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We perform the first global fit to inclusive B → Xsγ measurements using a model-independent
treatment of the nonperturbative b-quark distribution function, with next-to-next-to-leading log-
arithmic resummation and O(α2

s) fixed-order contributions. The normalization of the B → Xsγ
decay rate, given by |C incl

7 VtbV
∗
ts|2, is sensitive to physics beyond the Standard Model (SM). We

determine |C incl
7 VtbV

∗
ts| = (14.77 ± 0.51fit ± 0.59theory ± 0.08param) × 10−3, in good agreement with

the SM prediction, and the b-quark mass m1S
b = (4.750 ± 0.027fit ± 0.033theory ± 0.003param) GeV.

Our results suggest that the uncertainties in the extracted B → Xsγ rate have been underestimated
by up to a factor of two, leaving more room for beyond-SM contributions.

Introduction The flavor-changing neutral-current
b → sγ transition is well known for its high sensitivity
to contributions beyond the Standard Model (SM).
The main goal of our global analysis of the B → Xsγ
decay rate is to obtain a precise constraint on the short-
distance physics it probes, which can then be compared
to predictions in the SM [1–4] or beyond [5–7]. In our
approach, this amounts to extracting a precise value of
the Wilson coefficient |C incl

7 | from the measurements.

Since b → sγ is a two-body decay at tree level, the
photon energy spectrum, dΓ/dEγ , peaks only a few hun-
dred MeV below the kinematic limit Eγ <∼ mB/2. In this
peak region, the measurements are most precise, but the
theory predictions depend on a nonperturbative function,
F(k), often called the shape function, which encodes the
distribution of the residual momentum k of the b-quark in
a B meson [8, 9]. A key aspect of our analysis is a model-
independent treatment of F(k) based on expanding it in
a suitable basis [10]. This approach can incorporate any
given shape function model, by using it as the generating
function for the basis expansion, and thus goes beyond
existing approaches that use specific models [11–15].

While F(k) primarily affects the shape of the decay
spectrum, its normalization is determined by |C incl

7 |2,
up to small corrections. Thus, with our treatment of
F(k), we can perform a global fit to the measurements of
dΓ/dEγ , including the precisely measured peak region,
to simultaneously determine F(k) and a precise value
of |C incl

7 |. Our global fit is the first to exploit the full
available experimental information on the spectrum [16–
19], together with the most precise theoretical knowledge
of its perturbative contributions. This provides a more
robust approach than the current method of using the-
oretical predictions for the B → Xsγ rate with a fixed
cut at Eγ > 1.6 GeV [4] and corresponding extrapolated
measurements [20].

The B → Xsγ Spectrum Using SCET [21–24], we can
write the photon energy spectrum in a factorized form,

dΓ

dEγ
= 2Γ0

(2Eγ)3

m̂3
b

[∫
dk P̂ (k)F(mB − 2Eγ − k)

+
1

m̂b

∑
a

(P̂a ⊗ ga)(mB − 2Eγ)

]
, (1)

where

Γ0 =
G2
F m̂

5
b

8π3

αem

4π
|VtbV ∗ts|2 , (2)

and m̂b denotes a short-distance b-quark mass, for which
we use the 1S scheme [25–27].

The first term in Eq. (1) is the dominant contribu-
tion, where F(k) contains the leading nonperturbative
shape function plus a combination of subleading shape
functions specific for B → Xsγ. The function P̂ (k) en-
codes the perturbatively calculable b → sγ spectrum,
with k ∼ mb−2Eγ . It receives contributions from differ-
ent operators in the effective electroweak Hamiltonian,

P̂ (k) =
∣∣C incl

7

∣∣2 [W s
77(k) +W ns

77 (k)
]

(3)

+ 2 Re
(
C incl

7

)∑
i 6=7

CiW ns
7i (k) +

∑
i,j 6=7

CiCjW ns
ij (k) .

