ,Za} C (4Z2)”,n > 2. The constanis b.and bX
are defined by

def
b, = min su su F, —c 3.32a
K ceR ze(a.g)v ne%f | Fz($2) | ( )

1fm ¢gl=r

and

X 4f F. - 3.32b
= = mip sup és:;p |Fz{éz) — <l | _ ( )

Hm ggl=x

For the truncated expectation value

M(X|) = {[] 1Fe(ds + ¥a); 1 (3.33)

aeX
real ¥z, we have the following estimates
(i) Let the propagator v be exponentially decreasing and
|vzy| < De~ml==9l 2,y € (aZE)”. ' (3.34)

Then we have

x2g—mL(X) TgDpX 1"
— 1 ~
Mexie)) < - 0 [BEE ] (3.35)
() If 1
v zy| = T3 < 00, 3.36
* fse(az)v‘u o! (may =% (3.36)
then we have
o) (e [ g "
a me%mywmwsmlyle ) - (3.37)
PROOF: Because of
mipewp WP (Fa(¢2) — 1) — ¢f = min sup e, |Fo($a) — ¢l = b5 (3.38)
Hm ézl=n |Im dx|mr
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the constants b, and b} are independent of 4, € R. Thus we can suppose ¥ = 0. Let us set M(X) = M(X|¥ =
0).

(i) From Theorem 2.5.1. (tree graph formula) and (3.34) follows

|M(X)| < pr-? _mL(x)Z Z /dan—lf(ﬂls)fdl‘u[s]hﬁ IHI d:(’!) Fr(¢2,)]]- (8.39)

z(l}=zEX
The Cauchy inequality reads
3"‘(’” di(n)!, x
la¢d‘ (n) z: (¢$z)] = Ed‘(”) 6!: * (340)
The Gaussian expectation values are estimated by
[{(F(#))] < sup |F()I- (3.41)
From (3.39), (3.40) and (3.41) follows
—1 - di(n)! bX
n mL(X {
IM(X)| < (n— 1)1D" e JZf dow- 1f(fil3)H o (5.42)

The relation } 1., di(n) = 2(n — 1) yields
1 ! “
[M(X)] < (n = 1)1 D™ ™EO0 ()" e 5;, fo don1f(nls) II_'[1 di(n)! . (3.43)

From the special case (3.29) of Lemma 3.1.5. we obtain

bf)nsn—l

|M(X)] € (n— 1)1 D*—temiX) (m(n_l) . (3.44)

{(ii) The tree graph formula for M(X) reads

(n)
M(X) Z Z fdoﬂ—lf(ﬂls)/.d#v[a](¢)((l;[ vx.z, [’H aa¢di(n) z,(qﬁz,):’ . {3.45)
1)En =1

s(l)nzex

Analog to the proof for (i) we obtain from the Cauchy inequality {3.40) and the estimate (3.41} for
Gaussian expectation values

M s S5 Y [t [ seep [Tt (30

7 i)meex (i7)€n =1

Integration of inequality (3.46) over z3,...,z, € (aZl)” gives a factor {ma)~3("—1) on the rhs. Thus

" M) < (= )t M)z(w) Z f don_y S n]s)Hdg(ﬂ (3.47)

T30, B E (@25}
From the special case (3.29) of Lemma 3.1.5. follows the assertion (ii). /

Remark : For translation invariant theories the constant b7 is independent from X. If X (b,) is replaced by
6%, o (bxtnr) in the inequalities (3.35) and (3.37) the assertion of Theorem:3.2.1. is valid for all ¢, € Sxr.
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Theorem 3.2.2. (Estimates for truncated expectation values of flelds with N components). Let
the functions
o {d;‘N A
=5 U (Batree s Bmn) > FalBontre s fouw)

be holomorph and bounded in SY = Sc X -+ X 8¢ with 5, = {¢ €C | |Im ¢| < &} for all z € (aZL)”. The
constants b, b are defined by :

(3.48)

def
be = mlf{ sup sup |Fe{dz1s-- s fa,n) ~ €| (3.49a)
c€ .T.G(GZ)" bz, ,Ea, 1Tm ¢z if=en
tE{1,..., N}
and
def .
bE = min sup sup 1 Fr(dz,1y00 -2 02,8) — ¢ {3.49Db)
cER e X ¢,'¢Em L Hm by gl=x
i€ {1, N}

Let the kernel of the propagator be defined by
Vay i3 = 61'3'”3:9‘: t,j € {1: -“N}- (3'50)
We kave for the truncated expectation value

M(X19) = (] (Fe(ds + ¥2); ) (3.51)

zeX
where X = {z1,...,2n} C (aZ)¥, n > 2, and { . ) = [ dp.(4)[ . | the following estimates
(i) Let the propagator v be exponentially decreasing and

|vzy| < De~ ==, z,y € (aZZ)". (3.34)

Then we have

k3e~mIX) [RDyNZEE "
MO < (- 01 S [ o ] (3.52)
(i) Let
1
“ = < oo 3.36
j;:E(aZ)" [vzy| {ma)? o0 ( )]
Then we have

—uv{n=1) e (ma‘n)2 SBK"’NB:I”

a L p— M(XI9)| < (v =D 55 | ) (3.53)

PROOF: We can suppose ¢ = 0 (see proof of Theorem 3.2.1.). Abbreviate M(X) = M(X|y =0).
(i) From the free graph formula {Theorem 2.5.1.) and (3.34) we obtain

MOEOIS @Dy O T D [ donsftale) [ date

F(1)mrEX

110 5 5937 %W) [1 Fui(ga} (354)

=2 {=1 i=1

From the multinominial Theorem follows for the bracket {...} in (3.54)

N am,
<0 > M2 AT g VP (6 (3.55)

1
11 miree myi...My: =1

-dx(w)
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Because of

>, 1w (3.56)
e
and the Cauchy inequality
i(l_ll P S (857)
we obtain from (3.55)
()< S Na o (3.58)

Insertmg (8.58) in (3.54) yields
M| S (D () = 1 O [ donssala TTatmr . @59
i=1

From the special case (3.20) of Lemma 3.1.5. follows the assertion (3.52).
(ii) Integration of the tree graph formula over z3,. ..y 2 € (aL) gives

avint) [ Ml < (G S L [ dog-stre) | i

Eayentn E(0Z)
(1)===EX

{| gcg 3 % 3 %ﬂm")‘l:IFz;(qﬁm)l} . (3:60)

The proof of (3.53) is analog to the proof of (i) if we replace

- 1 '
€ .mL(X) -1, D—- W \/ (3.61)
Remarks:

(i) 'The remark after Theorem 3.2.1. is also valid for fields with N components.

(if) If we replace x2 by x%/(7N?) we get the assertion of Theorem 3.2.2. from the assertion of Theorem
3.2.1. .

(iii) The assertions of Theorems 3.2.1. and 3.2.2. are also valid after substracting the propagator v by 61

We will now present upper bounds for the constant

b =min 8u su F, -z, 3.62
kT eER ﬁE(a%)v ¢,eI:D |Fz($z) ~ ¢ (3.62)

Itm dul=x

In the case of the A¢*—theory without counterterms, the discrete Gaussian model and the nonlinear &—model :

Lemma 3.2.3.
(i) A¢*—theory without counterterms:
For Fo($5) = e~2%% we have _
by < 82 (3.63)
(i) discrete Gaussian model:
For F{O(¢,) = (2x6)"3 T e umy J dbae™HE=792)6(¢s — 27n) we have

<3

be <
® = (2n8)%

(3.64)
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(iil} nonltnear o—model:

For F$ (¢2) = (276)~% [g._. dégze~4(éa—¢2)" (§N—1 — (N — 1)— dimensional unit sphere) we have

2eNr* (36

be < GEBT(NTZ)

PROOF:

(®)

b < max |e-—A(¢=+iﬂ=)‘| = max {G—A¢:+01n3¢:-.\x‘}_
T e€R ¢ER

Since ¢2 — 65292 > —0wt, we have .
bm S e&Ax .

(ii) From the relation ([15])
L M = Z 8{€z — 21n)

n mcZZ ncZ
follows
en’/:!& N 2.
F) (45 xin) = —p— | (218)73 f de e Fr(Grmda) Hilmekr)Ea
T meZ
A fas
N e';:r 3 e himingimée,
meZ
Therefore
2
(3-6) w3 28 2
be < |FO($y £ i) — S| < —hm?
2 2r
meZ—{0}
22§ =2 2 /26 2i26
=8'¢/ Ee_§m2<8’cl2 mdze'—*m’: efﬂj
T m=1 Tr 0 (21‘.6)*

(iii) We obtain for the nonlinear ¢—model
b.c _<_ (2?1'6)‘%{./. dé’x}e_}l&’(fa—¢=+l’l¢)z! S (2?{'6)_1}0‘”_13‘"&’/26
SN-1 .

Op_, = 27&#]?(%—)“ is the surface of the (N — 1)—dimensional unit sphere. /

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

3.3. ESTIMATES FOR ACTIVITIES AND EXISTENCE OF THE THERMODYNAMICAL LIMIT FOR THE

A¢*—THEORY, THE DISCRETE (GAUSSIAN MODEL AND THE NONLINEAR ¢-MODEL
ON THE LATTICE

We can obtain conditions for the constants b, (ma) and x, such that the convergence condition (see section

22.) .
JE>1: %[l-{- sup E |IM(XI9)| 3% <1

z€(eZ)¥ X
zEX C(aZ)¥
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is fulfilled, if we use the estimates for the activities given in the Theorems 3.2.1. and 3.2.2. .

For the following Lemma we need estimates for the monomer activity M({z}|¢). We suppose
F.(0)=1 (3.73a)
for all z & (aZZ)” and we consider only theories, which obey the following symmetry
Fo($s) = Fo—¢2)- : (3.73b)

With this assumptions we obtain by Taylor expansion

N
MU = (sl + o) ~ D] = 5 3 B+ V) g Pl lemo. ) (3.74)

with some & € [0,1]. The derivative in (3.74) will be estimated with the help of the Cauchy inequality. For that
we use the notation

be == min sup sup | Fo(deiy-- 1 dam) —cl- {(3.49a)
cERmE(am)u v,,.-eﬂl'

[Em g 5le=r

From (3.74) follows
N
MU < A (i + )N = 25 (N [4)
=1

with $2 = 308 92 . T v = 9(~A + m?)~!, then vs, < . Therefore

— l(am

Ny

(am)?

i < [T ep]. (3.75)

Estimate (3.75) is useful for not too large external fields ¢.

Lemma 8.8.1. Let ¢, € IR” be an external field for 2 model with N components and propagator 7(—24 +
m?)~1, which fulfills :

b'g 2 1

Fx&, < o) (3.76a)

for all z € (aZZ)”. The convergence condition (3.72) is fulfilled, if

128 N* b,

(Iﬁb,c + I)W

<1 {3.76b)

PROOF: The condition (3.72) is expressed by integration over the lattice

-u(n-—-l)

812 «= A >1 [1 + [M({z}|¥)|€% + Z YT f I [M(z, xg,...,a:,,,|1p)|£’“:| <1

From (3.75) and (3.76a,b) follows

IM({z}9)] < 7.

With the help of inequality (3.53) (Theorem 3.2.2. ) follows that the convergence condition (3.72) is fulfilled, if

) (max)? Sb,cf’N'z'y o
> {1+16 Z 16N2y " (mak)? y<t

This is equivalent to

1 L b Beby Ny
=2 = 1+ = < 1.
E 16 2 1— r_ﬁijmaﬂ N”{
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Especially for £ = 4
1285 "
maK

1 - 12857 Ng,y <

MaKx

165, 1.

This is equivalent to
128N 25,

{16b, + I)W <1.+/

Remark : From Lemma 3.2.3. follows that the condition

1

b
e R (3.762)

has the following form for the A¢%—theory without counterterms , the discrete Gaussian model (with extra mass
m) and the nonlinear ¢ —model :

() Ad*—theory without counterterms

4
Mz < o5, (3.772)
(b) discrete Gaussian model _
2 (27)% 3
Vo S 55,0 (3.77b)
(c) nonlinear o—model
r(X¥)2%
2 < B2 sae (3.77¢)

20eN

For an optimal choice of the constant & we have to determine the minimum of the function f(zr) =
7% 2 >0, s € R: = {z € R| z > 0}. We have

min(a~%e") = f(z = (2)}) = (F) et (3.78)
PROOF: 9
f(z) = [~227% + naz"%je* =0==z= (;;)*. v

We will show the following assertion B for the A$*—theory with/ without counterterms, the nonlinear
o—model and the discrete Gaussian model with extra mass:

B : Let ¢ be a real external field, which fulfills the inequality

1

%0 (3.762)

b

¥z <
for all z € (aZZ)¥. The thermodynamical limit (in the sense of van Hove ) exists for the free-propagator-
amputated Greens functions Gelz;,...,z,) and the free energy ]-}Hln Z(Al¢). If the support supp ¢ of the
* external field ¢ is finite, the therrnodynamical limit {in the semnse of van Hove ) exists for the generating

function
InZ(AlY) —In Z{Al¢ = 0)

for the free-propagator-amputated Greens functions and the expansion

Z(AlY) ]

L | 2] = 5 a() @Iy - M@ty = o) (2.47

Q

is convergent in some neighborhood of ¢ = 0.
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Corollary 3.83.2.. Let the partition function for the A¢*—theory without counterterms on the lattice A C
(aZZ)” be .

Z(A19) = [ dua(@) T e ¥0409)" (3.79)
xEA
If
M(ma)t <c, (3.80)

where ¢ = [512¢¥(16e} + 1)]2, then the assertion B js valid for real external fields ¥, which fulfill A2 < 5.

PROOF: From Lemma 3.2.3. (i) follows

_ b < 82°, (3.81)
Because of (3.78) we choose & = {7ix)1. Therefore
b—'; < 4arfes, B et (3.82)
From Lemma 3.3.1. with v = N =1 follows that the convergence condition (3.72) is fulfilled, if
. A
(16e +1)512 3 Ty <L (3.83)

(3.83) is equivalent to (3.80) and assertion B follows from Thecrem 2.2.1., Corollary 2.2.2. and 2.2.3. . Vv

For the A¢*—theory with counterterms we obtain

Corollary 3.3.3. Let the partition function for the A¢*—theory with counterterms on the lattice A C (aZZ)”
be

Z(Aly) = f duy(9) [ e (ertve) +Hom (0t da) e (3.84)
’ zEA
with v = (—~A 4+ m?®)~! and
ém? = X632,  &m? = O(1). (3.85)
For coupling constants :
A < min(2/(67m3)2, é(ma)?) (3.86)

with ¢ = [512¢!19¢(16e1+%¢ + 1]2 the assertion B is valid.

PROO¥: We have

e S g [em MR HIRA O ) o gy (oMM APSA RSy (38)
From —¢% + 6x%2¢2 + 2442 < (3x% + Z2)% we obtain
f i #7312
B < MM IRN)IAIBER e AR 4 NG % 4 At 0e. (3.88)

Let us choose & = (;1)¥. From (3l.88) follows

be < et O 008 (3.89)
Because of assumption (3.86) we have
§m? 4 | [677)2 i A
T/\ -+ mi'é'“-}\ < 3 - (3.90)
From (3.89) and (3.90) follows
b
5 < axtel* and b, < et (3.91)

with x = (-l—é—x)‘f. Because of Lemma 3.3.1. with v = N = 1 the convergence condition (3.72) is fulfilled, if

(16e1+%¢ 4+ 1)512¢! ¢ (3.92)

'(;;)—5 < 1.

