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Abstract

A strongly-coupled sector can feature a supercooled confinement transition in the
early universe. We point out that, when fundamental quanta of the strong sec-
tor are swept into expanding bubbles of the confined phase, the distance between
them is large compared to the confinement scale. The flux linking the fundamen-
tal quanta then deforms and stretches towards the wall, producing an enhanced
number of composite states upon string fragmentation. The composite states are
highly boosted in the plasma frame, which leads to additional particle production
through the subsequent deep inelastic scattering. We propose a modelling of these
dynamics and study the consequences for the abundance and energetics of particles
in the universe and for bubble-wall Lorentz factors. This opens several new avenues
of investigation, which we begin to explore here, showing that the composite dark
matter relic density is affected by many orders of magnitude.
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1 Introduction

The possible existence of new confining sectors is motivated by most major failures of our
understanding of Nature at a fundamental level. First, the stability of particle Dark Matter can
be elegantly achieved as an accident if it is a composite state of a new strongly-coupled sector,
similarly to proton stability in QCD, see e.g. [1]. The hierarchy problem of the Fermi scale is
solved via dimensional transmutation by new confining gauge theories, whose currently most
appealing incarnation is that of composite Higgs models [2, 3]. Analogous composite pictures can
UV-complete [4-6] twin-Higgs scenarios [7], and so ameliorate also the little hierarchy problem.
A rationale to understand the SM hierarchies of masses and CKM mixing angles is provided by
partial compositeness of the SM fermions [8]. Finally, new confining sectors play crucial roles
in addressing the strong CP problem [9, 10], the baryon asymmetry [11, 12], etc.

Given their ubiquity, it makes sense to look for predictions of confining sectors that do not
depend on the specific way they address a given 5M issue. Cosmology naturally offers such a
playground, in association with the confinement phase transition (PT) in the early universe.
The low-density QCD phase transition would for example be strongly first-order if the strange or
more quarks had smaller masses [13], with associated signals in gravitational waves [14, 15]. New
confining sectors could also well feature a similar PT. In addition, the confinement transition
could be supercooled, a property that for example arises naturally in 5-dimensional (5D) duals
of 4D confining theories [16-19].

Generically, supercooling denotes a PT in which bubble percolation occurs significantly
below the critical temperature. Here we are interested in the case where a cosmological PT
becomes sufficiently delayed so that the radiation energy density becomes subdominant to the
vacuum energy. The universe then experiences a stage of inflation until the PT completes [20].
This implies a dilution of any pre-existing relic, such as dark matter (DM), the baryon or other
asymmetries, topological defects, and gravitational waves, see e.g. [21-23].

In this paper we point out an effect that, to our knowledge, had been so far missed: when the
fundamental quanta of the strong sector enter the expanding bubbles of the confined phase, their
relevant distance can be much larger than the inverse of the confinement scale, thus realising
a situation whose closest known analogues are perhaps QCD jets in particle colliders or cosmic
ray showers. We anticipate that our attempt to model this phenomenon implies an additional
production mechanism of any composite resonance — string fragmentation followed by deep
inelastic scattering — which introduces a mismatch between the dilution of composite and other
relics. This opens new model building and phenomenological avenues, which we begin exploring
here in a model independent manner for the case of composite DM. The application of the
findings to a specific model, namely composite dark matter with dilaton mediated interactions
in the composite Higgs scenario, will appear elsewhere [24].

2 Synopsis

Due to the numerous effects which will be discussed in the following sections, it is perhaps
useful for the reader that we summarise the overall picture in a few paragraphs. We begin in
the deconfined phase in which the techniquanta Tc of the new strong sector (which we will call
quarks and gluons) are in thermal equilibrium. Their number density normalised to entropy
takes a familiar form 15¢(3)
frc

Y—reg = T‘iga’ (1)
where grc (gs) are the degrees of freedom of the quarks and gluons (entropic bath) respectively.
MNext a period of supercooling occurs, in which the universe finds itself in a late period of thermal
inflation, which is terminated by bubble nucleation. As is known from previous studies, such a



phase will dilute the number density of primordial particles. The dilution factor is given by

DSC — (Tnun )3 Tun @)

Taart ) Tatart’
where T,,,. is the nucleation temperature, Ty o f is the temperature at which the thermal
inflation started, Try is the temperature after reheating, and f is the energy scale of confine-
ment. We assume reheating to occur within one Hubble time, so that Try o f. The supercooled
number density of quarks and gluons then becomes

T 3
Vil = D° Yid o ( '}“) . (3)
For completeness, the details entering Eq. (3) will be rederived in Sec. 3.

When the fundamental techniquanta are swept into the expanding bubbles, they experience
a confining force. Because f 3 T, . in the supercooled transition, the distance between them is
large compared to the size of the composite states ¢ (which we will equivalently call *hadrons’).
The field lines attached to a quark or gluon then find it energetically more convenient to form
a flux tube oriented towards the bubble wall, rather than directly to the closest neighbouring
techniquantum, which is in general much further than the wall (see Fig. 2). The string or flux
tube connecting the quark or the gluon and the wall then fragments, producing a number of
hadrons inside the wall. Additionally, because of charge conservation, techniquanta must he
ejected outside the wall to compensate (see Fig. 3). The process is conceptually analogous to
the production of a pair of QQCD partons at colliders, and we model it as such. The details are
explained in Sec. 4. The result is an increase of the yield of composite particles, compared to
the naive estimate following directly from Eq. (3), by a string fragmentation factor K5tng

3
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where v, = f/Thuc 3 1 is the Lorentz factor of the bubble wall at the time the quarks enter.

The Lorentz factor is estimated in Sec. 5. In Sec. 6 we show how Ty, /f =< 0.1 is enough
for our picture to be relevant. The quarks ejected from the bubbles are treated in detail in
Sec. 7. We find they enter neighbouring bubhbles and confine there into hadrons. The hadrons
produced from the string fragmentation and from confinement of ejected quarks have momenta,
in the plasma frame, much larger than the scale f.

The composite states and their decay products can next undergo scatterings with other
particles they encounter, e.g with particles of the preheated ‘soup’ after the bubbles collide.
Since the associated center-of-mass energy can be much larger than f, the resulting deep inelastic
scatterings (DIS) increase the number of hadrons. We explore this in detail in Sec. 8. The
resulting effect on the yield can be encapsulated in a factor KP%, and reads

3 . 4

Y$C+amng+ms — K—D[SDEC Y-IE\,‘::I x (RTM) Yorp =1I' runmay} (T}uc) ﬂ-ﬂiil ) {5}

where Mp is the Planck mass and m, = g, f is the mass scale of hadrons. The last proportion-
ality holds in the regime of runaway bubble walls, relevant for composite DM.

Finally the late-time abundance of the long-lived and stable hadrons, if any, evolves depend-
ing on their inelastic cross section in the thermal bath {ov.4), and on Y;'}Fm"g"'ms as an initial
condition at Ty,;. We compute it in Sec. 9 by solving the associated Boltzmann equations.

By combining all the above effects we arrive at an estimate of the final relic abundance of
the composite states. Qur findings impact their abundance by several orders of magnitude, as
can be seen in Fig. 9 for the concrete case where the relic is identified with DM. The formalism
leading to this estimate can readily be adapted for other purposes. For example, if ¢ instead
decays out-of-equilibrium, it could source the haryon asymmetry. The estimate of Y;C"'St'n“g"'ms
would then act as the first necessary step for the determination of the baryonic yield.




3 Supercooling before Confinement

3.1 Strongly coupled CFT

Although striving to remain as model independent as possible in our discussion, we shall he
making a minimal assumption that the confined phase of the strongly coupled theory can he
described as an EFT with a light scalar y, e.g. a dilaton. The scalar VEV, (), then parametrizes
the local value of the strong scale. It can be thought of as a scalar condensate of the strong
sector, such as a glueball- or pion-like state. The scalar VEV at the minimum of its zero-
temperature potential is identified with (x) = f, where f is the confinement energy scale, while
{x) = 0 at large enough temperatures. In order to have strong supercooling, we require the
approximate (e.g. conformal) symmetry to be close to unbroken, thus justifying the lightness of
the associated pseudo-Nambu-Goldstone boson (e.g. the dilaton [25]). That supercooling occurs
with a light dilaton is known from a number of previous studies [16-18], see [26-33| for studies
in a confining sector.

3.2 Thermal history

The vacuum energy before the phase transition is given by

Ala = Cvae f, (6)

with some model dependent ¢y ~ @(0.01) constant. The radiation density is given by

2
T
praa = TAT, (7)

where g counts the effective degrees of freedom of the radiation bath. We define gr = gr: (gry)
in the deconfined (confined) phase. Now consider the case of strong supercooling. The universe
will enter a vacuum-dominated phase at a temperature

Titnet = (3“ “"’“)m . ®)

ORi 2

provided the phase transition has not yet taken place beforehand. The vacuum domination
signals a period of late-time inflation. The phase transition takes place at the nucleation tem-
perature, Thye., when the bubble nucleation rate becomes comparable to the Hubble factor.
Following the phase transition, the dilaton undergoes oscillations and decay, reheating the uni-
verse to a temperature
1/4
IR
TRI-I = (_) Tata.rt {Q}
arf
At this point the universe is again radiation dominated. We have assumed the decay to occur

much faster than the expansion rate of the universe such that we can neglect a matter-dominated
phase [21].

3.3 Dilution of the degrees of freedom

MNow consider some fundamental techniquanta of the strong sector, e.g. techniquarks or tech-
nigluons (for simplicity we always refer to them as quarks and gluons). Prior to the phase
transition the number density of techniquanta follows a thermal distribution for massless par-
ticles 3

@)

=
To = Oro
m

. (10)

[ ]



where gr- denotes the degrees of freedom of the quanta under consideration. The entropy
density is given by
= ?.:rrzg_g
45
where g, are the total entropic degrees of freedom.! The number density normalized to entropy
before the phase transition,

T3, (11)

; (12)

remains constant up to the point when the phase transition takes place. The entropy density
then increases during reheating giving

V3¢ = DSC vy 8 (13)

when we find ourselves back in the radiation-dominated phase. The dilution factor from the

additional expansion during the vacuum-dominated phase can be derived by finding the increase
in entropy between Ty and Try. It reads

v Thue 3 Tru ORi Toue :
o= (z2) (z2) = g T ( 7 ) ' o

Rf

If the quarks and gluons were non-interacting following the phase tramsition, the yield today
would be given by the above formula. (In the presence of interactions the above would be taken
as an initial condition at Tpy for the Boltzmann equations describing the effects of number
changing interactions between reheating and today.) The picture would then be analogous to
that studied, in a theory without confinement, in [21]. The picture is completely changed,
however, for supercooled confining phase transitions, which we elucidate next.

4 Confinement and String Fragmentation

4.1 Where does confinement happen?

Bubble wall profile. The expanding bubhble is approximately described by the Klein-Gordon
equation [34]
d*y 3dy dV
s Tsds Ty
where s2 = t2 — r? is the light-cone coordinate and V is the scalar potential. A sketch of a

typical bubble profile for close-to-conformal potentials is shown in Fig. 1. The key point here
is that the wall thickness is

0, (15)

1
Tnuc ’

as shown by numerical computations and analytical estimates, see App. A for a calculation in
an explicit example.

Ly = (16)

Confinement time scale. The techniquanta (quarks and gluons) constitute a plasma with
temperature of order Ty, before entering the bubble. Once they enter the bubbles, they could
in principle either confine in a region close to the bubble wall where (x) < f, or approach as
free particles the region where x has reached its zero-temperature expectation value (x) = f.
To determine this, let us define a ‘confinement rate’ and a ‘confinement length’ as

[eonf = L‘_-_DL[' = Mo Uro Teonf, El?}

'In a picture with Ny flavours of quarks in fundamental representations of an SU{N) confining gauge group,
one has g, = 4Ny N, g, = AN —1), gre = g +30,/4, 0. = g + Tgg /8.

i}
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Figure 1: A typical wall profile found in close-to-conformal potentials. After nucleating by tunneling to
the erit point, y* < f, the field rolls doun and undergoes damped oscillations around the minimum of
its potential. The typical wall thickness is Ly ~ 1/Thy..

. > s
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where n.. and v are, respectively, the number density and the relative Mgller velocity of the
techniquanta vy = [|vy — va|? — |vy x vo|?] 1/2 [35), and @, is a ‘confining cross section’. We
want to compare L..,; with the length of the bubble wall, defined as the distance over which
x varies from its value at the exit point, {x} = x* < f, to (x) = f. Of course we need to
perform this comparison in the same Lorentz frame, so we emphasise our definition of L,, as
the bubble-wall length in the bubble-wall frame, and Ly = L /7w as the bubble-wall length in
the frame of the center of the bubble, which coincides with the plasma frame, and where ~,
is the boost factor between the two frames. Let us now move to the confinement timescale of
Eq. (17). Since we expect confinement to happen ‘as soon as possible’, we assume the related
cross section to be close to the unitarity limit [36],

4w
Tz
Since n2svre is Lorentz invariant [35, 37], one then has that nyg vre transforms under boosts
as nra. The boost to apply in this case is -, ,, because by definition the string forms after
confinement, so we can treat the plasma frame as the center-of-mass frame of the techniquanta.
Combining this with the Lorentz invariance of the cross section, we obtain

£ (18)

ﬂ-{‘ﬂ-ﬂ

Fﬁ:mf,w = Mo, w Yro,w Teonf = fro.pTrop Tronf ™ i Tnuc? I:IQ}
Fwp Twp
where in the last equality we have used that the average relative speed and density of the
techniquanta in the plasma frame satisfy, respectively, vrep = 1 and npop ~ T2 .. because
they are relativistic. This in turn implies

Leont, w ~ %Lw. (20)

Confinement takes place deep inside the bubble. For the regimes of supercooling we are
interested in, the phase transition is of detonation type and the Lorentz factor +,, is orders of
magnitude larger than unity. Therefore, Leonf w 3 Ly such that confinement does not happen
in the outermost bubble region where (x) < f. This conclusion is solid in the sense that it would
be strengthened by using a confinement cross section smaller than what assumed in Eq. (18),
which is at the upper end of what is allowed by unitarity. The end effect of the above discussion,
is that for practical purposes, we can consider the wall profile to be a step-like function between
the deconfined phase, (x) = 0, and confined phase, (x} = f. Furthermore, as we shall discuss
below, the gquarks will not confine directly in pairs but rather form fluxtubes pointing toward
the bubble wall as they penetrate the (x) = f region of the bubble.

