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The existence and interaction problem of A 4? in a 4-dimensional homo-
genuous and isotropic space-time is studied. The approach is based on a
variational technique. In this first work, and only for reasons of technical
and conceptual simplicity, a static metric is assumed. Within the limits of
our approach we find that existence and interaction are basically indepen-
dent of the constant space-curvature for a static space-time. The strength
of the interaction, however, has curvature-dependent bounds. In all cases
the only phase which hints at an interacting thecry is the one with a ne-
gative, but for large values of the UY cutoff logarithmically vamishing,
bare coupling constant,

I.  INTRODUCTION

Qur simplest renormalizable field theory in Minkowski space is A qbt
and yet surprisingly little is actually known about it. Even the most basic
questions about its existence (is itsspectrum bounded from below?) and, as-
suming a positive answer, about triviality and interaction (is its spectrum a
free field spectrum?) have not yet been answered in a precise way. The little
we know about them is, in a nutshell, the following: For A> 0 the theory is
very likely either nonexistent or otherwise trivial [1]; for A < 0 but vanishing
when the regulator is removed the theory has good chances of being bounded from
below and interacting {2,3]. It is furthermore asymptotically free [3,4,8]. 1t
s however precarious: only its renormalized version is bounded from below, but
not its regularized one [2]. For A< Q but finite when the UV cutoff is removed
the theory does not exist,

The setting in which we believe these results to be true is the following:
a 4-dimensional Minkowski space, a regulator of the UV divergences,/, a La-
grangian density

4 Z—f Y¢a.¢ - Z—f '@t - A ¢! (1.1)

and a flow of the bare parameters m and A as functions of A such that the re-
normalized Green's functions are finite when A ==, There is only one ingre-
dient in this framework which is necessarily incompatible with our present

. understanding of physics: the assumption of a flat Lorentzian space-time.

A field theory invalves energy densities and these imply, because of General
Relativity, a Riemannian space-time structure. Thus the first extension of

the standard setting for triviality studies is to consider A¢fin a given
Riemannian background space-time. Of course this will not be the last word
either. The background field will become a dynamic and eventually a quantum
field, but this is a long road to go, The first step is to consider a given
Riemannian background space-time. This is already such a broad generalization
that we will Timit ourselves in this first study to a homogeneous, isotropic
and static space-time. Although homogeneity and isotropy are generally accepted
large-scale features of our universe and a reasonable assumption for the study
of 4 ¢ﬂ the same is not true for time-independence. It is enough to recall that
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a static space-time requires a nonzero cosmological constant [ 6] and that
this is ruled out by the extremely low experimental value of the vacuum
energy density. Thus we will have to consider eventually a time-dependent
space-time. In this first study, however, only the static solution will be
considered, which, due to the existence of a global time-Tike Killing vec-
tor field, allows a natural definition of positive energy solutions to the
free field equations, and thus of the associated vacuum{ 7].

We will follow a variational technique first introduced into Quantum
Field Theory by Schiff [8} and further developed by Barnes and Ghandour {9].
It leads to an approximate effective potential and, under certain circum-
stances, to an upper bound of the energy density of the ground state. In this
last case, and if the upper bound implies that the theory is unbounded from
below, the result is rigorous, If not, it will only be approximate. The
method leads either to nonexistence or triviality for 4 >0 and to an inter-
acting precarious theory for 4 < 0 but vanishing when /- ma[Z]. [t has been
carefully studied by Stevenson [ 2], extended to include odd terms [10] and
applied at finite temperature[11]. We believe it to be a sensible approach to
the study of existence and interaction. It will provide our calculational
framework.

