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The existence and interaction problem of ll ~~~in a 4-dimensional homo
genuous and isotropic space-time is studied. The approach is based on a 
variational technique. In this first work, and only fOr reasons of technical 
and conceptual simplicity, a static metric is assumed. Within the limits of 
our approach we find that existence and interaction are basically indepen
dent of the constant space-curvature for a static space-time. The strength 
of the interaction, however, has curvature-dependent bounds. In a 1 1 ·cases 
the only phase which hints at an interacting theory is the one with a ne
gative, but for large values of the UV cutoff logarithmically vanishing, 
bare coupling constant. 
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I. INTRODUCTION 

Our simplest renonnal izable field theory in Minkowski _space is it ¢'f. 
and yet surprisingly little is actually known about it. Even the most basic 
questions about its existence (is its spectrum bounded from below?) and, as
suming a positive answer, about triviality and interaction (is its spectrum a 
free field spectrum?) have not yet been answered in a precise way. The little 
we know about them is. in a nutshell, the following: Fori\) 0 the theory is 
very likely either nonexistent or otherwise trivial [1]; for A< 0 but vanishing 
when the regulator is removed the theory has good chances of being bounded from 
below and interacting [2,3]. It is furthennore asymptotically free [3,4,5]. It 
is however precarious: only its renormalized version is bounded from below, but 
not its regularized one [2]. For ;l < 0 but finite when the UV cutoff is removed 
the theory does not exist. 

The setting in which we believe these results to be true is the following: 
a 4-dimensional r~inkowski space, a regulator of the UV divergences, A, a La
grangian density 

/.._ ~ f i ¢ Jr ¢ - 1 rn'cp' - il cf 
2 

( !.1) 

and a flow of the bare parameters m and A as functions of A such that there
normalized Green's functions are finite when l1~oo. There is only one ingre
dient in this framework which is necessarily incompatible with our present 
understanding of physics: the assumption of a flat Lorentzian space-time. 
A field theory involves energy densities and these imply, because of General 
Relativity, a Riemannian space-time structure. Thus the first extension of 
the standard setting for trivia.lity studies is to consider A¢/ in a given 
Riemannian background space-time. Of course this will not be the last word 
either. The background field will become a dynamic and eventually a quantum 
field, but this is a long road to go. The first step is to consider a given 
Riemannian background space-time. This is already such a broad generalization 
that we will limit ourselves in this first study to a homogeneous, isotropic 
and static space-time. Although homogeneity and isotropy are generally accepted 
large-scale features of our universe and a reasonable assumption for the study 
of 1/¢1, the same is not true for time-independence. It is enough to recall that 
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a static space-time requires a nonzero cosmological constant [6] and that 

this is ruled out by the extremely low experimental value of the vacuum 

energy density. Thus we will have to consider eventually a time-dependent 

space-time. In this first study, however, only the static solution will be 

considered. which, due to the existence of a global time-like Killing vec

tor field, allows a natural definition of positive energy solutions to the 

free field equations, and thus of the associated vacuum[?]. 

We will follow a variational technique first introduced into Quantum 

Field Theory by Schiff [8] and further developed by Barnes and Ghandour [ 9). 
It leads to an approximate effective potential and, under certain circum

stances, to an upper bound of the energy density of the ground state. In this 

last case, and if the upper bound implies that the theory is unbounded from 

below, the result is rigorous. If not. it will only be approximate. The 

method 1 eads either to nonex; stence or trivia 1 i ty for i/. ) 0 and to an inter

acting precarious theory for ~ < 0 but vanishing when 11-} oo[2). It has been 

carefuily studied by Stevenson ['2), extended to include odd terms [10] and 

applied at finite temperature ['11]. We believe it to be a sensible approach to 

the study of existence and interaction. It will provide our calculational 

framework. 

The next section reviews free field solutions of a scalar field in a 

static Robertson-Walker metric. We will need them as trial fields of the 

variational approach. Section III gives a parameter dependent bound to the 

regularized energy density. Minimization, zero point energy subtraction and 

renorrnalization lead in section IV to the socalled gaussian effective poten

tial, which is then analyzed. The last section is devoted to comments and 

conclusions. 