This inequality follows from assumption (3.86). Assertion B follows from Theorem 2.2.1., Corollary 2.2.2. and
2.2.3. . v/

The following corollary presents an estimate of the activity for the nonlinear --model with extra mass m :
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Corollary 3.8.4. Let the partition function for the nonlinear o--model on the lattice A C (aZZ)” be

Z(Al9) = [dﬂ-%.,(qﬁ) [T 6((8= + #2)* — 1) (3.93)

oA

§ is the Dirac distribution, ($z)zca, (¥z)zea are fields with N components and the propagator v = (—A+m3)~t
obeys the following inequality
]v-'ﬂﬂl < De_ﬁ'”z-y” (3.94)

with h = m + O(a). Then we have for the activity M(X|¢), X C (aZ2)”, |X| = n > 2, the following estimate

M) < (- Dy [“";&E‘;{;‘%ﬁ”"] "o (395)
for real external fieids 9. | |
PROOF: With the help of the sdbtraction trick (Lernma 3.1.1. ) follows
29) = [ dn g0 sxl9) I 79+ (3.962))
with '
FO (g0 + ¥5) = (276)~F fs L degem (et (3.96b)
Because of Lemma 3.4.1. we choose N
P i G (@90
By Lemma 8.2.3., {iii) we have
5 = min sup sup |Fo .15 rey on) = ¢ = be < (276)~F On V<120 (3.98)

cER zeX éz,"E(D"'E{l ..... N}

[Tm g le=n

where Oy..1 = 21r‘¥T(%-)_1 is the surface of the (N — 1)—dimensional unit sphere S¥~*. By Theorem 3.2.2.,
Eq. (3.52), with 7= }v_o follows

3,~ML(X) [RDN3(2r8)~ ¥ 2n FD{ )1 Nx* /26"
IMXI)| < (-t REE [ i () ] : (3.99)
We choose
. N— (3.100)
N~ folav + (am)?}’ '
We insert (3.100) into (3.99) to obtain
e~ LX) 2= ¥ DN4§-1-%e]”
MU < (= ! e | s (3.101)

With the choice of {3.97) for § the assertion (3.95) holds. v/

Corollary 8.3.5.. Let the partition function Z(A|y) for the nonlinear c—model on the Iattice A C {aZL}” be
defined by (3.93). Let the following inequality for the coupling conséant fo be fulfilled

¥ am)? & |
Info < min(%]n[zgé ;,26 : 4y(+ (lm)a]] wln[-é—lﬁ-[4v+(am)2]],%ln[rézze)] ln[-z-}-ﬁ[4u+(am)°]] }. (3.102)
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Then assertion B is valid for all ¥, € R with y3 < 2L [(4u + (am)®) fo] 52,

PROOF: By Lemma 3.3.1. we have to show
128N3b,
(165, + ) Fotmayies <L
s

From Lemma 3.2.3. (iii) with % = 3£, § = W (ef. Lemma 3.1.3. ) follows

Ze [(4¥ + (ma)?) ¥

From (3.102) follows
(166, +1) < 2.

Because of {3.103) and (3.104) we have to show

256¢ [4v + (am)?|N? [4v + (am)? , 1%
NE)  (em)? [ 2N f°] <l

‘(3 106) is valid, because of assumption (3.102). +/

(3.103)

(3.104)

(3.105)

(3.106)

In the next corcllary an estimate of the activity for the discrete Gaussian model with extra mass is given.

Corollary 8.3.8.. Let the partition function for the discrete Gaussian model with extra mass m on the lattice

A C (aZZ) be
2(A19) = [ dugo($) [[IT (62 — 270

2CA nEZZ

& is the Dirac distribution and the propagator v = (—A + m2)~! obeys the following inequality

|ty | < De—llz—vl}

Then we have for the activity M(X|¢), X C (aZZ)”, |X| =n > 2, the following estimate

|M(X|$)] < (n - 1)!

e—ML{X)+1 [431)
2V/2r | B3
for real external Belds 1.

PROOF: With the help of the subtraction trick (Lemma 3.1.1.) follows

ZW9) = [ duge-sa(8) [] PO (0o + )

xEA
with ‘
FOatve) = @n) 3 [ deae o s(e, - 2mm)
ne(aZ)v

By Lemma 3.1.4. we choose p
=+ (am)?
From Lemma 3.2.3. (ii) follows
o = 0 el
=be=min su su —¢ < .
. p P |F3" () — el < W

€R ze(aZ)* 4.6

1Im dz]=x

By Theorem 3.2.1., Eq.(3.35), we obtain

Kx2e—ML(X) [SDe”’ /zs]n

|M('X|'/’)| < ("‘ - 1)! 16-D. 52\/2,r6

The assertion (3.108) is valid, if we choose k3 = 26. +/
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(3.107)

(3.94)

(3.108)
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(3.109b)
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(3.111)

(3.112)



Corollary 3.8.7. Let the partition function Z(A|y) for the discrete Gaussian model with extra mass on the
lattice A C (aZ)” be defined by (3.107). Suppose that

8 > max(22 (4 + (am)?), (1286)2 i ?”E:;f)g)a ). (3.113)
Then the assertion B is valid for ¥, € R, ¢3 < %]?{m%ﬁm‘]‘}%-
PROOF: Becanse of Lemma 3.3.1. with 7= #, N =1 we have to show
(165, + 1)%%; <1 (1.114)
Because of Lemma 3.2.3., (ii) with «? = 26 we have to show
16¢ Gdef (3.115)

<1
(\/211' b (ma)3v2né%
(8.115) follows from assumption (3.113) if § = m’%j’ v

3.4. IMPROVED ESTIMATES FOR ACTIVITIES

In the contrast to the supposed boundedness of F,(¢.) in section 3.2. we will suppose here that the
£ 42 . . .
derivatives of Fi;(¢,) increase not faster than ¢%%z ( for some ¢ ) in this section. For example Fy($z) may be a
polynom. .We have the following improved estimate for truncated expectation values:

Theorem 3.4.1. Let F, € €, We consider the truncated expectation value

XW’ H [Fz(¢z + ?"'z) ]) (3.116)
zeX
for X = {z1,...,%a} C (a2}, n 2> 2. The expectation value is defined by
)= [dun @] v= (o) (3.117)
Let € > 0 be a constant, which fulfills '
: 3 (ma)?
<3 (3.118)

and

c(d)= sup sup |6 % = Fo(4:)| < (d— 1)! Coh, (3.119)

2€(aZ)” ¢z ER 3
where (. and h, are e-~dependent constants. Then we haVe the following estimates
(i) Let D and m(=m 4+ O(a)) be constants, such that
|vay] < Dem ==l (3.94)

is fulfilled. Then
—mL(X)

“Doer 18D e F Daex ¥l (3.120)

IM(X|9)| < (n~ S

(i) We have ,
' 2 8y(C2hed"

a-”(“—l)f M(X|)| < (n—1 !('"“ s |

o, ,%E(az]vl (Xl < ( ) ¢z [ (ma)? ]

for all m > 0, 4, €@ with |¢.| < &, = € (aZZ)".

(3.121)
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PROOF: Let us set a=1.

(i) From the tree graph formula (Theorem 2.5.1. ) and the inequality (8.94) follows by extracting of a
Gaussian factor e~ ¥4

|M(X|¢)t < (')‘D)""_Ie—ﬁ'b(x) Z z [do'n-—lf(ﬂla) f dluqu[a](¢)

n (1) =2EX

£ s o —5 43 841(")
8 Duex 2 [ e~ 445 WFM%&%N. (3.122)
f=1 L]

We will estimate the Gaussian measure by the following method :

{F($)G(¢))] < I(G(¢)}|81;PIF(¢)|- (3.123)

Since the propagator v[s] may be exhibited as a convex combination of partially decoupled interactions
{see app. B or [8], Eqgs. (3.8)-(3.12)), we get by the assumption (3.118) the inequalities

3

2
<e—LT< 21 .
e'yv[s]_emall_ﬂ 41[ (3.124)

We obtain with the n X n—matrix vx = (Vzy)zyex 30d Ix = (fey)zyex
z '_'g'
[ ton(308 Toex ) = et [roxlelroele) ™ — x| 1=
= |det(lx — eyux[s])~ ] < det(i-nx)'i =2", (3.125)

We insert this on the rhs of inequality (3.122). Thereby

MX|9)| < 27 (D) A ST N o f(mls) [T{ sup e 3%
1 P ER

n a'e_(x):;-ex k=1
gdi(n)
WFﬂ (@ + ¥z )|} (3.126)
z
We have for the bracket {...}
: _ _ gdi(n)
L)< sup | int b=tV qup | E% T, . (3.127
{2} ¢=,gIR| ‘cb,,gnl 3¢.gi(ﬂ) a1 (62| ( )
From —£¢2 + ¢z, ¢, < €2, and (3.119) follows
(...} < [e¥¥%|(difm) — 1)t CE M. (3.128)

Therefore

IM(Xig)] < (n— 1)! (YY"~ e ™E) (2R )med uvex ¥4l 3 [ ' doas Flrle) 1‘[ CHn (dy(m) - 1)
n 0 -1

(3.129)
Because of n
S di(n)=2(n—1) (3.130)
=1
and the special case (3.30) of Lemma 8.1.5. , we obtain
IM(X|$)] < (n— 1)t (D)~ e~ E0X) (2h )" ef Loaex 921" c2l0—1) gn3, (3.131)
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This is equivalent to the assertion {3.120).

(if) Because of f ()" |vgy| = ¥, from the tree graph formula (Theorem 2.5.1.) follows

[ o MEISGEITE 5 fiout0) [ dmpont Boe

F()=rex

2 3 di(n)
H|e 547, 6¢"‘(") Fu ¢z +¥2). (3.132)
f=1 Ty

We get (3.132) from (3.122), if we replace

g PLX) 1 and D —s --!-5. (3.133)
m

Therefore (3.121) follows from {3.120), if we replace ¢e~™*(X) by 1 and D by 5ir on the rhe of inequality
(3.20). v/

In the next Theorem we present a generalization of Theorem 3.4.1. for models with N components.

Theorem 3.4.2. Let

o —¢
F. - 3.134
? {(¢x,11-‘-,¢w,N)HFz(¢z,1:-'-s¢x,N) ( )
be functions with N arguments and F, € C™ for all z € (aZZ}”. We consider the following truncated expectation
value
M(X|9) = {{] (Fa($e + 92); ]) (3.116)
zeX

for X = {z1,...,2,} C (aZ2)¥, n > 2. The expectation value is defined by

)= [ dne@] 1
The kernel of the propagator v is
Vay.ii = ijVay, v =(~A+m?)7L (3.135)
Let ¢ > 0 be a constant, whick fulfilla
2
€< 3 {ma) (3.118)
14
and
ami N Z:N mj
ce(my,...,my) = sup sup |H Eye i W @es ey G2n)| < (H m)C7=* "he  (3.136)
mE(GZ)” bz ER a¢ i=1
€ {3y IV}
where C. and h, are e—dependent constants. Then we have the following estimates
(i) Let D and (= m+ O(a)) be constants, such that
|vay| < De~®li==vll, (3.94)
Then LX)
€ N A2 ar2 £ L
MXI9)| < (= D! ooy 8D 27 1CEN hele Loaex 2oims (3.137)
(ii) We have
2 Ne3p N2eiNe’
gv(n=1) f XI9)| < (n - 1)t ek 872 Cche ", 3.138
Zane 'z"e(az)" | [ hb)i ( ) IG,YCQNQ[ (ma)z ] ( )
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PROGF: Let us set a = 1.

(i) With the help of the tree graph formula (Theorem 2.5.1. ), inequality (3.94) and the multinominial
theorem we obtain by extracting of a Gaussian factor e~ §%

|M(X|9)| < (7D)* e~ L) S~ Z f don_1 f(nls) f PR P BRED DALY

#1)=zEX

2 *EX ,,1'#.::
S 'H[Za%nacsm.]HFz‘w“w"”<

J=2 f=1 =1
< (,VD)an —L(X} E E fdan—lf(f”s) f dﬂ"!’"['] p)e? Egex Ei:; ¢2
" aaymeex

[Fa($a; + ¥} (3.189)

n !
1Dl | pe

IR

Because of 3 _mimn 1 < N%(7) we obtain from (3.136)

my=dy(n)

n N
di(n) —$¢2
sup  sup { [l .lF (¢z + ¥2,)|} <
2E(aZ)” ;{i‘el}v} ‘=H1 mx;mw m;!...mN! E ¢::,c z: \¥zy x
m’-=d‘(q)

S Sup H{ sup I H “3&:“.-+€¢=:,|‘¢a£,e'—';"b:“i!
zE(aZ)"t 1 é.-rl i€

- TE I ) =1
. dl(ﬂ)‘ .._5..¢ ami
Va0 <
R LD D mN,l(y JRELP ¢::.'_1Fz.(¢m +4a)ll) <
i€{1,... N} Z:m =dy ()
n
< eV E(NC Y- Dpe [T di(m)t. (3-140)
I=1
Estimation of the expectation value in (3.139) as in the proof of Theorem 3.4.1. (see (3.123),(8.125))

vields
IM(X|9)] < (n ~ 1)1 (D& PEXNNC )= (2N h Jred Do Lo Wil

Zf don_1 f( n[s)Hd, N (3.141)
i=1

By the special case {3.29) of Lemma 3.1.5. we obtain
IM(X|¥)| < (n— 1)! Ql%)f_- ~MLX) (N, J2P=1) (2N p, )" e Doeex e Wl (3.142)

‘Therefore assertion (3.137) holds.
(if) The assertion (3.138) follows from (3.137) by the following substitution

ePEE) 1 and D — % (3.133)

(¢f. proof of Theorem 3.4.1., (ii)). v/

Remark : We get the estimates of Theorem 3.4.1. from the estimates of Theorem 3.2.1., if we substitute :

4
K — —= and b — 2heeflV=l,

¢ U'H

From this remark follows a lemma, which corresponds to Lemma 3.3.1. :

(3.143)
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Lemma 3.4.3. Consider 2 model with I component, propagator v = 4(—A + m3)~! and external fleld ¥,
which fulfills

by 3 .1 '
;E'I‘I)zl Smjn(iﬁ: bn) (3144)

for all x € (aZZ)”. Suppose (with the nolation of Theorem 3.4.1. ) that

128k, C2e5

Ph.ef"
(32hee3™ +1) (ma )

<1 (3.145)

Then the convergence condition (3.72) is fulfilled.

We want an improved estimate for the activities of the A¢*—~theory without counterterms. For that we will
need the following lemma.

Lemma 3.4.4. We have for m,n € IN* = {1,2, ...} and positive constants A, ¢

gt O gt 2 e
Eaki Tz Az ;gn:(;)%‘(?)%m* (8.146)
if .
A< 1_2?2 (3.147)
is fulfilled.

