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Abstract 

Wilson loops in SU(2) lattice gauge theory without fermions are 

determined on lattices of size 124 , 164 and 244 at~= 2.4, 2.5 

and 2.6. At p = 2.6 the static quark-antiquark potential is extracted 

for distances up to 8 lattice units. A string tension smaller by a 

factor 2 than in previous investigations is found. Deviations 

from asymptotic scaling for multiplicatively improved Creutz ratios are 

certain, and their magnitude depends on the geometrical size of the ratios. 

This implies deviations from scaling. 
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1. Introduction 

Although Monte Carlo measurements of planar Wilson loops in pure lattice 

gauge theory are a stra~ghtforward procedure, more effort may still be 

worthwhile. Especially to find the magnitude of nonperturbative effects, 

above all of the string tension, requires high precision in the region of 

small coupling constants g2 . The same is true for the scaling properties 

of the static qQ-potential {or, more generally, of Creutz ratios (i)). These 

give, as we believe, presently the most accurate information on how close 

we are to the continuum limit. We therefore present an investigation of 

this potential on large lattices with a few thousand Monte Carlo iterations 

per value of j3= 4/g2 . Large spatial extensions are, as it is well known, 

needed td avoid finite size effects for Wilson loops of large extension, 

which we need to determine the potential reliably at large distances. 

Furthermore we have to avoid to cross the finite temperature deconfining 

phase transition (2), which occurs at a fixed lattice size for increasing 

We shall present evidence that finite size.effects are very small at p = 

2. 4 for lattice sizes L ~ 12, at least for objects (Wilson loops, Creutz 

ratios etc.) of size 4 or less. Since a shift from (3 = 2. 4 to p = 2. 6 

corresponds (as we shall see) to a change in scale by a factor 2, it is 

save to use L = 24 at p = 2. 6 foi- objects of size 8 or less. On the other 

hand, there are good indications that at (3 = 2. 4 there is some suppression 

of Creutz ratios of length ~3 on a 84-lattice. Therefore our choice of 

L is necessary for a determination of the potential. We also believe that 

meaningful scaling tests require large lattices, since it is not excluded 
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that there exist several dimensionful quantities which scale differently. 

It has become customary to describe the scaling properties of a physical 

quantity by quoting 6~ , i.e. the shift in~ necessary to change the scale 

by a factor 2. It is by now well established (J-G,iO,ll} that, contrary 

to early optimism (l,?,a,g), ~p differs substantially from the values pre-

dieted by two loop perturbation theory both in SU(2) and SU(3). There is 

a tendency to approach these values around (3= 6.6 in SU(3). The question 

remains whether this deviation from asymptotic scaling is uniform, i.e. 

whether scaling of quantities at small and at large distances (and also 

of different nature) can be described by the same ~f3 . If not, the relation 

of finite p lattice studies to continuum physics is obscure. 

For such scaling tests, the string tension turns out to be an imperfect 

candidate, simply because it is rather small in our region of j3 . The 

necessary subtraction of nonleading terms of the potential at large A intra-

duces severe systematic errors. On the other hand, scaling of Creutz ratios 

at finite lattice distances suffers from sizable finite "a" distortions (5) 

(a= lattice unit). It may be possible to remove these distortions by forming 

linear combinations of Creutz ratios and their generalizations <5•19 ). This, 

however, makes it difficult, (as a consequence of regularities of these 

scaling violations}, to study scaling of objects of essentially different 

sizes, given the presently restricted region of available extensions. There-

fore we apply a correction for finite "a" effects multiplicatively to indi-

vidual ratios. We then find a significant dependence of A(3 on the object 
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size in the sense that small ratios change scale closer in accordance with 

two loop perturbation theory than large ones. 

2. Monte Carlo Summary 

In table I we summarize the statistics collected for various j3 and lattice 

sizes. The action is the standard one plaquette action, boundary conditions 

are periodic. For p = 2. 4 and ~ = 2. 5 the icosahedral subgroup was used 

with Metropolis updating. One fourth of all Wilson loops was calculated 

after each sweep. At p = 2.6 2000 iterations were performed with the same 

technique, then the configuration was converted to the continuous group 

(truncated to 16 bit accuracy) and updated further with the heatbath 

algorithm. The configuration had to be stored on disc and processed in 

sequence of timeslices. This might generate certain regularities when passing 

through the lattice during updating. In order to reduce possible correlations, 

the lattice was turned after every 12 sweeps. Within the timeslices, a 

three-dimensional chessboard sequence was followed to update links. After 

60 sweeps all Wilson loops in planes orthogonal to the current time direction 

were measured with the help of the multihit method (12 ) 

The errors of the Wilson loops, which are listed in table II, are based 

on the bin sizes given in table I. For p = 2.6 it turned out that when each 

measurement was considered as being indePendent, only the errors of the 

smallest loops decreased. A comparison with a4 data from ref. (lJ) with 

our 124 data indicates moderate finite size effects atp= 2.4, 
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but none between 124 and 164 for Creutz ratios of size 4x4 at the level 

of 2 %. This can be seen in table J.II, where Creutz ratios are given, with 

errors derived from averaging Creutz ratios. The ratios are in good agreement 

with those of ref. (3), and they show little evidence for convergence as 

function of increasing size, especially at~~ 2.6. This was observed at 

first in (3) , and it is now established up to size 6x6 beyond any doubt, 

and up to 7x7 with 90% confidence. 