7
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Figure 2: Quarks entering the bubble as seen in the frame Figure 3: The string inside the wall
of the bubble wall, together with the associated field lines and  breaks, producing hadrons [(Sec. 4.4),
quantities defined in the tert. The rest energy of the string and a quark is ejected from the wall
iz minimized if the flurtubes in the region ¥ = [ point to the (Sec. 4.6).

bubble wall, rather than if they point to the closest color charge.

The ballistic approximation is valid. Equation (20), together with the large wall-Lorentz-
factors encountered in this study, implies that we can safely neglect the interactions between
neighbouring techniquanta during the time when they cross the bubble wall. This is the so-
called ballistic regime, see e.g. [38], which will be useful for deriving the friction pressure in
Sec. 5.

4.2 Fluxtubes attach to the wall following supercooling

A hierarchy of scale. Upon entering the region (x} = f of expanding bubbles, the techni-
quanta experience a confinement potential much stronger than in the region close to the wall.
This can be easily understood by taking the long-distance potential of the Cornell form [39-48]

E’I‘C =C‘I‘Cf2 Eir::l Eﬂl}

where d, is the techni-quanta seperation in their ‘center of interaction frame’ (or equivalently
‘string center of mass frame’)?, and ¢, is an adimensional constant®, ¢,; ~ 10 in QCD [48]. A
crucial point regarding the string energy in this context, besides the fact it grows proportionally
to 2, is that the inter-quanta distance is large compared to the natural confinement scale, i.e.
d. = f~!, due to the supercooling. Indeed the distance between quanta outside the wall,
in the plasma and wall frames respectively, scales as d, ~ T-! and d,, ~ ,},:PljaT 1. Since
Yup € (f/Touc)® (see Sec. 4.3) and d, > d,, (because d, = d,, outside the wall, and because the
quarks and gluons cannot be accelerated upon entering so dy, is Lorentz contracted with respect
to dp), one ends up with d. > f~!. What happens then to the techniquanta and to the fields

connecting them?

?Lattice simulations find that the QCD potential at d. = fm saturates to a constant, a behavior which is
interpreted in terms of pair creation of quarks from the vacuum, see e.g. the recent [49]). Therefore this realises
an outcome that, for our purposes, coincides with having Eve o d. to larger distances. Lattice simulations with
quarks only as external sources [50], so without sea quarks (‘quenched’), find that the linear regime of the QCD
Cornell potential extends up to the maximal distances probed, namely d. ~ 3 fm in the results reported in [50].

3ere does not hide any ‘coupling dimension’, indeed in units where i # 1, [f] = {mlargy;’dist.anca}"}.



Flux tubes minimize their energy. In a picture without hierarchy of scales, the fields would
compress in fluxtubes connecting different charges, ‘isolated’ in pairs or groups to form color-
singlets. Here, we argue that the fluxtubes have another option, which is energetically preferable:
that of orienting themselves towards the direction of minimal energy, i.e. as perpendicular as
possible to the bubble-wall?, and to keep a ‘looser’ connection in the outer region where y < f.
Indeed, a straight-line connection between techniquanta would result in a much longer portion
of fluxtubes in the region (x} = f, with respect to our picture of fluxtubes perpendicular to
the wall. Via Eq. (21), this would in turn imply a much higher cost in energy, disfavoring that
option. We stress that, in our picture, the fluxtubes are still connecting techniquanta in such
a way to form an overall color singlet, just these fluxtubes minimise their length in the region
x = f, and partly live in a region y ~ x* < f. This picture is visualised in Fig. 2. Note the
nearest neighbour quark from the plasma may also be located outside the bubble.

Condensed matter analogy. An interesting analogue to the picture above is the vortex
string of magnetic flux in the Landau-Ginzburg model of superconductivity. To match onto
confinement dynamics a dual superconductor is pictured, in which the external colour-electric
field — rather than the magnetic field — is expelled by the Meissner effect [51]. Here the
bubble of confining phase corresponds to the superconductor from which the colour-electric
field is expelled. Quarks entering the bubble then map onto magnetic monopoles being fired
into a regular superconductor.

4.3 String energy and boost factors

To possibly be quantitative on the implications of the picture we just outlined, we first need to
determine the string energy and the Lorentz boosts among the frames of the plasma, wall and
center-of-mass of the string.

String end-points. Let us define as TC; the quark or gluon that constitutes an endpoint,
inside the bubble, of a fluxtube pointing towards the wall, and 9 the end-point of the fluxtube
on the wall. The energy of the incoming techniquantum in the wall frame is E;, = 37, Ty,
where for simplicity we have averaged over their angle with respect to the wall. We assume %
to be at rest or almost, and to carry some (1) fraction of the inertia of the string. Hence the
respective four-momenta are

3"’i‘rwr|:."-I-||'11.1.r|: m 1
I — (™ 1 R < —. (22
Pi,w ( 02, m—m?)’ Pow (Ef), €k mi=my=qf, q< 5. (22)

String center-of-mass. Then we define the center-of-mass of the string as the one of TC;

and %, and find
EGM = 3’]"'1: Tnuc f B |:23}

Tz = '” ETIPT;‘?M . |:24}

On the right-hand side of the equations above we have omitted a factor of +/2(g — €), in (23),
and of 1/4/2(g — €), in (24), because for simplicity we take these to be = 1 from now on (as
per the benchmark g = 1/2, € = 0). Finally we determine the boost between the center-of-mass
frame of the string and the plasma frame as

_1 [ Jwp f

“We wish to express our gratitude to Benedict von Harling, Oleksii Matsedonskyi, and Philip Soerensen, for
discussions which lead us to develop the picture we employ in this paper.
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Figure 4: Left: average hadron mulfiplicity per single QCD scattering e”e* — q7. Right: Root square
mean of the hadron energy per single QCD scattering e~ et — qf, where Enpgr = Eow/{Npgar) is the
average hadron energy per scattering. Dots in both plots are ertructed via MadAnalysis v1.8.3{ [53]
by simulations with MadGraph v2.7.0 [54] plus Pythia v8.2 [55], the line in the left-hand plot displays
Eqg. (28). Results are erpressed as a function of the center-of-mass energy of the scattering in GeV,
to erport them to our cosmological picture we simply substitufe GeV ~ Adxf: by m, = g.f, and use

Eow = /3% Thue f.
which is valid up to a relative order ['}f'pijm:l_l < 1.

4.4 Hadrons from string fragmentation: multiplicity and energy

The fluxtubes connecting a quark or gluon to the wall will fragment and form hadrons, singlet
under the new confining gauge group. We would now like to determine:

# The number of hadrons formed per fluxtube.

o The momenta of said hadrons.

Collider analogy. We start by noticing that the process of formation of a fluxtube, in our
picture, is analogous to two color charges in an overall-singlet state, TC; and 4, moving apart
with a certain energy Ecn, where Ecy = /3 %Vwp Toue f in the modelling of Sec. 4.3, This
physical process appears entirely analogous to what would happen in a collider that produces a
pair of techniquanta of the new confining force, starting from an initial singlet state. In light of
this observation. we then decide to model the process by analogy with a very well-studied process
observed in Nature, that of QCD-quark pair production at electron-positron colliders, where
the analogy lies also in the fact that the initial state electron-positron pairs is in a color singlet
state. Needless to say, a BSM confining sector needs not behave as (QCD in terms of number and
momenta of hadrons produced per scattering, see e.g. [52]. However, QCD constitutes a well
studied and tested theory, so that we find it reasonable to use it as our benchmark. Moreover,
we anticipate from Sec. 8 that our final result for the cosmological abundance of hadrons, in
the assumption of efficient-enough interactions between them and the SM, will only depend on
the initial available energy Eqy. This suggests that, within that assumption, our final findings
hold for confining sectors that distribute this energy over a number of hadrons different from
QCD.

Numerical simulations. We use Pythia v8.2 [55] interfaced to MadGraph v2.7.0 [54] to sim-
ulate the process e~e* — gq for different center-of-mass energies, and MadAnalysis v1.8.34 [53]
to extract from these simulations both the total number of hadrons produced per scattering
and their energy distribution. We thus recover known (QCD results and display them in Fig. 4.
We translate them to our picture by replacing the units of a GeV~ 4w f_ used by Pythia, with

10



the generic mass of a composite state m, = g,f, where 1 < g, < 47 is some strong effective
coupling. These results can be summarised as follows:

# The number of hadrons produced per fluxtube grows logarithmically in Eqy.

e The distribution of hadron energies is such that its root square mean coincides, to a
percent level accuracy, with the average energy per hadron

- - — ECM
hadr (Noats)

(26)

This will support, in Sec. 8.3, our simplifying assumption that all hadrons produced by
the string fragmentation carry an energy of order . ;.

Results from the literature. The multiplicity of QCD hadrons from various scattering pro-
cesses has been the object of experimental and theoretical investigation, since the late 1960s [56].
We now leverage such studies both to check the results of our simulation and to obtain ana-
Iytical control over them. Collider studies have typically focused on the multiplicity of charged
QCD resonances per scattering, (n.,). In particular, works such as [57, 58] have carried out
the exercise of collecting the most significant measurements of (ngy) and ‘filling’ the missing
phase space — not covered by detectors — with the output of MC programs, thus obtaining
a full-phase-space quantity. We take as our starting point the result provided in [58] from pp
collisions, which reads

Eou +c 14::rg2

L

E, E,
(nch)(Ecw) = a + blog o +dlog’ =, (27)

with (a, b, ¢,d) = (0.95,0.37,0.43,0.04). Here, as already explained, we substituted the normal-
isation of a GeV with m, = g.f.

Our modelling. To obtain the total number of hadrons from ete— collisions we proceed
as follows. First, most hadrons coming out from hard scatterings consist in the lightest ones,
i.e. the pions. Second, the total number of pions produced is very well approximated by
3({n.p) /2, because of isospin conservation. By the first argument, this coincides with very good
approximation to the total number of hadrons produced. Third, the multiplicity of composite
states from ete~ collisions has been found to roughly match the one from pp collisions, upon
increasing the e*e~ energy by a factor of 2, see e.g. Sec. 2.2 in [59]5. We then model the total
number of composite states produced, per string fragmentation, as

N7 (Ec) ~ %{nch) (2Ecw) exp(—3m, /Ecu) + 1, (28)

where we have multiplied by an exponential and added one to smoothen ﬁﬁm“E(Ecu} to 1 as
Ecw —+ m,, because this physical regime was not taken into account in[58]. In the left-hand
panel of Fig. 4 one sees that Eq. (28) reproduces the results of our Pythia simulation for Ey,
smaller than a few TeV rather well. This was to be expected since Eq. (27) was determined
in [58] from fits to data up to that energy. It is not the purpose of this paper to improve on
this fit, as stated above, we simply use the above results as a check of our Pythia simulation.

*This is qualitatively understood by the fact that, in purely leptonic initial states, there is more energy
available to produced hadrons, while in the case with protons in the initial state much energy is carried over by
the initial hadron remnant.
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4.5 Enhancement of number density from string fragmentation

Production of composite states. Prior to (p)reheating, we then have a yield of composite
states given by the yield of strings, which can be estimated from Eq. (13), multiplied by the
number of composite states per string

N3 (o) + 95 (N3 (Ecu) — 1)
Gro

where N;,“ing{ECM] is given by Eq. (28) and Eqyy = /3 Yop Tiue f in Eq. (23). The —1 we added
to the factor multiplying g, accounts for the fact that, if the final composite states produced
by string fragmentation do not undergo other additional interactions, then glueballs decay to
the SM and do not contribute to the final vield of ay composite state of quarks. The yield of
composite states ¢ then reads

. 39
K—atrmg — 429 , Eﬂg}

_ . T \* T,
ch+atnn5 =Y DSC frstring (%) » logs (’Y'PTM) (30)

The appearance of Ypg in Eq. (30) accounts for string formation from both quarks and gluons.
Hence, not only is the number of ¢’s enhanced by the string fragmentation, relative to the case
with no confinement, but also by the possibility of gluons to form strings. K=t'"¢ and Y$C+Em“5
are plotted in Fig. 8.

Highly boosted in the plasma frame. These hadrons schematically consist of two equally
abundant groups. Hadrons in the first group, which for later convenience we call ‘Population
A’, move towards the bubble wall with an average energy

_ECM — ':‘.flwpf
N3 (Ecu) ~ N3™™%(Eca)’

Epp =27, (31)

where we have boosted the energy per hadron of Eq. (26) to the plasma frame with the -+, of
Eq. (25), and also used Eqgs. (23) and (29). Hadrons in the second group move, in the wall frame,
towards the bubble wall center, and their energy in the plasma frame is negligible compared
to (31). Note that if only one hadron is produced on average per every string, then it would
roughly be at rest in the center-of-mass frame of the string, with an energy (mass) of order
Ecy. In the plasma frame, its energy would then read E, ~ v, Fou = Ywpf/2. As we will see
in Sec. 8, the impact of this hadron on the final yield would then be captured by our expressions.