Here, W s
77(k) contains the universal “singular” contribu-

tions proportional to αis lnj(k/mb)/k and αis δ(k), which
dominate in the peak region where k is small [28]. It
is included following Ref. [10] to NNLL′ order, which
includes next-to-next-to-leading-logarithmic (NNLL) re-
summation and all singular terms at O(α2

s) [22, 29–37]
The coefficient C incl

7 is dominated by the Wilson coef-
ficient C7(µ) in the electroweak Hamiltonian,

C incl
7 = C7(µ)+

∑
i 6=7

Ci(µ)
[
si(µ, m̂b)+ri(µ, m̂b, m̂c)

]
. (4)
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2

The si terms are defined to cancel the µ dependence of
C7(µ) and to satisfy si(m̂b, m̂b) = 0. The Ci ri terms
contain all virtual corrections proportional to Ci 6=7 that
give rise to singular contributions. In particular, they
contain the sizable corrections from virtual cc̄ loops, and
the resulting sensitivity to the charm quark mass, m̂c,
which are a dominant theory uncertainty in the decay
rate. Since in our approach these contributions are in-
cluded in C incl

7 , they only affect its SM prediction, but
not its determination from the experimental data. The
results of Refs. [3, 4, 38, 39] yield the NNLO SM predic-
tion [28],∣∣C incl

7

∣∣
SM

= 0.3624± 0.0128cc̄ ± 0.0080scale . (5)

The remaining W ns
ij (k) terms in Eq. (3) are “nonsin-

gular” contributions with Ci = Ci(m̂b) [28]. They start
at O(αs) and are suppressed by at least k/mb relative
to W s

77(k), and are therefore subleading in the peak re-
gion. They are included to full O(α2

s) for ij = 77, 78 [40–
42], while the remaining ones are known and included to
O(α2

sβ0) [43–45]. Since W s
77(k) dominates in the peak

region, the normalization of the spectrum is determined
by |C incl

7 |, enabling its precise extraction.
The second term in Eq. (1) is subdominant, and de-

scribes so-called resolved and unresolved contributions,
where P̂a are perturbative coefficients starting at O(αs),
and the ga are additional subleading shape functions [46].
The uncertainties from resolved contributions are much
smaller than suggested by earlier estimates [47], and are
not relevant at the current level of accuracy [28] (see
also Ref. [48]). The only marginally relevant contribu-
tion is related to the known O(1/m̂2

c) correction to the
total rate [49–51], and is included in our analysis via a
subleading O(Λ2

QCD) shape function g27(k).
The nonperturbative shape function F(k) is dominated

by the leading-order shape function, so we assume it is
positive. We introduce a dimension-1 parameter λ, and
expand F(k) as [10],

F(k) =
1

λ

[ ∞∑
n=0

c̃n fn

(k
λ

)]2

, (6)

where fn(x) are a suitably chosen complete set of or-
thonormal functions on [0,∞). The normalization con-
dition

∫∞
0

dkF(k) = 1 implies

∞∑
n=0

c̃2n = 1 . (7)

In practice, the expansion for F(k) must be truncated
at a finite order N . Therefore, the form of F(k) used for
the fit is given by the following approximation

F(k) =

N∑
m,n=0

cm cn Fmn(k) , (8)

where

Fmn(k) =
1

λ
fm

(k
λ

)
fn

(k
λ

)
. (9)

The effect of the truncation in Eq. (8) is approximated by
the modified coefficients cn, which differ from the c̃n in
Eq. (8). In particular, we always keep the normalization
of F(k) exact by enforcing

N∑
n=0

c2n = 1 . (10)

Using the expansion for F(k) in Eq. (8) we get

dΓ

dEγ
= 16Γ0

E3
γ

m̂3
b

N∑
m,n=0

cmcn

∫
dk P̂ (k)Fmn

(
mB − 2Eγ − k

)
+ 16Γ0

E3
γ

m̂3
b

1

m̂2
b

∫
dk P̂27(k) g27(mB − 2Eγ − k)

≡ Ns
N∑

m,n=0

cm cn
dΓ77,mn

dEγ
+ · · · . (11)

Here, Ns = |C incl
7 VtbV

∗
ts|2m̂2

b , and Eq. (11) defines
dΓ77,mn/dEγ , which we precompute from Eq. (3). The
ellipses denote subleading terms not proportional to
|C incl

7 |2, which are also written in terms of Ns and cn
as explained in [28]. Then, Ns and the cn are fitted from
the measured spectra, with the uncertainties and correla-
tions in the measurements captured in the uncertainties
and correlations of the fit parameters. Using the moment
relations for F(k) [28], we obtain C incl

7 and m̂b, as well

as the heavy-quark parameters λ̂1 and ρ̂1 from the fitted
Ns and cn. The other coefficients Ci 6=7 are fixed to their
SM values [28]. Of these, only C1 and C2 are numerically
relevant, which are known to be SM dominated, while C8,
which is sensitive to new physics, gives only a small con-
tribution. We use input values for λ̂2 and ρ̂2, which are
obtained from the B and D meson mass splittings [28].
Fit procedure We implement a binned χ2 fit, with

χ2 =
∑
i,j

(
Γmeas
i − Γi

) (
V −1

)
ij

(
Γmeas
j − Γj

)
. (12)

Here Γmeas
i is the measured B → Xsγ rate in bin i, Γi is

the integral of Eq. (11) over bin i, V is the full experi-
mental covariance matrix, and the sum runs over all bins
of all measurements included in the fit.