The next section reviews free field solutions of a scalar field in a
static Robertson-Walker metric, We will need them as trial fields of the
variational approach. Section III gives a parameter dependent bound to the
regularized energy density. Minimization, zero point energy subtraction and
renormalization lead in section IV to the socalled gaussian effective poten-
tial, which is then analyzed. The last section is devoted to comments and
conclusions.

iI. FREE FIELDS

Consider a static Robertson-Walker space-time described by the line ele-

ment (e, g. ref. 12)
dte i G_Z[d;rz ' /If)()(d{az K dgﬂz)]j (11.1)

where t= fﬂd is determined by the constant space-curvature K which is norma-
lized to +1,0 or -1 (closed, flat and open, respectively) according to

aa X 0& X W o
]‘(XJ o x 0< X< for K2} 0 (11.2)
sith X 0 X <2 -1,

Notice that a* carries the dimensions of the spatial Tine element. Introducing

e é— . az becomes a conformal scale factor. Using these adimensional coordi-
nates q,,x, & and ¢ (0,1,2,3) one obtains immediately the follewing nonzero

metrictensor components
o~ Moo~ 2 _ Y m}* 5, ﬁ/q/(rl’) sin 6)12
A S S aff*ij ;4 ;e

from which the following scalar curvature is obtained:

E_K_ (11.4)
ai

R =

The free scalar field Lagrangian density is (e. g. ref. 13)

(- Lol gl - (e fR)°) (11.9

. 2
-where g = d%tj?V € [Qw{747 Qﬂﬁu and ¥, is the covariant derivative.

Notice that [ 1is adimensional, as so are our coordinates, The equations of

motion are



/D ’ m“fﬁ}@ =0, (11.6)

where the covariant D'Alambertian is

-4 % y .
= - - 4 = /‘ (11'7)
0¢= (41 (4T g"29) = g" 0.

The free fields,solutions of (I1.6), can be written as [13]

@(‘)‘/dﬁ{k} [a}? UF(") t ag U;;!*J]j (11.8)

where the measure will be specified below and 0;? and a’; are annihilation and
creation operators which allow to build a Fock space, The time and space de-
pendence of “E‘f*) can be separated as

i (x % (<)X M) (11.9)

where =X, 0,¢ for K = +1 and ay - x5 2 for K= 0. Furthermore the factor
&' carries the dimensions of up (x which carries the dimensions of ¢/x) R
and

X {7) r_/l(}— C—Iw}"z . (I1.10)
With k
¢ S (54 ¢ -29)
s8¢ = []749( (4]"4259) | #9--a'ql,

(11.11)

one finds y’z{ij solving

A%/{A )< (K- K g/[x/ [atnt féf/( W/dz/ /%). (11.12)

The solutions of (I1,12) are [14]

A (Zir/u%cu ;K k) /(-/0
%( ?/”J;j()() {6?} k={% J,M tf

where the domains of definition ofk are

/

—- o) < k'< (=) , k.:/l:/
Mo, -Tel, 0 T /

The measure is given by

ok g

i) = 3 K= /
[o/ﬂ I 5,” fo r
s .

and the nomaHzatmn is fixed through
/4; x ?,;m %2 f = 5tk )
[ap, a/'] - S(k ¥
/c/ﬁ/k’} (e ]/m - {18

These equations lead to the foﬂomng expressions for T -M[ﬁ]

A ’ﬁ“;J(X [”kﬁ«//tf R J/] stX/d X)” (k1)

anf for f.l }[16]
T+

Fii{X) [J; Kkt iy [}&J./ sm/n/“(/d 4’7} (0}/“7,’

T=Opt, -+ k= k=12 /ﬂ,;lx_. of
J:01 . ; O<k<®@ g

(II.

(II

(11

13)

J14)

.15}

.16)

A7)

.18)



[I. AN UPPER BOUND ON THE ENERGY DENSITY

Let us now introduce the interaction term

M = -[9] (I11.1)

The hamiltonian density is then given by
}{‘ ]( smg[(g?@ ”/3@//9@ ran'Q’ +Za%¢j (I11.2)

where the term #K of {II.5) has been absorbed into the bare mass,# . The only
modification due te the curvature is in the spatial derivatives of (II[.2).