Following this first stage of string fragmentation, the composite states, and/or their decay
products, can undergo further interactions with remnant particles of the bath, preheated or
reheated plasma, and among themselves. Such interactions may change the ultimate yield of
the relic composite states. Before taking these additional effects into account in Sec. 8, in the
next sections we complete the modelling we proposed above, by describing the behaviour of the
ejected quarks and deriving the Lorentz factor of the wall, .

4.6 Ejected quarks and gluons and their energy budget

So far we dealt with what happens inside the bubble wall. The process we described apparently
does not conserve color charge: we started with a physical quark or gluon with a net color
charge entering the bubble, and we ended up with a system of hadrons which is color neutral.
Where has the color charge gone?
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The necessity to eject a quark or gluon. To understand this, it is convenient to recall the
physical modelling behind the process of string fragmentation that converts the initial fluxtube
into hadrons, see e.g. the original Lund paper [60]. When the fluxtube length, in its center-
of-mass frame, becomes of order f~!, the string breaks at several points via the nucleation of
quark-antiquark pairs from the vacuum. Now consider, in our cosmological picture, the quark-
antiquark pair nucleated closest to the bubble wall. One of the two — say the antiquark —
forms a hadron inside the wall. The only thing that can happen to the quark is for it to be
ejected from the wall, because of the lack of charge partners inside the wall. This process,
somehow reminiscent of black hole evaporation, thus allows for charge to be conserved. The
momentum of the ejected quark, in the wall frame, has to be some order-one fraction of the
confinement scale f, because that is the only energy scale in the process. For definiteness, in
the following we will take this fraction to be a half. This picture is visualized in Fig. 3, and it
is is analogous if TC; is a gluon instead of a quark.

Energy of the ejected quark or gluon. One then has one ejected quark (at least) or
gluon per fluxtube, thus per quark or gluon that initially entered. Therefore, the number of
techniquanta outside the bubble wall does not diminish upon expansion of the bubble. This
population of ejected techniquanta is energetically as important as that of hadrons inside the
bubble. Indeed the energy of an ejected quark or gluon (or quark pair), in the plasma frame,
reads

Eg b = Yupf- (32)
This is of the same order as the total energy in the hadrons from the fragmentation of a single
string, )
Ny (Eox) !

L 9 Eﬁ,p = ’Y'PE! EEE}
obtained by multiplying E ;, of Eq. (31) times half of the total number of hadrons produced
per string (i.e. we included only the energetic ones). The population of ejected techniquanta
cannot therefore be neglected in the description of the following evolution of this cosmological
system.

tot
Exp =

5 Bubble wall velocities

The wall boost in the plasma frame, 7, ,, affects many key properties of our scenario, from
the ejection of techniquanta to the mumber and energy of the hadrons produced by string

fragmentation. It is the purpose of this section to study the possible values it can take over the
PT.

Final results. As bubbles are nucleated and start to emlarge, v, starts growing as well.
If nothing slows down the bubble-wall acceleration, then =, keeps growing until its value at
the time of bubble-wall collision, 7 "*"*¥. Sources of friction that could prevent this runaway
regime are given by the equivalent, in this scenario, of the so-called leading order (LO) and
next-to-leading order (NLO) contributions of [61] and [62] respectively. We find it convenient

to report right away our final result for the maximal possible value of -, .

. Ly NLO
Yo = MIn[r2"™™, Yop s Yep |
0.013 T... M, 70 3
—:Min[l.?( )"‘ mue TTPL g o o 103 e - ( / )] (34)
o/ ff 0.01 g5 + 79q \ True

In the last equation we have anticipated the quantitative dependence of y** on the model
parameters, where the first entry is associated to 7}"™*"®, and the second to T_I;f' which is

1 1
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always smaller than ";‘fg"o in the parameter space of our interest. We learn that in the regime
of very strong supercooling and/or of very large confinement scale f, which will be the most
relevant one for the DM abundance, bubble walls run away. The behaviour of 7, is illustrated

in Fig. 5.

The impact on GW. The behaviour of -, also has important consequences for the gravita-
tional wave signal from the phase transition [63, 64]. If y2%* = 4["*"=Y then the vacuum energy
is converted into kinetic energy of the bubble walls [65]. The gravitational wave (GW) spectrum
sourced by scalar field gradient is traditionally computed in the envelope approximation [66-68].
However, the latest lattice results [69, 70] suggest an enhancement of the GW spectrum at low
frequency due to the free propagation of remnants of bubble walls after the collision, the IR
slope o k? becoming close to oc k. This confirms the predictions from the analytical bulk flow
model [71, 72]. Note that the IR-enhancement is stronger for thick-walled bubbles [69], which
is the case relevant for nearly-conformal potential leading to strong supercooling, and thus for
the PT considered here. (Instead, for thin-walled bubbles, after collision the scalar field can
be trapped back in the false vacuum [11, 34, 73]. Instead of propagating freely, the shells of
energy-momentum tensor remain close to the collision point and dissipate via multiple bounces
of the walls.) Oscillations of the condensate following the PT can provide an additional source
of GW [74]. However, instead of 3! the time scale is set by the inverse scalar mass ~ f~! and
the signal is Planck-suppressed oc 8/ f [75].

If instead, 7™ = '}f_';']? , the vacuum energy is converted into thermal and kinetic energy of the
particles in the plasma already prior to the bubble wall collision. The contribution from sound
waves or turbulence [63, 64], however, in supercooled transitions is not yet clearly understood.
Indeed, current hydrodynamical simulations, which aim to capture the contribution of the bulk
motion of the plasma to the gravitational wave signal, do not yet extend into the regime in which
the energy density in radiation is subdominant to the vacuum [76]. And analytical studies of
shock-waves in the relativistic limit have just started [77]. In any case, we expect supercooled
transitions to provide promising avenue for detection in future GW observatories.

We now proceed to a detailed derivation of Eq. (34).

Linear growth. The energy gained upon formation of a bubble of radius R is Fpupble =
%IRE'&VM , where AV, q. is the difference between the vacuum energy density outside and inside
the bubble. The energy lost upon formation of a bubble of radius R is Eyan = 4JTFR2’}"PCFW1
where o, is the surface energy density of the wall (surface tension) in the wall frame. If a
bubble nucleates and expands, its energy Ep,phe is transferred to the wall energy E, .. As
soon as a nucleated bubble contains the region ¥ =~ f, neither AVys; nor oy, change upon bubble
expansion. Indeed both are a function of the bubble wall profile, which does not change in that
regime (also see Fig. 1). We thus recover the well-known property that 4, grows linearly in K,

R
'Y'P=ENTMR, (35)

where Ky is a normalisation of the order of the minimal radius needed for a bubble to nucleate,
and where in the second relation we have used Ry = L, ~ Tl because we assumed the
nucleated bubble to contain the region y ~ f. A more precise treatment can be found, e.g. in
the recent [65], which confirms the parametric dependence of Eq. (35).

At collision time. In a runaway regime, i.e. for small enough retarding pressure on the
bubble walls, +,, at collisions then reads

10 (n.m )é Thne My

naway _, -1
A e e e

(36)
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Figure 5: The Loventz factor of the wall at bubble percolation for various values of f and amounts
of supercooling, assuming 3/H = 10. For erfreme supercooling (on the left side of the plot) .. is in
the runaway regime. In this regime, larger f or smaller Ty, leads to a smaller distance over which the
bubble can accelerate. The former because of the smaller Hubble horizon and the latter due to the larger
bubble size at nucleation. Therefore 4., decreases for more supercooling.

where 3-! is the average radius of bubbles at collision, H ~ A2 _/(v/3M,,), and the value
B/H = 10 is a benchmark typical of supercooled phase transitions [17, 19, 24, 28, 78-80], which
we employ from now on.

The bubbles swallow most of the volume of the universe, and thus most techniquanta, when
their radius is of the order of their average radius at collision ~!. Therefore, in the regime
of runaway bubble walls, the relevant -+, for all the physical processes of our interest (hadron
formation from string fragmentation, quark ejection, etc.) will be some order one fraction of
Yo . For simplicity, in the runaway regime we will then employ the simplifying relation
Yop = Yup . This will not only be a good-enough approximation for our purposes, but it will
also allow to clearly grasp the parametric dependence of our novel findings. Moreover, a more
precise treatment, to be consistent, would need to be accompanied by a more precise solution
for v than that of Eq. (35), i.e. we would need to specify the potential driving the supercooled
PT and solve for 7,,. As the purpose of this paper is to point out effects which are independent
of details of the specific potential, we leave a more precise treatment to future work.

5.1 LO pressure

Origin. By LO pressure we mean the pressure from the partial conversion — of the quark’s
momenta before entering the bubbles — into hadron masses (see [61]), plus that from the
ejection of quarks.

Momentum transfer. The momentum exchanged with the wall, upon hadronization of a
single entering quark plus the associated quark ejection, reads in the wall frame

-&FLD:Ein_'lI'IEi_&mizn_‘_EajEf’ EE?}

where Ej, =~ 3 YupTnue is the energy of the incoming quark, ﬂm?n is the fraction of that energy
that is converted into ‘inertia’ of the string, and E. ~ f/2 is the energy of the ejected quark
or gluon. In the second equality, we have used f_\m?“ ~ E2, ~ 3 Vg Toue f from Eq. (23) and
Yop & f[Toue- Note that Ap,, is independent of p;;,.
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Pressure. In light of Sec. 4.1, we can safely consider a collision-less approach and neglect the
interactions between neighboring quarks. The associated pressure is given by

S & pin LN B (g, + %} e T3 F (38)

{2?]’:]3 elpinl.u"lTnuc :l: ]_ pLD = ']ITE

where g, is the number of internal degrees of freedom of a given species a of the techniquanta,
and in the second equation we have used Eq. (37). Note that, in the absence of ejected particles,
the pressure would have been a half of our result in Eq. (38).

Terminal velocity. The resulting upper limit on -, is obtained by imposing that the LO
pressure equals that of the internal pressure from the difference in vacuum energies,

szpa.nd = c‘l."al:fd 3 EEQ}

and reads

o2

3

((3) gg + 394/4 \Te
We finally remark that Pr, grows linearly in <., unlike in ‘standard” PTs where it is inde-
pendent of the boost. The reason lies in the fact that the effective mass f}.m?“ grows with .,
whereas in ‘standard’ PTs it is constant in 7,,. Our results then imply that, in confining phase
transitions, the LO pressure is in principle enough to ensure the bubble walls do not runaway
asymptotically. This is to be contrasted with non-confining PTs, where the asymptotic runaway
is only prevented by the NLO pressure.®

(40)

5.2 NLO pressure

Origin. The NLO pressure comes from the techniquanta radiating a soft gluon which gets an
‘inertia’ m, in the broken phase [62].

Result. We derive it in detail in App. B. We find

m"}

8(3) Gnr, 18 (1 + F)
T Rm,
where Ch[g, g] are the second Casimirs of the representations of gluons and quarks under the
confining group (if SU(N), Ca[g] = N, Ca[g] = (N? —1)/2N), geonf is the gauge coupling of the
confining group, €. < 1 encodes the suppression from phase-space saturation of the emitted
soft quanta g, important for large coupling ge,,s, M, is an effective mass of the soft radiated
gluons responsible for this pressure, and k., the IR cut-off on the momentum radiated in the
direction parallel to the wall.

Priro = {QQCE [S'] + EE@C‘E[Q]} T"PTE’HCmQ 3 |:41}

Vector boson mass. As we model the masses of our techniquanta as the inertia that their
fluxtube would gain inside the bubble, these masses increase with increasing momentum of
the techniquanta, in the wall frame. The NLO pressure is caused by emission of gluons ‘soft’
with respect to the incoming quanta. Their would-be mass m, upon entering the wall cannot,
therefore, be as large as that of the incoming quanta that emit them, Amip =~ /3 Ywp Toue [
At the same time, the effective gluon mass should at least allow for the formation of one hadron
inside the wall, therefore we assume it to be of the order of the confinement scale, mg ~ f. The
fact that m, does not grow with v, while Am;, does, is the reason why unlike in non-confining
phase transitions, we find here that Pyio and Pop have the same scaling in 7,, and in the
amount of supercooling.

%In our scenario, bubble walls can still run away until collision for some values of the parameters, and we
anticipate they will. Unlike in non-confining PTs, the scaling of our LO pressure with ., implies they could not
runaway indefinitely if there were no collisions.
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NLO pressure is sub-leading. By making the standard [62] choice k, ~ m,, and assuming
EPHQEDHI < 1, we then find that Pypn <€ Pro in the entire parameter space of our interest. Thus,
for simplicity, we do not report the NLO limit on ™ in Eq. (34).