- 4 -

II. FREE FIELDS 

Consider a static Robertson-Walker space-time described by the line ele

ment (e. g. ref. 12) 

l l. 2 2. J 
ds'o dt'-a'[dX'•jl::r!(de dlqeJrJ 1 or.n 

where 
1 ized 

t"<- /fX) is detennined by the constant space-curvature K· which is norma

to +1 .o or -1 (closed, flat and open, respectively) according to 

fiX!' ! 
,,, ,{' 

,;:hX 

Q(,:(!f,7r 

Q(X<WJ 

0<X< 00 

foe K' I ~ 
- I 

(IJ.2) 

Notice that az carries the dimensions of the spatial 1 ine element. Introducing 

1:: t , a.l becomes a confonnal scale factor. Using these adimensional coordi

nates 7·x. e and r (0,1.2,3) one obtains immediately the following nonzero 

metrictensor components 

(' 
_, 

a 
II -L 22 -1 JS ) -1 

1 
J ,-Q 

1 
~ o-(ajiXJ) I? ,-(Q/(f}S/11) I 

from which the following scalar curvature is obtained: 

p = 
GK 
a' 

The free scalar field Lagrangian density is (e. g. ref. 13) 

( v,[ .l..o' z.-[-J] J'"I~IPJiV.,¢) -(m1 'fR)rP') 1 

(I 1.3) 

( II.4) 

(I I .5) 

.where ~=del jrv;:- (av((;rj rifle/ and~ is the covariant derivative. 

Notice that ~o is adimensional, as so are our coordinates. The equations of 

motion are 
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( o ' m'' f II} ¢ ~ 01 (I I. 6) 

where the covariant D'Alambertian is 

-Y, ( ~ 0</!"- [-3] l~ [-g]28f':J.¢) ~ 8"Vr flvr/J. 
(11.7) 

The free fields, solutions of (11.6), can be written as [13] 

(/>fx} < f diM [ ar ui; (x} t ai u; fx)] I (!1.8) 

where the measure will be specified below and all and a; are annihilation and 

creation operators which allow to build a Fock space. The time and space de
pendence of urt)l.) can be separated as 

ur lx:J, ~ Yr (;) :?k f7) I 
(I 1.9) 

where X=-;(/ el r for K = ,!_1 and aX~ x,,, 2 forK= o. Furthermore the factor 

a-1 carries the dimensions of V.J: (.!(} 1<1hich carries the dimensions of ¢f:<). 
and 

With 

I -IW, 1 
xk I 1 J " 12;;;; e 

0 ¢ ~ 7- (;;1 d1 ¢ - IJ ¢) 

IJ¢ = [h{~:J,( fhl'h~~rP) 

one finds YtfXJ solving 

" ' ') hJo-{/ff I 

t1~k!:ii'{K- k') y;fx} =I a'm' t6JK- {/)<') Yt m 
The solutions of (II.12) are [14} 

(II.10) 

(I I. 11) 

(U.12) 
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! 
_zJ,' ~ 

~ (' (uj 2 e , k, (t, k,, k,) 
,xj, 11 ~ ~k rrl~1 (:rJJ;felr;}l k<(k,J~/1) 

!J I ~ 

f' K' ~r~1 
where the domains of definition of k are 

- "" < ' ' ~ • k .Jil f ' I 

11~-I -N. · J 
( !'Oifl 1 4-/; ko f,2 •· jm /(o r( 

I ' ' J'Of ... · O<k < oo I I I - I 
The measure is given by 

(df(k) ~ ~ 
( 

fd'k 

,~ k,J
1
H 

I c{! 1M 

Jo' 

and the normalization is fixed through 

fd~ ~Yz ~;;f<J ~~;rx-;, rrCk'J 
[a,-, o;/) , S ( k, 4'! 

jJfM st,: k7J 1 t~<~J, pr; 

K' )r~ 
/-r 

_fr) 
These equations 1 ead to the fo 11 owing expressions for li k I (Xj {15}: 

i•l [ ~ . J~ - I c/ )!'( I 1/
0 

IX)· -}k'f;'-tJ(;'-¥! (k'-f}_j. s1nJx 1 d(e<:t' as 1H) 

anf for n:~ (:tj [16): . 

-h - d )J!f 7T~~~ (X}" [ J k'(4'+t}(k
1
>V} N•JV s1ilh JX (dra1x COJ(k:r). 