At p = 2.6 we find, that large Wilson loops from the first 2000 sweeps are 

systematically lower than those from the rest. This leads to a 2 standard 

deviation effect in Creutz ratios with size ;;::: 5 and to even larger differences 

for the ratios VT(R) considered below. Although this trend is not fully 

significant by itself, we consider it as real as it shows up also in other 

runs. Therefore the results both for the full sample and for the sweeps 

after the first 2000 are quoted separately in tables II andiV. 

3. The qQ-Potential 

We now proceed to analyze the Wilson loop expectation values W(R,T) with 

respect to the static qQ-potential, concentrating on (3 = 2.6. In tables 

IVd and IVe the logarithms of ratios are given which converge to V(R) for 

T-.. oo 

VT(R) - ln W(R,T)/W(R,T-1). 

Clearly a limit is not reached within errors for T ~ 8 and R ~ 4. We 

extrapolate to T-+ '=by the ansatz (i4) 

(1) 

- 6 c 

AI 
W(R.,T) z: c~ ( P ) e-x p (- .>c~ ( R) T) . (2) 

-·4 
The exponentsA

0
(R) are the eigenvalues of the transfer matrix {lS) with 

tt 1 (R) = V{R). The smallness of our errors just allows for a fit with N=3, 

including all T~ 8. The fit favours the largest eigenvalue ~3 (R) to be 

independent of R. This can be understood by assuming that for very asymmetric 

~I(R, T) the variation with respect t'o the length of the smaller side is given 

only by short range correlations among links on the larger side. In table V 

the values )...n(R) are shown. The analysis includes the first 2000 itera-

tions with half statistical weight. The errors quoted in table V were obtained 

by subdividing the sample into 6 subsets. They agree within 20% with those 

obtained if we leave ~3 (R) free and vary ~1 (R) such that the fit misses 

V8 (R) by 1 s.d. 

It is impossible to assign systematic downward errors to V(R), since we 

never can exclude contributions from an eigenvalue ~n(R) close to ~1 (R) 

which would allow to lower :l 1 (R) and c1 (R). The upward systematical errors 

are not independent of the statistical ones. The positivity of the c
0

(R) 

requires that the differences between successive VT(R) decrease at most 

exponentially. This does not allow to extrapolate to values V(R) higher 

than those given in table V while reproducing the VT(R). 

Before turning to an interpretation of V(R), a correction for finite lattice 

spacing should be applied. The propagator, for infinite volume, departs 
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from the Coulomb form 1/R by a few percent at small R: 

LIL(R) 
" J ti3fz 

7f --
(zrr)' 

-rr 

(h;j ~' R, 

~ s;_._,z. It -' 
;_ ;< 1, 3 -<. 

{ 

1. 010 

; ( 1 + 

R = <~ 

1 
lfR.'J. .... -), 'R. )' 2.. 

Since all fits to V(R) will lead to a short range Coulomb contribution 

of the form- (0.20 ~ 0.02)/R, we add 

11 V {R) o.2. ( 6.JP.) _ 4/R) 

(3) 

(4) 

to obtain a potential VC(R), which is presumably closer to the continuum 

potential than V(R). This potential is listed in the third column of table V. 

The potential VC(R) is sufficiently accurate to exclude the standard Coulomb 

plus linear approximation 

V (R) 
GL-

- "' !R .. c .. k'R. (5) 

as a good interpolation. In fig. 1 we show the difference between this ansatz 

and VC(A), where e< = 0.201! 0.003 and K = 0.0213:!: 0.0003. Better fits 

are obtained after inclusion of a logarithmic correction to the Coulomb 

term, which corresponds to a coupling constant increasing with A: 

VL (R) =- 0( (<f:r.t...1<)/R + C+ t.<K 

This ansatz leads to a noticably smaller string tension, namely K = 0.0164 

± 0.0003 with o<= 0.254! 0.003 and (= 0 3. The increased value of o< is 

due to the fact, that the inclusion of the logarithmic term decreases the 

force for small A. 

(6) 
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The interpolation VGM(R) of the form (5), obtained in ref. (3) with K = 

0.0287, is also included in fig. 1 and is seen to be in strong disagree~ 

ment with Vc(R) for R>5. Obviously the string tension K is considerably 

smaller than previous estimates. 

The interpretation of V {R) by a fluctuating string (iS) suggests to use 
c 

the ansatz 

1/s ('R.) • - rr /•2- 1< • C • K R 

only for R~R0 ·with R
0 

not too small. We obtain 

K = { 
0.0156 + 

0.0145 ! 