5.3 Ping-pong regime

Condition to enter. For even a single hadron to form inside the bubble, one needs Eqy = mo,
where 7 is the lightest hadron of the new confining sector (e.g. a pseudo-goldstone boson). Via
Eq. (23), this implies

enter m?r

= = ) 42
J-"‘I"ﬂ.:‘ -t ’pr 3T|1u1: f |: }

Contribution to the pressure. For v,, = 'ﬁ";m, which holds at least in the initial stages
of the bubble expansion, the quarks and gluons are reflected and induce a pressure

PIEH. o~ li'.‘E'I‘C,'I!.LI x ﬂp‘m,w ~ T:'?uc"urlwp x ’prTnuc ~ ’YEPTnduc = |:'43}

This is to be compared with Eq. (39), Papand = Cyac f4, which implies the bubble wall could in
principle be limited by this pressure to v, ~ (f/T, wue)?. Nevertheless, as (f/Ty,.)? = 'ﬁf‘”1
this pressure ceases to exist at an earlier stage of the expansion, namely once 7,, = 'ﬁnpm.
Hence the maximum Lorentz factor remains encapsulated by Eq. (34).

Ping-pong regime. In some extreme regions of parameter space, however, one could have
Yoy < ,,';"""_, so that all techniquanta in the plasma are reflected at least once before entering
a bubble. We leave a treatment of this ‘ping-pong’ regime to future work.

6  Amount of supercooling needed for our picture to be relevant

Intuition about the limit of no supercooling. In the limit of no supercooling, one does not
expect the Huxtubes to attach to the bubble wall, but rather to connect the closest charges that
form a singlet and induce their confinement. In other words, in the limit of no supercooling one
expects the picture of confinement to be the one of ‘standard phase transitions’. By continuity,
there should exist a value of Ty, smaller than f, such that the our picture ceases to be valid,
and one instead recovers the more familiar confinement among closest color charges. We now
wish to determine it. In order to do so, we note that the absence of ejected techniquanta is
a necessary condition for the above to hold, therefore we now phrase the problem in terms of
absence of ejected techniquanta.

Rate of detachment of %. We propose and analyse some effects that could lead to fluxtubes
detaching from the bubble walls without ejecting particles. To take place, these effects need
to happen before the end-point of the Huxtube on the wall, 4, ceases to exist, i.e. when the
string breaking inside the bubble has already taken place and a quark is ejected. So we start by
computing the rate ['geen of detachment of 4, the point where the fluxtubes is attached to the
wall, from the wall itself. To estimate it, we again borrow the modelling of the classic paper on
string fragmentation [60]. The distances between the several points of breaking of a given string
(that connects in our case TC; and ¥ ) are space-like. In the frame of each point of breaking,
that breaking is itself the first to happen, a time of order f~! after the string formation. This
therefore also applies to the outermost breaking point in our picture, i.e. that closest to the
wall, whose frame approximately coincides with the wall frame. We remind the reader that the
outermost breaking is the one that nucleates the quark or gluon that is eventually ejected. The
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rate we need can therefore be estimated as the inverse of the nucleation time of the outermost

pair,

Faetor = iy = 1 - (44)

We now enumerate and model effects that could lead to fluxtubes detaching from the bubble
walls without ejecting techniquanta, and compare their time scales with Eq. (44).

1. Flux lines overlap. The faster a bubble-wall, the denser and thus the closer together in
the wall frame are the quarks and gluons entering it. Eventually, they could get closer than
the typical transverse size of a fluxtube dy, ~ f~! [81]. When that happens, the fluxtubes
between different color charges have a non-negligible overlap. We expect that in this
situation it will not be clearly preferable energetically for these strings to attach directly
to the wall. Thus there would be no ejected techniquanta. This situation is of course
realised also in the case of small supercooling f /Ty, in addition to and independently of
the case of fast bubble-walls.

We then obtain a rate of ‘string breaking by fluxtube overlap’, T'overlap, as follows. We
define an effective associated cross section as the area of a circle on the wall, centered on
any % and with radius dy,,

Amrerla.p = ?ngr = ﬂf_ﬂ . |:45}

The associated rate then reads

wel (3)grc To e
Fwacrlap = A—mrecrlapv Nrow = 2 PCET ng f2 3

where nrow = Ywplhirep is the density of techniquanta in the wall frame, gro = gy +3g4/4,
and we have used that they are relativistic v = 1. The condition of no ejected techniquanta
then reads

(46)

26 f
Fmrerla.p = Fdet*,w = Twep .-:::- -
OJro Toue

)3 . (47)

2. The entire Auxtube connecting real color charges, so including its portion in the region
x = x* < f (see Fig. 2), could enter the region y = f before its portions in the region
x = [ break and form hadrons, and eject particles. We see two ways this could happen.

2.1 Attractive interaction between neighboring flux lines. The points % are not
static, because they move by the force exerted by the part of the string which is
outside the wall, in the layer where (x) =~ x*. Defining y4 as the transverse distance,
on the wall, between two 9 points connected by a fluxtube, one has

_ 2
di? Mg f f f

where, consistently with our previous treatments, we have assigned to 4 an inertia
My ~ f. If yx goes to zero in a time shorter than the breaking time Tgetgew ~ f -1
then the two Huxtubes connect and become fully contained in the region y = f
before they break and form hadrons, and thus there are no ejected techniquanta. To
determine this condition, we assume initially static points %, and thus we only need
the initial distance between them yg(t = 0) == (Ywpnircp)~ /2. We then obtain

_ Tauc
Yk (T = Tdetdw) = (TwpPrcp) /> — cgg Tﬂitt,w - (49)

The resulting condition for no ejected quarks reads

1.0 x 10—3( f )9
Gro Tone '

!H.'{t = Tdeft.*,w} < 0= Yup 2 EE'D}
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2.2 Limit of no distortion of the flux lines. When the string portion in the region
¥ = x* < [ has a small enough length dy, the possibility that it is pulled inside
the region ¥ = f could be energetically more convenient than the one of our picture,
where it stays outside and instead energy goes in increasing the length of the strings
that are perpendicular to the wall. The energy price, for the string portion in the
region y ~ y* < f to enter the region y = f, reads in the wall frame

&Epu]l—in.,w = Cqﬁ{fﬂ - X*E:llit = Cqﬁfﬂd* 3 Eﬁl}

where we stress that the length of the string portion d is transverse to the bubble-
wall velocity and therefore is not Lorentz contracted in the process of being pulled
into the bubble. In the wall frame, it reads dg =~ (Vwpfrcp) /® The transition
between ¥ ~ x* < f and x = f is exponentially fast in the proper coordinate s (see
App. A), and happens over an interval (a distance, in the wall frame) L; ~ f~!. The
energy price of Eq. (51) should therefore be compared with the one to stretch two
strings, inside the wall, by an amount L

f )132

AEstretehw = 2Cqqf > Lt/ Yue ~ 2¢q5f (?.'}f—T
wpd nuc

(52)

where we have used that the string length in the expression for E;, Eq. (21), has to

be evaluated in the string center-of-mass frame, and that .. =~ /3 YwpToue/f from

Eq. (24). Therefore, it is energetically more convenient to pull the fluxtube inside
the region ¥ =~ f. and so to have no ejected quarks, if

T 3

ABpuin < A s 5 ey S 8593 (<57) -

Contrary to the previous two possibilities to have no ejected quarks, Egs. (47) and

(50), the possibility in Eq. (53) imposes an upper limit on ,,. We anticipate that,

in the regimes of supercooling interesting for our work To../f < 1, Eq. (53) cannot
be satisfied consistently with 7, > 1, so that it is not relevant for our work.

(53)

Standard picture recovered in the limit of small supercooling. As expected, we see
that all conditions Eqs. (47), (50) and (53) can be satisfied for Ty, slightly smaller than f,
recovering our initial intuition that there should be no ejected techniquanta for little supercool-
ing, by continuity. In Fig. 6, we show that Eq. (53) is the strongest condition, so that we do
not expect flux line to be distorted for Thu/f = 0.1. In that regime, we expect that neither
ejection of techniquanta nor string fragmentation should take place, and that the standard pic-
ture of quarks and gluons confining with their neighbors should be recovered (which we dub
as ‘standard phase transition’ in Fig. 6). By reversing the logic, we expect the new effects
of our study, namely flux line attached to the wall, string fragmentation, quark ejection and
deep-inelastic-scattering, to take place as soon as

Towe _ 006 (702 Coc )
f ~ fL_f Oro 0.01 !

where L is the length scale over which the scalar field varies dramatically, introduced along
Eq. (52).

The second way to satisfy the conditions of Eqs. (47) or (50), namely that of very large
“Jwp, i8 the one we care about in the regimes of very large supercooling f/Thu: 3 1 relevant for
our study. However, as shown in Sec. 5, the bubble walls never become fast enough to satisfy
Eqgs. (47) or (50), so that ejected quarks and gluons are always present in our picture.
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Standard picture recovered at small supercooling
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Figure 6: In the blue region labelled ‘standard phase transition’, it is not energetically favourable for the
flur lines to be distorted, cf. Eq. (53). Moreover, on the right of the dashed line one should account for
the overlap of neighbouring flur lines, cf. Eq. (47). In these regions we expect the incoming techniguanta
to confine with their neighbours as in the standard picture of phase transitions that are not supercooled,
i.e. without the new effects pointed out by this study. Conversely, string fragmentation, ejection of
techniquanta and deep inelastic scattering should be taken into account in the study of any confining
phase transition where Thy/f is smaller than about 0.1.

Averaged quantities only. @ We conclude this section by stressing that all the conditions
above refer to averaged quantities, and therefore do not take into account the leaks from tails of
distributions. These leaks could for example imply that there are a few strings that hadronise
without ejecting particles, even if all conditions Eqs. (47), (50) and (53) are violated. As these
strings constitute a small minority of the total ones, these effects have a negligible impact on
the phenomenology we discuss. They could however be important in studying other situations
of supercooled confinement. Though certainly interesting, the exploration of these effects goes
beyond the scope of this paper.

7 Ejected quarks and gluons

7.1 Density of ejected techniguanta

In the wall frame, since we have one ejected quark or gluon per each incoming one, we find

Nejw = Mrcw(Tej) = Twp(Tei)rep (55)

where np., = grcC(3)T3 . /m? is the density of the diluted bath in the plasma frame. The
density of ejected techniquanta then depends on the time passed since bubble wall nucleation,
or equivalently on the bubble radius at the time of ejection re;, via vup(r) (see Sec. 5). In the

plasma frame, and at a given distance D from the center of the bubble, we then have”

neio(D) = 22, (r) (72 ) v (56)

where we have included the surface dilution from the expansion between the radius at which a
given quark has been ejected, rg;, and the radius [) where we are evaluating ngj .

"The factor 2 arises when we boost the quark current (Yus nirc,p, Yop 8 rep), with § = &, from the wall to
the plasma frame.



Radial dependence. It is convenient to express ngp as a function of the radial distance
x from the bubble wall in the plasma frame, where for definiteness = 0 denotes the position
of the wall and x = L the position of the techniquanta ejected first (which constitute the
outermost layer). In order to do so, we determine the relation between the position z of a quark
and the radius rg;(x) when it has been ejected. We assume that the bare mass of the quarks
is small enough such that they move at the speed of light, like the gluons. The wall at = = 0,
instead, moves at a speed vyan = 1 —1/ {21'3?} (we have used the relativistic limit v,, > 1),
dependent on its radius. The coordinate  of a given layer of ejected particles can then be found
by integrating the difference between the world line of an ejected particle and that of the wall,

tn tn 1 1 1
o= [ v = f S = T g~ 5) (57)

oj /]

where we defined ¢, and t; as the times when the bubble radius is respectively IJ and r;, and
we used Yup(t) = Thuct, cf Eq (35), valid up to relative orders 1/~2 wp & 1. It is convenient to
rewrite Eq. (57) as

D
We finally obtain
277 () 272 D?
. T} = il n-T ﬂ,T f 59
eip(%) = (1+272_Daf %" (14272, Da) " (59

where the last equality is valid as long as bubbles run away, i.e. as long as Eq. (35) v, = Ty
holds.

Thickness of the layer of ejected technigquanta.  Owur result Eq. (59) implies that the
highest density, of ejected techniquanta, is located in the shell within a distance of the bubble
wall
L~ ;
P 2T2 D

T

(60)

The density of ejected quarks nej p(x) extends to x = L, i.e. to the outermost ejected layer,
that we now show to be much larger than LEE Indeed, Lejp can be related to the time tge of
ejection of the first techniquanta [Dorrespondmg t0 Yop = My [ Thye, Eq. (42)). Using t; = fay
and tgoy ~ my /T2 ., we find

L 1 1

ej.p = m 7 (61)

where for simplicity we have assumed m, ~ f as in QCD. As long as L > LE_j s 88 it holds
for our estimate Eq. (61), the value of L; ;, does not affect any of the results of this paper. The

density profile of Eq. (59) is shown in Fig. T.

Sanity check. As a check of our result Eq. (59), we verify that one has one ejected quark
or gluon per each one that entered the bubble. Indeed, we compute

Lejp
4w D? i dmn,ea p(x) = xD%mm (62)

where we have assumed D > f/T2,., i.e. we have placed ourselves deep in the regime where
hadrons can form inside bubbles (see Eq. (42)). Equation (62) guarantees that the number of
ejected techniquanta in the layer of thickness L; , is equal to the total number of techniquanta
that entered the bubble up to radius D.
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Figure 7: The density of the ejected quarks in front of the bubble wall as a function of the distance
= in front of the bubble wall, Eq. {59), for an ezample parameter point. Here we have used the relation
Yup ™ DT qye. The distance to the outermost techniquanta Loy p == 1/ f is also shoun.

Interactions between ejected quarks. Let us finally comment why, we think, interactions
among the ejected techniquanta cannot much alter their density. The density of the particles
in the incoming bath does not change out of their own interactions. In the wall frame, both
the density and the relative momentum of the ejected techniquanta are of the same order of
those of the particles in the incoming bath. Therefore, we analogously expect that the density
of the ejected techniquanta would also not change after ejection. Since what will matter for
the following treatment is the energy in the ejected techniquanta, rather than how this energy
is spread among the various degrees of freedom. we content ourselves with this qualitative
understanding and leave a more precise treatment to future work.