Qur trial field will be of the form

¢l @ Gl (111.3)

where d% is a constant background field and ¢L[g is a free quantum field of
mass{l. Thus w will be given by (cf. (I1.12))

2 4
AEIE e ~K ¢ ko (111.4)

The variational parameters will be QQ and f/. The ground state corresponding to
¢k(¥}is 100+ It satisfies

ap 1og2>= 0 . (111.5)

The energy density of the true ground state of the theory will be bounded from
above by

Efflff S <O_a/}{ /0-0.> = g(¢0! fz’/‘ (III.E)

The computation of the rhs of (II1.6} is straightforward with the help of
(I1,16) and (III.5). [t gives
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£(6.4)- lf[)’}m@//c//x[k/ iz
/a'ﬂ(/ 414) é/{/) %[x canQ am/d #Z—ZI) /y NN (111.7)
+20a') H‘Ma(b/d /l'cz ) /y ()] +g//5/ﬂM_L /y {*1//}

It will be convenient to redefine m, Qg and {] so as to absorb all the g-fac-
tors; this makes all the variables dimensionfess, Eq. (II1.7) can be written
in a more compact form by introducing the integrals

(—Q}E/ /k /? /")/ /W M’U (111.8)

The notation is such that it coincides for ﬁ(- 0 with the one of reference 2.
We are interested in the cases }(= + 1. For these the sum overﬁ{ can be per-

formed immediately with the help of

J : 2T
MZ:-,T / )/;/6,?}/ : Tj}' (111.9)

-
-

so that

LI+t
o Lw i (!w { }/ e MU

{111.10}

Tr_}{Jz‘}_-i/de el (7”{?{/){w/fz}/

=0 Zwk('Q

The sum over J can easily be performed recalling that {II!.10) cannot depend
on X as our space is homogenecus, Then, by choosing X= 0 and using (I11.17,18)
one obtains

PR
L 5

k=i
17w L /a’k

n l{,'z'

(hir 251}

(III.11)

Fry (K]



The other integral which appears in {I11.7) is

jw)s/ iy %/x}/ Yoli) (11.12)

It is again convement to work it out at X' = 0. This then leads to
. z
Ji-2Y - I, [2°)- 27 f-(?) (111.13)

where we have not indicated the curvature-superscript as the relation holds for
atl its values (this will be the meaning of neglecting the superscript from now
onj),

Egs. (III.8 and 13} allow one to write {II1.7} as

. L) L2 L) L )
Elp, 4 INE YRS < (111.14)

FAGT T + 31,40

where the factor f(%’/ sl of {111.7) has been dropped, This is formally the
same expression for all three values of K, orﬂy the functions [, ./-Q) differ:

(OJ d

h

th‘[ﬂ) Z K wls2tt)" (I11.15)

‘/I.'
i) - [df{ Kty

These integrals or sums are UV divergent for 4> -1, We will regularize them
with an UV cutoff /. Notice alsc that for /2= 0 and for K= 0 and +1 IR diver-
gences appear for n <-1 and n < 1/2, respectively, They will, wherever
necessary, be regularized by keeping.(l slightly off zero. The fact that the
U behaviour is universal (i. e. curvature independent) whereas this is not
the case for the IR behaviour is of course due to curvature being a con-
spicuous large-scale feature but only a subtle small-scale feature of space-
time. This will explain many of ocur results.
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2
The functions of (II[.15) can be expanded around _(20 leading to the fol-
lowing expressions

L) L12 f 1000} 108 - & (2 L) 104 A2
1,00 = 1(4 fg’//ﬂz‘fo(/l_-,/ﬁ) RUE LY (111.16)
qu {“QE/: 4[, [‘?o(/ r F/'QT’JZ:} ¥,

where frtUZz} is quartically, f (QZ} quadratically and J /—Ql)logarithmica'ﬂy
divergent, The functions A(252Y), [//42,-&and ¥ {4, -:’ﬂ,/are W finite and
related by
d o[
d 2
! nt
o A2
T -2 S (1147
Iopgy. - L di(RL
<=2 3 C/*Q“ f
They can easily be computed for K= [2], giving