0.0015 

0.0019 

Ro 

Ro 

4 

5 

The fit, however, is not very good, and for ~ free one obtains 

(7) 

(8) 

ex= 0.45 :!: 0.07 instead of 1ij12. \<Je observe that the fluctuating string 

picture has little phenomenological support at these distances. Accepting 

n = 0.12/a and R= 0.42 GeV we have a= 0.06 Fermi at /3= 2.6. Now <P> 
~ ' 

the transverse momentum of hadrons generated by a breaking of the string 

is of the order of 1/ S , where Sis the thickness of the string. From 

<P.;> = 0.4 GeV we obtainS,... 0,5 Fermi, i.e. for A = 8 the string would 

be as long as thick. Therefore the nonleading expansion terms of V(A) for 

A_. OQ are unknown, leading to considerable uncertainty inK. It may be, 

however, that the inclusion of fermions changes the scale in such a way 

that our arguments no longer apply. 

The potential difference Vc(2) - Vc(1) is already quite close to the two­

loop, renormalization group improved result for the force, 
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V '(RJ •- c,,. (~rrR'{f3. 1.,_ (RA"r'• (3./(3. &-. &-. (RA .r·} (9) 

with CZR. 3/ .. , (30 = 2.2./3 (nq', (3, 43bj3(2/T')'f. (10) 

The scale parameter JlR is related to the standard lattice scale parameter 

A b (17) 
L y 

.A, 20.78 A.~ ' (11) 

where 
A" 0. 

_, 
( ')·(J,/•(3.' 

(3, ~ e.<p (- 4(2. (3. ~.) (12) 

In order to suppress the singularity of (9) for RA~= 1, we have substi­

tuted 'RA.R:- R.Ar/(tf+ I<: A"'). With this modification we show the integrated 

form of (9) in fig. 1 as the curve V8(R), normalized to Vc(R) at R = 1. 

When the difference between this curve and Vc(R) is interpreted as being 

due to an almost linear pie~~e in Vc{R) for R~ 4, we obtain 

K 0.011! 0.0015. (13) 

Finally in the last column of table V the one parameter potential v
8

T(R) 

of 8uchmUller and Tye <
18 ) is listed, with K optimized to K = 0.008. This 

small value should not be taken seriously, since v8T(R) fails to describe 

Vc(R) quantitatively, as it is apparent in fig. 1. The deviations may be 

understood qualitatively by the large Jl parameter characteristic for the 

8T-potential. 

Although it is remarkable, how close the lattice potential is to reasonable 

phenomenological potentials, the importance of this should not be over-

estimated. In the next section we present e~idence that the potential does 

not scale, and therefore the potential for very large (3 may have a form 

different from the present one. 
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4. Scaling 

The improved accuracy of Creutz ratios, as compared to ref. (J) will allow 

more precise statements about deviations from "asymptotic scaling", which 

means e.g. an (3 -dependence of 1-< /A~ . \~e furthermore are in the position 

to test scaling itself, although the systematic uncertainties due to finite 

~a"effects are a serious problem. Previously (J) we attempted to test scaling 

of the potential in the following way: If V1( ~.R) are interpolating functions 

to V{(3 ,R) at two different (3, we searched for a J
12 

such that 

t'V_'( }) 
j,f'}. j_ (31 I 'K. A'l 

' VI ((3,, R) (14) 

\~ith the new data this test works qualitatively for (3, = 2.6 and (3, = 

2.5, if we use VCL(R) as interpolating function. There are, however, 

discrepancies in the order of 5 + 10% between both sides of (14), and we 

obtain a smaller J 12 ~1/hen restricting the fit to R ~ 3 as when we take 

R? 1. Although this is, we believe, significant evidence for scale breaking, 

we shall not elaborate on it, since the interpolation of VC{R) by VCL(A) 

is not good enough, and furthermore the corrections due to lattice artifacts 

are quite complicated here. We therefore turn to the ratio test for scale 

changes by a factor 2, using Wilson loops at f= 2.6 and, for comparison, 

loops interpolated between those at p• 2.3, 2.35 and 2.4. 

The general Creutz ratios ';(U) with l,. f 2. . . . e g J 

X(e) ·-tv.. [w(e,,f,)lv'(f,,E,)j>J(e,,e,)W(e,,f,)] (15) 

and 11 + 12 + 13 + 14 15 + 16 + 17 + 18 
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do not scale in perturbation theory {5) for finite i . The pattern of the 

scaling violations can be, at least for elongated loops (e
1
>E

2 
etc.), 

read off from the tree level potential eq. (3). For the force at R~3 one 

obtains a nonscaling factor 1 + 3/4 R2 with respect to the scaling 1/R 

potential, which leads to a "positive" violation: An elongated ratio corresponding 

to a potential difference between R and R-1 will, for R > 2, be larger than 

the ratio of size 2R. On the contrary, between R = 1 and R = 2 the violation 

is negative due to the irregular behaviour of the propagator at R = 1. This 

pattern of scaling violation holds also for square ratios and survives 

in one loop approximation, as an analysis of the results of ref. (19} shows. 