7.2 Scatterings of ejected quarks and gluons before reaching other bubbles

Before possibly reaching other expanding bubble-walls and their ejected techniquanta, ejected
quarks and gluons could undergo scatterings with particles from the supercooled bath at tem-
perature Th,.. and with techniquanta ejected from other bubbles. In this section we study the
effects of these scatterings.

Ejected techniquanta are energetic.  As soon as a bubble occupies an order one fraction
of its volume at collision, the total energy in ejected particles is much larger than that in the
supercooled bath outside the bubble. Indeed, we have seen that for each quark or gluon in the
supercooled bath that enters a bubble, there is at least an ejected one, and that the energy
ejected per each incoming particle is much larger than the energy per each particle in the bath,
Eeip = Ywpf & Thue, Eq. (32). Assuming the degrees of freedom in quarks and gluons are not
an extremely small fraction of those in the diluted medium, then the diluted medium outside
the bubbles does not have enough energy to act as a bath for the ejected particles. This implies
that most ejected particles keep most of their energy upon passing through the supercooled
bath.

Energy transfer between ejected techniquanta and diluted bath. By reversing the
logic above, the ejected particles can deposit in the supercooled bath an energy much larger
than its initial one. Pushing this to the extreme, the ejected techniquanta could make the bath
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move away from the bubble wall, thus making our treatment so far valid only in the first stages
of bubble expansion. In order to assess this, we estimate the rate of transferred energy between
ejected techniquanta and particles from the bath outside the bubbles,

A Frrna tim
[ej-bath = Tej dﬁE ﬂE REJ[ cfi— — (63)
AFmin

where ng; is the density of ejected techniquanta, AFE is the energy transferred per single scat-
tering, and where in the second equality we have taken the limit of relativistic particles v — 1
and small energy transfer per single scattering AF, so that the Mandaelstam variable t can he
expressed as t =~ —AFE?. The quantity do/dt depends on the specific model under considera-
tion, in particular it depends both on whether the ejected particle is a quark or a gluon, and on
the identity of the scatterer in the bath outside the bubbles. For definiteness, we model it as
the cross section for fermion-fermion scattering mediated by a light vector with some effective

coupling +/4dmag,

do  dma’s

i— . [it}

dt t2 (64)
‘We then obtain .

Sma
I'ejbath = g eff (65)
_tIR

I'ejbatn is of course not Lorentz invariant, it depends on the frame via the density of ejected
techniquanta ne; determined in Sec. 7.1.

Impact on diluted bath. The average energy transferred to a particle in the diluted bath
at position D, when this particle goes across the layer of ejected techniquanta (so before it
reaches the wall and initiates the processes described in Sec. 4), then reads

Lajp

Qejbath = A dr e path p(T) 5 (66)

where we remind that the spatial coordinate x is the distance between a given layer of ejected
techniquanta and the wall at = 0. Upon use of Egs. (65) and (59), we can then evaluate the
average energy transferred to an incoming particle from the diluted bath, Eq. (66), as

smaly Dnrcp
3 v —tmm

Note that the product D) n.¢, is Lorentz-invariant, so that ¢} pah is indeed a Lorentz-invariant
quantity. To learn whether particles from the diluted bath are prevented from entering the wall,
because of the interaction with the ejected techniquanta, we compare the energy they exchange
with them upon passing their layer with their initial energy in the wall frame®, E; w = 3Vwplouc,

QEJ—bBth (3} 2 Orc TnucD Tnuc
E':,w O ’pr W _tIR

The novel physical picture we described in Secs. 4 and 7 is valid as long as Q; path/Fiw < 1.
As seen in Sec. 5, 7w, initially grows linearly with the bubble radius, ., =~ Thue D, until the
LO pressure possibly becomes effective. It will turn out in Sec. 9 that the runaway regime of
linear growth is the one relevant for the phenomenology we will discuss. In that regime, the
condition Qg path/Fiw < 1 translates into Ty, //—tm < 1.

(ej-bath = (67)

(68)

®Had we chosen another frame, we would have had to include the wall velocity in the condition.
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IR cut-off. The quantity —tp is the IR cutoff of the scattering, —t;x = -m.?h with my

some effective mass of the mediator responsible for the interactions that exchange momentum.
In the absence of mass scales, which is the case for example for the SM photon and for the
gluons, the effective mass my is equal to the plasma mass of these particles in the thermal
bath. If the only bath was the diluted one, one would have m%thmm ~ Qe o p/ (Erop) ~ T
(see e.g. [82]). However, the process of our interest here happens in the much denser bath
of ejected techniquanta, nep 3 nreop, so that we indeed expect m%,‘thﬂrm - Tfm1 so that
(Jej-bath/Eiw < 1 and our picture so far is valid. More precisely, the screening mass for non-
equilibrium systems scales as [83] (f(p) is the non-equilibrium phase space distribution of the
particles in the system)

f(p) o Meip  Twe 2

"~ i)~ TTome e > oo
where we have used (Eg;,) ~ 7,.f and ng, ~ (D/Lgp)nrep ~ D*T5. ~ 7. (D)T2,.
Equations (68) and (69) teach us that, in the regions of parameter space where v, > f/Thuc,
the energy received by each particle in the diluted bath, from scatterings with the ejected
techniquanta, is much smaller than their energy in the wall frame E; ., =~ 3 YupTnue. Since Ej 4
was the crucial input quantity for our treatment in Sec. 4, the picture that emerged there is not
affected by these scatterings.

m%f,thmm = Oroef (69)

Energy transferred to techniquanta ejected from other bubbles. Finally, before
ejected techniquanta can possibly enter another expanding bubble, they also have to pass
through the layer of the techmiquanta ejected from that other bubble. To investigate this,
one can use the result derived above, Eq. (67), with the specification that now ) is the maxi-
mal radius reached on average by expanding bubbles, because the shells of ejected quarks and
gluons meet just before the bubble walls do. We then find that the average energy transferred
is much smaller than the energy of an ejected techniquanta in the plasma frame ~ ~, _f,

QEJ-Ed — 8‘:{3}&2 g Tnu.c TI'.I.IJ.I:-D Tnuc
Yopf 3w oHTC f Yep V—Im

Hence, for the purpose of determining the average energy of ejected quarks when they enter
another bubble, one can safely ignore the interactions between the two shells.

< 1. (70)

7.3 Ejected techniquanta enter other bubbles (and their pressure on them)

Ejected techniguanta are squeezed. In the plasma frame, all ejected techniquarks are
contained within a shell of length given by Eq. (61) Lgjp ~ 1/f, and most of them lie within a
length given by Eq. (60) Lﬁfp ~ 1/(T2,.D) < 1/f. In the frame of the wall of the bubble they
are about to enter, these lengths are further shrunk, so that ejected techmniquarks are closer to
each other than 1/f by several orders of magnitude. Therefore we expect no phenomenon of
string fragmentation when they enter other bubbles. So each ejected particle, upon entering
another bubble, forms a hadron with one or more of its neighbours. This also implies there is
no further ejection of other techniquanta. Each of these hadrons carries an energy equal to that

of the techniquanta that formed it, of order +,,f in the plasma frame.

Contribution to the retarding pressure. This conversion of ejected techniquanta into
hadrons results in another source of pressure on the bubble walls, that acts for the relatively
short time during which the bubble wall swallows the layer of ejected techniquanta. In the
frame of the bubble wall that they are entering, the energy of each ejected quark or gluon reads
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Egjwa = ETEP f. We then proceed analogously to what done in Sec. 5.1, and compute

Apjly = Eejma — \/ EZ, (71)

c(a} (gﬂ' + _) TWP nucf: Em}
where we have used Am2, ~ 2, ngjwo ~ E’f“nﬂp and, for simplicity, the peak value ngp =~
ETWRTC p of Eq. (59). The population of techniquanta ejected from other bubbles thus exert,
on a given bubble wall, a pressure comparable to that exerted by the techniquanta incoming
from the bath Eq. (38). Therefore, the pressure from ejected techniquanta does not alter the
picture described so far — a fortiori — because it is exerted only just before bubble walls collide
and not throughout their entire expansion.

PE’ "_—'nengﬁpfjﬂ_

7.4 Ejected techniquanta heat the diluted SM bath

In Sec. 7.2 we found that the scatterings between ejected techniquanta and the diluted bath
do not quantitatively change the picture of string fragmentation described in Sec. 4. These
scatterings may however affect the properties of the particles, in the diluted bath, that do not
confine. These particles include all the SM ones that are not charged under the new confining
group, so that for simplicity we denote them as ‘SM’. By a derivation analogous to the one that
lead us to Eq. (67), we find that the average energy they exchange with the ejected quarks reads

2
8mag,, D Nrop

Qaj—sM it 3 v"rTm SM gm(fanug) f.

where we have used TyyeD =~ 7yp and —tg ~ T“m'f.,], [ f, cf. Eq. (69). We have denoted by asu
an effective coupling between SM particles and the techniquanta, which is model-dependent.

Now assume the techniquarks carry SM charges, e.g. as expected in composite Higgs models.
Then, in the wall frame, the fractional change of energy is of course similar to that derived in
Eq. (68) for the incoming techniquanta. However the incoming techniquanta next undergo string
fragmentation, and Eq. (68) does not affect that energy balance for v,, » f/Tuu. In other
words, string fragmentation renders this energy transfer irrelevant for the techniquanta, while
the SM particles neutral under the confining group just proceed undisturbed so they keep track
of it. In particular, Qgj-sn, is much larger than the latter energy in the plasma frame ~ Tpy,,
and may even be slightly larger than the confinement scale f.°

This need not be the case, however, as the new techniquanta may be very weakly interacting
with the SM. As they cannot interact too weakly, otherwise our assumption of instantaneous
reheating would not hold, for simplicity we ignore this case in what follows and we assume that
some techniquarks carry SM charges.

(73)

8 Deep Inelastic Scattering in the Early Universe
The physical picture described so far results in a universe that, before (p)reheating from bubble
wall collisions, contains three populations of particles.

s Population A. Arises from hadronisation following string fragmentation. It consists of
N;,mngj? hadrons per quark or gluon in the initial bath, each on average with energy

Yoo f

9 As already anticipated, in the regime of interest for DM phenomenclogy we will find that bubble walls run
away, so that 750> is (much) smaller than ~ 107%(f/Tuuc)?, see Eq. (34). Note also that, for Eq. (73) only,
fre = 3g,/4, i.e. the gluon contribution to heating the SM is negligible because they cannot carry SM charge.
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in the plasma frame, and of roughly the same number of hadrons with much smaller
energy. (The latter can be thought as coming from the half of the string closer to the
center of the bubble wall.) The physics resulting in this population is described in Sec. 4,

see Eq. (31) for E4 and Eq. (28) for N3™™(Ecu = v/37wp Tnue 1)-

# Population B. Comes from the hadronisation of the ejected techniquanta. This popula-
tion consists in ~ one hadron per quark or gluon in the initial bath, each with energy

Ep =~ 7Yuf. (75)

So this population carries an energy of the same order of that of population A. Its physics
is described in Sec. 7, the energy Ep is that of the initial quark or gluon, Eq. (32).

# Population C. Consists of the particles that do not feel the confinement force, that we
denote ‘SM’ for simplicity, each with a model-dependent energy given by Eq. (73), and
whose total energy is much smaller than that in populations A and B.

The direction of motion of all these populations points, on average, out of the centers of bubble
nucleation.

Hadrons from both populations A and B have large enough energies, in the plasma frame,
that showers of the new confining sector are induced when they (or their decay products)
scatter with the other particles in the universe and/or among themselves. These deep inelastic
scatterings (DIS):

# Increase the number density of composite states.

& Decrease the momentum of each of these states with respect to the initial one |py|.

Hence, such effects need to be taken into account to find the yield of any long-lived hadron.

The evolution of our physical system would require solving Boltzmann equations for the
creation and dynamics of populations A, B and C in a universe in which preheating is oc-
curring, and of the interactions of populations A, B and C among themselves and with the
preheated particles produced from bubble wall collisions. While certainly interesting, such a
refined treatment goes beyond the purpose of this paper. In this Section, we aim rather at a
simplified yet physical treatment, in order to obtain an order-of-magnitude prediction for the
yield of long-lived hadrons.

8.1 Scatterings before (p)reheating

‘We begin by considering the interactions among populations A, B and C.

Number densities of scatterers. Let us define Ly, with X = A, B,C, the effective
thickness of the shells containing populations A, B, and C respectively. For example, Lp, =
L;!TP of Eq. (60). We know that population A(B) consists on average of N;tﬁ"gfﬂ hadrons (one
hadron) per each quark or gluon in the initial diluted bath, and that population C is the initial
diluted SM population. By conservation of the number of particles, we then obtain the number
densities )

Kstrme D D D

» —T ng ~ —7n n —— T6
2 3LA TO1 B ELE TO o= 3L Tapy, |: }

where D) is the average radius of a bubble at collision and we have used Ly < D.

ny =
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Energy transferred between scatterers. We now determine the average momentum,
transferred to a particle from population X, upon going across a shell of population Y. In order
to do so, we use our result Eq. (65) for the rate of transferred energy and compute

Aol 3 Toue
Qvox = T'yvoxLy ~nyLy v"%x: =~ SE'ET }%2{_?9‘( e Yoep Truc 5 (77)

where ax_y is the effective interaction strength of the scatterings of interest, gy the number of
degrees of freedom in density of population Y (where we include a factor of N;trmgjﬂ for Y =
A), and we have used the relation T}, D) = -, valid in the runaway regime. We conclude that:

s Populations A and B. The energies of the hadrons of population A and B in the plasma
frame, respectively 7, f fNEm“g and 7, f, are both much larger than the energy they can
exchange with any of the other baths among A B,C, by a factor that scales parametrically
as f/Tue or larger (because for all populations we have —t;y ~ n/(E) > T2 ., see the
discussion in Sec. 7.2). Therefore these elastic scatterings are not effective in reducing the
energy of the hadrons of either population A or population B.