[ZJZ,? —~-ZJZC/J? ARSI %/] (111.18)

r(iaf =< 2

fe/ ¢
A1)

the other functions can then be obtained from ([1I.17). For K = -1, (IIL.15)
allows to obtain the relation

A al) < A gt bl (111.19)

. 1+
We have not been able to compute A{ /-Qi, (/(see, however, ref. 17), but we do
not need an explicit expression for it. It will suffice to know some of its
properties, which moreover turn out to be K-independent. Let us just 1ist them,

plRe) ~  -Loptp
_Qf».! 6?.’.’
¢ (111.20)
A(*'Qb,f*‘(zbj =
d A (3542

d

0
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and

' Y
{ { LA
14 E»r PR 2

{2 = 0 (111.21)
Irag) <o, 2<%

a[ﬂj > g / _{22 > J?o(
A (4]

()’
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1V, THE GAUSSIAN EFFECTIVE PCTENTIAL

Eq. (II1.14) is a highly UY divergent expression, which is regularized
by a cutoffA. The following steps render it explicitly finite[?)]:

i) Minimize f@o{ﬂ/for fixed @: this gives ﬂ[@}

ii} Subtract the zero point energy by, for instance, the following

procedure:
E(@ AN, AN = E (W 2sl] - ElO%) (1v.1)

where J{2,7.8(0) and in the 1hs the explicit/-dependence due to 1,77 as
well as the implicit of the bare parameters has been specified.

iii) Take, for the adequate large A behaviour of A/ and A the
limit A~e which then exists and leads toc the socalled gaussian effective

petential of the renormalized theory,

zg((ifo/ = (m ELQ N, mlA], /N/U/_ (1y.2)

= o0

This is a nonperturbative approximation to the true effective potential.

[t should be mentioned, however, that only under special circumstances
{Iv.2) will be an upper bound to the true vacuum energy density*. Indeed, as
long as the cutoff Al is finite and as long as the regularization does not in-
troduce an indefinite metric into the Hilbert space,

(Iv.3)

E(d Amin, 0] < & (@, A,mM, A1)

%1 owe this insight to M. Liischer,
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as expected from a variational method. Then also
[ &, (9, n (A, AN = Epue (0,74, 2] /
[ &, (080, AN) ~E(G Nl 4], A T < v
ElGuA niAL aA) = ELg A, m(A, 2]

holds. Let us now remove the regulator by taking the A~ limit. Then, and
only if the limits of both square-bracketted quantities exist, does one ob-
tain

'%W (¢] rc & Lg (¢) (1v.5)

where ¢ is a nonpositive unknown constant and ﬁ;w (o - VG /0/-‘ 0.1fc=0,
Vg () is an upper bound to Ufm (¢). 1f ¢ # 0 then (1V.5) is still useful
as far as existence studies are concerned, as unboundedness from below of

ZTG(qgjimpHes the same for Z)}M (¢} - Under other circumstances e [@/
can only be considered an approximation to Ufwr [422/, but not a bound.

(U’G[@)as given by (IV.2) is explicitly finite when written in terms of
the renormalized mass and coupling constant defined as

ne = d?Vo/%// (1v.6)
i T ———
dd g0
and
A, = { dqpé(@u// ( )
g = 74; v V.7
[{' d@ (poz G /
where the renormalization is performed at the origin. It is also useful to
introduce
‘e Al A(A
me (A = d A il 1 /j/ (1v.8)
dmi @:0
and

S e e ey
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(A, mlAlL A
(ol L dE (A, A00)

q! d@? G0

-
such that

mg = Ain i)

A= o

A = Aim na.

A—

(Iv.10)

We will in the following skip any details of the computations of %[@/
as they parallel similar computations of references 2 and 10. We will, however,
give the main formulas and results in order to facilitate the understanding
and the analysis, Let us consider separately the cases mR‘) G, mﬁi< 0 and
mkl: 0.

