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Abstract

Wilson loops in SU{2) lattice gauge theory without fermicns are
determined on lattices of size 124, 16 and 24% at ﬁ =2.4, 25

and 2.6. At ﬁ = 2.6 the static quark-antiquark potential is extracted
for distances up to 8 lattice units. A string tension smaller by a
factor 2 than in previous investigations is found. Deviations

from asymptotic scaling for multiplicatively improved Creutz ratios are

certain, and their magnitude depends on the geometrical size of the ratios.

This implies deviations from scaling.
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1. Introduction

Although Monte Carlo measurements of plansr Wilsen loops in pure lattice
gauge theory are a straightforward procedure, more effort may still be
worthwhile. Especially to find the magnitude of nonperturbative effects,
above all of the string tension, requires high precision in the region of

small coupling constants g2. The same is true for the scaling properties

of the static qg-potential (or, more generally, of Creutz ratios (1)).

These
give, as we believe, presently'the most accurate information on how close
we are to the continuum 1imit. We therefore present an investigation of
this potential on large lattices with a few thousand Monte Carlo iterations
per value of /3: 4/92 . Large spatial extensions are, as it is well known,
needed tad avoid finite size effects for Wilson loops of large extension,
which we need to determine the potential reliably at 1argerdistances.
Furthermore we have to avoid to cross the finite temperature deconfining

phase transition 2

, which occurs at a fixed lattice size for increasing
We shall present evidence that finite sizé'effects are very small at g =
2.4 for lattice sizes L3212, at least for objects {Wilson loops, Creutz
ratios etc.) of size 4 or less, Since a shift from g= 2.4 to 8= 2.6
corresponds (as wé shall see) to a change in scale by a factor 2, it is
save to use L = 24 at 2= 2.6 for objects of size 8 or less. On the other
hand, there are good indications that at ﬁ: 2.4 there is some suppression
of Creutz ratios of length 23 on a 84—1attice. Therefore our choice of

L is necessary for a determination of the potential. We alsc believe that

meaningful scaling tests reguire large lattices, since it is not excluded
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that there exist several dimensionful quantities which scale differently.

It has become customary to describe the scaling properties of a physical
quantity by gquoting A[S , i.e. the shift in /;‘ necessary to change the scale

(3-6,10,11)

by a factor 2. It is by now well established that, contrary

(1'7‘8'9), A3 differs substantially from the values pre-

to early optimism
dicted by two loop perturbation theory both in SU(2) and SU(3). There is

a tendency to approach these values around &= 6.6 in SU(3}. The guestion
remains whether this deviation from asymptotic scaling is uniform, i.e.
whether scaling of guantities at small and at large distances (and also

of different nature) can be described by the same £3f3. If not, the relation

of finite (3 lattice studies to continuum physics is abscure.

For such scaling tests, the string tension turns out to be an imperfect
candidate, simply because it is rather small in our region of /3 . The
necessary subtraction of nonleading terms of the potential at large R intro-
duces severe systematic errors. On the other hand, scaling of Creutz ratios
at finite lattice distances suffers from sizable finite “a" distortions &)
{a = lattice unit). It may be possible to remove these distortions by forming

(5,19} Tnis

linear combinations of Creutz ratios and their generalizations
however, makes it difficult, {as a consequence of regularities of these
scaling violations}, to study scaling of objects of essentially different
sizes, given the presently restricted region of available extensions. There-

fore we apply a correction for finite "a" effects multiplicatively to indi-

vidual raties. We then find a significant dependence of Z&F on the object

size in the sense that small ratios change scele closer in accordance with

two loop perturbation theory than large ones.

2. Monte Carlo Summary

In table I we summarize the statistics collected for various /3 and lattice
sizes. The action is the standard one plaguette actiocn, boundary conditions
are periodic. For !B= 2.4 and /3 = 2.5 the icosahedral subgroup was used

with Metropolis updating. One fourth of all Wilson loops was calculated

after each sweep. At p = 2,6 2000 iterations were performed with the same
technique, then the configuration was converted to the continuous group
(truncated to 16 bit accuracy) and updated further with the heatbath
algorithm. The configuration had to be stored on disc and processed in
sequence of timeslices. This might generate certain regularities when passing
through the lattice during updating. In order to reduce possible correlations,
the lattice was turned after every 12 sweeps. Within the timeslices, a
three-dimensional chessboard sequence was followed to update links. After

60 sweeps all Wilson loops in planes orthogonal to the current time direction

were measured with the help of the multihit method (12).