The orthonormal basis {fn} is constructed [10] such
that the first F00(k) term in the expansion of F(k) can
have any (nonnegative) functional form, while the higher
Fmn(k) terms provide a complete expansion generated
from it. If F00(k) provides a good approximation to
F(k), the expansion converges very quickly due to the
constraint in Eq. (7), and consequently a good fit can be
obtained with small N , making the best use of the data
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FIG. 1. The pre-fit χ2 probability for different λ correspond-
ing to different bases. See text for details.

to constrain F(k). Hence, F00(k) should already provide
a reasonable description of the data. To find such F00(k),
we perform a pre-fit to the data using three different func-
tional forms for F00(k), given in [28], over a wide range of
λ. We choose the form that provides the best pre-fits. Its
χ2 probability is shown in Fig. 1 for sufficiently different
values of λ such that each can be considered as a dif-
ferent basis. We choose the best λ = 0.55 GeV (orange)
as our default basis, and use λ = 0.525, 0.575, 0.6 GeV
(green, blue, yellow), which also have good pre-fits, as
alternative bases to test the basis independence.

The truncation in Eq. (8) induces a residual depen-
dence on the functional form of the basis. To ensure
that the corresponding uncertainty is small compared to
others, the truncation order N is chosen based on the
available data, by increasing N until there is no signif-
icant improvement in fit quality. This is done by con-
structing nested hypothesis tests using the difference in
χ2 between fits of increasing number of coefficients. If
the χ2 improves by more than 1 from the inclusion of an
additional coefficient, the higher number of coefficients is
retained. To account for the truncation uncertainty, we
include one additional coefficient in the fit. It is in this
sense that our analysis is model independent within the
quoted uncertainties. The final truncation order is found
to be N = 3 for each considered basis. To ensure that
the entire fit procedure including the choice of the ba-
sis and truncation order is unbiased, it is validated using
pseudo-experiments generated around the best fit values,
using the full experimental covariance matrices.

Results We include four differential B → Xsγ mea-
surements [16–19] in the fit. The measurements in
Ref. [16–18] include B → Xdγ contributions, which are
subtracted assuming identical shapes for B → Xsγ and
B → Xdγ and that the ratio of branching ratios is
|Vtd/Vts|2 = 0.0470 [52]. For Ref. [19], we combine the
highest six Eγ bins to stay insensitive to possible quark-

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

FIG. 2. The fitted shape function F(k) with central result
(dark red) and fit uncertainties (dark orange lines). The yel-
low curves show the variation of the fitted shape when varying
the perturbative inputs as discussed in the text.

hadron duality violation and resonances with masses near
mK∗ . We use the measurements of Refs. [17, 18] in the
Υ(4S) rest frame and boost the predictions accordingly.
We use the uncorrected measurement from Ref. [17] and
apply the experimental resolution matrix [53] to the pre-
dictions.

The fit results for Ns and c0−3 including their corre-
lations are given in [28]. The resulting shape function is
shown in Fig. 2, and the results for |C incl

7 | and m̂b ≡ m1S
b

are shown in Fig. 3. We also determine the kinetic en-
ergy parameter λ̂1 in the invisible scheme [10], with plots
analogous to Fig. 3 given in Fig. S2 in [28]. We find the
following results:

|C incl
7 VtbV

∗
ts| = (14.77± 0.51fit ± 0.59theory

± 0.08param)× 10−3 ,

m1S
b = (4.750± 0.027fit ± 0.033theory

± 0.003param) GeV ,

λ̂1 = (−0.210± 0.046fit ± 0.040theory

± 0.056param) GeV2 . (13)