PROOF: Consider the function f(z) = z%¢™**", £ > 0. Because of f(0) = f(co) =0 and

Fiz) =" (n—aAs%)e ™" = 0=z = (4—’})1/4 (3.148)

the maximum of f{z}is at £ = (ﬁ)%. Hence

n

2" < (50)% (3.149)
With the help of the Cauchy inequality we obtain
e n! _ Yy n! Cxfah 2.3, .4
|a_ﬂe Ax | < -—ﬂma.x|e Afzkin) | = — maxe A(z*—exta +rt) (3.150)
Z — K" zeR K" zeR
From z* — 6x22% + 962 > 0 follows ” \
— Azt nl ot
e 2 < FE‘]‘E‘E"’SA . (3.151)
B}; the special choice & = (gg-i-)% follows
dﬂ — L] 32Ae n
e <t (29, (3.152)

With the help of the Leibniz’ formula we have

" min{m,n) —y
e o f—(zme"\x‘) = Z ) - xm"j—————dn ’ A
dzm = i/ (m—- dzn—d

min{m,n) ) —j
—ntets 3 (M) gmed 1477 -xat (3153)
2 ;)" i
=0

From (3.154) follows

. d* . min(m.n) m . . i
=t T ame ) gl )0 (:’)"'*“ =9 (32e) T (3.154)
f=0
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Hence with the help of (3.149)

" . min{m,n) e
Caksd ;F(xme-u ) < n! E (m)( eef2 )“#(326/\)_71 <

J=0

< n! (32ex) 2 Z( ) E6/2) |™=7[(382eA)~ %) =

f=0
= n! (32eA) 3{( EL"Z)% + (32eA)- 4™, (3.155)
We have to consider two cases :
1 (32e0)"t < (Bt
L oym 2 m n ’
[...] < ! (32eA)%2 (-ee%)?gn!( =) (\/;—‘) m%. (3.156)

2. (32eX)~% > (3p)t -

T29M < (\/-6_2—;)"‘(\/%“- (3.157)

The second inequalities of (3.156), (3.157) follows from the assumption A < ;%z€%. /

|...| < n!(32eX)"

Because of ot 9i-

7 H e = e (2| (3.158)

T

we obtain by Lemma 3.4.4. .
69 2 < (a1 () bar2a( 2y (3.159)

forall d e IN* = {1,2, ...} if
e
< gl .

A e (3.147)

is fulfilled. Therefore the inequality (3.119) of Theorem 3.4.1. is fulfilled for the A¢*—theory without countert-
- erms with the constants 2
ee
=(= )*, R = 33/24(;;)2,\. (3.160)
We obtain by Theorem 3.4.1. with 7 = 1 the following estimate for the activities of the A¢*—theory without
counterterms :

Corollary 3.4.5. Let the foﬂowmg inequalities for the coupling constant A > 0 and the propagator v =
(- A + m?3)~! be fulfilled

9
A< Eﬁ-s—(ma)‘ (3.161)

and .
[tzy| < De=li=—dll, (3.04)

Then we have for the A¢*—theory without counterterms

Ze_”'L (x) 256\/_0)“ $(ma)? 30 oy 9=

3De(ma)? ( (3.162)

IM(X1$)| < (n - 1) : [(m),r‘

foraily,eC ze X, X|=n2>2

PROOF: Substitution of (3.160) in (3.120) with v = 1 and ¢ = 3(ma)? gives the assertion. \/
Substitution of (3.160), 4 = 1 and ¢ = 2(ma)? in Lemma 3.4.3, gives the following corollary :
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Corollary 3.4.8. Suppose

A 1 3iman)?
(ma)® < o747° #lmer) - (3169
and )
s < min( ===, x2) (3.164)

for all & € (aZL)”. Then the assertion B is valid for the Ap*—theory without counterterms.

4, BOREL SUMMABILITY AND ANALYTICITY
OF THE ACTIVITIES ON THE LATTICE

The perturbation expansion of the partition function Z(A|¢) for the Apt--theory is divergent (see intro-
duction). Likewise the perturbation expansion for the activities is divergent. In this chapter we will show,
that the perturbation expansion for the A¢t--theory on the lattice is Borel summable in A. For the proof we
will uge the methods of section 3.4. and we will show that the sufficient condition for Borel summability by
Nevanlinna-Sokal (7] is valid for small coupling constants A.

We obtain an analytic expanéion for the activities, if we introduce a new coupling constant . For that we
replace the propagator v by

v[Y]ay = VWay + (1 — 7)oy vay- (4.1)
We have u[1] = v. In this manner all lines in the Feynman diagram, which connect different points, get a factor
~. In section 2.4. we have shown that the activities consist of point connected Feynman diagrams. Therefcre
all activities A(X|y) with |X| > 2 vanish if v = 0. Hence the poiymer system consists only of monomers if
4 = 0. We will show in section 4.2. that the activities are holomorph if 7 is in a small complex strip around the
imaginary axis.

4.1. BOREL SUMMABILITY OF THE ACTIVITIES FOR THE A¢*—THEORY ON THE LATTICE

We will use the following Theoreni by Nevanlinna-Sokal [7], which presents a sufficient condition for Borel
summability :
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Theorem 4.1.1. (Nevanlinna-Sokal). Let f be analytic in Cr = {z €@ | Re 27! > R™'} and let the

» ‘I_“ F]

e

Re 2
Cq
Fig. 4.1 Region of analyticity for f. .
following estimate
N—1
f(2) = a?*+ Bn(2),  |Rw(2)| < Ao NY|zf¥ (4.2)
k=0
be fullfilled uniformly in N and 2z € Cg. Then
(1) B(t) = 5%, ant™/n! is convergent for |¢| < 1/o.
(2) B(%) has an analytic continuation in the complex region
S, = {te C| dist(t,IR,) < 1/c}, (4.3)

2 Tmt
|

ve 1 71T
vo VNG et

3¢

Fig. 4.2 Region of analyticity of the Borel transform

and is satisfying the bound

B(t) < Kexp(|t|/R) is uniformly in S, with ¢’ > o. (4.4)
(8) £ is represented by the following absolutely convergent integral :
R
flz) = - f e~t/*B(t)dt (4.5) ,.
o ‘

for all z € Cp.
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We consider the activities A(X |4} for the partition function

219 = [ duo(9) [] -06+9" (4.6)

ZEA

with v = {—A + m?)~!. We need two lemmata for the proof of the Borel summability of A(X|¢). The first
lemma presents the region of analyticity for the activities.

‘Lemma 4.1.2. The activities A(X|¢), X C A, for the A¢*—theory are analytic in {A €€ | Re A > 0}.

PROOF: The integral on the rhs of (4.6) is convergent for Re A > 0. From the analyticity of e~*($=+%=)* follows
the analyficity of the partition function Z{Al¢) for Re A > 0. Because of the inversion formula {2.14), the
analyticity of A(X|¢) in Re A > 0 follows. +/

The next lemma shows, that the assumptions of the Thecrem by Nevanlinna-Sokal are fulfilled for the
A¢*—theory :

Lemma 4.1.3. Let A(X|y) be the activity for the A¢$*—theory without counterterms. The partition function
Z(A|Y) is defined by (4.6). Suppose that positive constants ¢,c, K exist, such thaf

D<ev<cl<, gy < Kem™lle-vll, 4.7

Let the asymptotic expansion for A(X|¢) be

N-—-1
A(X|9) = D axd* + Ry (). (4.8)

k=0

Then the following estimates are fulfilled for real ¢, z€ A, and A€ {z €€ | Rez7' > R~} =Cr with R =
e .2 .
i28€ -

(i) For monomers X = {z} :

[By(3)] < Aioff N AN (4.9)
with

i 4.10
1T AN —¢ (4.10)
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-(ii) For polymers X with | X|=nr2>2:

Ry (V)| < Agod Nt MY (4.12)

with ( 1) (4K ee)-1

— e3%r g .
27 4N (1-c)n/? [zg( ]

— (4.14)

where L(X) = min, E(mwe,’ l|z — y|| {¢he mirimum is over all trees n, which connect all points of X ).

PROOF: Let us denote the A~ dependent activity A(X|Y) by Ax. The function A{t) = Asr possesses for
Re X > 0 derivatives from the right in £ = 0 of every order. The Taylor expansion is

N-1
1
h(t) = g 7 m AP + ay () (4.15)
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with the Lagrangian remainder
I (V)N
hy(t) = N!h (s)t

with some s € [0,#]. Therefore we obtain for the power series of the activity

N-1

Ax=h(1) = > apd* + Bn ().
k=0

The remainder term Ry (A) fulfills
N 1

3 aN
1By (M) < m max llatNA lm-tg:ig?;]-lgﬁ&wl T

@ : ForX; {z}:

AT

| (e—ta\(¢=+¢t)‘)| —_— < |((¢'z + %)4N} N =

|RN(A)| = te [0 1]

<1 [ dua(@)e8#] max (60 + w)¥e 4 B

Computation of the Gaussian integral yields
[ dso ($)e5%% = det(2rv)— 4 det(2n(v" — €))# = det(l — ev) 4.

{4.7) implies

(5 1
I f d"‘v (¢)8 | g \/m'

The maxirum in (4.19) is bounded by

—_ 2
s (4 -+ o) e 5%%] = ma |48 e 30| <

< max |e~ Firedabe—tv]| max |3V e~ 292,

¢-€ER

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Since —$¢2 + edppz = ——e(ﬁ’- ¥2)? + ey2, the first maximum on the rhs of inequality (4.22) is bounded by

e$%Z, The second maximum is bounded by (2% )2V . Hence

2 _ 8N 2
AN —fés | o (2NN i
max |(ds + e)™ €7 30| < (T5) AV

From (4.20), (4.22) and {4.24) follo{vs

1 BN)QN |AJ¥

Ry(A)| € —= .
From Stirling’s formula [20] |
1 .
NN+ - ﬁm eNemt/13N  pcpcl
follows
2N < n3 SN
N s 2% N N )e
Hence

By (VI < 5 \/_( SV A
This proves assertion (i).
{ii): For | X[=n> 2

B8

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)



With the help of the tree graph formula (Theorem 2.5.1.} and the multinominial Theorem, it follows from (4.18)

mv OIS g S T el [ donastre) [ i)

tefo,1] -
:(1)2::6.2 (‘J)eﬂ

o1 k() -
Z II n! aqﬁdz(ﬂ)( 2 + Wz ) e tm(%‘-‘n%[)‘l}l’\lN' {4.28)

{my} =
Z =N

Extraction of a Gaussian factor e~ $9% yields

[Bar(X)] < nax {E Z H Ivm,z,|/d0'n—1f nls) fd#u[s[(¢

sytaex ()€
£47 . 592 1 gn) 4 A 4 N
IT 441 30 Tlmacle™% 5 -2amy (e + o) e G5 A, (429)
2EX {n} =1 0t
EnlzN

Computation of the (3aussian integral yields
fd,u,,.(q& e%"’f = det(2mru[s])~ ¥ det(2m(v[s] ™! - ) % =
2€X
= det(v{s](v]s] ™ — €))~% = det(T — ev[s])~%. (4.30)

Since the propagator v[s] is a convex combination of partially decoupled interactions (cf. app. B or [8], Eqs.
(3.8)-(3.12)), from assumption (4.7) follows

ev[s] < ev < ¢l (4.31)
Hence
fdp,,(qs) [ et < (1-0)~% (4.32)
eX
Furthermore
« (1)
m’a__ 4 YA N (Bt 90)* | <
nax |e” Y0 7(bs + ¥a) " e | <

~£62 e b, — L9 sg2 001D
< max |e | max |e”

an, -t|Al$?
$.ER $-€R a¢d=(ﬂ)¢* ¢ - (435)

Since —£4¢% + ed ¢y = —e(ﬁ %2)? + ey, the first maximum on the rhs of inequality (4.33) iz bounded by
¢¥¥7. From this and Lemma 3.4.4. we obtain for A < t&¢

- cgz 9%

e~ . ‘ £ n, €€ "
max 5 (ﬂ)(¢z+¢ yinee—tA(G 4 < ¢ £vi4 L (n)! ( )2 ( —&531(4,1‘)2 ) (4.34)

-

We insert {4.34) on the rhs of (4.29). This gives

I3 3 T o [drnssaia-a=t 3 II [t

{ne} X
.-.(1)‘-‘=EX (U)E" nymN *€
e, d 4n, )37
Ly (it BRL2 [ (35
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Because of 3, x d2(7) = 2(n - 1) and juzy] < Ke—™l==¥ll| we obtain

ﬂ)n— 1 e—mL(X)

3 Ny | ¥
[Ry(X)] € (n - 1)! T #*0)™
(1) zEX (ne} z€X % '
ny=N
5 f don—1 f(nle) [ dslm)t . (4.36)
2EX
Applying the multinominial Theorem we obfain
n, 2N
> H (ma)™ ) Zni)"' < —-—-NN! . (4.37)
{ns} 22X zEX
ng =N
With the help of Stirling’s formula [20]
NV+} = %N! N ®1N  pgcp<cl ' (4.25)
3
follows in AN
< ——N1 .
;,} ;;Ié_:!c ny! = 2N (4.38)
ny=N
We insert (3.29) and (4.38) on the rhs of (4.36) to obtain
n— 1) {4Kee)?~le~mL(X) a8 :
|Rx (X)) < (mv) ( (1)_ AT (I 510w (4.39)
zeX
for |A| < 1%z€?. This proves assertion (ii) ./

By Lemma 4.1.2. and 4.1.3. the assumption of the Theorem by Nevanlinna-Sokal are fulfilled. Therefore
the activities A(X]|¢) are Borel summable in A and we have the following Theorem :

Theorem 4.1.4. Let A(X]¥), X C A C (aZZ)" be the activily for the partition function

2(a19) = [ dun($) [] e er02) (4.6)

xEA
(i.e. for the A$*~theory ). Suppose that for positive constants ¢,c, K the following inequalities
0<ev<cl <1, |vay) < Ke~mlz—ol, (4.7

are fulfilled. Then the perturbation expansion
o
A(X|9) = axdF (4.43)
k=0 :

is Borel summable. More precise, with the notations

64 e
| O = = R= miﬂ (444)
the following assertions are valid
) _
B(\) = Z %?—A'“ converges for |A| < 1/e. (4.45)
k=0
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(ii) B(A) has an analytic continuation in the complex region
S, = {} e€ | dist(\,R}) < 1/0),  (4.46)
and is satisfying the bound

|B(A\)] < const. exp(|A|/R) uniformly in Sy, ¢' > 0. (4.47)
(ili) A(X|¢) is represented by the following absolutely convergent integral
o0
A(X|Y) = f e~ B(M)dt (4.48)
0

foraliAeCgr={2z€C€| Rez""' > R™'}.

4.2, ANALITICITY OF THE ACTIVITIES

We consider for finste sublattices A C (eZZ)” the partition function

2419) = [ (@) T] Fel+ 02) (4.49)
®CA
with
v["f]my = fUyy + (1 - 'Y)Exyvxy- (4.1)

Theorem 4.2.1. Let v = (—A + m?2)™! be the propagator and A(X|¥), X C A C (aZZ)”, the activities for
the partition function Z(A|Y), which is defined by (4.49). Let F;, be bounded functions for all z € A. Then the
activities A(X|y) are holomorph in ~ in the complex strip —vgz(ma)? < Re v < vze(ma)?.