The ‘errors of the Wilson loops, which are listed in table II, are based
on the bin sizes given in table I. For B = 2.6 it turned out that when each
measurement was considered as being independent, only the errors of the

smallest loops decreased, A comparison with 84 data from ref. {13 with

our 124 data indicates moderate finite size effects at 8= 2.4,
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but none between 124 and 164 for Creuvtz ratios of size 4x4 at the level
of 2 %. This can be seen in table III, where Creutz ratios are given, with
errors derived from averaging Creutz ratios. The ratios are in gocd agreement

(3)

with those of ref. , and they show little evidence for convergence as
function of increasing size, especially at 3= 2.6. This was chserved at
first in ) , and it is now established up to size &x6 beyond any doubt,

and up to 7x7 with 90 % confidence.

At p = 2.6 we find, that large Wilson loops from the first 2000 sweeps are
systematically lower than those from the rest. This leads to a 2 standard
deviation effect in Creutz ratios with size z 5 and to even larger differences
for the ratios VI(H) considered below. Although this trend is not fully
significant by itself, we consider it as real as it shows up also in other
runs. Therefore the results both for the full sample and for the sweeps

after the.first 2000 are quoted separately in tables TII andIV.
3. The qg-Potential

We now proceed to analyze the Wilson loop expectation values W(R,T) with
respect to the static gg-potential, concentrating on f3 = 2.6. In tables
Ivd and IVe the logarithms of ratios are given which converge to V(R) for

T—» o=

VT(H) = - 1n W(R, T)/W(R,T-1). {1}

Clearly a limit is not reached within errors for T < 8 and R 2= 4. We

extrapolate to T - =0 by the ansatz (14)

- B -

N
W{(R,T) = };4 Gl R)exp (A (R}T ). 2

The exponents ln(H) are the eigenvalues of the transfer matrix (15) with
2.1(H) = V{R). The smallness of our errors just allcws for a fit with N=3,
incluging all T< 8, The fit favours the largest eigenvalue )nB(H) ta be
independent of R. This can be understood by assuming that for very asymmetric
W(R,T) the varistion with respect to the length of the smaller side is given
only by short range correlations among links on the larger side. In table V
the values }Ln(R) are shown. The anglysis includes the first 2000 itera-

tions with half statistical weight. The errors quoted in table V were obtained
by subdividing the sample into 6 subsets. They agree within 20 % with those
obtained if we leave )ua(ﬂ) free and vary Jhl(ﬂ) such that the fit misses

VS(H) oy 1 s.d.

It is impossible to assign systematic downward errcrs to V(R), since we
never can exclude contributions from an eigenvalue )kn(R) close to )-1{R)
which would allow to lower 3—1(H) and ci(R). The upward systematical errors
are not indepencent of the statistical ones. The positivity of the cn(R)
requires that the‘differences between successive VT(R) decrease at most
exponentially. This does not allow to extrapolate to valuves V{R) higher

than those given in table V while reproducing the VT(H).

Before turning to an interpretation of V(R), a correction for finite lattice

spacing should be applied. The propagator, for infinite volume, departs



from the Coulomb form 1/R by a few percent at small R:

T 2R 1012 R=4d
a3k cod %,
A (R) - w/( Lt 4 -
27 o & R 1 . .
i @7 2 et L (e R 2

Since all fits to V(R) will lead to a short range Coulomb contribution

of the form - (0.20 ¥ 0.02)/R, we add

= ' 4
AV(R) -~ oc2(A (R)-4/R) (4)
to obtain & potential \IC(H), which is presumably closer to the continuum

potential than V(R). This potential is listed in the third eolumn of table V.

The potential VC(R) is sufficiently accurate to exclude the standard Coulomb
plus linear approximation

VCL_CR)‘; ~x /R o+ T o+ K R )
as a good interpolation. In fig. 1 we show the difference between this ansatz
and VC(R), where o = 0.201 ¥ £.003 and K = 0.0213 ¥ 0.0003. Better fits
are obtained after inclusion of a logarithmic correction to the Coulomb

term, which corresponds to a coupling constant increasing with R:
VL(R)=—0<(4+XE.A?)/R + C+ KR (6)

This ansatz leads to a noticably smaller string tension, namely K = 0.0164
*0.0003 with = 0.254 2 0.003 and y"= 0.3. The increased value of = is
due to the fact, that the inclusion of the logarithmic term decreases the

force for small R.

The interpolation VGM(R) of the form (B), obtained in ref, 3 with K =
0.0287, is also included in fig. 1 and is seen to be in strong disagree-
ment with VC(R) for R>5, Obviously the string tensicn K is considerably
smaller than previous estimates.