In the'"improved ratio method" one linearly combines, on the one loop level, 

ratios with positive coefficients (5) 

'X(e,f>) 2. 
i .. -1/3 

c,,e, XUr,(J). (16) 

One demands that scaling holds for perturbatively calculated ratios X r(l, (3) 

upto0(g4): 

with 

xp ce, (lJ- 'Xp(le,p.ll.f3p) 

A J!!>) = .z J\ ( (3 , /J. {->,) . 

(17) 

(18) 

The hope is that the same linear combinations of ;( ( 1
1 

(J) , determined 

by Monte Carlo simulation, are free of lattice artifacts. Now the general 

argument given above tells us that in this method we have to combine such 

ratios, where at least one side has length one, with larger ratios. Thus 

possible scaling violations will be washed out. Presently only sizes up 

to 3)(4 (6 x 8 on the large lattice) are available with good accuracy, which 

leaves, after superposition of various sizes, little room to look for a 

size dependence of Ll.(J . 
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In order to overcome this, we shall make a somewhat stronger assumption. 

Let us define Cp(U-
1
(3) by 

cf (e,fJ) ;:v e, (.l) ll'r(l,-:, (3 + L>f3r) (19) 

at the one loop level (in tree approximation one has to take A(Jp= 0). 

\<Je now assume that the Monte Carlo ratios obey the same scaling relations, 

i.e. that the nonperturbative contributions to ratios violate scaling (due 

to lattice artifacts) by the same factor as the perturbative )(F do. This 

may be called multiplicative improvement. The assumption is as ad hoc as 

the linear superposition procedure is. Of course, it may happen that higher 

order perturbative contributions show no scaling violations at all. In this 

case eq. (17) still holds, whereas our Cp(~~Jdeviate from 1 stronger than 

the correct ones. We shall discuss the consequence of such this possibility 

below. 

In the following we shall test scaling under the hypothesis that multi 

plicative improvement is allowed. Then we can test scaling for individual 

1 without the need to combine small 1 and large 1 ratios. It is, however, 

still somewhat arbitrary how to define the X~(R. 1 (J) , given (19) the 

W(i,j) up to O(g4). Here we first convert the expansion for \ol(i,j) into 

one for ln W(i,j) and then "Pad8ize" the 'X,.,(€1(3} according to 

A (e,(3J = f'X'''UJ + fX1''c~J • 0(•') 
p p p d 

~ fi''ce) 1(4- fxt' 1(eJ/'X'''ce;) 
P /' f r 

(20) 

In this form the C /" ( 2
1 
t1) differ from the tree level c,(e, (3) in 

most cases by only few percent. 

Our procedure can be shmoJn a posteriori to work reasonably well by comparing 

scaling for ratios of similar small size. In table VI we list 6 (J for 
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ratios involving the smallest loops, where !1(3 is now defined by 

Cf'(e,f3A) 'i,(R.,H-L1(3) ;:rue,P, z<). (21) 

Here (3A = 2. 323 is the (3 -value related to (3 = 2. 6 by asymptotic scaling. 

The ratios at (3 = 2.6- 4(3 are derived from linear interpolations between 

our data at [3 = 2. 4 and those from ref. <
13

) at (3 = 2. 35. \~e note substantial 

improvement in the consistency of the resulting A.(J by using cr (•,(') at 

the one loop level as compared to the tree level or the uncorrected case. 

In column 3 of table VII we finally collect values of ~(3 (with errors) 

for square ratios and for such elongated ratios, which are not too different 

from potential differences *) Those ratios, which differ by increasing 

all lengths by one unit, are grouped together. The ratios themselves are 

listed in column 4, and in column 5 the quantities 

c I' {e' (JA ) X (e' (3 A) . They are related to the ')( (z e,(J'>·6) by 

"improved" asymptotic scaling, and they were gained by interpolation among 

the data of ref. (13
). We notice a clear tendency of 11(3 to decrease with 

increasing size of the ratios. This is significant, for the comparison of 

length 2 and length 3 square ratios, on the level of 7 s.d. and, between 

3 and 4 on the level of 3 s.d. For elongated ratios the deviations are also 

on the level of 3 s.d. 

Since the differences between /J.{J 's are fully significant for the square 

*) The ratios at (3 = 2. 6 include the contributions from the first 2000 

iterations with half weight. 
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ratios, where furthermore the differences between c (tree) and c (one 
p p 

loop) are very small (see last 2 columns of table VII), we have to inter-

pret these results. We notice, that the differences between X(1f
1
2,(,) and 

cp(t)X(e, f3A) are increasing with e within the various groups. For 

ratios with large loops this difference is about ~X= 0.042 ~ 0.003. Since 

.dA = 46V for elongated ratios, we see that .1 V is not far from the 

lower results for K obtained in the last section. A possible interpretation· 

of the observed nonscaling behaviour is therefore, that the ratios and the 

potential are a &uperposition of an asymptotically scaling and asymptotically 

free Coulomb term plus an approximately linear term, which does not scale 

asymptotically but decreases between~= 2.323 and f3= 2.6 faster than 

' AL by a factor close to 2. If scaling would hold both for the Coulomb term 

and for the linear term with a single p-function differing from the asym­

ptotic one, the differences ~x ought to be larger for small 1 than for 

large l. This is so because via the decreasing coupling constant also the 

Coulomb term will contribute to AX, but dominantly at small l. 1-Je observe 

the opposite. If insufficient corrections for finite "a" effects are to 

be blamed for this effect, the small ratios are the most suspicious ones. 