The first uncertainty with subscript “fit” is evaluated
from the ∆χ2 = 1 variation around the best fit point. It
incorporates the experimental uncertainties as well as the
uncertainty due to the unknown shape function, which is
simultaneously constrained in the fit. The theory and
parametric uncertainties are evaluated by repeating the
fit with different theory inputs [28]. The theory uncer-
tainties are due to unknown higher-order perturbative
corrections to the shape of the spectrum in the peak re-
gion, which are evaluated by a large set of resummation
profile scale variations. The results for all variations are
shown by the yellow lines in Fig. 2 and scatter points in
Fig. 3. To be conservative, the theory uncertainty quoted
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FIG. 3. Results for |C incl
7 VtbV

∗
ts| and m1S

b . The central fit
result is shown by the dark orange point and ellipse. The
yellow scattered points show the variation of the fit results
when varying the perturbative inputs as discussed in the text.

in Eq. (13) is obtained from the largest absolute deviation
for a given quantity (ignoring the apparent asymmetry
in the variations). The parametric uncertainty is only

relevant for λ̂1, for which it comes entirely from ρ̂2.
Varying the residual cc̄-loop contributions in the the-

ory inputs for the fit, equivalent to the cc̄ uncertainty
in Eq. (5), changes the extracted |C incl

7 | by ±0.2% and
m1S
b by ±1 MeV, showing that by far the dominant de-

pendence on and uncertainty from these contributions is
factorized into C incl

7 . The uncertainty due to the numer-
ical value of m̂2

c/m̂
2
b contributes most of the parametric

uncertainty of |C incl
7 | in Eq. (13).

From Eq. (5) and |VtbV ∗ts| = (41.29± 0.74)× 10−3 [52],
we find the SM value |C incl

7 VtbV
∗
ts| = (14.96±0.68)×10−3,

with the uncertainty dominated by |C incl
7 | in Eq. (5).

This is shown by the gray band in Fig. 3, and is in excel-
lent agreement with our extracted value.

Converting our result for m1S
b to the MS scheme at

three loops including charm-mass effects [54], we find

mb(mb) = (4.224± 0.040± 0.013) GeV , (14)

where the first uncertainty comes from the total uncer-
tainty in m1S

b in Eq. (13), and the second one is the con-
version uncertainty. This result agrees with the world
average of mb(mb) = (4.18+0.03

−0.02) GeV [52].
In Fig. 4, we demonstrate the basis independence by

comparing the results for |C incl
7 | and m1S

b for the four
basis choices in Fig. 1. The results using these bases are
consistent within a fraction of the fit uncertainties. This
would not be the case without including an additional

4.70 4.75 4.80
14.0

14.5

15.0

15.5

16.0

16.5

FIG. 4. Comparison of the fit results for |C incl
7 VtbV

∗
ts| and m1S

b

for four different bases. The results are consistent within a
fraction of the fit uncertainties.

coefficient (c3) to account for the truncation uncertainty.

Conclusions We presented the first global analysis of
inclusive B → Xsγ measurements to determine |C incl

7 |
within a framework that allows a model-independent and
data-driven treatment of the nonperturbative b-quark
distribution function F(k). The value extracted from
Eq. (13), |C incl

7 | = 0.3578± 0.0199, is consistent with the
SM prediction in Eq. (5).

In comparison, in the past, the SM prediction for
the rate in the Eγ > 1.6 GeV region, B(B → Xsγ) =
(3.36± 0.23)× 10−4 [4], was compared with its measure-
ment, B(B → Xsγ) = (3.32 ± 0.15) × 10−4 [20], which
have 6.8% and 4.5% uncertainties, respectively. The lat-
ter relies on an extrapolation to the 1.6 GeV cut and on
corresponding uncertainty estimates, which entail insuf-
ficient variations of the nonperturbative shape-function
models and perturbative uncertainties that affect the
spectrum. In addition, correlations in these uncertainties
in calculating and measuring the rate for Eγ > 1.6 GeV
cannot be fully assessed. In contrast, in our approach,
C incl

7 is reliably calculable in the SM or in models beyond
it, and the relevant hadronic physics and its uncertain-
ties are determined from the data, together with the ex-
traction of |C incl

7 |. Hence, our approach is more reliable,
as it makes optimal use of the data, uncertainties from
nonperturbative parameters and perturbative inputs are
clearly traceable, and no double counting can occur.