PROOF: Because of the inversion formula (2.14), it is sufficient to show the analyticity of Z(Aj#) in . By
Fourler transformation we obtain

Z(X|p) = f[H dgx ﬁ‘x(qm)eiQx¢me_‘%Qu”:a‘h‘]e_%(qy"l‘T]Q). (4.50)
ze X

From (4.49) follows for positive definite quadratic forms (g, v[v]q)

12(X|9)] < [] sup |Fa(¢2)] < oo, (4.51)
zeX ¥F R

since Fy are supposed to be bounded functions. Since the integral on the rhs of (4.50) iz convergent and the
e-function e~ $(9°[719) ig apalytically in v, Z(A|%) is an analytic function in ~. By Frobenius’ Theorem [19] the
following inequality is valid for an eigenvalue 6( Rev) of the matrix (v(Re ¥)zy)ayex :

géi}%(]”m‘ - E i(Re 7)vzal) < |6(Re 7)|. (4.52)
yeX
1

The lhs of this inequality is positive for |Re | < |vzz(ma)?|, since 3- cx [Vay| < ):ye(az)y |vgy| = Te)?
Hence |6{Re )| > 0. Because of §(0) > 0 and the continuous dependence of the eigenvalues from Re 7, we
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obtain 6(Re v) > 0, if | Re 4| < |vzz(ma)?|. Therefore the quadratic form (g, v[Re 4]g) is positive-definite for
|Re 4] < '|vze(ma)?|. This proves our assertion.

Remark : The activities A(X|[t) are an analytic continuation of a convergent power series in 7.

. RENORMALIZATION GROUP AND MAYER EXPANSION

5.1. RENORMALIZATION WITH X-DEPENDENT COUNTERTERMS

We will consider a theory with X-dependent mass and vacuum energy counterterms. The partition function
for a finite sublattice X C (aZ&) have the following form

HX|Y) = fdﬂv(¢)[H e~ AV{$s+92 )]G~Wx(¢+¢) (5.1)
z€X .

with X-dependent counterterms

SVx(¢+ ) =— 3 [6m?(P) Y (62 +¥z)® + 5¢(P)]. | (5.2)

PCX zeP

The counterterms can be fixed (for small coupling constants A and (%%’f) > 0), such that the following

renormalization conditions

In Z(X|$}|g=0 =0 (5.32)
-‘9¢i In Z(X|¥)ly=o = 0 (5.3b)

are fulfilied for all finite X C (aZZ)”. In (5. Sb) we differentiate with respect to constant fields ¥, = ¢ for all
ze X.

PROOF: (i) : We will show that we can find mass counterterms 5m?( P), such that (5.3b) is fulfilled. Let us
set §e(P) = 0. Reformulation of the mass counterterms yields

3 omt(P) (b + 9 = (3 Tk v, (5.4

PCX zeP zeX PCX

In the following we will use the notation

§m3(P) = (5.5)
=2 T
The renormalization condition .(5.3b) is equivalent to
{ X wirSe - 20670 bz + 45X P lymot
zyeX
Z{( A2 L 255(0) ~ (D (A + 251 flyo =0 (59)

zeX z2EeX
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. with

() = [ as @] oo, )
zeX
This is equivalent o
A2 (X)]? + B2 (X) + C = F(6m3 (X)) =0 (5.8)
with
A=4 )" {{{$2by)) = (2)){{£s))} (5.92)
ryEcx
B =2|X|{({1}} + O(\) (5.9b)
a 'Vm
= —2A =0- 5.9¢
a;EZx 31"2 |ﬂ" 1] ( )

The function F defined by (5.8} is continuous. For small coupling constants A and (%’g-f) > 0 we have

F(6m3(X) = 0) < 0 and F(6m3(X)} > 0 for large §%h?(X). By the mean value theorem exists a positive real
solution 8m?(X) of Eq. (5.8). By the Mdbius inversion formula {Lemma 2.4.2.) we obtain from Eq. (5.5) the
mass counterterms ém?(P), P C X.

(if) : We will show that vacuum counterterms §e(P) exists , which fulfills (8.3a). Eq. (5.32) is equivalent to

§e(X)= 3 se(P) = -—ln{ f dpy (¢)! [ eV B+ L p s 0 (P) D0 o °‘-'=’=]}. (5.10)

PCX z6X

The coefficients §¢(P) are determined with the help of the M6bius inversion formula (Lemma 2.4.2.) . +/

With
Z(XWJ) - []:[ e—A’V(¢=+¢=)]e-—Wx(¢=+¢=) (5.11)
zeX
the partition function reads
Z(X|%) = (Z(X]$)) (5.12)
where { . ) denotes the Gaussian expectation value. The polymer representation for Z(X|¢) is defined by
Z(xlpy=»_ [IBxW). (5.13)
X=3 v Y

Polymers of this polymer system are called molecules and the activities B(Y|¢)) are called molecular activities.
The following Theorem gives an expression for B(Y|4) and shows B(Yiy) = O(A'¥h,

Theorem 6.1.1. The molecular activities of the polymer representation (5.13) are

B(P|¢) = [H e—a\'\?:('#z-i-d’s)]{&l'lpl + Z H [e——ﬁm”(M) EzEM(¢=+¢=)’+6e(M) _ 1]} (5.14)

123 4 L4 Mce?

supp P=P

for all P C X. The sum is over aﬂ sets P, which consist of gets P C X, such that the g'mph +(P) is connected

- (cf. section 2.5.5. ) and
supp P={z € X |IM € P withz € M} =P. (5.15)

Suppose that the renormalization conditions (5.3a,b) are fulfilled. Then

B(P|y) = o(n?1), (5.16)

PROOF: We split the e-function
O E) o p (Botva) +8e(P) _ y £y 4 gy (5.17)
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Therefore ' '
ex @) = T] 1+ farlo+ ) = 3 [] Faele +9), (5.18)

MCA Q MeQ

where the sum is over all sets @ which consist of subsets of X. For Q we define the graph 7(Q) (see section
2.2. ). Vertices of 4(Q) are the elements of @ and two vertices P}, Py € Q are connected by a line, if P;NP; £ 0.
The partition of ¥(Q) in connected subgraphs 4(7;) defines the partition

Q=)_~ (5.19)

where (%) is connected. Hence it follows from (5.18)

¢~ Vx (Sutide) Z H H fuald+4). . (5.20)

szp P McpP

By the distributive law follows

e = ¥ I T T o+ 9)- (520

»
x5 p F vupy pop MEF

In the same way as in the proof of Lemma 2.3.1. follows

e~ fVx(é+¥) — E H[él,IPI + Z H _fM(¢+¢)], (5.22)

— 4
X—EP P tupp P=pP Mer

This proves assertion (5.14). In the following we will show 5m?(P) = O(AlP]) and ée(P) = O(AIPI) by induction.
The renormalized activities are defined by :

Zxty) = > [laxy) (5:23)
' x=y ¥
and the renormalization conditions (5.3a,b) are equivalent to (see section 1.5. )
ren — 1 if IXI =1
AMX =0 = .
(X[9)ly=o {0 otherwise (5.242)
62 ren
WA (X|¢)|¢=o = 0. (5241))

We will show ém?(P) = O(AIPI). Since §m?(P) ig not dependent from e, we can suppose §e(X) = 0 for all
X C (aZZ)”. Suppose |P| =1, P = {z}. We have :

- B({z}|$) = e=AV=($=+¥2)+m*(2)($=442)" (5.25)

Since A™*"({z}|¢) = (B({z}|¢¥)), it follows from (5.25b)

;%A""({x}|¢)|¢=o = (—A;;—g’vx(%) + 8m3(z)) +O(AZ) = 0.  (5.26)

Therefore §m?3(z) = O(A). Let 5m?(X) = O(AIX1) for all X C (aZZ)” with | X| < n. Consider P C {aZZ)” with
|P| = n. Because of Eq. (5.14) and the induction hypothesis, we have

- B(Plv) =[] e~ AV ($at9a) [0 (P)(be+¥2)" _ 1] 4 O(ARH). (5.27)
zEP
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Hence

2 B(PIWle=a = |P| 6m2(P) + ON™*) (5.29)
Since
aeplyy= > ([IBrivs ) (5.29)
P=EY Y
(see app. A ), we obtain from (5.27) and (5.28)
3‘9,,,, (B(PI$)}ly=o = |P| m*(P) + O(NH) =~ 3] awz H[B(W) Dy=o- (5.30)
=y ¥

By induction hypothesis follows B(Y|¢) = O(M¥) for all Y C P, Y # P. Therefore the rhs of Eq. (5.30) is of
order A™. This proves §m?(P) = O(A™).

We will now show §e{P) = O(MF). I {P| = 1, P = {z}, we have

B({z}|¥) = e—-A‘V,(¢=+¢=)+6m’(m)(¢=+¢=)’+6‘e(z)_ (5.31)

From (5.24a) follows
AR ({2} #)lymo = (BUzHP) gm0 = 1+ (~AVa($s) + 6m*(2)¢ + Fe(a)) + O(N) = 1. (5-32)

Therefore Se(z) = O(A). Suppose fe(X) = O(A*N), if | X| < n. Let us consider P C (aZZ)* with |P| = n. From
(5.24a) and (5.14) follows

B(P|¢) = H e-—a\‘v(d,-i-xb,)[eﬁm’(P)(¢,+¢,)2+6e(P) ~1]+ O(z\“+1). (5.33)
zEP

With the help of {5.30) we obtain
(B(P|))|g=0 = 8e(P) |P| + 6m*(P)(g2) + O(X™+") = - ST (1B %) Hy=o- (5.84)
Fay vy ¥

Y#P

By induction hypothesis the order of the truncated expectation value is A®. From §m3(P) = O(A") follows
§e(P) = O(A").+/

- The molecular activities B(P|y) are determined by the following recursive equations

{(B{{z}¥)}|p=0 = (5.35a)
a'pg (B({x}lfli) )lg=o =0 (5.35b)
for all z € {(aZZ)” and
(BP9 =0 =~ 2. (J[IBX1%) Nlv=o (5.35¢)
vy Y

2 B om0 =~ 553 3 (B Do (5.354)

The rgnormalized activities are determined by
M (Ply) = A(PlY) - Syp = o ([[IBYIO)-L D (5.36)

P=yY Y
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with the renormalization conditions

M (Pl)lpmo =0 (5.373)
g2
WMren(P|¢)|¢=0 =10 (5'37b)
for all P C (aZZ)”, |P| < co. The renormalized Mayer amplitude is defined by
ren a—y'X| 82
MM (X ) = WM (X¥) - (5.38)

and the renormalized augmented Mayer amplitude is defined by (cf. {2.46))

ren( Xy = Mrer(Xly) I a(=)V(nt a™) (5.39)
with —
MeXly) = Y. o@ [ M= (Pl¥) (5.40)
anqwx req

(for the definition of n(z), @, a(Q) see section 2.2. ). From the renormalization conditions we obtain a simple
relation for the two point renormalized connected free-propagator-amputated Greens functions, if the theory is
symmetrical about the transformation ¢ — —¢ on the lattice A C (aZZ)¥:

32
G2y, 25) = ETN > M(PlY)|y=o : (5.41)
21,22EFGA
in general , X
G2y nza) =0, 2, 2 (@] ox. M (Pil¥)lp=o (5.42)
=1

e S
k=1 i
with Z = {z1,...,2}, Cluster Q.= (Py,...,FP), 9x. = [l.ex, 3%-’—. Fig. 5.1 shows the both possib-

le forms of the cluster for the 4 point remormalized connected free-propagator-amputated Greens function
GT*™(2,,2,,2a,2,), if the theory is symmetrical about the transformation ¢ — —y. ‘

TRND

kay
&

Fig. 5.1 Cluster for the 4 point renormalized connected free-propagator-amputated Greens function G[*"(z,,...,2,}, if the theory
is symmetrical about ¢$——1.
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5.2, GENERALIZATION OF THE TREE GRAPH FORMULA AND ESTIMATES

Because of
z(xj9)=( 3 [IBPw)), (5.43)
x=3p P
the renormalized activities A™"(X|y) are represented by truncated expectation values (see app. A)
arxip) = >0 ([IBPw) - (5.44)
X=ZP P
The activity M™"(X|¢) = -8, x| + A™"(X|¥) on the doubled lattice is
mre(Xlp) = 30 ([]1BPIW) - 1; ). (5.45)
Xx=y.p F

For these truncated expectation values exist a generalization of the tree graph formula of section 2.5. .

Theorem 5.2.1.. Let M,,..., M, be digjoint subsets of (aZZ)” and B(M;|y) molecular activities, which de-
pends only from ¢,, ¥, with z € M;. Then

(BULIV); 1) 22[ drns o) TT 52—

(i)en " M0

S M) o [ B M (540

M) §=1

where

—vg] = = Z’UM M; + z 858441 - . S5 1 VMM, (5.47)
1<ii<n

with vag,a, = XM, YXM;s X = characteristic function and

a e}
L -V . 5.48
T T = L 584 (645)
yEM-
The sum is over all permutations
{1,...,n} - {1,...,n}
, { i 1r(1) (6.49)
with w(1) = 1 and over all n-trees
CJ4g,.. o} {0, n~1} :
7 {ks—> n(k) (5.50)

with n(k) < k.