(11.13) 

(11.14) 

(II.15) 

(11.16) 

(II.17) 

(!1.18) 
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III. AN UPPER BOUND ON THE ENERGY DENSITY 

Let us now introduce the interaction term 

0 ~ 
/,1 o - {-~} A cp (III.1) 

The hamiltonian density is then given by 

}(' fa'f/:r!s" e[(J
1
¢/' fl(J,¢}(j¢J r (/rr/tf/ f2u'dr/Ji (I I 1.2) 

where the term fRof {II.5) has been absorbed into the bare mass,m. The only 

modification due to the curvature is in the spatial derivatives of (111.2). 

Our trial field will be of the form 

¢fx}' cj), r r:fJa (x} r (I I 1.3) 

where </>o is a constant background field and c{J_al(j is a free quantum field of 

mass.IZ. Thus w. will be given by (cf. (11.12)) 

I I I w,' (JL}' a J2 - K + k (III.4l 

The variational parameters will be ¢ andfZ. The ground state corresponding to 

1/!.Q(<} is 1011). It satisfies 

a~: Jo.Q> o o (I I 1.5) 

The energy density of the true ground state of the theory will be bounded from 

above by 

EfM ~ (0-fl. / H /O.Q) " [ {¢0 , 12}, (111.6) 

The computation of the rhs of (III.6) is straightforward with the help of 

(II.16) and (III.5). It gives 
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C(¢o,JZ)o -l(YxJ sne/jd!M 1/Jl)I~;;(<J;' 

+ jdfii<} 2~:JIJL) (d. y,: (x1j W<J ' a~~¢!' 'a'mf;w2w,;Jl} I Ytlxij' (II r.n 

+ Z!/a1!/!o', rzN¢.,'/JiN2~1Jl} I yrrx!( + 6 ( jc~t·r•J 
1
-:;1/y; (<!IJ/. 

It will be convenient to redefine fr/, ¢1 andfL so as to absorb all the a-fac

tors; this makes all the variables dimensionleSs. Eq. (111.7) can be written 
in a more compact form by introducing the integrals 

I IKj.Q') :0 I dfi(kf I 1),, r;J( I 11! {-e)/'. 
n 2w, IlL} a' ' (III. B) 

The notation is such that it coincides forK= 0 with the one of reference 2. 

We are interested in the cases K = .:!:._ 1. For these the sum over /1 can be per-

formed immediately with the help of 

so that 

J /1 I 

2_ I Yy (B,pi/ ' 
11, -J 

lJI I 
~7( 

I 1'1(-"Z'), ~ £ t ZT' 1 (IT It/ (xJ)'tw,IJZJ)'" 
n Y /1 h'l ]'0 ZwJfi_/ 'J 

ro 

I'-'!_1)_), ~(JiZ U·t (7T 1~(xJ)'1 w,fAJ!'n n 411 J'O 2W;(-'1j kJ ' 
0 

(I I I. 9) 

(I I 1.1 0) 

The sum over J can easily be performed recalling that {III.10) cannot depend 

on X as our space is homogeneous. Then, by choosing X= 0 and using (11.17,18} 

one obtains 
~ k' 

T I,, I J]_'J ' ~~ L_ ' I ( k If J2' -I]' 
-n ~II H ~ 

"' I 1-1 !A'}'~Lfdk k' (k',Jl'>!}' 
n 411 (k1UI 1> I 

' 

(III.11) 
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The other integral which appears in (111.7) is 

J/Ji'!, f dfik) h'i(~ u[rxfJ; Uri<! 
Zw, I~) f if 

(III .12) 

It is again convenient to work it out at X= 0. This then leads to 

J /.12'/ " f/.SZ')- .J7. 'fo f J?'j 1 
(III.13) 

where we have not indicated the curvature-superscript as the relation holds for 
all its values (this will be the meaning of neglecting the superscript from now 
on). 

Eqs. (III.B and 13) allow one to write (III.7) as 

Efr/Jo,..i!./ ~ ltf.JZ'} 1 jfn/-.12') Ia/.Il1/,. -j-PJ'cl;,' 1/l¢/ 

r {,/1~ 1 J,{.J!j r Jl0

1
(J?') 