# Population C. On the contrary, (J4 p_.c can be of the same order of the energy of each
particle in population C, Eq. (73), which therefore are significantly slowed down by these
interactions. Importantly for our treatment, this does not alter the fact that population
C was energetically subdominant with respect to populations A and B.

No significant DIS between populations A, B and C. Finally, we determine whether
any of the scatterings among particles in populations A .B,C could result in significant hadron
production, via deep inelastic scattering. A single scattering event potentially results in a shower
of the new confining sector if the exchanged momentum is larger than the confinement scale,
t2 > f2. This condition is allowed by kinematics, because the center-of-mass energy of the
scatterings between any of the populations above is much larger than f. A significant amount
of DIS happens if the DIS scattering rate FEEJ{ of a particle from population X, upon going
across a shell of population Y, is much larger than the inverse of the length of the shell Y. We
then compute

Y8y Ly ~ nyox.yv Ly ~ %aﬁyﬁﬁ . (78)
where again we have used the runaway relation T,,.I) = v, and, for definiteness, we have
assumed the scattering cross section has the form of Eq. (64). Therefore, no significant DIS
happens in the regions where 7, < (f/Tnuc)?. We assume this to be the case, and we verify a

posteriori the consistency of our assumption in Sec. 9.

8.2 Scatterings with the (p)reheated bath

By preheating, we intend the stage between the time when bubble walls collide and start to
produce particles (e.g. from the resulting profile of the condensate), and the reheating time
when these particles have thermalised into a bath. We now discuss the scatterings of populations
A and B with the particles produced at preheating, that we have assumed to be efficient. The
contribution of population C to the final yield of hadrons is subdominant with respect to the

one of populations A and B because, as seen in Secs. 7.4 and 8.1, the total energy in population
C is much smaller than that in populations A and B.

Energy of the (p)reheated bath. The preheated particles are produced with energies, in
the plasma frame, of the order of the mass of the scalar condensate,'®

(Eprm) = my < f. (79)

"In the picture we have in mind, non-perturbative effects such as Bose enhancement or parametric resonance
{see c.g. [B4]) are not relevant: the first because the SM particles are interacting, thus they exchange momentum
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Their total energy scales as

oo ~ FV (80)

with V the volume of a large enough region of the universe. For comparison, the total energy
in populations A and B scales as

Eh ~ Yupf ToncV > (81)

which is much smaller than fV because Yup < (f/Touc)®, Eq. (34). So the preheated particles
can act as a thermal bath for all the other populations A, B and C, because the energy of A,
B, and C is subdominant in the energy budget of the universe.

Inelastic versus elastic scattering. Scatterings of hadrons (or their decay products) with
the preheated bath will, therefore, eventually slow down and thermalise populations A and B.
However, these scatterings can also exchange energies much larger than f, thus inducing deep
inelastic scatterings. Indeed their center-of-mass energy squared reads

sAB ™ ﬂme_,q‘B, [82}

where Epy =~ up ij;tﬁ“gl:Emj and Eg =~ 7..f. Eq. (82) is the result of our simplifying
assumption to neglect masses and to average to zero scattering angles with particles in a bath:
define pr = E(1, E), pprh = my (1, 1h), then s = (pg + ppen)? =~ 2E my (1 — E -1h) ~ 2E m,. We
now determine if those center of mass energies are entirely available for particle production via
DIS, or if instead they are reduced by several low-momentum-exchange interactions. In order
to do so, we evaluate the rate of energy loss of a particle from population A or B, ]"ff“ﬁ, as
the ratio between the rate of energy it exchanges with the preheated bath, that we evaluate
analogously to Eq. (65), and its initial energy Ea 5. We then compare this quantity with the

rate for a deep inelastic scattering to happen with the full energy available si": 2B:-

loss
F-'HHB — nwhgﬂagﬁ'f{EA,Bv —tg) _ my o 1 m_i
FE]E B ”’Ptfh"'lrﬂzﬁfsﬁ.ﬂ V-tm /e I?

(83)

In the last equality, we have again used the screening mass for non-equilibrium systems [83]

Mprh fd

e C"I.'ﬂx.‘_ 5
(Eprh) my

—tm (84)

where we have used that by conservation of energy npy, ~ ppu/{Epm). and where we have
expressed the energy density of the reheated bath ppy using the results of Sec. 3.2.

We conclude that, if )
(F) <<k, (85)
the full center-of-mass energies sa g are available for deep inelastic scattering, i.e. populations
A and B do not lose a significant amount of their energy via interactions with the preheated
bath. For simplicity, in what follows we assume this model-dependent property to hold.

8.3 Enhancement of hadron abundance via DIS

The picture: a cascade of DIS. The number of composite states arising from a hard
scattering depends on how the strings fragment, so on the same physics that set the abundance
of the composite states when the techniquanta cross the bubble walls, discussed in Sec. 4.4.

and do not occupy the same phase space cells; the second because the variation of their masses from the dilaton's
oscillations is smaller than their mass at the minimum. Note that, unlike what occurs in many inflationary
scenarios, we expect only a small hierarchy Tha < (Epen).
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Each scattering, depending on its center-of-mass energy, produces a number N ;:’Iing of hadrons
1, that we model in the same was as in Eq. (28). Given the large initial energies sa g, the
daughter hadrons typically still have enough energy to themselves induce further deep inelastic
scatterings with the particles in the preheated bath, and hence additional hadron production.
Analogously, SM particles produced in such DIS typically have large enough energies to also
initiate showers of the new confining force with their subsequent scatterings. This process
iterates until the average energy of scatterings drops below the confinement scale.

Number of hadrons produced per scattering.  For reasons given in Sec. 4.4, together
with simplicity, we assume that the available energy /s at each scattering splits equally among
all the outcoming particles. We then write the average of this number as

N®5(s) = N3""¢(\/5/2), (86)

where the factor of 2 in the argument of N;t"i"g arises because Eq. (28), which defines Nz’hiﬂ{
assumes that /s is the center of mass energy of the scattering of two particles neutral under
the new confining force. If a hadron is included among the two scatterers, then (QCD studies
find that the final number of hadrons can be obtained by just halving the energy in the center
of mass frame [59], also see footnote 5.11

Energies of produced hadrons.  Explicitly, we assume E! = = /s/N°%, where E!_
is the energy of any outgoing particle (SM and/or composite) in the center-of-mass frame of
the scattering. To iterate to many scatterings, we write E!_ in the plasma frame as E' =
4 El (1 — 1" - ©), where 4" and i are the associated Lorentz boost and its direction, and © is
the direction of motion of the outgoing particle in the center-of-mass frame of the scattering.
By averaging i - i to zero for simplicity, we obtain

E' =~ FEom. (87)

We then determine ' by observing that the energy of each particle, in the center-of-mass frame
of the scattering, is both Eeom = +/5/2 and Eeom = Y Eprn(1 + 7' - E._.ij where Epgm is the
energy in the plasma frame of the particles in the preheated bath. By averaging o' - £, to
zero for simplicity, we obtain the Lorentz boost

. _ VS
= ) (88)

Using Eq. (82) for s we finally obtain
(89)

(If we did not average over angles, we would have obtained E}, 5 = (Ea g/N"®)(1 —9'-9)(1 —
E- m)/(1+ i - E‘m}} So, after a hard scattering the energy of each outgoing particle in the
plasma frame is roughly the initial energy divided by a factor N™=. The subsequent s is then
reduced by the same factor, ensuring a convergence of N"%(s) to unity, via Eq. (28), after only
a few iterations. This also teaches us that the average energy of the particles, produced this
way, quickly decreases to values lower than about m,.

11 Note that if a hadron instead decays to two SM particles before it scatters, which is model-dependent,
then ,/5/2 is again the good argument for the function N;‘ﬁ“s, because then one has two particles each with
half the initial energy, but both neutral under the new confining force. In this case, however, Eq. (86) becomes
N®%(s) = 2N;™"8(4/5/2). When iterating the treatment to many scatterings, we find that this extra factor
of 2 does not impact the final abundance of hadrons, which can be understood by thinking that the same initial
energy is spread faster to zero.



Number of hadrons produced by a chain of DIS. Let us now estimate the yield of final
hadrons by following the above arguments. Assuming interactions are fast enough, also those
following the first one happen with preheated particles of the same average energy (Epm). Now
define the number of states (both composite and not) Ny produced at the k*" interaction. This
can be expressed as

~~ ATDIS 8
Nkl:s)_N (Nk_IXNk_EX"'XNI)’ Egn}

where we remind the reader that the function N is obtained from Eqs. (27) and (86). Starting
from a single resonance produced from the fragmentation of strings between quanta inside the

buhbble, after this chain of scattering processes one obtains a total number of resonances given
by the product [], Ni(s). We find numerically that this product can be expressed as

= A B
~ ; 91
AB mz |: }

In other words, the iterative process we described converts the initial available energy into
the rest mass of hadrons m,. Since our aim here is not to achieve a more precise treatment,
we refrain from refining the assumption that the momenta are distributed evenly among the
particles coming out of a scattering process. In the same spirit of building a physically-clear
picture without drowning in model-dependent details, we do not cover here the possibility that
every scattering produces, in addition to the composite states, a comparable or larger amount
of SM particles. (That would result in NP5 = N ;:’I'ng and in a faster degrowth of the available
scattering energy to m, at each step.) In addition to simplicity, this can be justified by observing
that, in the limit of large number of degrees of freedom in the dark sector, our assumption that
they carry SM charges will make their production dominant with respect to the one of SM
particles.

Additional comments. We conclude our derivations with two comments concerning its va-

lidity.
s [If the full center-of-mass energies are not available for DIS, i.e. if Eq. (85) does not hold,
then one could use the same result K5 of Eq. (91), upon substituting sa g = 2Ea gm,

with the largest energy for which ]"fj“ﬁ < ]"E%, that can be derived via Eq. (83).

¢ We have ignored the production of heavy particles from the collisions of bubble walls [78,
85-87]. This is justified as it has been shown that it only occurs when the minima of
the potential are nearly degenerate and seperated by a sizable barrier [88, 89], which is
not the case for the close-to-conformal potentials we have in mind. Hence we expect only
particles lighter than the scalar condensate to be produced during reheating following the
wall collision.

8.4 DIS summary

The yield of hadrons, resulting from the processes of deep inelastic scattering described above,
receives contributions from:

# Population A. That is, the hadrons produced from string fragmentation as described in
Sec. 4. Their contribution reads

stri 1 ri T f
VRO o KRN B DRV = T X DOV, (92)
where we have used K™ = sa /m2, cf. Eq. (91), with sa ~ 2my Ex = 2myYup f /N3 (Ecu),
cf. Egs. (82) and (74). Note that the above expression captures also the regime where

each string fragmentation produces on average one hadron, because the energy of that
single hadron is roughly =, . f/2, see the related discussion in Sec. 4.5.
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Figure 8: Left: the yield following supercooling, string fragmentation and deep inelastic scattering. The
yield matching the observed relic abundance of DM for myy, = 4w f is also shoun. The dashed lines show
the effect of varying ., by an order of magnitude in either direction around Eq. (34). This illustrotes

the sensitivity of the yield to our determination of .. Right: The associated enhancement factors K,
defined in Eg. (29) and Eg (95).

# Population B. That is, the hadrons produced out of the techniquanta ejected from the
bubbles, described in Sec. 7. Their contribution reads

Y§c+st.ring+ms ~ KBSDSYS3 ~ 2 T"'];ﬂ# DseYss, (93)
where we have used Kg® = sBJ{'mE, cf. Eq. (91), with sg = 2m, Ep =~ 2m,7Vwf, cf.
Eqgs. (82) and (75).

Thus, the combined contribution to the total hadron yield is given by

Ysc+st.ring+D13 ~ KPS psC Y'Ie‘g ~ g % DEe Y‘,IB“%’ Eg-’-l}

*

where we have defined .
KP® = inISN;F'ﬂE{ECMJ + KB®. (05)

MNote finally that, in the regime of runaway bubble-walls, one obtains the parametric scaling
ysctstrngdnis o (T -/ £),p. Which is much larger than the simple supercooling dilution, ~
(Toue/ f }3_, in the regions of parameter space where our analysis holds, namely for v, > f/Thuc.
The yield of the various contributions is shown in Fig. 8.

9 Supercooled Composite Dark Matter

9.1 Initial condition for thermal evolution

Finally, all unstable resonances decay either to SM or to the long-lived or stable hadrons, which
we take to form DM. To obtain the yield of any such hadron i at the onset of reheating, one
should use the expression _

ySotstnnetnis _ pp. KOs pscy il (96)

T
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where BR; is a pseudo-branching ratio, of the energy available to the confining techniquanta,
into vy particles. Estimates of BR; for the cases where v is a meson and a baryon are given
in App. C, which show a broad range of underlying-model dependent values are possible, albeit
with a large uncertainty. For example, in a QCD-like theory where 1% is a baryon with mass
~ 47 f and the pions have mass ~ f, one obtains values BR; ~ 10~%, while larger values BR;
are obtained for baryon-pion mass rations closer to one, or if ¢4 is a meson. Hence, we will take
BR; to be a free parameter.