The uncertainty in our extracted |C incl
7 VtbV

∗
ts|2 from

Eq. (13) is 10.6%, about twice the uncertainty in
HFLAV’s result for the Eγ > 1.6 GeV rate. If we neglect
the theory uncertainties as well as the truncation uncer-
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tainty (by repeating the fit only including up to c2), we
would obtain a smaller uncertainty of 5.5%, close to that
of HFLAV’s result. This suggests that HFLAV’s uncer-
tainty is underestimated by about a factor of two, which
leaves more room for new physics. More importantly,
the precision of testing the SM is currently limited by
the extraction of |C incl

7 | from data, and can be improved
significantly with high-precision Belle II measurements.
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FIG. S1. Fit results to the measured photon energy spectra [16–19]. The orange lines are the fitted central values, and the
yellow bands correspond to the ∆χ2 = 1 variation. We omit the first 6 bins of the Belle inclusive spectrum and the first 3 bins
of the BABAR inclusive spectrum, as these have very large uncertainties and provide no additional information.

SUPPLEMENTAL MATERIAL

A. Additional fit results

The full expression of Eq. (11) used in the fit including the non-77 terms is given by

dΓ

dEγ
= Ns

N∑
m,n=0

cm cn
dΓ77,mn

dEγ
+
√
Ns

∑
ij=27,78

Nij

N∑
m,n=0

cm cn
dΓij,mn

dEγ
+

∑
ij=22,28,88

Nij

N∑
m,n=0

cm cn
dΓij,mn

dEγ

+
√
NsN27

λ̂2

m̂2
b

2∑
n=0

dn
dΓg27,n

dEγ
,

N27 = −2
(
C2 −

C1
6

)
|VtbV ∗ts| m̂b , N78 = −2C8 |VtbV ∗ts| m̂b ,

N22 =
(
C2 −

C1
6

)2

|VtbV ∗ts|2 m̂2
b , N28 = 2

(
C2 −

C1
6

)
C8 |VtbV ∗ts|2 m̂2

b , N88 = C2
8 |VtbV ∗ts|2 m̂2

b , (S1)

where the normalization Ns is defined by

Ns = |C incl
7 VtbV

∗
ts|2 m̂2

b . (S2)
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Parameter Fit result

103 Ns 4.925± 0.294

c0 0.9956± 0.0063

c1 0.0641± 0.0361

c2 0.0624± 0.0458

c3 0.0267± 0.0727

Ns c0 c1 c2 c3

Ns 1 −0.804332 +0.809278 +0.703457 +0.579938

c0 −0.804332 1 −0.860744 −0.980474 −0.738548

c1 +0.809278 −0.860744 1 +0.844262 +0.325844

c2 +0.703457 −0.980474 +0.844262 1 +0.666741

c3 +0.579938 −0.738548 +0.325844 +0.666741 1

TABLE S1. Fit results (left) and correlations (right) for the normalization parameter Ns and the fitted shape-function coeffi-
cients c0,1,2,3 for the default fit with λ = 0.55 GeV and N = 3.

Parameter Fit result

103 |C incl
7 VtbV

∗
ts| 14.77± 0.51

m1S
b /GeV 4.750± 0.027

λ̂1/GeV2 −0.210± 0.046

ρ̂1/GeV3 0.134± 0.036

|C incl
7 VtbV

∗
ts| m1S

b λ̂1 ρ̂1

|C incl
7 VtbV

∗
ts| 1 −0.895754 −0.788116 +0.685843

m1S
b −0.895754 1 +0.917563 −0.770155

λ̂1 −0.788116 +0.917563 1 −0.953347

ρ̂1 +0.685843 −0.770155 −0.953347 1

TABLE S2. Results (left) and correlations (right) for |C incl
7 VtbV

∗
ts|, m1S

b , λ̂1, ρ̂1 obtained from the default fit results in Table S1
for λ = 0.55 GeV and N = 3 by inverting the moment relations for F(k). Only the fit uncertainties are included.

-0.30 -0.25 -0.20 -0.15
14.0

14.5

15.0

15.5

16.0

16.5

4.70 4.75 4.80
-0.30

-0.25

-0.20

-0.15

FIG. S2. Fit results in the projection of |C incl
7 VtbV

∗
ts| vs. λ̂1 (left) and λ̂1 vs. m1S

b (right), analogous to Fig. 3 in the main text.
The orange ellipse shows the ∆χ2 = 1 contour. The yellow points show fit results from varying the perturbative inputs.