{186)

The interpretation of VC(R) by a fluctuating string suggests to use

the ansatz
(R} = - r/raR+ C+ KR o
only for Raﬂo'with RO not toc small. We obtain

io.msa tpoots R
K = 0

"
=Y

N (8)
0.0145 - 0.001% Ho

I
wa

The fit, however, is not very good, and for o free one obtains

o = 0.45 T 0.07 instead of 7/12. We observe that the fluctuating string
picture has 1little phenomenological support at these distances. Accepting
ﬁ: 0.12/a and V?: 0.42 GeV we have a = 0.06 Fermi at A= 2.6. Now <PL>,
the transverse momentum of hadrons generated by a breaking of the string

is of the order of 1/& , where Sis the thickness of the string. From

<Pl> = 0.4 GeV we chtain g'v 0.5 Fermi, i.e. for R = 8 the string would

be as long as thick. Therefore the nonleading expansiocn terms of V(R) for

R-w oo are unknown, leading to considerable uncertainty in K. It may be,
however, that the inclusion of fermions changes the scale in such a way

that our arguments no longer apply.

The potential difference Vc(2) - Vc(l) is already quite close to the two-

loop, renormalization group improved result for the force,
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V) = Con R b, 2 (R [, 0 8 (R00) ] )
with Con= 3/% , B, = 22/3(am)* f3, = 13¢ f3(am )" (10

The scale parameter AL, is related to the standard lattice scale parTameter

(17)
./LL by

A, =20.78 A, {11)
wherse :a T vy P /zﬁ" = 12

A;.'a' (ﬁog) e/xp(—”/-aﬂog J. (,)
In order to suppress the singularity of (9) for R;1L= 1, we have substi-
tuted RA - RJlR/(fH RA,). With this modification we show the integrated
form of (9) in fig. 1 as the curve VB{R), normalized to Vc(R) at R = 1.
When the difference between this curve and VC(H) is interpreted as being

due to an almost linear piece in VC(R) for R> 4, we obtain
K - 0.011 % 0.0015. (13)

Finally in the last column of table V the one parameter potentizl VBT(R)

of Buchmiller and Tye (18;

is listed, with K optimized to K = 0.00B. This
small value should not be taken seriously, since VBT(R) fails to describe
VC(R) quantitatively, as it is apparent in fig. 1. The deviations may be
understood qualitatively by the large /L parameter characteristic for the

BT-potential.

Although it is remarkable, how close the lattice potential is to reasonable
phenomenclogical potentials, the importance of this should not be over-
estimated. In the next section we present evidence that the potential does
not scale, and therefore the potential for very large p may have a form

different from the present one.
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4. Scaling

The improved accuracy of Crewstz ratios, as compared tc ref. (3), will allow
more precise statements about deviations from "asymptotic scaling", which
means €.g. an [-’hdependence of K/A:. . We furthermore are in the position
to test scaling itself, although the systematic uncertainties due to finite
"a"effects are a serious problem. Previously ) we attempted to test scaling

of the potential in the following way: If VI( {3,R} are interpolating functions

to V(p ,B) at two different ﬁ, we searched for a 3'-12 such that

}; V;(ﬁ% CRFE,) - VE’(,/":, R). (14)

With the new data this test works qualitatively for ﬁ‘ = 2.6 and ﬁ_l =
2.5, if we use VCL(R) as interpolating function. There are, however,
discrepancies in the order of 5 + 10 % between both sides of (14), and we
obtain a smaller }12 when restricting the fit to R 3 as when we take

]2 1. Although this is, we believe, significant evidence for scale breaking,
we shall not elaborate on it, since the iﬁterpolation of VC(FI) by VCL[H)

is not good encugh, and furthermore the corrections due to lattice artifacts
are guite complicated here. We therefore turn to the ratio test for scale
changes by a factéxr 2, using Wilson loops at [3: 2.6 and, for compariscn,

loops interpclated between thase at p’: 2.3, 2.35 and 2.4.

The general Creutz ratiocs 'Xfe) with f={2, ... eg}

ORE LW(e, 8, ) Wit 0,)/wWies, e )W (it 4 )] (15)

and 1, +1,+1 =

1 3 3+l4415+16+1?+18
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do not scale in perturbation theory 5 for finite €. The pattern of the

scaling violations can be, st least for elongated loops {€1> 32 etc.),

read off from the tree level potential eq. (3). For the feorce at 823 one

obtains a nonscaling factor 1 + 3/4 R2 with respect to the scaling 1/R

potential, which leads to a "positive" vieolation: An elongsted ratio corresponding
to a potential difference between R and R-1 will, for R>2, be larger than

the ratio of size 2R. On the contrary, between R = 1 and R = 2 the viglation

is negative due to the irregular behaviour of the propagator at Rr= 1. This
pattern of scaling violation holds also for square ratios and survives

(19

in one loop approximation, as an analysis of the results of ref. shows.