P
1. M, >0

From (I11.14) having substituted & by I{[@D} one obtains through (IV.8,9)

me(nls 2y = () 1A T (g in))
{~ AT Imginl) (1v.11)

- A ‘
Ag (A< A(A] 1+ 6 AL (mEin)]

and
€ (G nymin, 204 - (A09) -nE ] Ly (7))
P AU, mfini] - L (LUd]-mi ) 29w (1)) o
v L mg i @ e & e 3am)[ . - F (R0GI-mg ) (g oy
(2t i) |

where mz(/|] has been traded for mREW by using (IV.11). Furthermore {III.16)
has been used. Tt is seen in cbtaining these results that a finite theory
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requires
(v 62(4) L [m () >0 (1V.13)

It can be assumed, without loss of generality,that mﬁA/ is tuned in such a
way that m(4) approaches m without Togarithmic subdominant temms,.i. e.

e ¢ /
msinl v me v Of =] . (IV.14)
dn [7)

As only logarithmic divergences appear in {IV.12,13) all the n%epucan thus
be substituted by their limit n%{

£g. (IV.13) allows the following possible large A behaviours of A/4/:

2) / - / 0/ r /
| m— p— = f' — ;
AiAL- 6[,{:7;,{}/ a _{I/m,;} s (mi} (1¥.15)

‘.‘s .
with g < 0 and where Cqﬁtf[mﬁ{/ just means subdominant terms, Eq. (IV.11)
gives

/IR 2 Eq— <0 (IV.16)

and this with (IV.15} gives from (IV.12)

(STl - mf | ¢

?/E(@a/:d{-rz?ﬁ-a/,mﬁ) - Tj{ﬂ([@)@e/ (10.17)

R

which is explicitly finite._flﬂﬂ)is either given by a solution of
S'2E5(Q%j/// S At = o, ie
e
Yae [Bbr TIEmg)] = 2 - (1v.18)

or by

_15‘

1 =0 (1v.19)

depending on which corresponds to the absolute minimum. Now, because of the
properties of f‘ﬂQﬁnﬁ}(see (I11.21))1t is clear that as Jizz 0 eq. (IvV.18)
does not have a solution beyond a certain 4%: @) . Then necessarily for

d%; d% (I¥.19) applies and (IV.17) reads
H?;

= mil -
Ug (b2 ) Af0, g A (1v.20)

On the contrary in some neighborhood of ¢% = 0 eq. (IV.18) will be operative,
as (IV.19) would 1gad to a ¢%—independent potential and thus to q;= 0, con-
trary to our assumption. This implies that (IV.20) has to be positive so that
the absolute minimum is given by (IV.18) and not (IV.19} in some neighboor-
hood of gtc‘,: 0. Thus

Y

M g

0> A, > —k_
£ féd/@,f’?ﬁ?/

(1v.21)

Recall from (I11.20) that A /0, mfke. Also, where (IV.18) is relevant one
finds

Pre)

e}

e (122

A study of (IV.18) performed with the help of (I111.20,21) shows that the
gaussian effective potential is a function which starts with value 0 at

¢% = 0, increases according to (IV.22) until, at some value ¢%: qq < Qé , it
goes over to a constant value given by (IV.20).

The theory is bounded from below and interacting.

b)

. 4 ! {1v.23)
A= - + 0
& 6 I,(mg] /Jf?{m‘//
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with ¢<1 leads, through {IV¥.12) and minimization, to

Ypl: mé 0/, lm‘/

so that

Ug (9] = i &

Obviously ﬁK= 0 and the theory is trivial.

e
Al a 0/,{,m,§//

with a> 0 leads, following the same steps, to

o T

ﬁ@[@o}' f”fﬂcp 8“%?

with Ak = -2 < 0, The theory is unbounded from below.

¢)

_IZ?a%} - n?l

so that

]
2. Mg <Q

Mow one obtains

0,0
ag ()= m(A) » RAN L(0 = mi-+ O +

(A): (A

{1v.24)}

(1v.25)

{1v.26)

{1v.27)

{1v.28)

(Iv.29)
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and

Eldoi, min), AN = - 4 LUBIL (0 + 4/200), 0)
S (LG -mi) [ - L R L le] + P20, )

(1v.30)

v WINPT 3 [ $LlhIL )0 112, ).