1 

(III.14) 

where the factor (f1} Sm(} of {III .7) has been dropped. This is fonnally the 
same expression for a 11 three va 1 ues of K, only the functions ]11 (.121 differ: 

~ I 

.toi(.Jl')' ~ /qk k' ( 4'r.i2'}1- z 
ln q II 1 

'~ I 

J,i>l (.JL'j , ~~ L. k' ( k',.fl.' -I)' -z 
¥11 "' j ~ fl-

1{-l (-JZ'J ~ -f, {dl k' (k 1dlir/} ' 
n It o 

(III.15) 

These integrals or sums are UV divergent for n .~ -1. We will regularize them 
with an UV cutoff/1. Notice also that for .fl.= 0 and forK= 0 and +1 IR diver
gences appear for n ~ -1 and n < 1/2, respectively. They wi 11 • wherever 
necessary, be regularized by keeping.J2 slightly off zero. The fact that the 
UV behaviour is universal (i. e. curvature independent) whereas this is not 
the case for the IR behaviour is of course due to curvature being a con
spicuous large-scale feature but only a subtle small-scale feature of space
time. This will explain many of our results. 
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I 
The functions of (III.15) can be expanded around J20 leading to the fol-

lowing expressions 

I 1 /JZ/~ 11 
fli.'J, -j;.12'-J2;n(..fl,'}-; (Jl- 12:/J.,(JI/)r J1(J2~J2,') 

JJ!I.'J ~ 1,1 ~'! - j f.11' -_9,! JL, t.!li J ' r t .sz~ JZ,'J , III.16) 

- '/ - '/ ~; "' ') L
1 

{J/. " 1_
1

/J?, ' II ~, ,...12, 1 

where l~{J/-) is quartically, 1:(12~ quadratically and J~1 /J21logarithmically 
divergent. The functions !J{..fl~ .. Il/), f1(.1l~.J41and 1( f--12~-J'lojare UV finite and 

related by 

d !J/J?i JZ,') 
f'/~?~JI}j < 2 

d .12.' 

/;(.il.'r!lo'} ~- 2 d {'(.fl.~~'!.') 
dfl.' 

T ( ~n'J . 2 d ~ ( n' 0 ') - -z 'L .:: - ·- /1 ~ 1 -'<o 
3 dJi.' 

They can easily be computed for K.= 0 [2]. giving 

L\{oi(J/1 .12 1)" ~1~ [2JJ'J1 JZ' -2 J[' (.Ji-J?v')- J(.SZ'-..12/,j' 7 • , , ~r' ~ . J; 

(III .17) 

(111.18) 

the other functions can then be obtained from (111.17), ForK~ -1, (111.15) 
allows to obtain the relation 

d(-1 (.fZ',JI~}' 1!./'1( J/1/, Yo' r f) (III.19) 

. All)('"' 'j We have not been able to compute Ll ~~~(see, however, ref. 17), but we do 
not need an explicit expression for it. It will suffice to know some of its 
properties, which moreover turn out to be K-independent. Let us just list them, 

Ll (.11~ ~I A./ 

.fl.' >>I 

fl(Jt/,.sz,') < 0 

d Ll/ J?~J/}) 
> 0 

d Jl.' 

I ~ 
6 i i/1 J2 ..bJ Jl' 

(III .20) 
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and 

(1 ( Jl~ Jl,'} "-' 
_£' )) 1 

f/j(i .f/ I 1Ji J( 

(' (JL.',Jl}J 0 0 (I I !.11) 

d {' ( .fl', JLo') (0 for Ji'<2.' 

dJI' > 0 __!2' > J2/ 

Jl (' ( Jli Jl,'J 

(dJZ'j' 
> 0 
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IV. THE GAUSSIAN EFFECTIVE POTENTIAL 

Eq. (III.14) is a highly UV divergent expression, which is regularized 

by a cutoff/\. The following steps render it explicitly finite{9]: 

i) Minimize fJ¢,,11jfor fixed~: this gives 12(¢.). 

ii) Subtract the zero point energy by, for instance, the following 

procedure: 

C{rp,ll,m{IIJ/1{~/} ~ [(¢.;;J2/¢ol) - E{O;..Jlo) 
1 (IV.I) 

where il0 ~ ... Il.{O) and in the 1 hs the exp 1 i cit 11 -dependence due to ] 11 f_t2?} as 

well as the implicit of the bare parameters has been specified. 

iii) Take, for the adequate large A behaviour of t?J(!lj and ;l(ll/ the 

limit /\~CCI which then exists and leads to the socalled gaussian effective 

potential of the renormalized theory, 

l!( ct.; 0 

6 
{ (111 

II _, "" 
E(rf!,, II, ~'II Iii, ;l{ili). (IV.2) 

This is a nonperturbative approximation to the true effective potential. 