In the "improved ratioc method" ome linearly combines, on the one loap level,

ratios with positive coefficients (5) .

xX(ep) - gﬂ Coe, X8, ). (16)

4

One demands that scaling holds for perturbatively calculated ratios XP(Er@)

up to 0(94):

;‘YP (eF) - XP(zefﬁ*AFP) (17)
with A= 2 A (B+Ap,). (18)

The hope is fhat the same linear combinations of X(f, /3), determined
by Monte Carle simulation, are free of lattice artifacts. Now the general
argument given above tells us that in this method we have to combine such
ratios, where at least one side has length one, with larger ratios. Thus
possible scaling violations will be washed out. Presently only sizes up
to 3¥4 (6x8 on the large lattice) are available with good accuracy, which
leavgs, after superposition of various sizes, little rcom to look for a

size dependence of Af .
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In order to overcome this, we shall make a somewhat stronger assumption.

Let us define Cp(g.'ﬁ) by

CP (efp‘) Xp(efﬂ) = 2.P(‘zer ﬂ * Aﬂf) (19)
at the one loop level (in tree approximation one has ta take A/jP= [
We now assume that the Monte Carle ratios obey the same scaling relations,
i.e. that the nonperturbstive contributicns to ratics violate scaling (due
to lattice artifacts) by the same factor as the perturbative XP do. This
may be called multiplicative improvement. The assumption is as ad hoc as
the linear superpo-sition procedure is. Of course, it may happen that higher
order perturbative contributions show no scaling violations at all. In this
case eq. (17) still holds, whereés our CP(gfp‘)deviate from 1 stronger than
the correct ones. We shall discuss the conseguence of such this possibility

below.

Tn the following we shall test scaling under the hypothesis that multi
plicative impravement is allowed. Then we can test scaling for individual
1 without the need ta combine small 1 and large 1 ratios. It is, however,

(19) the

still somewhat arbitrary how to define the 'XP(.e“(}) , given
W(i,j) up to 0(94). Here we first convert the expansion for W(i,j) into

one for 1n W{i,j) and then "Padéize" tﬁe ?(P(E'ﬂ) according to
1,02 LRt p
N (e8) = §ATCe) + §°X(0)+ 0(g°)
2 o, (2) _ T (%) fa)
OV YN OV R OD)

In this form the CF{E,p) differ from the tree level CP(JI A) in

(20)

most cases by only few percent.

Our procedure can be shown a posteriori to work reasonablf{ well by comparing

scaling for ratios of similar smali size. In table VI we list C\p for
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ratios involving the smallest loops, where !_\ﬁ is now defined by

CP(erﬁA)q(Efz'éﬁAﬂ) = X(2€IF= 2.6)' (21)

Here pA = 2.323 is the ﬁ—value related to 3= 2.6 hy asymptotic scaling.
The ratios at p: 2.6 -A@ are derived from linear interpolations between
our data at fa’: 2.4 and those from ref. (23) at ﬂ: 2.35. We note substantial
improvement in the consistency of the resulting A by using < (Ef{s)at

the one loop level as compared to the tree level or the uncorrected case.

In column 3 of table VIT we finally collect values of A,ﬁ (with errors)

for square ratios and for such elongated ratios, which are not too different
from potential differences *). Those ratios, which differ by increasing
all lengths by one unit, are grouped together. The ratios themselves are
listed in column 4, and in column 5 the quantities

¢ P(elﬂh ) /T(’ﬁ,ﬁf\) . They are related to the X2 €’ﬂ=2.5) by
"improved" asymptotic scaling, and they were gained by interpolation among
the data of ref. (13). We notice a clear tendency of AB to decrease with
increasing size of the raties. This is significant, for the comparison ef
length 2 and length 3 square ratios, on the level of 7 s.d. and, between

3 and 4 on the level of 3 s.d. For elongated ratios the deviations are alse

on the level of 3 s.d.
Since the differences between Aﬂ 's are fully significant for the square

*
) The ratios atﬁ = 2.6 include the contributions from the first 2000

iterations with half weight.