It will turn out that the measured DM abundance is achieved in the regime of runaway
bubble walls. In that regime, the resulting expression for the DM vield has a simple parametric
form that eventually results in the DM abundance being independent of the DM mass, if it is
to match onto observation Ypy = 0.43eV /mpy [90], which we find convenient to report here.
By using Egs. (12), (14), (36), and (94), with gry = gsm = 106.75, we find

o]
_ V  BR: gre [0.01\% my/f 47 [ Tone/f\
Y_sc—l—st.nng+DIS ~ (.43 e - R — . a7

frunsway m. 10°120 \cwe ) 02 g. \ 1057 &7

9.2 Thermal contribution

To complete our discussion, we must still determine the effects on the yield of any DM interac-
tions with the thermal bath after supercooling, DIS, and reheating. The importance of thermal
effects following reheating was already pointed out in [21] (therein dubbed the subthermal con-
tribution). Following the phase transition and particle production through DIS, the SM bath
and the DM have returned to kinetic equilibrium. The scattering energy is now insufficient to
break the resonances, but these may still annihilate into SM particles or be produced in the
inverse process. Thus, just after the reheating, the DM abundance evolves according to the well
known Boltzmann equation [91]

dY B12gey Mmooy (V) 2 3
= - Vs o (Y- YY), (%8)

where we use x = mpy, /T as the time variable, and M, is the reduced Planck mass. For
simplicity we only consider velocity independent cross sections here. As an intitial condition
we take the relic abundance at the reheat temperature, You(Tru) = Yoy o "8+ estimated
following string fragmentation and DIS enhancement in Eq. (94). For our plots we solve the
Boltzmann equation numerically. If the cross section and reheating temperatures are sufficiently
large the system will be driven back into equilibrium. The relic density is then largely set by
freezeout dymanics, albeit with somewhat different initial conditions. On the other hand, if the
cross section and reheat temperatures are small enough, the relic density is set by dilution, string
fragmentation and DIS, with only negligible thermal corrections following reheating. Using the
dilution mechanism of the PT. of course, we can avoid the usual unitarity constraint on the
maximum thermal relic DM mass [36] (see e.g. [92, 93] for recent appraisals).

9.3 Dark matter relic abundance

We now combine all our results together and determine the amount of supercooling required
to match the observed relic abundance Yppy =~ 0.43eV /my,,. Examples are shown in Fig. 9 for
some representative choices of the parameters. From these figures we can draw a number of
conclusions.

i) If we assume (o) o 1/m2,,, thermal effects will necessarily dominate if the DM is light
enough. This occurs because Try cannot realistically be arbitrarily suppressed below f,
for sensible choices of gg; and gp;. This regime corresponds to the point in which the
contours turn vertical in Fig. 9. At which value of my,, this occurs depends on the precise
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Figure 9:  Solid lines: supercooling Toye/f and DM mass mpy required to obtain the observed DM
abundance. The parameters chosen imply a reheating temperature Ty, ~ 013 f, see Sec. 3.2, All lines
include the thermal contribution discussed in Section 9.2, The line with initial condition }ﬂmﬂmng"'m'
of Eg. (96) corresponds to the yellow contour. For comparison, we show in green (blue) the contour that
one would obtain by skipping directly from the supercooling {supercooling plus string fragmentation) step
to the thermal corrections. These contours are obtained by using the initial conditions Y5 of Eq. (13),
or YSOHSUng o8 Bo 020), multiplied for consistency by a factor BRy. The Y*° is further reduced by a
factor gg/gre, because in non-confining supercooling the gluons would not contribute to the abundance
of DM. All contours converge at some mpy where thermal effects following reheating become dominant,
of the order of mpy, 72 100TeV because we fired (ov..,) = 4w/m2,,. Below this mass, the relic density
is necessarily suppressed compared to the observed DM density, due to efficient DM annihilation after
reheating. In the purple region 3+, Thue = f the quarks are reflected by the first wall they encounter,
but may enter the bubbles in following stages of their evolution, and the DM abundance lines ignore
possible modifications arising from this ‘ping-pong’ effect. They also ignore that, for values of ., only
slightly larger than f/Thy. and depending on other model-dependent parameters, the energetics of our
treatment may be more complicated, see Egs. (68) and (69). The dashed gray line delimits the area
Thne < O(100) MeV where the supercooled phase transition could happen because of QCD dynamics. The
dashed cyan and purple lines indicate, from top to bottom, the regimes where bubble walls run away and
the one where 7y, < (f/True)®. The fact the horizontal part of the DIS line lies below the latter confirms
our treatment has been consistent when ignoring the DIS of Eq. (78).

choice for (ov,,). For definiteness, in Fig. 9 we choose (ov..) = 4w/m2, as typical of
baryon scatterings in a strongly coupled sector. Thermal effects can of course be further
suppressed if we depart from the efficient reheating assumption made here [21].

ii) String fragmentation and DIS lead to large corrections to the composite DM relic density,
compared to the naive supercooling dilution. This implies a mismatch between the relic
abundances of primordial elementary and composite relics alluded to before. Whether the
composite or elementary relic would have the greater abundance depends on the details
of confinement. If the composite relic is say, a light meson which is produced abundantly,
the multiplicative DIS process can be highly efficient in populating these states following
the PT. This implies we require much more supercooling to match onto the observed DM
relic abundance. On the other hand, if the composite relic is some heavy state, perhaps
a baryon, it could be produced in a highly suppressed rate both in string fragmentation
and DIS. In this latter case, the required amount of supercooling to match onto the DM
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relic density is also reduced. The two cases are illustrated with two different assumptions
for the branching ratios in Fig. 9.

iii) In some cases, we find T,,,,. < 100 MeV, as delineated in Fig. 9. Thus QCD effects could
assist in completing the PT [21, 26, 94, 95]. On the other hand, if QCD effects help the
transition to occur, they can also suppress the eventual gravitational wave signature [79]
(simply because the QCD effects increase the tunneling probability and thus will act to
shorten the timescale of the PT). The details will depend on the physics entering the
effective potential of the scalar y and need to be studied in a model dependent way.

Together with the gravitational wave signal from the PT, there may also be model dependent
collider, direct, and indirect detection signatures associated with the DM from the strongly
coupled sector. We will investigate these further, together with their interplay with the nowvel
string fragmentation and DIS effect, in a concrete realisation of such a confining sector in a
companion paper [24].

10 Discussion and Outlook

The possible existence of a new confining sector of Nature is motivated by several independent
problems of the Standard Model of particle physics and by cosmology. This encourages the
identification of predictions of confining sectors, that are independent of the specific problem
they solve. One such prediction is the possibility that the finite temperature phase transition in
the early universe, between the deconfined and confined phase, is supercooled. This possibility
has received a lot of attention in recent years, see e.g. [21, 26, 28-32, 65, 79, 05].

In this paper, we have pointed out and modelled a novel dynamical picture taking place in
every supercooled confining phase transition, that (to our knowledge) had been missed in the
literature. This novel picture stems from the observation that, when fundamental techniquanta
of the confining sector are swept into expanding bubhbles of the new confining phase, the distance
between them is large with respect to the confinement scale. Therefore the energy of the
fluxtubes connecting techniquanta is so large that string breaking produces many hadrons per
fluxtube, with large momenta in the plasma (CMB) frame, in a sense analogously to QCD
hadrons produced in electron-positron collisions at colliders. These hadrons and their decay
products subsequently undergo scatterings with other particles in the universe, with center-
of-mass energies much larger than both the confinement scale and the temperature that the
universe reaches after reheating. The dynamics just described is partly pictured in Figs. 2 and 3.

The processes of string fragmentation and ‘deep inelastic scatterings in the sky’, synthetised
above, have a plethora of implications. A key quantity to study them is the pressure on the
bubble walls induced by this novel dynamics, which we have determined in Sec. 5, see Eq. (34)
and Fig. 5 for the resulting bubble-wall velocities. An interesting aspect of our findings is that
the so-called ‘leading-order’ pressure is proportional to the boost factor of the bubble wall,
unlike in the case of non-confining supercooled PTs [61, 62].

We then quantified the values of supercooling below which one recovers the ‘standard phase
transition’, where confinement happens between nearest charges. By relying on the modelling
we proposed in Sec. 6 we found, interestingly, that our picture should be employed already for
moderate supercooling Ty /f < 0.1, see Eq. (54) and Fig. 6.

Next, we have focussed on the implications of our dynamical picture for the abundance of
long-lived or stable particles that are composite states of the new confining sector. They are
summarised in the Synopsis, Sec. 2, and a quantitatively accurate expression of the final yield of
a given composite particle is given in Eq. (97), for concreteness in the regime where bubble walls
run away. Compared to the simple dilution of relics induced by supercooling of non-confinement
transitions, these processes enhance their abundance by parametrically large factors. Therefore
they have to be taken into account whenever a property of the universe, e.g. the DM and/or
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the baryon abundance, depends on the final yield of hadrons. As an example, their dramatic
impact on the abundance of supercooled composite DM can be seen in Fig. 9.

Concerning DM in particular, this study constitutes a novel production mechanism of DM
with mass beyond the unitarity bound [36]. It would be interesting and timely to study its
experimental signals, given the new wave of telescopes that is starting to take data of high-
energy neutrinos and gamma rays (e.g. KM3NeT, LHAASO, CTA) and given their potential in
testing heavy DM, e.g. see [96]. One such study will appear in a forthcoming publication [24].

During the course of carrying out this study we have made a number of simplifications, for the
purpose of obtaining a general and clear enough picture of the physics involved. For example, the
various populations of particles created by this novel dynamics, such as the ejected techniquanta
and the hadrons that follow the bubble walls, could be better described by Boltzmann equations,
by the use of simulations etc., rather than with our simple treatment that focused on their
average properties. Also, to not charge this paper with too much content, we have left the
study of what we called the ‘ping-pong’ regime, see Sec. 5.3, to a future publication.

Finally, this dynamics opens broader and exciting avenues of investigation, that we think
deserve exploration. For example, it would be interesting to study its interplay with recent
interesting ideas regarding phase transitions [11, 16, 17, 31, 33, 78, 88, 97-101], or its impact on
the production of gravitational waves in supercooled confinement phase transitions. As for the
latter, our study of the bubble wall Lorentz factor in Sec. 5 constitutes a necessary first step.
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A Wall profile of the expanding bubbles

The light-dilaton potential. In this section we suppose that confinement occurs from the
condensation of a nearly-conformal strongly-interacting sector, when an approximate scale-
invariance gets spontaneously broken. If the source of explicit breaking is small, the spontaneous
breaking of scale invariance generates a pseudo Nambu-Goldstone boson, the dilaton which we
parameterize as [102]

X(@) = fe7", (99)

where f is the confining scale and where o(z) transforms non-linearly o(z) — o(Az) + log A
under the scale transformation  — Az. Its potential is given by [28]

o0 =agtxt -7 (3) ] (100)
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Figure 10: Left: light-dilaton potential with temperature corrections in Eq. (107). Right: Zoom on the
thermal barrier. The tunneling point x,, in the case where the friction term in the Fuclidean equation
of motion is neglected, is also shoun.
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e —— X _ 1 101
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where m, is the dilaton mass. ¢, is a constant of order 1, which we fix to ¢, = 1. The dilaton
coupling constant g, is chosen to reproduce the glueball normalization

4
Oy = N (102)

with N being the rank of the confining gauge group. The validity of the EFT relies on the
smallness of the parameter |v.| < 1 (here taken negative) which controls the size of the explicit
breaking of scale invariance.

Note that in the limit where |7y.| < 1, the dilaton potential at zero-temperature reduces to
the Coleman-Weinberg potential [103], e.g.

- el X
Ve " e g xtiog (X). (103)

Thermal corrections. To model thermal effects, we follow [17, 28], and consider the finite-

temperature corrections generated by the particles charged under the confining force (the CFT
bosons)

1-loop nT! 'mgrr .
AV (x) = Z FJ‘E ( T ) ; with  mepr = gy f- (104)
CFT bosons
The total number of CFT hosons n is fixed to!2
2
» n= 45N : (105)
4

CFT bosons

" The effective number of techni-gluons in the deconfined phase 45N7/4 being different from 2(N? — 1) is
a property valid at thermal equilibrium. It results from the peculiar strongly-coupled dynamics of the CFT.
However, due to the large wall Lorentz factor, the CFT gas entering the wall can be considered as collisionless, cf.
Sec. 4.1. This is why in the main text we consider the number of techni-gluons entering the wall as g, = 2{N2— 1}.
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in order to recover the free energy of N' = 4 SU(N) large N super-YM dual to an AdS-
Schwarzschild space-time [16]

T2

Fopr(x =0) = —bN?T?,  with b= = (106)

For simplicity, we suppose that the dilaton degree of freedom y still exists in the deconfined
phase, such that the total potential for the dilaton is

Viot(xs T) = Vy (x) + AVz"P(x), (107)

where V,(y) and AV} 7°%P(x) are given by Eq. (100) and Eq. (104). We plot the potential in
Fig. 10.

