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Abstract: Random number generators based on the congru-
ence method have lomg range correlations which can severely
influence Monte Carle simulations of lattice theories, .
especially in critical regions. We investigate the nature
of these correlations both theoretically and in test
simulations. We propose practical ways to aveid that random
aumber correlations affect the simulation results.
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1. Introduction

Tt has been recently reported by several authors D—3]
that Monte Carlo (MC) simulations of lattice models in critical
regions might be affected by leng range correlations in the
random number generator (RNG) used. These effects turn out to
be strongly dependent on the lattice size and occur typically

for large lattices.

An important class of RNG's is based on the congruence method
[4] . Many high-speed computers coffer RNG's of the type
- My, = m (1.1)
noy = oang (mod 27)3 LR P /2
where a is a fixed odd integer called multiplier, 2™ is called
the modulus, the numbers n, are integers and the actual random
number r; is obtained by dividing nj by the modulus. The

integer o is called the seed of a sequence ¢f randem numbers.

ENG's of the type (1.1) always have correlations at distan-
ces of powers of 2 which are independent of the special meltiplier
and seed chosen and only depend on the”médulus. These correla-
tions are especially dangerous for MC renormalization group cal-

culations [S} that use lattice sizes of powers of 2.

It is easy to find explicit formulas for these correlations.
In this papetr we investigate their influence on various MC gimula-

tions and propose methods to circumvent the problems they cause.

In section 2 we present several MC calculations for a 4=-dimen—
sional 22 gauge theory and for the 4-dimensiocnal Ising model, where
we First encountered the problem that RNG correlations drasti=~
cally alter the results. These calculations have been performed
on a CRAY 1/M computer using RANF as RNG, RANF is generally con-
sidered to have good statistical properties. The difference bet=

ween the "wrong" and the "correct" results was already striking



in simulations that used 228 random numbers (the periocd of

RANF 1is ZAG).

In section 3 we show that RNG correlations at distances
of powers of 2 are inherent in the congruence method by expli-

citely deriving correlation formulas.

In section 4 we discuss several tests we made in order
to study the influence of RNGC correlations on MC simulations
in more detail. In particular we find that the Metropelis algo-
rithm is much less sensitive to these correlations than the

heat bath algerithm (for Z, models).

2, Irvegularities in Monte Carlo Simulatiouns

We investigated numerically the 4-dimensional 22 gauge
theory with matter field [6,7] and found a line of second order
phase transitions separating the screening from the free charge
regions of the phase diagram of Fig. 1 (the results of these
calculations are reported elsewhere [SJ J. In order to check
finite size scaling relations and calculate critical exponents,
we measured the link-link susceptibility {the integral over
link~1ink correlations) for ﬁ =,85 and lattice sizes L= 4,56,8,12
and 16. We used the heat bath algorithm [9 - t0] which
requires one random number per update. So SLa random numbers
are needed for one full sweep {(there are LA point variables and
&quink variables in the model). The results for L=16 were
completely different from what we expected by extrapolating the

resulcs for smaller lattice sizes, as shown in Fig., 2.

Then we performed thermal sweeps @j (ﬁkwas slowly varied

through the critical region. p was kept fixed at(0.5) for

L= 10,12,14,1646,18 and 22. The results for the link expectation
value for L= 12,16 and 22 are shown in Fig. 3. The curves for
L= 10,14 and 18 are practically the same as for L= 12 and 22.

Again L= 16 does not agree with the other results.

Forf%_=.6 the thermal sweeps show the same discrepancy
between L= 16 and all the other values of L. For ﬁ}‘ﬂ @@ the
model goes into the 4-dimensional Ising meodel., The Link expecta-
tion value becomes the energy deunsity in this limit. Here too
thermal sweeps show the same irregular behavicur for L= 16. Note
that in the Ising limit only LA random numbers are needed for

each sweep.

Since successive updates at the same lattice site occur
4
every L th random number we suspected that the RNG has corra-

4 = 2 16 which somehow interact with

lations over distances of 16
the correlations occuring in the MC simulaticn of the model in
the critical region. In order to disturb these correlatlons we
omitted after each sweep a certain number of random numbers.

The results for L = 16 were drastically changed (for all values

of Qo considered) whereas the results feor the other values of
2

L remained unchanged, In fig. 2 the new values for L = 16 (the

"correct" values) perfectly fit into the series of results obtained
for the other lattice sizes. Moreover, the new results were inde-
pendent of the number n of random numbers cmitted after each
sweep (nr = 1,2,3,4 or randomly chosen between 1 znd 100). In

fig. 4 we compare for the 4-dim. Ising model the thermal sweep

behaviour of the energy with and without the cmmitted

numbers. For all values of ﬁg considered, the correct L = 186
thermal sweep curves practically overlap with these for L = 12

and 22.

The results are shown in fig. &. The new L = 16 results perfectly

fit into the series of results obtained for the other lattice sizes.

3, Correlations in Congruential Random Number Generators

In order to understand the problems caused by RNG's based
cn the congruence method, we fake a cleser look at eq. (1.1,

We are interested in the subseries

(3.1

ngk):= n
i

ik



which is generated by the relatiom For the considerations above, s is the smallest integer larger
than eor equal to E%E, hence in the case of m = 48 and k = 16
nEE} = a ni(k) (mod 2™y the potency of a is 3. Eq. (3.5) impiies the following formula,
(3.2) which relates s + 1 subsequent numbers of the series (3.1):
a, e aZk (mod Zm} . s ) (K
> [j} (-133 niyj = 0 (mod 2™ (3.6)
The relevance of such subseries for MC calculations has 1=0

already been emphasized in [1}.