In order to make the differences ~X consistent with scaling, the cp would 

have to be increased by about 10% for the smallest loops, which is against 

the trend of the changes from cp(tree) to cp{one loop). If higher order 

contributions have smaller scaling violations than those up to O(g4), the 

corresponding c would be closer to 1, which would increase the scaling 
p 

violations for square ratios. 

Finall¥ we note that a return to asymptotic scaling for objects of size 8 

or less is expected for (.3> 2.8, since if the linear ter~ continues to de-

crease rapidly,_ it will then be smaller than the Coulomb term. 
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5. Discussion 

If we can rely on the error estimates based on grouping the data at ~ = 2.6 

- J.Q -

This is twice as large as old estimates (l,?) and 50% higher than the value 

given in (3 ) 

into bins containing up to 500 sweeps, the statistical accura~y of the Tests for scaling require to correct ratios for finite "a" effects, which 

Monte Carlo data presented here is quite good. If on the other hand the is possible only in low order perturbation theory. If we perform the correc-

deviations observed for the first 2000 iterations are real, our total of tions multiplicatively, we find significantly different variation with f3 

8000 iterations (including the 2000 iterations with the icosahedral group) 

may be insufficient. Accepting the quoted errors we can conclude the follow-

ing: 

For A ~ 4 and T ~ 8 planar Wilson loops have not yet converged to the exponen-

tially decreasing form exp(-V(R)T), and our extrapolated values for V(R) 

are, strictly speaking, upper limits only for the correct potential. Since 

the fit with three exponentials works successfully, we can be optimistic 

and use V(R) as the real qq-potential (in SU(2) without quarks of course). 

From these potential values again an upper limit for the string tension 

can be obtained by forming potential differences. Doing so between R = 5 

and R = 7 gives 

K < 0.0245 :': 0.0016 (22) 

at~= 2.6. Since, however, the potential is not linear between R = 4 and 

A = 8, a subtraction of nonleading terms is necessary, yielding values 

K 
r 0.015 :': 0.0019 

l 0.011 :!: 0.0015. 

(23) 

The first value is due to the fluctuating string picture, the second one 

to the continuum two loop potential. Taking the average value of 

K = 0.013 ! 0.003, we obtain 

A = (0.027 + o.oo3) v;. . 
L 

(24) 

for ratios with small areas and with large areas. The pattern of scaling 

violations is such that ratios at large f3 pre too small (as compared to 

the value predicted by asymptotic scaling) by an amount which slightly 

increases with the area of the ratios and which is close to the lower value 

of K given in (23). A possible description of this is that the string tension 

vanishes relatively to the short distance 1\- parameter of the potential. 

Whether this observation is a consequence of not completely removed finite 

Ma'effects, cannot be answered convincingly until high statistical accuracy 

of loops with sizes 8 x 8 up to 10 x 10 becomes available. Then the dangerous 

loops with small lengths can be omitted from the scaling test. In the present 

situation we have to rely on the small loops, and we only can remark that 

for small loops perturbative improvement seems to work quantitatively well. 
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Figure Caption 

Figure 1: Lattice potential VC(R), compared to a) VCL(R), see eq. (5), 

b) VGM(r), see eq. (5) with the parameters of ref. (3), 

c) v8
(R), see eq. (9) and d) v8

T(R), see text and ref. (iB) 
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T A B L E I 

Statistics collected at various P and lattice sizes. 

p L Group lfo. of sweeps .......... 
aveeps discarded 

2.4 12 Ieos. 37 000 1000 1000 
16 Ieos. 6700 1600 100 

2.6 12 Ieos. 22 000 1000 1000 
24 Ieos. 3000 1000 160 

(several lattices in parallel) 
2.6 24 Cont. 8000 2000 (4.000) ... 

(2 000 with icosahedral sroup) 

TABLE II 

Expectation values of Wilson loopa (with statistical errors). 

Table 2a: P • 2.4. , L•12, icosahedral JrOup.BinninS: 1000 sweeps. 

·- 1 
2 3 • 6 6 7 

Tz1 0.62994.4. 0.4.24.9'72 0.2~11180 0.200160 0.187'151 0.094.822 0.066266 
0.000038 0.000068 0.000067 0.000070 0.000067 0.000060 0.000064. 

2 0.222318 0.128476 0.060802 0.080664 0.022&13 0.01386& 
0.000087 0.000091 0.000082 0.000068 0.0000&8 0.000048 

a o.06D068 o.o2ts61 o.014760 0.007458 0.003780 
0.000086 0.000071 0.0000&8 0.000044 0.000088 

4 

6 

0.013130 0.00&177 0.002786 0.001280 
0.000061 0.000041 0,000081 0.000021 

0. 003401 0. 001088 0. 0004.01 
0.000082 0.000027 0.000036 

Table .2a: {3- 2.4 , L-•18, icosahedral pup.B:innins: 100 sweeps. 