~ 14 -

ratios, where furthermore the differences hetween cp (tree) and cp (one
loap) are very small (see last 2 columns of table VII), we have to inter-
pret these results. We notice, that the differences between X(lf’.e,g) and
CP(Z)X(QJ Ba ) are increasing with € within the various groups. For
ratios with large loops this difference is about AY= 0.042 ¥ 0.003. Since
A = 44V for elongated ratios, we see that AY is not far from the
lower results for K obtained in the last section. A possible interpretation'
of the observed nonscaling behaviour is therefore, that the ratios and the
potential are a superposition of an asymptotically scaling and asymptotically
free Coulomb term plus an approximately linear term, which does not scale
asymptotically but decreases between[S: 2.323 and ﬂ: 2.6 faster than

A: by a factor close to 2, If scaling would hold hoth for the Coulomb term
and for the linear term with a single /B—function differing from the asym-
ptotic one, the differences AX ought. to be larger for small 1 than for
large 1. This is so because via the decreasing coupling constant also the
Coulomb term will contribute to A )X , but dominantly at small 1. We observe
the opposite. If insufficient corrections for finite "a" effects are to

be blamed for this effect, the small ratios are the most suspicious ones.
In order to make the differences AY consistent with scaling, the g would
have to be increased by about 10% for the smallest loops, which is against -
the trend of the changes from cp(tree) to cp(une loop}. If higher order
contributions have smaller scaling violations than those up to {)(94), the
corresponding cp would be closer te 1, which would increase the scaling

vielations for sguare ratios.

Finally we note that a return to asymptotic scaling for objects of size 8
or less is expected for ﬁ) 2.8, since if the linear term continues to de-

crease rapidly, it will then be smaller than the Coulomb term.



- 15 -
5. DBiscussion

If we can rely on the error estimates based on grouping the data at @ = 2.6
into bins containing up to 500 sweeps, the statistical accuracy of the

Monmte Carlo data presented here is guite good. If on the other hand the
deviations observed for the first 2000 iteraticns are real, our total of
8000 iterations (including the 2000 iterations with the icesshedral group)
may be insufficient. Accepting the quoted errors we can conclude the follow-

ing:

For R34 and T4 8 planar Wilson loops have not yet converged to the exponen-
tially decreasing form exp(-V(R}T), and our extrapolated values for V(R)
are, strictly speaking, upper limits only for the correct potential. Since
the fit with three exponentials works successfully, we can be optimistic

and vse V{R) as the real qg-potential {in SU(2) without quarks of course).
From these potential values again an upper 1imit for the string tension

can be cobtained by forming potential differences. Doing so between R = 5

and R = 7 gives

K < 0.0245 ¥ 0.0016 {22)
at p = 2.6. Since, however, the potential is not linear between R =4 and
R = 8, a subtraction of nonleading terms is necessary, yielding values

0.015 ¥ 0.0019
K= (23)

+

6,011 - 0.0015.
The first value is due to the fluctuating string picture, the second one
to the continuum two loop potential, Taking the average value of

K = 0.013 ¥ 0.003, we obtain
/\1, = (0.027 Y 0.003) YK . (24)

- 1g -

This is twice as large as old estimates .7 and 50 % higher than the value
(3)

given in
Tests for scaling require to correct ratios for finite "a" effects, which

is pessible only in low order perturbation theory. If we perform the correc-
tions multiplicatively, we find significantly different variation with /3

for ratios with small areas and with large areas. The pattern of scaling
viclations is such that ratios at large /3 are too small (as compared to

the value predicted by asymptotic scaling) by an amount which slightly
increases with the area of the ratios and which is close to the lower value
of K given in (23). A possible describtion of this is that the string tension

vanishes relatively to the short distance /\ - parameter of the peotertial.

Whether this observation is a consequence of not completely removed finite

“a¥ effects, cannot be answered convincingly until high statistical accuracy

of loops with sizes 8 x 8 up to 10 x 10 becomes available. Then the dangerous
loops with small lengths can be omitted from the scaling test. In the present
situation we have to rely on the small loops, and we only can remark that

for small loops perturbative improvement seems to woTk guantitatively well.
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Figure Caption
Figure 1: Lattice potential VC(R), compared to a) VCL(H), see eq. {5),

b) VGM(r), see eq. (5) with the parameters of ref. ),

¢) Vg(R), see eq. (9) and d) Vg (R), see text and ref. (18)
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Statistics collected at various 2 and lattice sizes

g L Group No. of sweeps
oweeps digcarded
2.4 12 TIcos. 37 000 1000
16 Icos. 8 700 1600
2.6 123 Icos. 22 000 1000
24 TIcos. 3 000 1000

2.6 24 Cont.

binning
1000

100

1000

160

(saveral lattices in parallel)

8 000 2000 (4000)

480

{2 000 with icosahedral group)

Yable Za: § = 2.4 , L=12, icosahedral group.Bimming: 1000 sweeps.
Bt 2 a 4 3 6 7

T=1 0.620944 0.424072 0.291130 0.200169 0.137751 0.094822 0.065266
0.000033 0.000068 0,000067 0,000070 0.000067 0.000060 0.000054
2 0.222319 0.123476 0.069802 0.030664 0.023593 0012266
©0.000087 0.00000¢ 0.000082 0.000066 0.000068 O.000043
2 0.050058 0.029351 0.014760 0.007456 ©.005760
0.000086 0.000071 0.000053 0.000044 0000036
4 0.013130 0.006977 0.002785 0.001280
0.000050 0.000041 ©,000081 0.000021
5 ©0.002409 0.001036 0.000409
0.000082 0.000027 0.000026

.4 , L=16, icosahedral group Binning: 100 sweaps.