It should be mentioned, however, that only under special circumstances 

{IV.2) will be an upper bound to the true vacuum energy density*. Indeed, as 

long as the cutoff~ is finite and as long as the regularization does not in

troduce an indefinite metric into the Hilbert space, 

E
1
. ( cA, II, ml~l, 1U11Jj ( E ( ¢.. J1, m { 111/1 {ill) 
rvf 

(IV .3) 

* I owe this insight toM. LUscher. 
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as expected from a variational method. Then also 

[ Cfrvt (¢,,11, lfl(llj,l/{111)- {ftvt (O;JI,fll(l/j,J)(!I)/j 

+{Eirue{O;!I,fll(ll/,;7(11!) -E((Jii;"'!(;J),it(l1f/) ~ 

[ (l/!
01

1i
1 

ill { 1/1;11 (ll}j - {(q li 1 !YI( 111;1/(IIJ) 

(IV .4) 

holds. Let us now remove the regulator by taking the A~oo limit. Then, and 
only if the limits of both square-bracketted quantities exist, does one ob

tain 

11,"' { ¢.) t- c :: ~~ f¢,) (IV. 5) 

where c is a nonpositive unknown constant and Uj,vt (0/ ~ ?JG (o}::- 0. If c = 0, 
7!6 /tiJ<} is an upper bound to 1!1,, frfi}· If c t 0 then (!V.5) is still useful 

as far as existence studies are concerned, as unboundedness from below of 

Z'(;t4:,)implies the same for lftr~.~r tck). Under other circumstances lJ6 (r/Joj 
can only be considered an approximation to ?J;M trJo), but not a bound. 

1J6t1Jas given by (IV.2) is explicitly finite when written in tetllls of 
the renormalized mass and coupling constant defined as 

m: ~ d' lJc, (cP,/ I 
d ¢,' if, 0 c 

(IV .6) 

and 

d'/JG~rkl I I 
!/ R " 7j7 drP, rfJ,o C I 

(IV .7) 

where the renormalization is perfotllled at the origin. It is also useful to 

introduce 

m~{ll}c 
d'c { ¢,, !1,

1

m{ AI, 1/ {11/) f 
d¢. Po ~o 

(IV .8) 

and 

~----~ 
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!l (11/' _j_ 
d I [ (¢,, !1, f)/ ( 11/, 1/ ( lllj I 

~ ~I drA' cP,~o 
(IV. 9) 

.....,_ 
such that 

' f,irJ m;/ (!I) mf ~ 
II_,"" (IV .10) 

;)~ 0 )!lfl 
!I __, "" 

)1(1.(11) 

We will in the fo 11 owing skip any details of the computations of 2JG ( r/Jo } 
as they parallel similar computations of references 2 and 10. We will, however, 
give the main formulas and results in order to facilitate the understanding 

and the analysis. let us consider separately the cases m
1
/> 0, HI/( 0 and 

' m1 o o. 

' 1. m_, _! __Q 

and 

From (111.14) having substituted fl. by ..R{¢}one obtains through (IV.8,9) 

m/(111~ J/o' 0 m'(ll) t 111_{1/j io(rt!~(ll)) 

;)~(II): 1/(ll/ 1- t{llf~)l_ 1 /mf!!il/ 
1 + 6 11(11/ 1_1 (mf-(!1)) 

[{!/!o,ll,mlt1/,df~!l o ff~ifl/),) -m;{(!IJ/ i_1(m;/(11/) 

(IV .11) 

t !J {-ll'!cA,J, mf (Ill) - f ( --11
1(!/1 I -m{; (II}) f' / J/(¢"), m/ (!I)} 

(IV .12) 

+ f111R1 (Iii r/!o' - { i/{ 1/j ¢, ~' Ji1 (II/ { ¢,' - jr J/1(1/J,} -m//11/) J~ (mj (1/J) 

"!'( __!)_{ ¢,.}, m)(!IJ) )' 
I 

where m'{l\) has been traded for rnR'(!Ij by using (IV.11). Furthennore (III.16) 

has been used. It is seen in obtaining these results that a finite theory 
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requires 

(f. blL {II) {
1 

( m/ (Ill) ) 0 (IV .13) 

It can be assumed, without loss of generality, that m{Aj is tuned in such a 

way that m,_l(ll) approaches m; without logarithmic subdominant tenns ,- i. e. 

m/ !II! "' m/ , of11
1

) 
II » 1 

(IV .14) 