" PROOF: The Fourier transform B(M|q) of B(M|y) is defined by

B1) = [[T] dgacie- =91 B(ulo) (5:51)

eCM

We insert (5.51) on the rhs of (5.43). This gives

2xi)= % [TICI] dan)BMigret oo, (5.52)

meM M zcM

67



Hence

Z(X|¢) = Z f[H( H dqz)e-é(mum)g(Mm] H o~ tawrsa) (5.53)
| szM M =eM R,se({?}g}},n#s
We introduce indices for Eq. (5.53). This gives
| X n
Z2xW=3, X2 [ [H( I dgx)e-ﬂww‘-ﬂ&(Mm] [letemaad. (5.5
n=1 E.sx i=1 %€M; Sg} .
Furthermore
|X|
Z(XWY) = z EILH( H dgz)e % $aoan;@) B, M{q)] H (e $moan; ) _ 1. (5.55)
. "—1X-'Em1 i=1 z&M; ()8

B,, is the set of all graphs with n vertices. We decompose By, into connected Mayer graphs 95, I € {1,...,n} def
r. Hence
x

x|
Z(xXiy=3, X HZ f [Hﬂdq e Haman) B, (MIQ] [T fetemwea® 1], (5.56)
‘ n=lx=3"" M !L“E 1 I 6 I i€l {(#eg:
We omit the indices in (5.56). This gives

Z(Xiw)= . 5 TT4@, M) (5.57)

X=y M {M}=) @ ¢
with
A(Q {M}) = Z/[ (H dqx)g"'i‘(fw’uuq) E(MIQ)] H CH &(gwne,na;a) _ 1] (5.58)

MeQ zeM (RS)ESq

where Q is a subset of the partition {M} of X and Y. Q is a partition of {M}. §x Iabels the set of all Mayer
graphs with vertex set Q. By the distributive law follows

> Y Maeem= X 0] & deon) (5.59)
X:ZM{M}:EQ Q X=3.Q @ @=)_M
From (5.43), (5.57)-(5.59) and the definition of the truncated expectation value follows

Y (LB h= Y. AX{M))=

> X f [ I1 (quz)e'"”‘(”"”““)ﬁ(Mlq)] I e Harnen ). (5.60)
X:EMg{M} Mc{M} seM (REYEG (a1}

Let us set B(M|¢) =0, if M # M;foralli=1,...,n. Therefore Eq. (5.60) yields

(H[B(M-lfb) =Y fLH( T da=)e %(""’""‘“’B,(Mlq] I fe-ammrad _q), (5.61)

GEGn =1 zCM; (F7)eG

Gn labels the set of all Mayer graphs with vertex set p = {1,...,n}. We obtain by the abstract tree graph
formula (gee app. B, Corollary B.5. )

(H LI ONED f dons f(1l5) f L I dqx)e-%W»w‘-ﬁfﬂ)ﬁ.-(Mlq)]

=1 zEM;
H [- z Gataygyle 307110, (5.62)

(in)en  =Mx(n
VEM ()

We apply the inverse Fourier transformation on the rhs of Eq. (5.62). This proves the assertion. +/
In the same way we obtained estimates for the truncated expectation value {(Taex[Fa($2); 1) by the tree

graph formula, we obtain estimates for the truncated: .expectation value ([T%, [B(M;|¢); |} with the help of the
generalized tree graph formula {5.46).
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Theorem 6.2.2. Let M;,..., M, be disjoint subsets of (aZZ)” and B{M;|y) molecular activities, which
depend only on ¢, Y, with z & M;. Suppose that B(M;|y) are holomorph and bounded functions in

siMil — {($2)oer; €G! | |Im ¢4| < k). We introduce the notations

M % min sup sup |B(My) —¢ < oo (5.63)

€R zeM; L, @
Hm oo

foralli€ {1,...,n} and
C(My, ..., Mp) = (1B 1) (5.64)

=1

Then we have the following estimates :

{i) Suppose that for positive constants D,m the following inequality
|v2y| < De~mile=vll (5.65)

is fulfilled. Then

L(M; i
B.DemL(P)w(l:Ils---aMn)l < {rn—1)! ﬁ[SDem ( )cm|M\‘|] (5.66)
K 2 guml K.
with P =Y o M,
(i) Let
1
a_”f Vgy| = ——= < 00, 5.67
e€(am)* |vay| (ma)? (8.67)
Then M,
n :
o SIC(My, .., Ma)|  (n—1)! II [SC~IM~'|] (5.68)
gy E () (maﬂ) 2 ; L(max)?
with M; = {Zp, 4 gni g4l -nrs Bnybnatotns }o [Mi| =ni, forallie {l,...,n} and s = E?zl n;.

PROOF: (i) : By Theorem 5.2.1. and {5.65) follows

IC(Ml,...,M,.)|5(n—1)!Zf don_if(nls) sup {1‘[1(2
" 0 $=E

=GE. M, f=1 zEM;

iml

) (’”B(M.-Iwb)l}

Dn—le—mL{M;,...,Mn) (5.69)
where d;() = number of lines in the n-tree 5, which emerge from vertex 4, and

L(M,,...,M,) = min 3 min [z -y (5.70)
(i5)en vEM:

le. L{Mi,...,M,) is the length of the shortest polygon, which connects Mi,..., M,. By the multinominjal
theorem foliows

Ms] o
d ('l)'
)% (")B(Ml'ﬁll ol o) BOMG ). (5.71)
|(zEZM'l M1:-§|M| m1 m| . H 3¢£JJ
3o mi=diOn)
The Cauchy inequality for several variables implies
M.
a ; d,‘(f,l)! ¢ }\J

(X 55" BOMINS 35y - X Grae (5.72)

aEM, L AL ]

Em,'==d;('?)



Because of (it |
Z 1< Z ___‘(E_)...... ={14 -+ l)d.-(n) - 1M‘.1d"(n),
! Normtmimtiin, s

g ™AL | - LS L T Y A HLL:;I ;! -
Z:mj“d.'(n) Em,‘=di(r,!) m; summands
we obiain
9 i di(m)! ae,
: ;:, 3¢x)d‘(")3(M|‘m < md(.-(n))cfe'fi«.-r (5.73)

We insert this on the rhs of (5.69) and use {3.29). This gives

prn—t e—-mL(M;,...,M,,) o Lid ‘
IC(Mi,..., Myl < (n—1)! o) 8" [] enfaea- (5.74)
=1

From the definition of L follows
n n
L(3_ M) < L(My, ..., Mp) + 3 L(M;). (5.75)
=1 i=1
Therefore (5.74) proves the assertion (5.66).

(ii) : The assertion (5.68) follows in the same way as in the proof for (i), if we integrate over z3,...,%,—1 €

(aZ2)”. v/

5.3. RENORMALIZATION GROUP AND MAYER EXPANSION

The Fourier transform 5 of the ﬁeld ¢ on the lattice (aZZ)” is defined by
1 ~
2= e d” e 5.76
¢z 2y -/;E[—f.-}]" P ¢pe ( ]
with pz = Y %_,-pi%i. The field ¢ is called high frequent if the dominant part of the Fourier integral (5.76) is at
large p. The Fourier transform ¥ of the translation invariant propagator v is given by

1

Yy = =
T (20) Jogl-5,5)

d*p v, P=-¥), {5.77)

The momenta p of the field ¢ on the lattice (aZZ)” are bounded by

el < % (5.78)

Therefore the UV-cutoff on a lattice with lattice spacing a is Z. UV-divergences emerge from the continuum
limit @ —+ 0. They are removed: by suitable counterterms.

Corresponding to Wilson'’s renormalization group approach [21] the UV-cutoff decreases, if a renormaliza-
tion group step is done. For that we split off the propagator, v

v=v' 4 4oV (5.79a)

where .
¥, =0 if ||pil ¢ (Kie1, K, $=1,..., N : (5.79b)
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with0=Ko < K; < ... Kyy < Ky = T. Let ¢; be the process of the covariance v*. Then we have
p=¢'+ - +o". (5.80)

The propagator v* connects only fields, whose momenta lies in the section [K;_;, K;i}. The momenta of the fields
#* increase with increasing index i (in the contrary to the notation of [8]). By the partition formula {Lemma
3.1.2. ) we have

Z(Aly) = f duy(p)e™V(# = [ dityr (81) .. dpyn (V) e~V (B1 44T, (5.81)

After integration over the field ¢~ the propagator v with UV-cutoff Z proceeds to the propagator v — v¥ with
UV-cutoff Ky—1 < Z. This is called the first renormalization group step. Thereby, the action V = V¥ proceeds
to a new (in general nonlocal) action V¥~1, This new action V¥=1 is called the effective action. Next, we
apply this procedure to the new form of the partition function. After k renormalization group steps we gel an
UV-cutoff Ky_g. The free energy In Z(A|¢) equals the negative effevtive action after ¥ renormalization group
steps. The form of the partition function after N — k renormalization group steps is

2814) = [ dua(#ie V" @ (5.52)
with the field .
P =T g (5.2b)
i=1
and the propagator
k
WSH =B (5.82c)
t=1
The effective action V¥ is recursive determined by
Vg +9) =V (s +¢) (5.83a)
Ve (glsEl 4 y) = —lnfdm»(¢’°)e“"'(4"$"“”+¢”+¢) (5.83b)

with & € {1,...,N}. Therefore we have after N renormalization group steps
Ve(y) = —In Z(Al¢). (5.84)
Instead of (5.79a,b) we may split off the propagator v = (—A +m?)™? in the following manner
v=2v'+ 4oV (5.85a)

where

o = {(—A+M2)—1 ifi=N (5.85b)

(A + M2 )7t~ (-A -+ ME)? ife< N

withm =My < My < - < My.1 < My = M = O(a~!). The propagator after k¥ renormalization group
steps is

' vt T = (A M) T - (A M) (5.86)
This is a propagator for a theory with Pauli-Villars cutoff My 41 —k. Momenta which are larger than My 1%

are suppressed in this case. The Pauli-Villars cutoff will decreases after application of a renormalization group
gtep.

Mayer expansion yields a decomposition of the configuration space and the renormalization group approach
yields a decomposition of the momentum space. Combination of the Mayer expansion with the renormalization
group yields therefore a decomposition of the phase space (*phase space cell expansion’). For estimates of the
activity M(X|¢) we have used the same propagator v for all Polymers P. These estimates are bad for large
polymers P and high frequent fields ¢. Decomposition of the phase space carry to improved estimates for the
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activities. In this sense the method of iterated Mayer expansions leads to an improved estimate of the activity
([8], [9]). For that the polymers are decomposed in polymers, which are again decomposed in polymers,

etc. . Points of the lattice are called 0-vertices. Ordinary polymers are called 1-vertices. k-vertices are
collections of (k — 1)-vertices. The points of a k-vertex are called constituents. Every k-vertex corresponds
to an activity. k-vertices interact over the propagator v¥+1—*, Since the strength of the propagator y¥+1—%
increases and the range decreases if the index k decreases, it follows that the elements P’ of a k-veriex P interact
over a propagator whose range is less and whose strength is larger than the corresponding range and strength of
the propagator, which defines the interaction for the k-vertices. The activities for the k-vertex P are expressed
by the activities for the (k ~ 1)-vertices, which are elements of the k-vertex P. Therefore the estimates for the
k-vertices are recursive. For the k-th recursion step an estimate for the propagator v¥—5+! ig used. This gives
better estimates than the estimates obtained by simple Mayer expansion, where we have used bounds for the

whole propagator v.

A perturbative formulation for the renormalization group steps was given by Gallavotti and Nicolé [11].
For the proof of the Gallavotti Nicols tree formula the following partition formula for the truncated expectation
value is useful.

Lemma 5.8.1. (Partition formula for truncated expectation values ). Let S be finite set and B;, i € §,
random variables. Then we have for positive propagators vy, v, .

(T1Bii Dorsor = > (TIHTLBs5 Dons Ner- (5.87)

€5 .S'-_-ZJ' I jeJ

PROOF: By the distributive law follows

> H{ S (N85 Do o} = 5 50 THIICILIB5 Doss Dore (588

r=)"1 I “p=3"5 7 J€J R=Y K {K}=3.1 1 JEI jei

By the definition of the truncated expectation value { ; ),: we obtain for the rhs of (5.88)

ws= 3 (JI(JL1B5 Der)en (5.89)

R.—.—EK K jeK
and once more by the definition of the truncated expectation value { ; )41 follows

rhs = {{ ] B; }u2)ur. (5.90)

iER
By the partition formula for expectation values (Lemma 3.2.2. ) follows

rhs = (] Bi}os 4. (5.91)
fiER

Hence

)3 H{ S (TIKTLBs: Dors 1>,11}=<II Biersur. (5.92)

R:EI I I:z.] J jeJ “SER
The definition of truncated expectation values proves the assertion {5.87). +/

The partitions in the partition formula (5.87) are related to tree graphs with depth 2. The maximal vertices
of the tree graphs represent the elements j € § and the vertices with depth 1 represent subsets J C §, such that
for the direct successor which represents #, the relation § € J holds. The generalization of the partition formula
for truncated expectation values for the splitting (5.79) of the propagator v leads to the notion of the Gallavotti-
Nicolé tree. Let us set I'(k, I) for the set of all trees with the depth %k and maximal vertices € I. For the splitting
(5.79) of the propagator v and the random variables By, i.€ I we will call a tree y € I'(k, 1), 1 < k < N,
Gallavotti Nicols tree (GN-iree). Two trees 43,7, are put together by introducing a new root where the old
roots of 7; and <, are direct successors of the new root. The new tree is labeled by +; o 43. In the same way
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we put together more than two trees. The depth of the new tree Y1 © 7z is increased by 1. The truncated
expectation value £7(B,v), B = {B,, i € I}, which corresponds to 4 € I'(k, I} , is recursively defined by

() ET( L) ={[[iB; )exr ~er(,D) (5.933)
el
@) E5(B, ) = ([[(ET(By%); Now—r  if y=mo-omel(k+1,J), % € D(k, L)  (5.93b)

=1

and J = 30, I;. For v € T(k, I} the truncated expectation value £T(B, ) depends from the field PNk =
Ej-v—k #’. The generalization of the partition formula for truncated expectation values is

=1

Corollary 5.3.2. (GN tree formula for truncated expectation values).

(TI1Bs Dow-rtrgon = 3= £7(B,7) (5.94)
tel YET'(k,I)

forallke {1,...,N}, B={B;, iel).

PROOF (BY INDUCTION): For & = 1 follows the assertion by definition (i) of the truncated expectation value
ET(B, 7). Suppose that the assertion is valid for k. By Lemma 5.3.1. we obtain

(L11Bis Dow=ssvow = 32 (TTUTT(Bs3 Dorrorssgyons Dones. (5.95)

ferl I=E 7 4 JeJ
From the induction hypothesis follows

(11855 Dorwssoon = 3 ([T 3 E7(B, 73 Dorn. (5.96)

i€l 1=Y"7 J €r(kJ)
By the definition (ii) of the truncated expectation value €7 (7, v ) for 4' € I'(k + 1, I) follows the assertion for
k+1./

We consider now the special case B; = V for all 4, where V' is the action. The GN-trees are characterized
by the depth and the number of maximal vertices in this case. Let us denote ['(k, n} for the set of all GN-trees
with depth k and n maximal vertices. We use the notation :

P=r90 -07. (5.97)

P arguments

With this notations we have the following corollary for the representation of the effective action.

Corollary 5.3.3. Let the combinatorial factor Cly) forvye f(k, n), n€NN, ke {l,...,N} be defined by

() O =n! ifyel(,n) (5.98a)
() C(*o . --oqfr)= H pl C(%)% it % e Tk, n). (5.98b)

Then we have with the notatjons (5.79)-(5.84)

VE(IEF 4 ) = z: Z (_1)"+1m (5.99)

n20 T (N —kyn) ¢l
forallke {1,...,N}.
PROOF (BY INDUCTION): Let us set { = N — k. Suppose ! = 1. Then
VN-1(4SIN-1) gy o In(e~V{+¥)y . {5.100}
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With the help of the perturbation expansion (2.75) follows

L - _1 n+1
yN-(gsinil gy = 3 ST ,2! (Vi 5V Jowe (5.101)
n20 n arguments

By the definition of £T(V,v) for 7 € T'(1,n) and C(7) = n! follows the assertion for ! = 1. Suppose that the
assertion is valid for {, 1 < < N. By the induction hypothesis and the perturbation expansion (2.75) follows

Z ("];3;'”'1( u YeN—lti g gV = E E (~n* C(’;)'}') (5.102)

n20 n arguments “Zover(l n)

Let V be of order A. Comparison of the terms of the order A® in (5.102) yields

52 E10)

S 4 et leg N = 1] —, .
{V! )',N e e A n £ C('}‘) (5 103)
n arguments yer(i,n)

Furthermore by the definition of the effective action V¥ =(+1) follows

— n-+1
VN () (GISN=0+0] 4 gy = —n(eTV ) no o ~E( (Vs V dpnotpogon.  (5.104)

n20 n arguments

By Lemma 5.3.1. follows

yN- (!+1](¢[<N (l+1)]+¢) EZ: Z H n,'H H[ , ,N—z+_..+,NI),N—a (5.105)

R>0r>1 {n } =1

n Arguments

\'=1

where p; = |{n;] n; = j}|, i.e. p; equals the number of integers j in the partition {n;}. We insert (5.108) on
the rhs of (5.105). This gives

VA=) (gISN-(+1)] | gy = ZZ E 1)+ ﬁ[ Z C((';')MD {5.106}

t 1p|
n>0r>1 {ng - EI‘(I n')

=n

=1
We put together the GN-irees ;. This gives

VNf-(l+1)(¢]5N—(l+1)] + ) = Z Z E __ﬁ._(_':...l)mk;‘gi'(v’ Flo . oqfr). (5.107)

. = 1Tz ptC ()
"'20"217{‘0---0’15"61"(1-!-1,11) =1 ( l)

The assertion for { + 1 follows by the definition of the combinatorial coefficient C(7). v/

Remark: (i) If the action V is of order A, then it follows that £ T(V,~) is of order A® and the expansion (5.99)
for the effective action V¥ is a perturbation expansion.