The dΓij,mn and dΓg27,n are precomputed from the basis expansion of the shape function. The cn and the normaliza-
tion Ns are determined from the fit. For the normalization prefactors of the remaining non-77 nonsingular terms in
Eq. (S1) we use the SM input values collected in Sec. E. The overall minus sign in N27 and N78 arises from assuming
the SM negative sign for Re(C incl

7 ) = −|C incl
7 |, and assuming the SM imaginary part of C incl

7 , which is negligible. The
value for m̂b in the prefactors is obtained during the fit from the cn as discussed in Sec. D 2. The coefficients dn
parametrize the g27 subleading shape function that cannot be absorbed into the leading shape function, cf. Sec. D 3.

The fitted experimental spectra with the fit results overlayed are shown in Fig. S1. The central value is shown by
the orange line, and the yellow band corresponds to the ∆χ2 = 1 uncertainties of the fit. The fit results for Ns and
cn and their correlation matrix are given in Table S1. The final results for |C incl

7 |, m̂b ≡ m1S
b , λ̂1, and ρ̂1 together

with their correlation matrix are given in Table S2. They are obtained from the fitted Ns and cn by using Eq. (S2)
and the moment relations discussed in Sec. D 2. In Fig. S2 these results and the corresponding theory uncertainties
are shown as well, analogous to Fig. 3 in the main text.

In Fig. S3 the convergence of the fit results for our default basis with λ = 0.55 GeV for an increasing number of



9

4.70 4.75 4.80
14.0

14.5

15.0

15.5

16.0

16.5

4.70 4.75 4.80
-0.30

-0.25

-0.20

-0.15

FIG. S3. Fit results as a function of the number of fitted basis coefficients in the projection of |C incl
7 VtbV

∗
ts| vs. m1S

b (left) and

λ̂1 vs. m1S
b (right). For more details see text.

basis coefficients is shown. As discussed in the main text, the truncation order is determined using a nested hypothesis
test to determine the appropriate number of coefficients given the available data sets. For the nominal fit we use 4
coefficients (c0,1,2,3). Note that all fits with fewer coefficients also have acceptable χ2, so the fit quality alone is not a
sufficient criterion for choosing the number of coefficients. On the other hand, the results with only c0 and c0,1, which
effectively correspond to using a fixed model for the shape function, clearly show a model bias and underestimated
uncertainties. The central values change only moderately by the inclusion of the fourth coefficient c3. The resulting
increase in the fit uncertainties illustrates the effect of accounting for the truncation uncertainty by including this
additional coefficient. Including c3 is essential for the results with different basis choices to be consistent as in Fig. 4.
Without including c3, the results still show a clear bias between different bases.

B. Wilson coefficients and Cincl
7

1. Split matching

The effective Hamiltonian for B → Xsγ is

Heff = −4GF√
2
VtbV

∗
ts

8∑
i=1

CiOi . (S3)

The dominant contributions are from

O1 = (s̄ γµT
aPL c)(c̄ γ

µT aPL b) , O2 = (s̄ γµPL c)(c̄ γ
µPL b) ,

O7 =
e

16π2
mb s̄ σµνF

µνPR b , O8 =
g

16π2
mb s̄ σµνG

µνPR b , (S4)

where PR,L = (1±γ5)/2, and we neglected the mass of the strange quark (giving m2
s/m

2
b suppressed corrections). The

O3−6 in Eq. (S3) are four-quark operators generated at one-loop level in the SM. The renormalized Wilson coefficients
Ci(µ) and operators Oi(µ) are defined in the MS scheme, and mb(µ) is the MS b-quark mass.

The Wilson coefficient C incl
7 arises when we carry out a split matching procedure to separate the scale dependence

above and below the scale µ0 ∼ mb [55, 56]. Above µ0, we have the matching onto Heff at the weak scale µweak ∼ mW

and its renormalization group evolution down to µ0 ∼ mb. At µ0, we have virtual matrix element corrections from all
operators Oi6=7 that are proportional to the tree-level matrix element of the chromomagnetic operator O7. Together,
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these effects can be combined to define the effective Wilson coefficient

C incl
7 = C7(µ0) +

∑
i

Ci(µ0)
[
si(µ0, m̂b) + ri(µ0, m̂b, m̂c)

]
= C7 +

∑
i6=7

Ci(µ0) ri(µ0, m̂b, m̂c) , (S5)

which is the main short-distance perturbative coefficient that is constrained by the B → Xsγ measurements. Its value
is sensitive to beyond Standard-Model physics, while the shape of the photon spectrum is not [57]. The two terms in
the last equality in Eq. (S5) are separately µ0 independent order by order in αs. The barred coefficients Ci(µ) are
defined as

Ci(µ0) =

Ci(µ0) , i = 1, . . . , 6 ,

Ceff
i (µ0)

mb(µ0)

m̂b
, i = 7, 8 ,

(S6)

where Ceff
7,8(µ0) are the standard scheme-independent effective Wilson coefficients [58]. The additional factors

mb(µ0)/m̂b are included in C7,8 to convert to a short-distance b-quark mass scheme, m̂b, which improves the conver-
gence of perturbation theory.