T=1 0.620965 0.

0.000034 9,
2 0.
0.
3
4
b

3

426018 0.291196
000081 0,0000T4

223417 0. 123680
000068 0.000102

Q.069100
0.000007

4

0
0

0
0

0
0

.200220 0,
000074 Q

.069867 0
.000083 0.

.029846 0.
.000072 0

.013092 0
000054 0

187796
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Creutz ratios y(R,T) with statistical errors.

Table 3a: § = 2.4, L = 12.

BE= 2 2 4

=2 0(.26431
0.00018

3 0.20081 0.14046
0.00026 0,00046

4 0.19576 0.12880 0.1063
0.00037 0.00083 0.0017

6 0.10151 0.1339% 0,0088
9.00042 0.0010 0.0628

0.0851
. 0003

Table 3b: § = 2.4, L = 16.

R= 2 3 4

=2 0.25402
¢.00022

2 0.20084 0.156000
Q.00030 0.00056

4 0.1068 0.1298 0.1070
0.0003 0.0007 0.0020

B 0.10124 0.1232 0.0960
0.00056 0.0012 0.0034

0.082
0.012

Table 8¢: § = 2.5, L = 13.

B= 2 8 4

=2 0.21389
0.00022

3 0.16935 0.111156
0.00030 ¢,00087

4 C.1B663 0.00323 0.0707
4.00037 0.0007 0©.0012

B 0.15103 0.0856 0©.0633
0.00048 0.0012 ©.0013

Table 3d4: f = 2.5, L = 24.

T=2 0.21876
0.00016

% 0,18054 0.11085
0.00037 0.00064

4 0.15665 0.0932 ¢.0711
0.00032 0.0008 0O.001%

5 0,15138 0.0860 0.0652
0.00041 0.0011 0.0017

0.0513
0.0029

B= 2 3 4
=2 0.18790
0.00012

3 0.14B34 0.09068
- 0.00018 0.00019

4 0.13246 0.07200 0.06347
0,00016 0.00024 0,00084

5 0,12808 0.06660 0.04623
0.00015 0.00024 0.00084

6 0.12829 0.06400 0.04336
-0.00018 0.00024 0.00038

7 0.12547 0.068306 0.04163
0.00021 0.00029 0.00048

g 0.12616 0_06384 . 040TE
0.00024 0.00040 Q.00067

3 L] 7 8

0.08818
9. 00050

0.08401 0.03168
0.00080 0.00088

0.08349 0.0201 0.0273
0.00087 0.0011 0.0020

0.03207 0.0267 0.0216 0.0204
0.00090 0.0014 ©.002%1 0.0046




Ratios Vr(R) defined in eq. (1} with statistical errors.
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TABLE IV

Table d4a: 7 = 2.4, L = 12,

T 2 3 4 b ] 7
R=1 0.30261 0.37825 0.37461 ©.37371 0.37344 0,373563
0.000090 0.00010 0.00018 0.00016 0.000i2 0.00024
3 0.647901 0.588060 0.57087 0.56522 0,.56280 0,5681
0.00026 ¢.00085 0.00047 ©0.00053 0.00002 0.0013
8 0.86773 0.73753 0.6092 0.6831 0.6822 0.6846
0.00053% 0.00075 0.0010 0.0013 0.0020 0.0048
4 1.06349 0.E663 0.8046 0.7869 O.7BIT 0.760
0,00085 0.0013 0.0023 0.0032 0.0063 0.013
. B 1.2450 0.98032 0.9033 0.873 0.881 0.829
0.0012 0.0021 0.0032 0.010 0.019 0.045
fable 4b; § =~ 2.4, L = 18.
1= 2 3 4 5 ¢ 7
B=1 0.39366 0.37813 0.37453 0,87370 0,37343 ¢, 37266
0.00009 0,00012 0.00013 0.00017 Q.00019 ¢.000256
2 0.64756 O,.58766 0.67030 0.66494 0.568343 0.5666
0.00081 0.00040 0. 0004t ©.00062 0.00081 0.0014
3 0.86710 0.78767 0.700i1 ¢.6881 0.6785 0.6705
0.00069 O.0008T 0.C00956 0.0016 0.00356 0.0081
4 1.06287 0.8875 0.8071 0.784f 0.7004 0.77E
0.00026 0.0014 ©0.0023 0.003T 00077 0.014
B 1.2441 0.9906 0.9031 0.8366 0.863 0.960
0.0013 0.0030 0.0044 0.911 0.022 0.045