(ii) Corollary 5.3.3. implies a perturbation expansion for In Z{A[¢):

nzaw =Y Y (&8 (5.108)

#
520 1cT(N,n) ()
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Fig. 5.2. shows an example for a GN-free.

Fig. 5.2 Example for a GN-tree yEI'(8,8). 7 represeuts the truncated expectation value

{ViViag,as (Vi goas {{Vi¥)0a: (Via)oa)aa-

Let A C (aZZ)” be a finite sublattice. Let the maximal vertices of a GN-tree represent elements of A. The set
of all GN-trees y with depth & and maximal vertices in X € A is denoted by I'(k, X). Let B{X]|¢) be random
variables which depend only from ¢, + ¥z, = € X. For the splitting (5.79) of the propagator v we define the
truncated expectation value for the GN-trees 4 and random variables B(X|y) :

(i) €T(B,v)=B(X|y) if yeT(L,X) (5.109a)
() ET(B,m) = (JLIET (B, m); Nowersn
=1

fy=mo o el(k+1,X), % el(hY:) with 3 ¥ =Xand k€ {1,2..., N}(5.100b)

=1

(i)  €7(B,m) =[[E7(Bw) Hy=mo--ov €T(N+2,X), 1w ED(N+1,Y)

=1

.
with > ¥ =X. (5.109¢)

i=1
With this notations we obtain for the activities A(X[y) after N renormalization group steps :

Corollary 5.3.4. (GN-tree formula for activities). Let the partition function be defined by

2(A19) = [ i ($)Z(Al) (5.110a)
with
zawy= 3 []Bx1¥). (5.110b)
A=EX X
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Then the activities A(X|y) of the polymer representation

Z(alw) = 3. [[axiw (5.111)
A=y x X
are
AX|g)= > E7(B,7) : (5.112)
yE(N +1,X)

PROOF: The assertion follows immediately from

A= 3 ([1IBE¥®); e (5.113)
x=3v Y
and the GN-tree formula for truncated expectation values (Corollary 5.3.2. ). /
Remarks:
(i)- By definition (iii) of the truncated expectation value £T (B, ) for v € T(N + 2, A) follows
ZA) = ). ET(B,). (5.114)
TET(N+2,4)

(i) With the help of the recursion relation (5.109) for the truncated expectation value £T(B,~) and the
generalization of the tree graph formula (Theorem 5.2.1.) the activities A{X|¢) may be expressed by trees,
whose vertices consist of trees, whose vertices consist again of trees, etc. . Then the tree estimate for truncated
expectation values (Theorem 5.2.2. ) leads to a recursive estimate for the activities, ¢f there is a suitable
egtimate for the molecular activities B{Y|¢) forall ¥ C X.

(iii) Every GN-tree ¥ € I'(k, X) corresponds to a k-vertex a with constituent set X. Fig. 5.3 shows an example
for a GN-tree 7 and the corresponding k-vertex a.

E# X, X; Xy Xg X Y; Xg Xy X

A9

(o)

Fig. 5.3 Example for a 4-vertex a with constituent set X={z1,...,z10}(a) and the corresponding GN-tree 4 with depth 4 (b).
The GN-tree v or 4-vertex « represents

{{{B ({z1,22,22}[¥); B({zaszs}¥)) 25 {B({za,zr}|}; B({ma}t'ﬁ); B({#}#$)}3) 2 (Bl{zao}¥)) o o2)oa-
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APPENDIX A, »~CALCULUS, TRUNCATED EXPECTATION
VALUES AND COMBINATORIAL COEFFICIENT a{Q])

A.1l. %-CALCULUS [17]

Let I' be an arbitrary finite set, Functions X : I' — IN are called mulifindices. For a finite multiindex X

we define
=[Ix(,  1XI=Y_ X(n)- (A1)
qEr 4€r

The addition of multiindices X and X5 is defined by
(X1 + X2)(7) = X1 () + Xa(7) (A.2)
for all 4 € T'. Let A™ be the set of all complex valued functions on the set of all multiindices, i.e.
™= {f : {X : TN} = @}. (A3)
The +product of two functions f1, fz € A™ is defined by

(fifa)(X)= Y. flX)f(X). (A.4)
A Xe=X,+X3g

Addition and multiplication by scalars on 4™ are defined by

(fi + f2)(X) = fi(X) + f2(X) (A.5)
(AF)(X) = AF(X) (A6)
for all fi, fa, f € A™, X € €. By this definitions 4™ is an algebra with unit element 1,
1 fX=0
(X) = { 0 Ltherwise. (A7)

Let us restrict on multiindices X with X! = 1. Then X corresponds to a subset of I' and the familiar x-algebra
{ A,*) is defined by
A={f 1 {X : >N} >IN} - €| f(X)=01if X1 #1}. {A.8)

Clearly, £ is a subalgebra of A™.

To each function f € A™ we may associate a formal power series 7 € P[(2,)er] in the variables z,,7 € I':

feam = f(2) }: f(x)=, (A.9)
X 1 1"--N
where 2% = Mer zg,(("). Conversely, to each formal power series fe P[(2y)yer] we associate a function
feAm:
f € Pl{zy)yer| = f € A" with f(X}= 0xf(2)|e=0, {A.10)
X

where x = [[ ep priol The set P[(2y)yer] of all formal power series is an algebra and the mulfiplication

(fi - )(2) = Fu(@) al=) (A.11)
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for all };,E € Pi(z4)4er| corresponds to the *-product on A" Let f € ﬂi‘ = {f € 4™ | f(0) = 0} and
fe P|2| the corresponding formal power series. The ezponential function exp : AT — L+ AT is defined by

1
expf =10+ —(fx--xf A.12)
nz?-:l o n factors ) (
or equivalently
xpf(X)= Y [If¥) (A.13)
x=3.v ¥

From the algebra-isomorphism of P{2] and A™ follows
(exp £)(2) = exp(f(2))- (A.14)
The logarithm In : T+ A — AT is defined by

(-1

Wn(I+f)=Y_ L (fh - f | (A.15)
n21 n factors
or equivalently .
i+ X =Y > )He-n]]Am) (A.16)
n>1 X=E:‘=1Y" =1
for all multiindices X with X # 0. We have
In(TF £)(2) = (1 + f(2))- (A17)

By Eqs. (A.14) ﬁnd (A.17) we obtain the following fnversion formulas
expln{I+ fl=1+f (A.18)
Inexpf =7 (A-19)

for all f € A™. Especially, for A € 44 et {fe A} f(0)=0} and Z € [ + A+ follows that

Z(X) = (expA)(X) = ». J]4W) (A.20)
x=3v Y
is equivalent to ‘ .
AX) =X =) > yHe-n[]z. (A.21)
n>lx= :'-:1 ¥, i=1 ‘

The multiindices may be interpreted here as sets and the sums as disjoint unions.

A.2. TRUNCATED EXPECTATION VALUE

Let A C {aZZ)” be-a finite sublattice and du, the Gaussian measure with covariance v. Let A(A) = {f :
p(A) — @} be the *-algebra for the power set p(A) = {X | X & A}. Let B(X|$) be a random variable for all
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X C A with B(0|¢) = 1 and B(X|¢)} depends only from ¢., z € X. For another random variable Z(X|¢) the
ezpectation value is defired by '

EZ(x19) = [ di($)Z(XI8). (A22)

We will use the abbreviation £(Z(X|¢)] = £(X). € is an element of the »algebra A(A). The truncaied ezpec-
tation value is defined by

ET(X) = (ln £)(X) (A.23)
for all X € A. Equivalently, the truncated expectation value is completely determined by
Exy= . [IeTm. (A.24)
x=3v Y
This follows from the inversion formulas (A.20), (A.21). Furthermore we have
= (~1)"* -1t D J[E). (A.25)
n>1 x=32" vii=l

For Z(X|¢) = EX:EY Iy B(Y|¢) we use the notation

erx)y= Y ([1B¥Ie) I (A.26)
Xx=3v Y
By the isomorphism of section A.l. (see Eqs. (A.9), (A.10)) follows
E7(X) = dx lnfexp( Y B(Y)2¥)}|z=o. (A.27)
YCX
Especially for ‘
B(_X) — {g«:(ﬁm:) g !ii ; é:X = {3;} (A.ZS)
follows
([T 1Ee0); ) = 2o imlexplz 3 Ful D (A.29)
TeX zEX

Let the partition function be defined by

Z(Aly) = ([ ") (A.30)
LEN

Because of (A.20), the perturbation expansion for In Z(Aly) is
A 3“ Vi A
In Z(Al#) = Z n.) In{J] ¢V} s=0 = Z (= o L V(@) (A.31)

n>l TEA n>1 xGA TEA

n arguments

This proves the relation {2.75).

A.3. COMBINATORIAL COEFFICIENT a(Q)

Theorem A.3.1. Let I’ be a finite set and
g : I'xI'—={0,1} (A.32)
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with g(v,7) = ~1 for all vy € I'. We associate to a multiindex X : I' -+ IN a collection of vertices 71,...,7 x|
and links ('), if g(v,v') = —1. This graph is labeled by G{X). We define a function ® by

ex)= JI (+dwm) (A.33)
x(v.‘J:;i‘u)>1

Clearly, ®(X) = 0 holds for X! > 1. Let us define

Z =) 3X)z". (A.34)
X
Then we have
mZ=>) &T(X)* (A.35)
with 1 *
(X)) =5 Y, (-1, (A.36)
teCca(X)

The sum is over all connected subgraphs C of G(X) with the same set of vertices as for G(X) and I(C) equals
the number of links in C.

PROOF [1B]: Let ¥,...,%n be the vertices of G(X) with n = |X|. Expansion of the product on the rhs of

(A.33) yields
B(X) = Z Hg (A.37)
N=yr d
with N = {1,...,n} and

= { Zeeg H(; ec 9%, 1) if |1 =2
0 { 1 ‘ ’ otherwise. (A-38)

We insert (A.37) on the rhs of (A.34). This gives

z=3% % Tl ]I, (A.39)

X N=§:f I Jer
After resummation we obtain an expa.nsion in the number of vertices
n
S DI z{ X T} [ (a.40)
n>0 '71EI‘ €l )= E; I =1

partitions X = E Y; with | X| =n, |¥i] =

il

For every partition {n;} with n = J-c__ r; exists =
P {ni} 23_1 t H,-=1 "!Hm;?

n; and p, = |{n;jn; = r}|. Therefore we obtain

Z = Z z E Hk 'H{ 1? H( Z 9(71,~-‘1'7n,-)r.[ij) (A41)

n>o T k>0 {ng} =1 q1y00Yn €T =1
E:‘#l=n
with the abbreviation
My s Mm) = { EG’EQ; H(i’j)EG 9(%, %) if |7] 2.2 (A.42)
: 1 otherwise,

By the multinominial theorem follows

Z = Z k‘ z n‘ Z g(ql,...,qﬂ)’ﬂ zw]k. (A.43)

k>0 n>1 ey ¥n €T
Hence

nZ = Z > g(’h,...,')'n)ﬂz,,j. (A.44)

"'>1 L TTPNNE Y  o
Comparison of the coefficients with In Z = ¥, 7 (X)z* yields

1
87(X) = <5 0(1s- - Tal)- (A.45)
This proves the asseriion. /
By Theorem A.3.1. follows the representation (2.19) of In Z(A]¢) :
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Corollary A.3.2. If

z(alpy = > [[ax1w), (A.46)
A+EX X
then
In Z(Alg) = 3 _ln A({z}}$) + Za(cM Q) (A47)
ZEA

with the notations of section 2.2. .

PROOF: We will use Theorem A.3.1. with T' = p(A)(=power set of A). By the definition

= ALXY — _ JA(X) if | X]2>2
=4 brpxl = {0( ::tlher!wise (4.48)
follows
Z‘I’ XF = > J[Ax), (A.49)
A=y X X
if

~1 H¥XNY #£@
X V)=
(X Y) {0 otherwise
is chosen. X denotes the multiindex | deeX
oo if z
()= {, itz ¢ X.

By Theorem A.3.1. follows

In Z(Al) = > In A({z}¥) + Z@T(X' 2% =3 In A{{z}|¥) + Za(Q)A(w) (A.50)

#EA zEA

where the sum is over all clusters @ = (P/*t,..., P*) with [P > 2. ¢/

With the help of the abstract tree graph formula (Corollary B.4.2. } we obtain an estimate for the
combinatorial coefficient a(Q) :

Corollary A.3.3. We have

n— 1)t e~ _

eyt (AsD)
=1

for the cluster @ = (P}'*,..., Bp*), n= ):i;l ng.

ja(@)] <

PROOF: Let G be a Mayer graph with n vertices 1,...,n. We define

o [ if(ij) e G
Wig { 0 otherwise. (A.52)
Because of )
1 g -1 f@ENed
2r Jo ddis{e” b= { otherwise (4.53)
we have
3 (-9 = [*—fd%] > T te -1 (A.54)
cCG s :<J;<n MeG, (i7)eM

where G, denotes the set of all Mayer graphs with n vertices. By the abstract tree graph formula (Corollary
B.4.2. ) follows

1 bt E Wt '[a]
Z( 1)“"’“2 H fdcﬁ.-:'}{Zfo don1f(nls) [] wrimmngeyerrsicisn TrOm } (A.35)
/] =2

cee 1<-<;<n
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The sum is over all permutations

AL} = {1,...,n}
i { § o (s) ’ (A.56)
with #(1) = 1. Since |w;;| < 27 and |e*/| = 1 we obtain
1
| T 0O (r -1t @t E [ dows fnls). (A.57)
Foleted n Y0
The special case .
Zf dop_1f(n]s) € et (A.58)
]

of the tree estimate (Lemma 3.1.4. ) proves the assertion. /

APPENDIX B. DECOUPLING EXPANSION FOR NONLOCAL INTERACTIONS,
TREE GRAPH FORMULA AND ESTIMATES

B.1. INTERPOLATING INTERACTION

!
#*

For every finite point sets X we define the multiparticle interaction by

EX)=Y" Y. Ez,...,m) (B.1)

I ®yy..0EX

&! is symmetrically in the arguments z,,...,z;. The points z;,...,2; are not necesgarily distincf. The point
set occupied by zy,..., % is denoted by p(z1,..., ;). A disjoint partition of ¥ in n subsets ¥; is labeled by ¥,
ie.