Also, as before
fr AN 0> O

This allows again three different behaviours.

a)
S SR APIR A
Al)- 6.1, 0] / Jj,mf/* 0(1_‘,‘/0//
with 4> 0, which plugged into {IV.30) gives
Usldh) = 4(410),0) + 4 m (@« I(2), 0))
rof QLG - i(&/fﬂg L(o) Jg(gy)/j

where, obviously,

(=0,

This gives
-
Vi) L né ¢

which is unbounded from below.

{1v.31)

(I1v.32)

{1v.33)

{1v.34)

(Iv.35)
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b}

L 2 *0/7 (1V.36)
A[/]/" 61_-{(0} {‘13{0} .

with- g < 1 Teads to exactly the same conclusion.

c)

/
AlA = a + O/LI“TO),) . {1v.37)

with g > 0 gives

ia |- ! (1v.38)
_{2[@0/ = 0/_,:{(/0/

g
Vel = ?fmﬂ(@( - g, (1v.39)

with /3K= -2a ¢ 0. The theory is again unbounded.

so that

3. mE-0

This can be considered a Timiting case of either m,f)() or mgz< 0. It
Teads at best to triviality.

It should be mentioned in ending this section that IR divergences appear
in intermediate steps for the cases mR‘(O if K= +1 or 0. They are, however,
harmless, i. e. they can be absorbed into the bare parameters by suitable re-
gularization and renormalization [18], as is clear from the fact that the
renormalized expressions are IR finite,

- 20 -

¥.  CONCLUSIONS

The whole analysis of the previous section has been performed without
any reference to the structure of space-time, It is the same for all static,
homogenecus and isotropic metrics, whether the space is closed, open or flat.
Only for the unique case which leads to an interacting theory (1a of the
previous section) is there a curvature dependence in the lower bound of
{eq. (IV.21)) coming in through A/qm,{]. Indeed, for a flat space, as

5 ; g
A!}(ﬁf mR} =T ;gg.;;r? /
ol o/ V.1
g A <0 (v.n

so that it does not depend on m; This is not surprising, as for K= 0 the
only energy scale we have at our disposal is mR(actually M /&, undoing the
rescaling performed after (IL[.7)) so that /?R cannot depend on it. This is
not so for K = +1, and indeed then A”’{Oﬂfg} are more complicated functions
of '”R' Choosing K =-1 for which (II[.19) provides an explicit expression,

A omi) < Wm![ 2dnftr )+ 3”75 - ”’A’] (v.2)

one sees that the Tower bound of /?K depends on ”’.e- This is an expected re-
suTt, as for K# 0 a new scale, the curvature, enters into the problem. Thus
it is a priori reasonable to expect that the limits on the coupling constant
A [Kpojdepend on the ratio of the two scales at our disposal, basically what
we call Mg« When the curvature tends towards zero, Mg goes towards infinity
and

j
A[K #0/ {/6’/ mﬁ{j y A/U /0, mﬁfj , (v.3)
Y
as expected,

For Targe curvature, the relevant smali m& behaviour is given by (cf,
(111.15,16,19))



-T2 =
y / ¢
Mg <1 (v.4)
/_1.“}/0' m?} s — __3_. m
+ MR /”R(<</ 375¢ R

which implies that the lower bounds on ﬂRtend to —e0 and zero, respectively,
At the large curvature limit the renormalized coupling of the open space
theory can take any negative value, whereas for a closed space ¢)vtheory it
is zero. This in fact reflects asymptotic freedom.

As far as our approximations are reliable, our conclusion is that the
issue of existence of ﬂqb”is likely to be basically independent of the cur-
vature of a static RobertsonWalker space-time, as expected from its UV cha-
racter. The issue of interaction, however, looks more curvature dependent,
inasmuch as the bounds on AR depend on it. A "smaller" space implies a weaker
interaction.
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