As only logarithmic divergences appear in (IV.12,13) all the m/{lljcan thus 

be substituted by their limit m,._
4
• 

Eq. {IV .13) allows the following possible large A behaviours of It_(!/): 

al 1 ( I J ( I ) 
ii{A}o- 6l_,lmil /t- al_ttmR'} ,_ 0 I/fmAI 

with a< 0 and where 0(1~/fmf.lj just means subdominant terms. Eq. 

gives 

/(~ c 2(( < 0 

and this with (IV.15) gives from (IV.12) 

1JGI¢,f= <'I (.szy¢,},mR')- (f!(I/J,/-rnj 1 ~-/-JZ.1fMr/Jo' 
(6!/.~ < I 

which is explicitly finite. _fl(r/J,) is either given by a solution of 

£ 7!6 {¢,)/ ~.fl.(¢,) = 0 1 i e. 

If;)~ [ rt{' • f'f.-f', m/ I J = JZ.I - mf?.' 

or by 

(IV. 15) 

(IV,11) 

(IV .16) 

(IV .17) 

(IV .18) 
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_Q 0 0 (IV .19) 

depending on which corresponds to the absolute minimum. Now, because of the 

properties of r(Ji 1,m/}(see (III.21)}it is clear that as Jl1?-0 eq. (IV.18) 

does not have a solution beyond a certain ¢o ~ cPc • Then necessarily for 

cg? r/J, (IV.19) applies and (IV.17) reads 

7JG I rf!, ? cp,) 0 
iJ(O, m/J-

m~· 
(IV.20) 

fG 11;; 

On the contrary in some neighborhood of ¢Jo = 0 eq. (IV .18) will be operative, 

as (IV.19) would l_ead to a ¢
0
-independent potential and thus to try/= 0, con

trary to our assumption. This implies that (IV.20) has to be positive so that 

the absolute minimum is given by (IV.18) and not (IV.19) in some neighboor-

hood of ¢a = 0. Thus 

' 
0 > /] f > 

rrtR 

(6 LJ (o, m/) 
(IV. 21 ) 

Recall from (III.20) that d(01
tn/k·o. Also, where (IV.18) is relevant one 

finds 

J //G i¢o) . _J/(¢
0

} 4~ 
d (Po 

(IV .22) 

A study of (IV. 18) performed with the help of (111.20,21) shows that the 

gaussian effective potential is a function which starts with value 0 at 

rh = 0, increases according to (IV .22) until, at some value A-."' A..< A , it 
'Yo 'Yo 'f1 ' l..f(. 
goes over to a constant value given by (IV.20). 

The theory is bounded from below and interacting. 

b) 

~(A) 
q 

6 IJm~j o(r'~m') -., R 

(IV .23) 
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with a< 1 leads, through (IV.12) and minimization, to 

_n_ '{If!,/~ m/ 1 o( 1~, ;11/K,;) (IV.24) 

so that 

v6 t<P,J c f rrl/ r:tl . (IV. 25) 

Obviously 111\= 0 and the theory is trivial. 

c) 

il{11/' a ' 0 ( /rmkJ} (IV .26) 

with a) 0 1 eads, fo 11 owing the same steps, to 

zcN (-! ) 
-fl'(ip,): mj' I [tY!j/ '0 L/lmj/ 

-I 

(IV.27) 

so that 

?/6 {¢,}: j 111/ C/i' - (a¢/ (IV .28) 

with ;ll<. = -2q < 0. The theory is unbounded from below. 

I 
2. m, ·< o 

Now one obtains 

.J2, 0 0 

tiiK' {/lj ~ m1{1\j' ((ll{li} J,{Oj 0. lllj 1 0(j j (IV. 29) 

;/~{II}" 1/{11} 

- 18 -

and 

E{¢0 ,11,!11{11/1 !1{11/)'- {JZ~rA/!_1 (0/ t !J(Ji{I/J,l,o) 

--f ( JZ'frA!-m~! ( q;,'- f JZ'r¢,!I_1(oj 1 f'(JZY(/1,/, oJ) ov.3o) 

r f JZ1[<f!,J ¢ 1 -Zil(A)¢,1 
t 3i/Pl} ( ¢,'- {2(¢,/J:/o) 1 f'(.J/frM, o)) .' 

Also, as before 

f f 6 li(IFJO/ ;> 0 . 