Y=Y for ¥a=(Y,...,Yn) (B.2)
g1
We will use the notation .
y® =3%"v, (B.3)
=1

forall k€ {1,...,n}. For s € [0,1] and a subset ¥ C X the l-particle interaction is modified by
t
Et(zl, ceny $f|8){y) = H Sxy(wf) 8‘(31, e ,E;) (34)
F=1

with the characteristic function xy . Corresponding to (B.4) we define

B(Xloxy) =3 3 (o mloxy) (B:5)

I #1,.,5EX

The multiparticle interaction defined by (B.5) is called an tnterpolating interaction. In the following we define
an interpolating interaction.
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Definition (of an interpolating interaction)

Let ¥, be a disjoint partition of ¥(#), For s,..., 8, € [0, 1] the interpolating interaction E(Y(™|e1,...,80-1)

is defined recursively by
Eo(Y")) = B(Y (™)

E(Y ™) = By (Y M |sixy o) + By (Y ) — Ei (Y O)sixy )

forallie€ {l,...,n} and
E(Y™sy, ... 80.1) = Eo(¥Y ™).

We will use also the following notation

By (Xio1, ... 8n-1) = BY ™M1, ..., 801)

for X = Y»), The following Lemma shows that E(Y(")|sy,...,s,) is independent from sy, :

Lemma B.1.1.. An explicit expression for the interpolating interaction is

n—1
i
Eyn(X|31,...,8,1__1)=Z Z Hs?‘é"(zl,...,xg)
=1

with .
b= N1 -8y), N=|Ge{l,... B zeyP).

With the notation

n—1
1
EL (71, ailst,- o 8nn) = ] 87 €1,y m)
=1

the following conditions are fulfilled
(i) Decouapling
Suppose that for z3,..., 71 € X, it exists f1, 52 € {1,...,n — 1}, f1 < Jas with
o(zy,...,z)NY;, #0, re{1,2}.

Then

8%."(51,...,5”31,...,8;' “'—-""0,...,8,.,,_1) =0
for alli € {j1,...,72 — 1}.
(ii) Reduction

For
YoAXE (v, Y, XYk

we have
Bo ax(X|s1,...,80 =1} = Ep _ ax(X[s1,-.,80-1).

(iii) Locality
Suppose that for £1,..., 51 € X

o(z1,...,z)NY; =0 forall j>10r p(21,...,5)NY; =0 forallj <.

Then
3,f€fn(xl,.‘.,lesl,...,3,;__.1) =0

(iv) Positivity
If E(X) 2 0 then E?n(X|sl, . .,8',,...1) 2 0..
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(B.14)

(B.15)

(B.16)

(B.17)



PROOF: Without loss of generality we prove the assertion for

E(X) = & zyy...,z) (B.18)
where X D p(zy,...,%). By the recursive definition of the interpolating interaction we have to show
]
Ey(X) = &) By (X) (B.19)

with nf = N1 -6 n1), Nl =|{7 €{1,...,}|z; € Y)}|. This follows by consideration of two different cases :

1. p(z1,...,z) (X =Y} £ 0
From Eq. {B.6) follows

Ei(X) = Ei1(X|sixy @) . {B.20)
With the notation {(B.9) we have
' !
Ed(X) = [[ 0 By (%) = o By (X). (B.21)
=1
This proves (B.19) because of [ = N}.
2. 2,...,5eY )
From Eq. (B.6) follows '
E{(X) = EBiy (Y = B (X). (B.22)

Because of I = N| we have (B.19). This proves Eq. (B.8). We will now show the conditions (i)-(iv) :
(i} : By assumption (B.11) follows N} # {,0 if i € {j;,...,j2 — 1}. From (B.B) follows

nl NH1-8, )

Eh (o, mlsy e tnma) = [[ o0 0 E ey m). (B.23)
=1 .

This proves Eq. (B.12).

(ii) : If N} =1, then nf, = 0. This gives (B.14).

(iii) : By assumption (B.15) follows N} = 0 or = [. Therefore n{ = 0. By Eq. (B.10) the expression
£ (#1,...,m]81,...,8,—1) i independent from s;. This proves Eq. (B.16).

(iv) : This follows immediately from the recursive definition of Ey (X|s;,...,8,—1) and the fact that convex
combinations maintain inequalities, +/

The interpolating interaction may be represemted graphically. Every point set ¥; is represented by a
horizontal line. Every point z; € Y; of an interaction term £'(zy,..., %) is represented by a point on the i-th
horizontal line. Because of the symmetry of £, the labelling of the points on the lines is unessential. Let us
denote the maximal index of lines which have points by max. We associate to every point on the line 4 the term
8§8i4+1 -+« Smagz—1. Lhe product of this terms gives H:.:ll s?l". This is the s-factor of the interpolating interaction
{see Eq. (B.10}). Fig. B.1 shows an example of this construction for a 4-particle interaction.

Fig. B.1 Example for the graphical representation of a 4-particle interaction with the s-dependent cocficient s45 3.
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Let us congider the 2-particle interaction

BX)= Y E%(zy) (B.24)
z=,9eX
with X = {%1,...,%s} and the partition _
Yo=Y, .., Yn) (B.25)

with ¥; = {z;}. Then the interpolating interaction is

Ep (X815 .y 8a-1) =2 Z s.-s;H...sJ-_lé'z(z.-,n:,-)+Z£2(x,-,z,-). (B.26)

1<i<y<n i1

This is the modified propagator v[s] for £2(x,y) = Lvay (¢f. (2.110)). For an !-particle interaction

E(¢) = z P(T1, ey T )Pmy o By {B.27)

By T EX

the interpolating interaction may be recursively defined by

By, (4) = E(9) | (B.282)
Ey‘,(qﬁlsl, . ,3,‘) = Ey‘._l{qﬁx_y(-‘) -+ s;(ﬁy(n |31, ens ,S,'_l) -+ (1 e SE')E?',-_.I(ﬁf’Y(U |81, .o ,s,'_1), 1€ {1, ey n}
(B.28b)
with the notation
(¢v)s = xv (2)de- (B.ZQ)
This corresponds to (B.6). The conditions (i)-(iv) of Lemma B.1.1. are also fulfilled.
B.2. REPRESENTATION OF THE MOLECULAR ACTIVITIES WITH
THE HELP OF THE INTERPOLATING INTERACTION
Lemma B.2.1. Let the multiparticle interaction be defined by
EX) =Y. > .o (B.30)
I &1,.0,21€X
for every finite point set X. Consider the polymer representation
FX = 3 T[B(Y). (B.31)
X=ZY' Y
The molecular activities B(Y) are uniquely defined by (B.31)(cf. app. A). We have
BY)=Y. Y. A%) (B.32)
i<ly| %
rii=y
with
1 g1 : , By (YO .
A(Y;) = [ dsy ...ds;_, 1'[[3,,.E§.,’?+ (Y O+)(gy, ., 5)jeR0s 7 lonemei=s) (B.33)
o =1 1
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EQ (¥ Ve, 0) =3 ) A CE AT (B.34)

{ mx....,zte.'(("'*"-)
P(=1,---,¥¢)*Y(")=Y.'+;

where the sum 3 ¢,  is over all disjoint partitions ¥ = Z‘f=1 Y; with Y, = {z}, for a fixed chosen z € Y.

(Fray
Permutations of Y;, -+, Yy are considered as different partitions. Suppose that the conditions (i) (decoupling )

and (ii) (reduction ) of Lemma B.1.1. are fulfilled for the interpolating interaction €'(z,,...,zi|sy, ..., 8.

PROOF: We will consider the following Kirkwood Salaburg equations with remainder

eFX) = N~ [KL(W)eFEW) 4 R (X, W)} (B.35)
cemex

forallme IN* = {1,2,3, ...} with

Ka(W)=3" > AF) (B-36)
ign ¥
¥y (D aw
1 n—1 . .
Ra(X W)= > fo ds ...ds, 6,,,{{1__[6,‘.Ei(r_,"_)_l_1(1’(-+1)|sl,...,a,')}eEy,.w(xla;,...,au)], (B.37)
¥n =1 :

yi{nt=w

Then R,(X,W) = 0 for n > |X|. By the unique solution of the Kirkwood Salsburg equations follows the
assertion. Eq. (B.35) is proved by induction. Let n = 1. By reduction (Lemma B.L.1., (ii) ) follows

By, nx(Xles = 1) = B(X). (B.38)

The mean value theorem yields
1
eE(X) = ¢Fryax(X]s:=0) +[ d81aheEY1’\X(x|”). (B_39)
0

By decoupling {Lemma B.1.1., (i) ) follows

: Eg ax(X|s1 =0) = E(¥1) + E(X ~ Y¥1). (B.40)
This proves the assertion for n = 1. Let the assertion be valid for n. We apply the derivative in s, on the rhs
of {B.37). Since

0. By ax(Xlst,-c8a) =3 3 80, \x(51, 0,35y, .., 80) =
I Zy EeX

= z Z E asngj‘-—nAx(xla"'?31,311"‘:3#) = Z 635E'§7211(Y(n+1)1311"':sn) (B‘H.)

Yogr 1 2g prmpzyEx (NF1) Yni1
Plgem)=¥ () =y, Ly

it follows
1 d , ]
R (X, W)= > f dsy ...dsy H[a,_.Eg_’ (YO g, L., 80)]eBFnnx (Xloanan) (B.42)
Pagl 0 £=1 T
y{n)=w
By reduction {Lemma B.1.1., (ii) ) follows
E?n(X|31,.. .,Sn) = Ep—n+1,\x(X|81,...,Sn,Sn+1 = 1). (B.43)

We use the mean value theorem. This gives

. 1 n —
Rn(XsW) = Z [ ds; ...dsy, H[ .. -]BEy"'*"Ax (Xf.sl,...,a,.+1-_0)+
?n+1 0 g=1
y(rl=—w
n

1
+ Z f dsy...dspdsy 4, aan+1 H[ i ']e-ﬁ:yn_ﬂax (Fleasrronta) (BM)
o]

?n+1 ‘.=1
¥ (r) =w

86



By decoupling (Lemma B.1.1., (i) }

E?,—,+1Ax(xlsl’ . P 0) = Ey“+1(Y(n+1)|31,--.,3n) -+ E(X— Y(!’H—I)) (B45)
follows
Z R.(X,W) Z > f ds; .. da,,l'[[ €5 (¥ T nnn) BX-W) L B (X, W)} =
;ewcx aewcx (n.ﬂ-)l_w =i

Z{ Z ATg1)e® X 4 By (X, W)} (B.46)
:ewcx Y("_’;j‘)*__w

The assertion {B.35) for n + 1 follows by induction hypothesis. +/

B.3. REPRESENTATION OF THE ACTIVITIES WITH THE HELP
OF THE INTERPOLATING INTERACTION

By Lemma B.2.1. for the representation of the molecular activities follows a representation of the activities

for multiparticle interactions :

Theorem B.3.1. Let the partition function Z(X) for finite point sets be defined by
20%) = [ dua(@)e5) (B.47)

with the multiparticle interaction

4 :‘Z Z 61('51,...,56])- (848)

I €550 4ZaEX

The activities A(Y), ¥ C X, are defined uniquely by

zixy= . [la). (B.49)
x=3.v Y
The modified propagator vis| for parameters sy,...,8n-1 € [0,1] and partitions ¥, of Y is defined by
”[s]wy = Z {841 oo s.:l'-—1 [XY| (E)U-TS'XYJ' (y) + XY;' (x)vmyXY.- (y)] + E XY.-(-'U)UzyXY,- (y)' (B'50)
1<i<i<n =1
Then
=2 2 [ dsy ...ds;1 [d#v (¢) { [ BG) (YO ]sy, . 80 (Y(j)lahm”_l)}
ISyl %
y(N =y
(B.51)
with

i : 1 3
Ex(ZiL‘(Y(’+1)|31;---,3i)= Z [28954:1 [S]mlz=a¢ ’+Z Z 61(51,...,51 81,...,8,‘)]

€y () PR
#3€Yi4 play, =¥ (Dmy; Ly

(B.52)
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where thesum J ¢, Is over all disjoint partitions Y = E{=1 Y; with Y, = {z}, for any = € Y. Permutatijons
¥ (D =y
of Ya,...,Y; are considered as different. The interpolating interaction €'(zy,...,zis, ... 8;) is supposed to

fulfill the conditions (i) and (ii) of Lemma B.1.1. . The differential operators in Ei-,')_u (YG+)|sy, ..., ;) operates
only on the e-function on the rhs of (B.51).

PROOF: Consider the multiparticle interaction

E(-X) —1 z 9zdz ~ = Z dzVzydy + Z E E’(zl,...,z;). (B.53)

zEX z,yeX I oz, €X

The corregponding interpolating interaction is

E'?‘_“(Y(";"‘Hsl L8} = —1% E Jobz — = E 4z9(8]zyQy +E Z EHz1,...,21]81,...,8) (B.54)

zEX zyeX Tayer B EX
and fulfills the conditions of decoupling and reduction {see Lemma B.1.1. ). By Lernma B.2.1. we have

e'—"(Q1¢)x"“%’(Q1VQ)X+E£ E:ﬂl. 2 EX 6‘(31,---,3[)

= 3 H{Z > fdsl ~dej_ 1H[3( > “%Qm;v£3]31x5Qw,+

x=3 v Y “igly| ¥ ayev ()
y(Hay {z3}=¥;41 -
§ : § : I
+ £ (2’51,...,2:1'81,...,8,'))]
i 21,z €Y (1)

P(ZJ,;"-J;)—Y(")’YH—I

Chi(q"ﬁ)y(” - %(q’”[‘]q)y(” +2! 231...‘,&161’“) 81(21‘.."29‘]‘1‘-.‘,‘1) }' (B.55)

Integration of (B.55) by [ [],cx 2852 proves the assertion. /

B.4. EXPLICIT S-DEPENDENCE OF THE DECOUPLING EXPANSION
AND PROOF OF THE TREE GRAPH FORMULA

In this section the interpolating interaction defined by Eq. (B.8) will be used. By Theorem B.3.1. we have
the following representation of the activities A(Y).