24 -

Table 4¢: § = 2.5, L = 12.
I= 2 3 4 5 L} 7
R=1 0.86065 0.34047 0.32654 0.33564 0.83618 0.33400
0.00008 0,00012 0.00013 0.00015 ©.00017 0.00022
2 0.57024 0.60082 0.40207 0.48667 0.48401 0, 48267
0.00039 0.00041 ¢.00040 0.0008C 0.000856 O.00003
8 0.7h96 0.6310 0.5844 0.5728 0.5654 0.5508
0.0008 0.0007 0,0011 C.001T 0.0017 0.0024
4 0.8951 0.7132 0.6651 $.6361 0.6344 0.8223
0.0010 0.0014 0.0022 0.0024 0.0084 0.0069
5 1.0466 0.7990 0.7189 0.6837 0.6851 0.574
0.0014 ©.003¢4 0.0028 00,0048 0.0060 0.010
8 1.1959 ©0.8706 O.7778 0.7344 0.T761 0.738
0.0018 0.0038 {.0040 0.0068 0.020 0.037
Table 4d: # = 2.6, L = 24
= 2 3 4 & .1 7
B=1 0.35652 0.34050 0.33849 0.33582 0.33533 0.33502
0.00009 0.00015 0.00016 (.00011 0.00020 0.00015
2 0.57028 0.61013 0.49305 O.48700 0.43468 0.48436
0.00031 ©.00060 0.00035 ©.0004B 0.00041 0.0C063
8 0.73932 0.82008 0.58521 0.57303 0.66807 O.6634
0.00048 0.00072 0.00078 0.00077 0.0016 0.0041
4 0.89687 0.71414 0.86626 0.6388 ©0.6260 0.6302
0.00089 0.00145 0.00002 0.0022 0.0023 0.0065
B 1.0488 ©.8002 0.7215 0.6896 0.6751 0.6844
0.0011 ©.0016 0.001f ¢©.0043 0.0014

0.0006




Table 4e: 3 = 2,
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6, L = 24, firet 2000 iterations included, -—

T= 2 3 4 b ] T 8
R=1  0.52805 0.31300 0.30920 0.30806 0.30774 0.20768 0.30766
0,00005 0.00006 §.00008 0.00008 0.00000 0.00010 0.00011
2 0.51882 0.45838 0.44160 0.43613 0.43394 0.43310 0.43284 -
6.00013 0.00016 ©0.00017 0.00018 0.00017 0.00021 §.00021
3 0.66220 0.54899 0.51438 0.60267 0.49704 0.40631 0.40662
0.00022 0.00029 0.00032 0.00032 0.00034 0.00033 0.00044
4 0.79480 0.62178 0.5€7056 0.64877 0.54160 D.B3798 D.53678
0.00032 0.00044 9.00063 0.00054 0.00063 0.00082 O.00087
b 0.92267 0.68823 0.61415 0.6871 O0.BE788 0.5718 0.5704
0.00042 0.00069 0.00074 0.0009 ©0.00086 0.0000 0.0011
L] 1.04887 0.75222 0.65730 0.6223 0.80B2 0.6010 0.5979
0.00064 0.00076 0.00092 0.0012 0.0014 0.0012 0.0017
7 1.17426 0.81543 0.6606 0.6662 0.6373 0.6285 0.83356
©.00069 0.00088 0.0012 0.0015 0.0016 ©.0021 0.0027
8 1.20047 0.8782 0.7406 00,6808 0.6648 0.6531 0.6411
0.00082 0.0011 0,0014 0.0018 0.0022 0.008¢C 0.0049
Table 4f: § = 2.6, L = 24, firet 2000 iterations excluded.
1= 2 3 4 B 8 7 8
B=1 0.32904 0.813056 0.830927 0.80808 0.30769 0,30767 (.30763
0.00005 O,00008 0.00009 O.00009 0.00010 0,00011 ©.00013
‘2 0.51604 0.45838 0.44173 0.43616 0.43398 0.43318 0.43288
0.000156 0.00021 0.00021 0,00016 0.00021 ©.00035 0.00035
3 0.68327 0.54905 0.51462 0.50274 0.49804 0.49616 0.49568
0.00029 0.00037 0.00041 0,00039 0.00040 0.00044 0.00065
4 0.79473 0.62154 0.56808 0.54898 0.54187 0.53774 0.53636
0.00042 0.00057 0.00068 0.00084 0.00081 0.00071 0.00081
5 (,92281 0.68851 0.61430 0.58710 0.57621 0.56711 0.5692
&.00064 0.00076 0.00090 0.00089 0.00093 ¢.0011 0.0013
8 1.,04910 0.75268 0.8576 0.6219 0.6076 0.8001 0.5957
0.00070 0.00093 0.0011 0.00i2 0.0014 0.0015 0.0020
7 1.1746 ©,8156 00,6002 C.6553 0.6366 0.6272 0.6169
0.0011 ©0.0012 0.0012 ©.0014 0©.001% 0.0022 0.0026
8 1.2007 0.8784 0.7300 0.6882 0.6831 0,6484 0.6368
0.0013 0.0014 §.0014 ©.0018 0.06031 - 0.0024 0.0049
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Bigenvaluea A\ (R), lattice potentials V(B) and fits to V{(E).
Vo(B) = lattice potential corrected for finite a effects.
VoL (B) = £it to Vo (R) of the form -af/R + ¢ + K»R.
Vp{R) = twe loop contimmum potential with A=20.78 Agp.
Vpr(R) = one parameter potential of ref.(!|)with X = 0.008.
8 = 2.8, first 2000 iterations included with half weight.