Thus in our case (m = 48, k = 16, s = 3) 4 subsequent randem
The multiplier a is always chosen to be odd; otherwise numbers always fulfil the equation

a® = o (mod 2™) and the original series would degenerate after
m steps. Thus a¥+ | are even numbers for each positive integer r(jf; “3r(}6; +3rSZi)._r£16) = 0 {med 1) (3.7)
£, and either a-t or a+!1 'is a multiple of 4, Therefore, using ' . H '
the factorization

Lk E:l i In general (see the discussion in ref. [4]) a -potency of

a” -1 = (a-1) IJo (a + 1) (3.3 at least 5 seems to be necessary for the series (3.1} to have

k good statistical properties.
we conclude that (a2 -1) is a multiple of 2k+2, and the same
holds for (ﬁ( -1) if %#2 & m . Furthermore, ifa® t is not a 1f E%Em is omuly slightly larger than an integer, another

multiple of 8, then type of correlations, relating s subsequent numbers in the series

(3.1), becomes important. One has:

a -t =, 2°0R (3.4)
m-(s-1) (k+2) s—} _ (k) o
) : : _ 2. > (5_ ) a = 0 (mod 2™) (3.8)
with cy odd. . . : i i+1
j=0

In spite of the fact that the number of digits in the

In the original series {1.1) there are lots of other corre-
binary representation of ¢ may be large (for the discussion K . .

k lations related to the discussion above. They can be derived
in section 2 m = 48 and k =16, so <y still has 30 digics), the

. . . from formulas of the type
statistical properties of the series (3.1) can be very poor.

This fact can be described in terms of the "potency” of a FOR
k [«] (3, - 1) ... (a, - 1) =8 (mod 2 €3.9)

The potency of ay is defined to be the smallest natural number
s with

(a - 1) 5 20 (med. 2™ (3.5)



All these correlations exist independently of the choice
of the multiplier a. In addition, for a given a (for RANF a
= 44485709377909) there are other correlations. All of thewm

follow from equations of the form

E by al = 0 (mod 2™ (3.10)

i=0

with integer bi' and their strength may be estimated by compu-
-1
Z

ting the quantity d = { ZZhi) [1] (larger values of d imply

stronger correlations).

[ Numerical tests and conclusions

The detailed mechanism according te which a lattice model
reacts to the correlations (3.6) = {3.8) is not yet completely
uaderstood. However, the results presented so far suggest that
the RNG correlations have a larger impact on a MC simulation
when the correlations in MC time [10J are longer. We amade the
fellowing tests in order to investigate this problem more
thotoughly and to get a feeling of what might happen.

First we performed thermal sweeps on the 4-dim. Ising

model on a 165 lattice {heat bath method), deleting random

aumbers only after n = 4,6,8 and 16 sweeps. The results
were correct for n = 4 {see fig. 4), while for n = 8 and 16
they were wrong (n = 6 was unclear), This is consistent with

our observation that the results without comitting random
numbers at all differed from the correct ones only for tempera-
tures where the MC btime correlation length was of the eorder

of 10 or larger,

Next we investigated the effect of the RNG correlatiocns

uging the Metropolis algorithm [9—11] (the program genevated

one random number per spin wupdate, so the periodicity was the
same as before). In this case the MC time correlaticns are much
shorter than for the heat bath method. It turned ocut that the
discrepancy between the correct and the wrong results is

roughly ten times smaller than for the heat bath wethod.

In order to check the period 2k in a simple medel, we simu-
lated the 2-dim. Ising model on a 20 x 20 lattice (heat bath)
omjtting (Zk—AOO) random numbers after sach sweep. The system
turned out to be sensitive ta the correlations (3.6)-(3.8) for
k > 20. As in the 4-dim. case the results became correct if
additional randem numberswere omitted after each sweep. We repea-
ted the Z-dim. calculation on an IBM 3081 using ZPF as RNG (ZPF
is of the type (1.1) with m = 31; it is the standard RNG offered
by the DESY progrvam library). The results were wrong for k 2 14,

At this stage we have gained scme insight into the interplay
between RNG correlations at a fixed lattice point and MC time
correlaticns. Oun the other hand, correlations betwesen different
lattice points seem not to contribute te the observed effects.
Otherwise the results should have changed when varying the number
of randem numbers omitted after each sweep. Moreover, permuta-
tions of the order in which the lattice sites are updated did

not alter the results either,

Presumably this is not the most general case. It is to be
expected that in the deep critical region the correlations of
the model itself interact with the RNG correlations. In general
one would have to check, for each particular algorithm, whether
highly correlated points in the (lattice-variable x MC time)-
space are updated by correlated random numbevs. 4n empirical
check would be the stability of the simulation against changes
in lattice size and against omission of differeat numbers cof
random numbers. In any case a periodicity of the updating process

with & large power of 2 should be avoided.
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Figure captioas

Fig. 1

The phase diagram of the 4-dimensional 22 gauge theory
with matter fields (from [8] ).

Link-link susceptibility in the peak regiom for

0.4
various lattice sizes L (from ref. [SJ Y. The "correct”
values for L = 16,

as opposed to the

first order
"wrong" wvalues, ]
were obtained by omitting random numbers after each sweep
Fig. 3 Thermal sweeps for &

~-  gecond order
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g
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1
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Fig. &

AY
Thermal sweeps for the 4~dimensional Ising model with

and without omitting random numbers after each sweep.
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