Corollary B.4.1. Let the partition function be defined by
2(X) = [ duy($)e5 (B.a7)

with the interaction

EX)=Y, >  &z1,...,m) (B.48)

i 2p....,m€X .

for all finite point sets X. Suppose that the interpolating interaction is defined by

n—1 .
By (Yoyyooysnn) =2 3 [l €. nm) (B.56a)

I ap,a€Y () i=1
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with

b= N1-b), N=lie{l... . }lzerY (B.56b)
and the interpolating propagator is defined by
n
Ulslmy = Z 85841 o - S5l [XY.' (z)vaXY“ (y) + Xv; (z) Vay XY: (y)l + Z XY;(x)”xyXY« (y)' (B.50)
1<i<iEn =1

Then we have for the activities A(¥), Y C X

3535505 o SRS LR 1)1 O ) (CEe—"

<y| T ” a=2 i=1
=Y

Is! ~
[HN“ - "‘(l By Z 6:::(3:1, :r.;)]eE? (Y 81,0ate— 1)} (B.57)
=15 \'a a7 2€¥5;(a)

P("‘Nn'i'l""”!n )=V,

with
N 1.8 8 2 .
Bz, ;) = § 200 Vaima gy = & (21,%)  Hi=2 (B.58)
Ezry. .. 1) otherwise.
T=(lg,...,l:) is a (t — 1)-tupel of integers 2 2. Y. = (Y1,...,Y:) is a disjoint partition of ¥ with ¥, = {z} for
some z € Y. Permutations of Yz,...,Y; define different partztxons V.. The differential operator in € £l operates
only on the e-function on the rhs of Eq (B.57). We have the condition
1 <{Y,| € o {B.59)
N = (Nz,...,N¢) is a (t — 1)-tupel of positive integers with
12 Na < Ia - |Ya]- (BﬁO)

#j are the foHow:'ngTand N dependent functions
- max(N,) {1k
{{2 &) Lt =1 (B.61)
a s (1:(a) i1, 1,
with n;(a) < a and the notation
(1, ,t=1F = {1, t =1} x - x{l,...,t —1}.

k t?mes
P is defined by
= |{m(a)| ni(a) = 7} {B.62)

PROOF: By Theorem B.3.1. follows

AY)= Y ): Z f dsy...dse— lfdu.qs] ){f[[c’»‘a,_l

t<|y| T a=2

(‘) =Y
2 g’lu(xls"-,'ﬂalsls---a3&—1)15E?,(Y(‘Jlal,.-us!vi)}. (B.63)

PYRREIN > a2
p(:l‘....m(a)—Y(“‘U:Yﬂ

Furthermorte

El"'(xl,...,x;‘ 51:-‘-5\9&—1) =

al,...,xlﬂey('ﬂ
ey, )—Y(“"l}zYﬂ

fa—|Ye|
= Z Z (za)zﬁ"(ml,...,z:a 81!"'!3d.—1)- (B_64)
N,

Ny=1 ,;gvis-1) for je~n,
P(-’N,,_+1‘---,=z,‘)=1’n
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We insert (B.64) on the rhs of {B.63). This gives

A=Y > N Z;f; ds; ---d3e~1[d#vm(tb){fl[aa,_x
N a=2

t<|Y| T 7,
<l 7 O

> ( ; ) Bl (21, Bty 81y Samn)]€5% “’“"‘*----’"-“}. (B.65)

a
2@y (a=1) for jem.
PLAN, Fa s aTl g )=Yg

With
. a1 e
Ete(zy,... a1, 001) = [[ o7 &t (2,0, m,) (B.66a)
=1 :
nfE = Ne(U-Gp0),  Ni=l{7e{l,...la}| z; e YUY (B.66b)
we obfain

N
Z (j:,) @'la(m,...,x;, Bly ves8a_y) = Z H(Sa_lsa_g -ee8k2)

a;ev(a=1) for jem. ("'?J"=1“,---,Na =1
P#Ng 4Ll )=Ya 1gki<a

7! _—
T 3N — N,)! 2 Ee(enem). (BT

sjEYk? for jem,

POEN G4 areems =, 1=¥a

The sum is over all Ny-tupel (&f)i=1,...,.n, with &7 € {1,...,a —1}. p} equals the number of elements z; in ¥,
i.e.
p7 = |{k}| k§ = 7}I. (B.68)

The tupels (k#) for a € {2,...,t} may be replaced by functions 7. We insert {B.67) on the rhs of (B.65) and set
ni(a) = &F. : (B.69)
This proves Eq. (B.57). /

The decoupling expansion (B.57) is essentially simpler for 2-particle interactions

B(X)= ST e+ D E%(z,y). (B.70)

zeX zyEX

For this special case the conditions {(B.59) and (B.60) of Corollary B.4.1. are
=2, |[¥Yz| =1 (B.71)

for all a € {2,...,t}. For that the summation over ¢, 7, Y:, and ¥ on the rhe of (B.57) is a sum over partitions
Ya,..., Y; with

t=Y®|, Fi=({z} {2} s {%:}), =2  Ny=1 (B.72)

for all @ € {2,...,t}. The sum over % is in this special case a sum over all t-trees 5. Thereby the tree graph
formula is a special case of the decoupling expansion.

PROOF OF THEOREM 2.5.1. (TREE GRAPH FORMULA): Let us set
E(X) =) InFe($a+ vo). (B.73)
FEX .
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By Corollary B.4.1. follows

axiv = ¥ Z [ dan_ll'[[sc_zaa o cotmge) [ (9

y(ﬂ)—x
8
*1E¥0; (a) ? zeX
T €Yy
where
= ({z:1},{z2},..., {zn}) with 5, =z € X (B.75)
is a partition of X = {%1,...,Zn}. The sum over ¥, is a sum over permutations of #a,...,z,. The interpolating

propagator v[s] defined by Eq. (B.50) equals the modified propagator defined by ((2.110) for the partition ¥,.
With the notations n; = 5 and

= H [86—2%a~3 - « - 8y(a}] (2.107)

=3

follows by Eq. (B.74) the assertion (2.111a). 4/

The tree graph formula yields a relation of representations by Mayer graphs and by free graphs. We have
for complex wy; with 1 <i<j<n, §,5,ncN

edrsicizn T = D H{Z T [e“’""--l]}. | (B.76)

{1,...,n}=ZI I “Gegr (iee

G is the set of all Mayer graphs with vertex set I. By the tree graph formula we obtain the following corollary

Corollary B.4.2. (abstract tree graph formula). We have

Z H ¥ — 1] = Z Z/ dog.-1 f(n]s) H Wy k)rr(w(k))ezm'(’(" Crtrmnle (B.77)

GeGa (i7)EG

with :
. — 358441 ... 551 Wiy i I<j
wile = { 3¢ il (8.7
for all 1,5 with 1 <i < j < n. The sum is over all permutations
{1,...,n} = {1,...,n}
{1 - 1r(1,) (B.79)
with #(1) = 1 and all n-trees ‘
' {2,...,n} = {1,...,n -1}
{ ks g(k) - (B-80)

with n{k) < k

B.5. ESTIMATES FOR THE SUM OVER 7 IN THE DECOUPLING
EXPANSION FOR NONLOCAL INTERACTIONS

This section presents a generalization of the tree estimate (Lemma 3.1.4 ) and the Lemama by Battle (Lemma
3.1.5. ) for the decoupling expansion of nonlocal interactions.

ejact
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Lemma B.5.1. (generalization of the tree estimate). Let 1 = (la,...,}:) and N = (Na,...,Ny) be
(t — 1)-tuples of positive integers with N, < I, for all ¢ € {2,...,t}. Let p(a) >0, a€{l,...,t}, be non
negative real numbers. With the notation

Ng
/ dey...dsg—1 H{ Ye-WN=a, | H[Sa-1 ...s,,‘.(a)u(n,-{a])]} (B.81)

a=2 ga=1

we have the inequality

RS H {"‘I-F__—;:‘—“‘[ﬂ(“ )=~ Ne exp(p(a — 1) H N; )} (B.82)

f=a

PROOF: The sum over 7 may be replaced by the sum over n;(a) = k; from 1 to 6 — 1 for all a € {2,...,1t}.
Therefore

N, a—1
f dsy ... ds1 H{u(a)“‘ Mg, [113C sa-150-2- 31:‘-[‘(;‘71')]} =
a=3 i=1 k=1
a—1 ’
f dsy...dsp.q H {,u(a. °6,a”l[z: Sa—18a—3 - . Spu{k)|Ne } (B.83)
a=2 k=1
Let us set
1 tad—~i a—1 t—i §
Sl{w) = j dsy ...dss_y H Z 8q-13 - sk,u(k)iN“ exp(z: 8p—i---spi(k) H Nyzx) (B.84)
0 a=2 k=1 k=1 k=2
forall ¢ € {1,...,t}. We have
1 ‘
S 5.4 < T Wan(a)'s=781(s). (B-85)
a=2

8}(u) is estimated by recursion. Because of 1 < oy dse®® (u > 0), we obtain

t~t a—1

8 5[ dséf}_dséz) . ds(N;" w41} H Zsa-z...sk,u(k)]N“
0 a=2 k=1
t—g Neoigr t—1 . $
[Z Spi1 8t i ....<sjr¢,u(!c)}N‘-H"L exp( E E si_)_'-st_;._l ... sx (k) H Nija_z). (B.86)
k=1 {= k=1 k=2
We integrate (B.86) over sgl_)l, et ,,s?_v:“‘“). We use the inequality
‘ 1
f ds ue™™/® < ae®/®
0
and obtain
1 t—% g1 1
SHp) Sf dsy ...dsy_;_ [ spmz ... sxp(k)]e —
) 0 ' 41:[;1 :‘?; : (ITk ez Nepamk)Ve-i+:
Neiqa t—i H
exp[ Z z: 84§ 18t—i—2 5" Skﬂ.(k) 1_[ Ng,.{.z_.k). (B.BT)
=1 k=1 k=2
Thereby
< exp(p(t — 1) [Tresg N
s!_l < p(p' Hk g SV 2~ k) :+1(“) (B.BS)

(Tmg Mook )emits
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Because of §/(u) = 1 we obtain

bl
w0 < TIatar =122 g <

a=32
- (t—l) t ( - td¥ioa
[
a=2 s
I;I {m{“(ﬂ)]h*l\h exp(,u.(a - 1) I—I N,)} \/ (B.SQ)

By the generalization of the tree estimate follows

Lemma B.5.2. (generalization of the Lemma by Battle). Let 1= (l,...,l) and N = (N3,..., N;) be
(t — 1)- tuples of positive integers with N, <, for all a € {2,...,1}. We use the notations

L — N ifa=t
d~ POEREA (a)+ 1, — N, fl<ax<t (B.90a)
c~(1) fa=1
with
cxle) = [{(b, ) m(®) =a}ll, ae{l...,t-1} (B.90b)

d (8} equals the exponent of u(a) on the rhs of Eq. (B.81). Then

f oy - sy (! [T (s ! Bers [0 - Smio]} <

a=2 =1

<{(HN,-)+1]N=”"H{N[( N)“] (a—Na}!}. (B.91)

=2 a="2 (sta+1 Na

PROOF: By Lemma B.5.1. follows for the positive real numbers ¢,, ¢ € {1,...,t}:

~(1)

f dsy ...dss_ IH{ TRt 3\9“_1 H[sa_ .Sy, a)]}t N

=1

lil [mﬂ“fh-l\r“ expltg—1 H N):| (B.92)

f=qg

We multiplicate the factor [T,_,[e**~*(ILiza ¥+1]e—t: This gives

1 d~~(1 ¢ =l g (a ¢
E f dsy ...dse—lhmw( )e—tl(H"““’Ni-H) I l {ta“'m( )e_t°(H-'=u+z NH’I)}
~ 40
P

=2
d~

tlm;(t} -t H{ s H[sf‘“ -Sn;(a}]} <

e=2

t—1
Se—hH[_—_—(rf N“N)N tﬁ;“”ae—*u]mt?—me"‘e. (B.93)
a1 46"

a=2

We integrate (B.93) over ¢, from 0 to oo and we use

00 !
n_—at _ ¥
/(; dt t"e ==
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This gives

1 t N,
> :/ dsy...dse_y dy &(1)! H{d;ﬁ(a)!a,,_l [1lsa-1 ...a,,‘.(a)]}
~ v0
n

=2 =1

1 t
Ht -1 (Tt _a+1N)+1]d” ~(a)+1 g[(nt_aﬂ_N)N“( a)!:l (B.54)

a=1

By the definition (B.90) of dx 7 (a) follows

t—1 t—1
Sodenla) = la+ N (B.95)

a=1 a=2

Therefore the assertion follows by the inequality (B.94). /

APPENDIX C. GENERATING FUNCTION FOR
FREE-PROPAGATOR-AMPUTATED GREENS FUNCTIONS

Lemma C.1.. The generating function for Greens functions is defined by

1) = % [ ann(OF@ECD, (©1)
where N is fixed by T[0] = 1. Then the following relation holds on the lattice (aZZ)” = A¢or
Z(Asor19) ] - _1
]n[Z(Amlw —g) ~=TV=3 fm,ye(m)u J(z)9(z,5)J (9) (C2)
with
Z(henl¥) = [ (P + 9). (©3)

The generating function for the free-propagator-amputated Greens functions is

jEGnl]

PROOF: Subtraction of the integration variables gives

Z(beuly) = [ dua(d = VIF(8) = det(znn) 4 JUTL abulri@) etite-no"16-90 =

z€ (a2}
=f dito($)F(p)e™ BT W) =30 (C )

With
ie= [ via e (C5)
yE(aZ)

and (C.1) follows (C.2). The derivative with respect to J(z) reads

& é
57() ~ fyé(amu ") 55t

04

(C.6)



This yields

~ 5 [ Z(Asn|¥) |
Ge(z1,...,20) = j;;,...yne(az)v v(21,91) - - ¥(Zns ¥n) 59(y1) - - 69(¥n) I [Z(Awtlt{r = 0)] ly=o

for n > 2 and

62 [ Z{Agot|th)
Z

Glan,za) = [ Tt prowir = | LSRR CRD

Y1,y2E(aZ)Y

for » = 2. The n-point free-propagator-amputated Greens function is therefore

AP . Z(buel)
Gl = Gy ) Tl )5V

APPENDIX D. EQUIVALENCE OF RENORMALIZATION CONDITIONS

Lemma D.1.. Suppose that the partition function Z(X|y) fulfills
Z(X|¥) = 2(X] - ¥)
for all finite X C (aZZ)”. Then the remormalization conditions

In Z(X|¢)ly=0 =0
32
WIHZ(XW)W:O =0

are equivalent to

ren _J1 X =1
AT X])ly=o { 0 otherwise
32

WA'e“(Xltl’)lwo =0
for all finite X C (aZZ)” with
z2xip)= 3, [[aiw.

x=3.v ¥

(c.7)

(C.8)

(C.9)

(D.1)

(D.2a)
(D.2b)

{D.3a)

(D.3b)

(D.4)

~ The derivative in (D.2b) and (D.3b) is with respect o constant external fields ¥, =  for all z € (aZZ}".

PROOF: 1.) Suppose that the renormalization conditions (D.2a,b) are fulfilled . We will show the renormaliza-

tion conditions (D.3a,b). From (D.2a) follows

Z(X|$=0)=1.

(D-5)

By uniqueness of the activities A™" in (D.4) and the renormalization condition (D.2a) follows (D.3a). Because

of the symmetry (D.1), follows
a _
-ﬂZ(th)Iw:o =0

85
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By {D.2b), (D.5) and (D.6) we obtain

62
WZ(XIKb)lwo = 0.

With the help of the inversion formula (see app. A, (A.21) )

AMX) =Y ()M -1t Y

’521 X=E:=1

we obtain the renormalization condition {D.3b).

2.) Suppose that the renormalization conditions {D.3a,b) are fulfilled.
(D.3a) follows (D.2a). Because of the symmetry (D.1), we have

a
@A““(Xlw)lwo =0.

(D.7)

b

11 2(Pelw) (D.8) .

P k=1

By the polymer representation (D.4) and

(D.9) :

Therefore (D.3b) and (D.4) prove the renormalization condition (D.2b). /
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