B M(R) Ja(R) Vel(R) Ver(R) Va(R) Var(R)
1 0.30767(1) 1.43(4) 0.3217 0.3237 0.3237 0.3324
2 0.48270(2) 1.88(2) 0.4432 0.4482 0.4363 0.455
3 0.4953 (B) 1.44(3) 0.4979 0.4979 0.4809 0,514
4 0.5359 (7) 1.40(2) 0.5369 0.6369 0.BO73  0.551
5 0.56884(10) 1.42(3) 0.56883 0.6672 0.5262 0.579
[ 0.5050(16) 1.37(5) 0.6952 O.696f 0.5384 0.601
7 0.6174(28) 1.81(7) ©.8176 0.621% 0.5488 0.620
8 0.6308(66) 1.26(9) 0.8309 O.8459 O0.5674 0.637

da(R) = 2.64(15)

Ratio test for small loops at J = 2.8,
Unimproved ratios (Cp=1),trée level improved {Cp rs)
and one loop level improved ratioz {Gpiosp).

AR
-y =l ¢Cpm1 Cp = CPitrea ©P = Opjlsop
a1t 2121 0.2637 0.2339 0.2418(14)
22 31 0.2010  0.2B46  0.3408(1B)
2221 4111 0.83230 0.2821 0,2480(16)
2222 4121 0.2018 0.2672 0.2428 (1E)
8122 4131 9.2627 0.2508 0.2448(14)
3211 2231 0,1831 0.1975 0.2481(16)
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Scaling téat for improved rutlos at § = 2.8, L = 24,

The numbers {; — g are defined in eq. (15),A7 in eq.(31)

AA = difference of areas of numerator and denominator of rakio.
Numbers in second line are errors.

First 2000 iterations included with half weight.

A Vc(R)
07+

-4 g—lg AA AP x(3) Cpa+x(l) Crtree  Crioop

2211 23121 1 0.2413 0.2807 0.8149 1.0697 1.0431
0.0015 0.0009

3822 3432 1 0.2182 0.1400 0.1743 .0.8859 0.8765
0.0084 0,0017

4432 4343 1 0.1021 0.0937 0.1389 0.9128 0.9169
0.0090 0.0048

2311 2221 1 0.2481 0.1903 0.3002 0.9864 ©.8621
0.0018 ¢.0008

4332 3332 1 Q.2008 ¢.1071 0.1494 0.9536 0.9136
0. 0052 0.0018

3321 3122 1 0,3270 0.2203 0.3635 1.0149 0.9766
0.0016 0.0008

4382 4238 1 0.2148 0.1281 0.1612 0.8968 0.80486
0.0060 0.0027

3811 3221 2 0.2366 0.3303 0.3809 0.9471 0.8668
0.0022 0.0022

4422 4382 2 0.2012 0.2008 0.2863 0._9882 0.9144
0.0064 0.00568

42321 3231 1 0.2192 0.2043 0.2440 1.0608 1.0038
0.0019 0.0011

4231 4132 1 0.2234 0.2084 0.2454 1.0867 0.9974

¢.0018 0.

wio

3 Ve(R)

¥ Veu(R)-Ve(R)
04

VCL(R)'VC(R)A

1002

-001
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¥