·- 1 
2 3 • 6 6 7 

T•l 0.621166 0.426018 0.2~11196 0.200239 0.187706 0.004864. 0.086271 
0.000084 0.000081 0.000074 0.000074 0.000070 0.000082 0.000064 

2 0.222417 0.128&80 0.060867 0.030712 0.022808 0.012841 
0.000098 0.000102 0.000083 0.000087 0.000061 0.000040 

8 

4 

6 

0.061100 0.021845 0.014747 0.007483 0.008783 
0.000017 0.000072 0.0000&0 0.000038 0.000038 

0.013002 0.006177 0.002713 0.001341 
0.000064 0.000088 0.000081 0.000021 

0.002613 0.001061 0.000410 
0.000021 0.000023 0.000017 
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TABLE III 

Creutz ratios x(B,f) with statistical errors. 

Table Sa: (i • 2.4, L • 12. 

·- 2 

1'=2 0.26431 
0.00018 

• 

8 0 .20GS1 0 .14D46 
0.00028 0.00048 

• 

4 0.19676 0.12880 0.1068 
0.00037 0.00063 0.0017 

6 

6 0.19161 0.1229 0.0988 0.0861 
0.00048 0.0010 0.0028 0.0093 

Table Sb: p = 2.4, L - 16. 

·- 2 • 
T•2 0.26402 

0.00023 

• 0.20964 0.16000 
0. 00080 0. 00066 

4 0.1968 0.1298 
0.0003 0.0007 

6 0.11H24 0.1282 
0.00066 0.0012 

• 

0.1070 
0.0020 

0.0980 
0.0034 

6 

0.082 
0.012 
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table Sc: P • 2.6, L • 12· 

•• 2 

T-2 0.21360 
0.00022 

• 

3 0.16035 0.11116 
0.00080 0.00087 

• 

4 C.1565S 0.0023 0.0707 
0.00087 0.0007 0.0012 

6 

6 0.16103 0.0866 0.0688 0.0478 
0.00048 0.0012 0.0018 0.0037 

Table 3d: /1 = 2.6, L = 24. 

R= 2 • • 6 

T•2 0.21876 
0.00016 

• 0.16954 0.11086 
0.00087 0.00064 

• 0 .16656 0. ()gS2 0.071l 
0.00032 0.0008 0.0011 

6 0.16188 0.0860 0.0662 0.0618 
0.00041 0.0011 0.0017 0.0020 

Table Sa: P • 2.6, L • 24 , first 2000 sweeps o•itted. 

·- 2 

'!•2 0 .187GO 
0.00012 

• 

3 0.14634 0.®068 
0.00016 O.IJ001G 

• 

4 0.13246 0.072GO 0.06347 
0. 00()16 0. 00024 0' 00084 

6 

6 0.12808 0.0666G 0.04628 0.08818 
0.00016 0.00024 0.00084 0.00060 

• 

6 0.12629 0.06409 0.04886 0.084G1 0.08168 
0.00018 0.00024 0.00038 0.00060 0.00086 

1 

7 0.12647 0.06806 0.04163 O.OS34G 0.02G1 0.0278 
0.00021 0.0002G 0.00048 0.00067 0.0011 0.0020 

• 

8 0.12616 0.06284 0.04078 0.08297 0.0267 0.0216 0.0204 
0.00024 0.00040 0.00067 O.OOOGO 0.0014 0.0021 0.0046 
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TABLE IV 

Ratios Vx(l) defined in eq. (1) with statistical errors. 

table 44: {J • 2.4, L • 12. 

,. • • • 6 • 7 

R=1 0.39361 0.87825 0.87461 0.37371 0.37344 0,37363 
0.00009 0.00010 0.00018 0.00016 0.00018 0.00024 

• 0.6471U 0.68806 0.67087 0.66622 0.68280 0.6881 
0.00026 0.00086 0.00047 0.00068 0.00002 0.0018 

• 0.86778 0.73768 0.6Di2 0.6881 0.6822 0.6848 
0.00051 0.00075 0.0010 0.0013 0.0029 0.0048 

• 1.06340 0.8888 0.8046 0.7880 0. 7817 0.780 
0.00086 0.0013 0.0023 0,0032 0.0063 0.012 

6 1.2450 O.OBG2 0.0033 0.872 0.881 0.920 

0.0012 0.0021 0.0042 0.010 0.010 0.045 

table 4b: (J • 2.4, L • 18. 