This allows again three different behaviours. 

a) I ( q ) ( I ) 
;2( II/' - G l_/0/ I - .{JO/ t- 0 J~ '(o!j 

with a> 0, which plugged into {IV.30) gives 

?J6 (cp,j: IJ (JIYI/i/, o), -f m/ ( ~/' fl(JI'!r/J,J, oj) 

, f -Q'{r/J,) rP/ - f JIY¢.) !IIJ [,to)' 
8

q _r/(1/J,), 

where, obviously, 

_fl(@,j: 0 ' 

This gives 

1/G {4>,) : f 11/f ¢,' 1 
c 

which is unbounded from below . 

(IV .31) 

(IV .32) 

(IV .33) 

(IV.34) 

(IV .35) 
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b) 

/t{/1/o -
q 

6 .[, {0) 
o ( /roJ) _, 

witb a< 1 leads to exactly the same conclusion. 

c) 

l/_ (II/ ' Q I o(I
1
{ol} 

with Q > 0 gives 

__12'[¢,/ c 

so that 

z~' 
l, {Oj 

_, 

1 0 ( .[/(oj} 

?hf¢,}= j m/¢,'- l_a cp,Y 

with Ill?= -2a < 0. The theory is again unbounded. 

' 3. ~·-=_Q 

(IV.36) 

(IV .37) 

(IV .38) 

(IV .39) 

This can be considered a limiting case of either m/>O or m/< 0. It 

leads at best to triviality. 

It should be mentioned in ending this section that IR divergences appear 

in intennediate steps for the cases tnt,1 ~0 if K = +1 or D. They are, however, 

hannless, i. e. they can be absorbed into the bare parameters by suitable re

gularization and renonnalization [18], as is clear from the fact that the 

renonnalized expressions are IR finite. 
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V. CONCLUSIONS 

The whole analysis of the previous section has been performed without 
any reference to the structure of space-time. It is the same for all static, 
homogeneous and isotropic metrics, whether the space is closed, open or flat. 
Only for the unique case which leads to an interacting theory (1a of the 

previous section) is there a curvature dependence in the lower bound of 
(eq. (IV.21)) coming in through !J(O,"'j.J. Indeed, for a flat space, as 

toJ l_ mi 
i\ ( 0, 111R) - - !IS ii' I 

, ,roJ 
0 -8/f ( ;,~ < (V .1) 

so that it does not depend on m/. This is not surpr1s1ng, as forK= 0 the 
only energy scale we have at our disposal is m~(actually PIA/((, undoing the 

rescaling perfonned after (111.7)) so that 11l1cannot depend on it. This is 

not so for K = _::1, and indeed then ..6 !K)(qllfl) are more complicated functions 

of mli.l.." Choosing K =-1 for which (III.19) provides an explicit expression, 

" 1-
1(o mi/ ~ ~ [- 2 .irt/fr m/J ' !m/ - mJ} (V .2) 

lJ 1 " IZJ'/1 1 I 

one sees that the lower bound of 11~~) depends on m,'. This is an expected re

sult, as for K!- 0 a new scale, the curvature, enters into the problem. Thus 

it is a priori reasonable to expect that the limits on the coupling constant 

ll)Kt:-0/ depend on the ratio of the two scales at our disposal, basically what 

we call m~. When the curvature tends towards zero, mR goes towards infinity 

and 

!J/Kto/ [o, m/ J m"/))/ AM (0. m ') q tK, (V.3) 

as expected. 

For large curvature, the relevant small m~ behaviour is given by (cf. 

(III.15,16,19)) 
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I 'I v Llr- (O,m~ '«I 
t'/li 

IJ!'i(O,tr~/) m/«t 

_/_ 
17 2 j(' 

_5_ 
3Z 71' 

6 
!1/f( 

mli 

(V.4) 

which implies that the lower bounds on ;]/{tend to -PO and zero, respectively. 
At the large curvature limit the renormalized coupling of the open space 
theory can take any negative value, whereas for a closed space ifJvtheory it 
is zero. This in fact reflects asymptotic freedom. 

As far as our approximations are reliable, our conclusion is that the 

issue of existence of lUf/' is likely to be basically independent of the cur
vature of a static Robertson..Walkerspace-time, as expected from its UV cha
racter. The issue of interaction, however, looks more curvature dependent, 
inasmuch as the bounds on 1/~ depend on it. A "smaller" space implies a weaker 
interaction. 
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