Space-like region: the bounce profile. We solve the tunneling temperature by solving the
equation

D(Thue) = H(Toue)*. (108)
with [104, 105]
g 2
M(Twe) = By (52) (-5, (109
where Ry ~ 1/Tyy, is the bubble radius at nucleation and 5y is the O4-bounce action
Sy = 272 f dr 1 [%qﬁ‘(r}? + V{q’){r}j] , (110)
which we compute from solving the Euclidean equation of motion (d = 4)
d—1 dV
] &= _2
¢ (s) +——9(s) e (111)
with boundary conditions
¢'(0) =0, and 1_'1{1'1 @(r) = 0. (112)

s =1/ 2+ IEE =14/ r2 — 2 is the space-like light-cone coordinate and tg = it is the Euclidean
time.

We plot the bounce profile in left panel of Fig. 11 for given parameters relevant for the
study. The value at the center of the bubble — the tunneling point y, — can be estimated
analytically by energy conservation between y = y, and the false vacuum in y = 0 if we neglect
the friction term in the equation of motion in Eq. (111),

Xx L T
f 7 \2log 4 (f/x,) Te

Here (coincidence numeric) T is the critical temperature, defined when the two minima of the
free energy are equal

2 2 1/4 2\ 1/4
E:-N%“;’:mxf?? = TE:(mxf?) =('“”ng) f. (114)

Viot (X+) = Viot(0) — (113)

16 16 N2 4b N2

The tunneling point ¥, in absence of friction is shown in Fig. 10, while the tunneling point from
numerically solving the bounce equation is visible in Fig. 11. Plugging the numbers chosen for
making the plots, we find y./f = 6.0 x 105 for the analytical value and X+/f = 1.6 x 104
for the numerical value. This difference was expected since the analytical estimate neglects the
friction term in Eq. (111).
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Tunneling Rolling and damped oscillations
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Figure 11: Left: Bounce profile at nucleation. It interpolates between the false vacuum {v) = 0 outside
the bubble and the release point (x), af the center of the bubble. Right: Fvolution of the scalar field
after tunneling. First, the scalar field rolls along the shallow part of the nearly-conformal potential and
then realized oscillations with period ~ f~1 with a damping time < T_! » f~'. Taking into account the
decay of the scalar field would reduce the damping time after the first oscillation. The full bubble wall
profile can be obtained after connecting the two figures through the two black circles.

Time-like region: rolling and damped oscillations.  As soon as the bubble expands,
the scalar field starts to roll toward the true vacuum (y) = f and realize damped oscillations.
The field dynamic is captured by the Klein-Gordon equation for an inhomogeneous field

av
06— 55 =0 (115)

We first use the SO(3) symmetry to reduce the 3 Cartesian coordinates to the radial r coordinate

Fo 206 ¢ oV _ (116)
ar: rar 92 dop
We used the Minkowski metric since we can neglect the universe expansion during the time of
bubble propagation. We then use the SO(3, 1) symmetry which reduces r and ¢ to the time-like
light-cone coordinate s = v/t2 — r2 only [34]

8% 389 9V _

—+— =0 117
Bsﬁ+sﬂs+3¢ (117)

Note the opposite sign in front of the potential V' between the space-like (or Euclidean) equation
of motion in Eq. (111) and the time-like (or Minkowskian) equation of motion in Eq. (117). Here
the damping is purely geometrical, reminiscent of the S0(3, 1) symmetry and we do not consider
the damping due to the dilaton decay or due to the interaction with the plasma (see e.g. [106]).
In right panel of Fig. 11, we display the scalar field profile obtained after integration of the
time-like equation in Eq. (117), using the initial condition y(s = 0) = y, given by the bounce
solution in Eq. (111).

The full bubble wall profile.  The full bubble wall profile is obtained after matching the
profile in the space-like region, left panel of Fig. 11, with the profile in the time-like region, right
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panel of Fig. 11. One can see that the first confining scale, that the incoming techniquanta are
subject to upon entering the wall, is the exit scale

X E Toue - {118}

Our explicit computation also shows that the length of the section of the bubble wall where
(¥} = X4, in the wall frame, satisfies

L < Tre. (119)
as we assumed in Eq. (16) in the main text. Then, (x) transits to its zero-temperature value f
over a length, in the wall frame, of order f—1.

B NLO pressure on the bubble walls

Transition splitting. In Sec. 5.1, we have presented the retarding pressure due to the change
in inertia of the system incoming-quark 4+ gluon-flux-attached-to-the-wall when entering inside
the confined phase, as well as the retarding pressure due to the ejected quark. In this section
we introduce a possible correction which arises in presence of a finite gauge coupling constant.
The correction term, which is called NLO pressure, arises from the possibility for the incoming
particle to radiate a soft boson which gets a mass in the broken phase [62]

d*p P:
Prro = ;Vafmfa@} E x g[dpu—;bc bt {Fz,s - ka,h - l]'z,hj».. {120}

where h, s stands for the ‘Higgs' and the symmetric phases. p and g are the momenta of the
incoming particle before and after the splitting while k is the momentum of the radiated boson.
We summed over all the species a likely to participate in the process, 1, being their number of
degrees of freedom. The differential splitting probability is given by

[P = [ s GITIka) (aiTI6), (121)
with the transition element
(k,q|Tlp) = ] d'z (k, q|Hint|p) , (122)
= (20)° (5L — Ry —21) 600 — ko — ) M, (123)
where
M= [ a2 i@V @), (124
We obtain [62]

3
Prro = Z L f ng}sggmfa{Pj {g?f;;;kﬂ {E:Jféqu [1 + fk][l + fQ] (Pz.s — kzh — G2,1)

a,be
x (2m)26(FL — k1L — 1) 8(po — ko — qo) IM[%. (125)

2 k2
Now we assume p. = pp, ¢- = go = pp and kgzku—%,ﬁom which we get
2 2
B B N my(z) + k]
Pz.s ka,ﬁ. gz h = ﬂkﬂ 1 {126}

and

d® d2k dk, m3 (z) + k2
P = 3 v [ Gy olP) Ggrss a1 £ el £ £y i PE SR WM. (a2)
a, be
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WKB approximation. Next, we make use of the WKB approximation,

Xk(z) = exp (i ﬁ ) ka{z’}dz’) ~ "% axp (—% ﬁ z[mz{z'} +k7) dz’) : (128)

which allows to write the product of wave functions in terms of a phase-dependent quantity A,

Xa(2DXE(2)XE(2) = exp (F [ 4@ dz’) | (129)

with 2 2 2 2 2 2
_A:mz_mb_‘_kl _mc+.‘:J_ Uk +my
a .

o 130
T 1—=x x { }

We have introduced the variable z = k°/p" and assumed x < 1 in the last equality. We can
now split the integral over z across the wall in Eq. (124) into a contribution from the broken
phase and a contribution from the symmetric phase. We assume that the vertices V' and WKB

phases A on each side of the wall are z-independent and we denote them by (Vi, Ax) and (V5,
A,), such that we obtain

o As = A . Vi Ve
M =V /:D dz exp [MET:P] +Vh£ dz exp [MTJJ] = 2ip" (A—J: - A_s) X (131)

Radiation of a soft transverse boson. It can be shown [62] that the most important
process contributing to the pressure at large py is likely to be X (p) — Vr(k) X (g) where V7 is
a transverse vector boson. The corresponding vertex function is phase-independent, V = V5,
and equal to

1
V] =4g> CalR] 5 k1, (132)

where g is the gange coupling constant and C3[R)] is the second casimir of the representation R

of SU(N)

OolR] = { ﬁf Rif =Ra,|=:l j::::amenml, (133)
Therefore, Eq.(131) becomes
MP = 168 ColR] g 5TV (134)
EIGETL
where we have replaced my = m;. The k; integral becomes
a2k 1 log (1 + 11:})
(2m)? k3 (k2 +mi) T 4n mi (135)

where k, is the IR cut-off on k. It is expected to be of order of the vector mass k, ~ my-.
Final NLO pressure. Finally, injecting the last two equations into Eq. (127) yields

& d log (14 ™%
Prro = B‘zbci"uf {2;;3 fa(p) (2:;13 1+ fill £ fo—i ' C3[R] mg % (136)

In order to match the notation in the main text, we wrote my = my, where my is the would-be
techni-gluon mass in the confined phase. The Pauli blocking or Bose enhancing factor 1 £ f,_&



is of order 1, while 1 £+ fi. sums to 1 when considering both absorption and emission processes.
Hence, the result simplifies to

log (1 + Ej’—)

-

8((3) ¢°
Prro = zvﬂ ba C‘l[R] #i_ﬂ' Eps M I me

ia

Tl Y, (137)

nuc

where b, = 1 (3/4) for bosons (fermions) and @ = g?/4wr. The Lorentz factor 7, between
the the wall and the plasma comes from d°p. We have introduced e, < 1 to encode the
suppression from phase-space saturation of the emitted soft techni-gluon,which is important for
large coupling geons, and which we justify in the next paragraph.

Phase-space saturation. At order g*, the emitted gauge boson can interact among each
other. These processes are weighted by g® f(k) with respect to NLO case studied in the last
section. The occupancy function f(k) can be estimated to be of order

2 3
9 Ve Loe
where Ak ~ m, is the available phase space and n ~ Py_,5/(p. —k.—q;) with (p,—k.—g.) ~ my.
Hence, we can not consider the individual transition splitting processes as independent from

each other as soon as

3
My

Ywp =~ (139)
L

At such large 7., we expect the NLO pressure to change behavior. See [62] for more details
and particularly about some hints of Pyro going from o< 7, to ~47. For simplicity, we just

wp "
encode this effect into the coefficient e, < 1 in Eq. (137).

Case of a SU(N) confining sector. In the scenario we are interested, the deconfined phase
contains g, techni-quark and g, techni-gluons, and the NLO pressure would be induced by the
possibility for these techni-quanta, to radiate a soft techni-gluon acquiring a mass my = my in
the confined phase. Hence, Eq. (137) becomes

T A7 P I f‘i"ﬂ- T‘PTEHL‘ Mg . {140}
* g

3
Prro == {Qgcﬂ la] + quCQ la]

where g... is the gauge coupling of the confining group, and where Ca[g] = N, Ca[g] = (N2 —
1)/2N if the confining gauge group is SU(N). Note that in the parameter space which we
consider (cyae = 0.01, gre = 78) the LO pressure in Eq. (40) prevents the condition in Eq. (139)
to be satisfied such that we expect e to be close to unity.

C Example estimates of the string to DM branching ratio

In Sec. 4.2, we have discussed that, after supercooling, the quarks enter inside the confined phase,
with a typical seperation ~ T;Ll. much larger than the confining scale f, such that a highly
energetic fluxtube forms. We have shown that this string, which is unstable under quark-anti-
quark pair nucleation, breaks into Ky, pieces. The dynamics of strings is then also relevant in
the processes of deep inelastic scatterings of section 8. In this section, we estimate the branching
ratio of a string to a given hadron i, introduced in Eq. (96), in two different cases. First, when i
is a light meson. in which case we expect the yield of i to be independent of its mass and given
by a combinatoric factor implying the number of flavors. Second, when i is a heavy baryon in
which case one expects the yield to be Boltzmann suppressed.
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Light meson — Combinatorics

In the limit of large string energy, Fow % f. one expects the fragmentation of the string to
be democratic with respect to the different bound-states if they are light enough. In that case,
the string-to-i branching ratio is given by a combinatoric factor depending on the number of
flavors N and the number of quark constituents (either 2 for meson and Nr¢ for baryons). In
the particular case of a light meson gi§2, one obtains

1/N7,  ifq =g,

, (141)
2/Nf,  ifq # g

Br(string —i) = {

Heavy baryvon — Boltzmann suppression

For this example a useful model for us will be the thermal one [107-110], which was able to fit
LEP data of particle yields up to a 10% error [111], even with an initial state far from thermal
equilibrium. In this model, the yield of heavy mesonic or baryonic resonances is suppressed by
a Boltzmann factor [107-110], in which the strong scale plays the usual role of temperature.
The yield of heavy resonances can be modelled by

A, (z.r +1)

W)~ A LB

(142)
where M; and J; are the mass and spin of the state i respectively. Here A; is an overall
normalisation, which will depend on whether the particle is a pseudoscalar meson, vector meson,
or baryon etc. In QCD it was found to differ by < 10 between vector mesons, tensor mesons,
and baryons [110]. For these particles B; was found to be a common factor between the groups,
B; = B ~ 150 MeV [110]. Note the pseudoscalar mesons in QCD, however, which are lighter,
follow a softer spectrum.

Following the above discussion, we shall construct a toy model for the baryonic particle yield
from our string fragmentation. In order to retain some simplicity in our model we will consider
all particles to share a common B; = m, = g.f. In our toy model we consider SU(N,) theories,
with techniquarks in the fundamental representation, in which baryons will contain N, quarks.
Mesons on the other hand will contain a techni-quark-anti-quark pair independent of N.. In
order to take into account the reduced probability of creating a baryon as opposed to a meson
it is therefore suitable to include an additional suppression in the prefactor A; for baryons [112]

1
—_— if i is a baryon
pei = { 1 +2N"1/N.’ ’ (143)

1, if i is a meson.
Other than this we take a common A; = pg;A. Applying energy conservation, we thus find the
average number of the composite state i produced per string breaking to be

( } . FB:.{EJ +1 Z PB_-; 2-}_;:4- 1} Mk
Exp [M;/m.] fmr] Exp [M}./mx] m

where the sum runs over all the states in the spectrum, and we remind that 7 denotes the
lightest composite state(s). In this case it is clearly possible to have a highly suppressed BR;,
e.g. BR; ~ 107° for m; = m, ~ dnf, my ~ f, N. = 10, N, = 3.

-1
) (N) = BR; (Ny), (144)
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