,_ • 3 • 6 • 7 

&•1 0.39365 0.87818 0.87453 0.87370 0.3784.3 0.37386 
0.00009 0.00012 0.00013 0.00017 0.00019 0,00025 

2 0.84.758 0.68788 0.67030 0.68494 0.68343 0.5858 
0.00081 0.00040 0,00041 0.00062 0.00091 0.0014 

• 0.86710 0.78767 0.70011 0.8881 0.8785 0.8796 
0 . 00069 0. 00087 0 . OOOQ6 0 . 00 15 0.0025 0.0061 

• 1.06287 0.8876 0.8071 0. 7841 0. 7G04 0.776 
Q.00088 0.0014 0.0023 0.0037 0.0077 0.014. 

6 1.2441 0.9908 0.0081 0.868 0.883 0.960 

0.0018 0.0020 0.0044 0.011 0.022 0.046 

-------------------------------------------------------
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Table 4c: P • 2.5, L • 12. .. • • • 6 • 7 

B.=l 0.85866 0.34047 0.33664 0.38664 0.83618 0.334GO 
0.00008 0.00012 0.00018 0.00016 0.00011 0.00022 

• 0.67024 0.6®8:il O.I\D207 0.48667 0.48401 0.48267 
0.00039 0.00041 0.00049 0.00060 0.00066 O.OOOQB 

• 0. 7396 0.6210 0.6844 0.6728 0.6664 0.6698 

0.0006 0.0007 0.0011 0.0017 0.0017 0.0024 

• 0.8961 0. 7138 0.6651 0.6861 0.62« 0.8223 

0.0010 0.0014 0.0022 0.0024 0.0084 0.006D 

6 1.0486 0.7~0 0.7189 0.6837 0.8861 0.674 

0.0014 0.0024 0.0038 0.0046 0.0060 0.016 

8 1.1050 0.8706 0.7778 0.7244 0.781 0.788 
0.0018 0.0038 0.0040 0.0068 0.020 0.027 

table 4d: (J • 2.5, L • 24. .. • 3 • 6 • 1 

B.ai 0.36852 0.34069 0.83840 0.83682 0.88533 0.88502 
0.00000 0.00015 0.00016 0.00011 0.00020 0.00015 

2 0.57028 0.61013 0.49205 0.48700 0.48488 0.48438 
0.00021 0.00060 0.00035 0.00048 0.00061 0.00062 

3 0.73982 0.82098 0.68521 0.57303 0.689'7 0.6884 
0.00048 0.00078 0.00078 0.00077 0.0016 0.0041 

4 0.89637 0.71U4 0.86828 0.8383 0.8280 0.8802 
0.00089 0.00146 0.00092 0.0022 0.0023 0.0065 

6 1.0488 0.8002 0.7216 0.8896 0.8761 0.8844 
0.0011 0.0018 0.0011 0.0043 0.0014 0.0098 
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table te: {1 .. 2.6, L .. 24, first 2000 iterations included, ----

,. 2 s 4 6 • 7 • 
B•1 0.82896 0.81800 0.8®20 0.80806 0.80774 0.80768 0.80766 

0.00006 0.00006 0.00008 0.00008 0.00000 0.00010 0.00011 

2 0.61682 0.45838 0.441110 0.43618 0.43304 0.43310 0.43284 
o.ooota o:ooous o.ooo11 o.ooous o.ooo11 o.ooo21 o.oooa1 

3 0.66220 0.64899 0.61438 0.60267 0.49794 0.49681 0.49662 
0. 00022 0. 00029 0. 00032 0. 00032 0. 00034 0. 00038 0. 00044 

4 0.79460 0.62178 0.6671116 0.64877 0.64169 0.63798 0.63678 
0.00082 0.0004.4 0.00068 0.00064 0.00068 0.00062 0.00067 

6 0.92287 0.68822 0.81416 0.6871 0.6768 0.6718 0.6704 
0.00042 0.00069 0.00074 0.0000 0.0009 0.0000 0.0011 

6 1.04887 0.76222 0.66780 0.6223 0.8082 0.6010 0.6970 
0.00064 0.00076 0.00092 0.0012 0.0014 0.0012 0.0017 

7 1.17429 0.91643 0.6996 0.6662 0.6373 0.6286 0.62:16 
0.00069 0.00088 0.0012 0.0016 0.0016 0.0021 0.0027 

8 1.29947 0.8782 0.7406 0,6898 0.6648 0.6581 0.6411 
0.00088 0.0011 0.0014 0.0018 0.0022 0.0080 0.0049 

Table 4f: P • 2.6, L • 24, first 2000 iterations excluded . 

r- 2 • • • • 7 • 
B.=-1 0.32904 0.81306 0.80927 0.30808 0.30769 0.30767 0.30768 

0.00006 0,00008 0.00009 0.00009 0.00010 0.00011 0.00012 

2 0.61694 0.46888 0.44173 0.48616 0.48808 0.43318 0.48288 
o.00016 0.00021 0.00021 o.ooo19 o.ooo:u o.ooo26 o.ooo26 

a o.66227 0.64906 0.61462 o.&0274 0.4111804 0.49616 o.49668 
0 .0002111 0.00087 0 .0004.1 0 ,00089 0.00040 0.00044 0 .00066 

4 0.7111473 0.62194 0.66806 0.64898 0.64187 0.63774 0.63686 
0.00042 0.00067 0.00068 0.00064 0.00061 0.00071 0.00081 

6 0.92281 0.68861 0.61430 0,68710 0.67621 0.6711 0.6692 
0.00064 0.00076 0.00090 0,0008111 0.00002 0.0011 0.0018 

6 1.04910 0.76268 0.8676 0.621111 0.6078 0.8001 0.6967 
0.00070 0.00098 0.0011 0.0012 0.0014 0.0016 0.0020 

1 1.1746 0,8166 0,8902 0.6668 0.6366 0.6272 0.6180 
0.0011 0.0012 0.0012 0.0014 0.0019 0.0022 0.0026 

8 1.2997 0.8784 0.739111 0.6882 0.663'1 0,6484 0.6366 
0.0013 0.0014 0.0014 0.0018 0.0081 0.0024 0.0049 
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TABLE V 

Eisenvalues A; (B.), lattice potentials VOl) and fits to V(B). 
Va(B.) =lattice potential corrected for finite a effecta. 
VodB) • fit to Yo(B) of the for~~ -clljR + 0 + K•R. 
VB(B) • two loop contiml1111 potential with A--20. 78 AL. 
VsT(B.) ""one parueter potential of ref.(UlJwith K .. 0.008. 
{1 • 2.6, first :iiOOO iterations included with ha.lf weisht. 

• >,(R) >,(R) Vc(R) VcL(R) Va(R) 

1 0.30767(1) 1.43(4) 0.3217 0.3287 0.3287 
2 0.43270(2) 1.88(2) 0.4432 0.4482 0.4363 

• 0.4963 (6) 1.44(2) 0.4079 0.411170 0.4809 
4 0.6869 (7) 1.40(2) 0.686111 0.686111 0.6073 
6 0.6684(10) 1.42(3) 0.6688 0.6672 0.6262 

• 0.6060(16) 1.37(6) 0.611162 0.6061 0.6884 
7 0.6174(28) 1.31 (7) 0.6176 0.6211 0.6488 

• 0.6308(66) L26(0) 0.6309 0.646111 0.6674 

A,(R) • 2.64(16) 

TABLE VI 

Ratio test tor saall loops at P • 2.6, 
Unillproved ratios (Cp-1) , tree level i•proved (CP,Ir...,) 
and one loop level bproved ratios (CP,Iaap). 

ap 
------------------------------

It -l .. lo -ls Cp•1 Cp = GP,tru Cp = GP,Iaop 
2211 2121 0.2627 0.2889 0.2413(14) 
22 31 '0.2910 0.2646 0.2400(16) 
2221 4i11 0.8230 0.2821 0.2480(16) 
2222 4121 0.2918 0.2672 0.2428(16) 
8122 4121 0.2927 0.2698 0.2448(14) 
3211 2221 0.1931 0.1976 0.2481(16) 

----------------------------------------------

VsT(R) 

0.324 
0.456 
0.614 
0.651 
0.679 
0.601 
0.620 
0.687 
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TABLE VII 

Scaltns test for t.proved ratios at p • ~.8, L • 24. 
The nuabera l1 -ls are defined in eq. (16) .AP in eq. (21) 
~~difference of a~aa of nu.erator and denoainator of ratio. 
Hu..berl in second line are errors, 
Pirat 2000 ituations included with bal1 weiJht. 

lt -l,. l,;.-ls .6.A AfJ x(2l) Op • x(l) OP,tm Cp,faop 

2 2 1 1 2 1 2 1 1 0.2418 0.2807 0.8149 1.0~7 1.0431 
0.0016 0.00~ 

sa 2 2 s 2 a 2 1 o.:ua2 o.aoo 0.1742 o.s859 0.8766 
0.0084 0.0017 

4. 4 3 3 4 3 4 3 1 0.1021 0.0037 0.1860 0.11128 0.0180 
0.0090 0.0048 

8 2 1 1 2 3 2 1 1 0.2481 0.1008 0.2®2 0.0864 0.8621 
0.0018 0.0008 

4 3 2 2 3 3 3 2 1 0.20Qe 0.1071 0.1404 0.0638 0.0136 
0.0062 0.0028 

8 2 2 1 8 1 2 2 1 0.3270 0.2208 0.2636 1.0149 0.9766 
0.0016 0.0008 

4 3 8 2 4 2 8 8 1 0.2148 0.1281 0.1813 O.Sg58 0.8946 
0.0060 0.0071 

3 3 1 1 8 2 2 1 2 0.2366 0.3303 0.8800 0.9471 0.8660 
0.0022 0.0022 

4 4 2 2 4 8 8 2 2 0.2012 0.2008 0.2888 0.9882 0.9144 
0.0064 0.0068 

4 2 2 1 a 2 a 1 1 o.21t¥.1 o.2043 o.a.uo 1.0608 1.0038 
o.oou~ o.oou 

4 2 a 1 4 1 8 2 1 0.2224 o.2084 0.2464 1.0867 o.9974 
0.0018 0.0010 
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