The ri(µ0, m̂b, m̂c) in Eq. (S5) encode the finite virtual corrections from operators other than O7 that give rise to
singular contributions to the photon energy spectrum, and are responsible for the difference between C7 and C incl

7 .
Hence, the split matching procedure essentially amounts to matching Heff at µ0 onto a single O7 chromomagnetic
operator, which is subsequently matched onto its corresponding operator in SCET. In doing so, we treat the charm
quark as a heavy quark and integrate out both charm and bottom quarks at the scale µ0. As a result, (most of) the
sizable contributions from cc̄-loops proportional to C1,2C7 and C 2

1,2 are contained within |C incl
7 |2, including their full

m̂c dependence, namely in the terms r1,2(µ0, m̂b, m̂c). As already mentioned in the main body, this organization of
the perturbative contributions has the advantage that the associated theory uncertainty due to the m̂c dependence
only enters in the SM prediction for C incl

7 , but does not limit the accuracy with which C incl
7 can be extracted from

the experimental data. This treatment is furthermore motivated by the fact that in the experimental measurements
of B → Xsγ, charmed final states are not included in the signal and are treated as background.

2. Perturbative results

The coefficient C7 in Eq. (S5) is defined to be µ0 independent and to satisfy C7 = C7(m̂b). Thus it is equal to
C7(µ0) plus the additional terms from the renormalization group that cancel the µ0 dependence of C7(µ0) and vanish
when µ0 = m̂b. Explicitly, up to O(α2

s) with m̂b in the 1S mass scheme, we have

C7 = C7(µ0) +
∑
i

Ci(µ0)si(µ0, m̂b)

= C7(µ0) +
αs(µ0)

4π
ln
m̂b

µ0

[
γ(0)
m C7(µ0) +

∑
i

γ
(0)
i7 Ci(µ0)

]
+
α2
s(µ0)

(4π)2
ln
m̂b

µ0

{
γ(1)
m C7(µ0) +

∑
i

γ
(1)
i7 Ci(µ0) +

1

2
ln
m̂b

µ0

[(
γ(0)
m + γ

(0)
77

)2
C7(µ0) +

(
γ(0)
m + γ

(0)
77

)∑
j 6=7

γ
(0)
j7 Cj(µ0)

+ γ
(0)
87 γ

(0)
m C8(µ0) + γ

(0)
87

∑
j 6=7

γ
(0)
j8 Cj(µ0) +

∑
j 6=7,8

∑
k

γ
(0)
j7 γ

(0)
kj Ck(µ0)

]

−
∑
j 6=7,8

4CF γ
(0)
j7 Cj(µ0)

[
1− CF παs(µ0)

8
− 3

4
ln
m̂b

µ0

]
− β0 ln

m̂b

µ0

[
γ(0)
m C7(µ0) +

∑
i

γ
(0)
i7 Ci(µ0)

]}
, (S7)

where β0 = (11CA− 4TFnf )/3 and nf = 5 is the number of active flavors above the scale mb, and CA = 3, CF = 4/3,

TF = 1/2. The γ
(k)
ij and γ

(k)
m are anomalous dimension coefficients defined via

µ
d

dµ
Cj(µ) =

∑
i

Ci(µ) γij(µ) , γij(µ) =
αs(µ)

4π
γ

(0)
ij +

α2
s(µ)

(4π)2
γ

(1)
ij +O(α3

s) ,

µ
d

dµ
mb(µ) = mb(µ) γm(µ) , γm(µ) =

αs(µ)

4π
γ(0)
m +

α2
s(µ)

(4π)2
γ(1)
m +O(α3

s) . (S8)
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For example, γ
(0)
m = −8 and γ

(0)
77 = 32/3. The full set of required anomalous dimension coefficients can be found in

Ref. [59].
To fully implement the split matching procedure it is convenient to also define scale-independent coefficients Ci 6=7,

which appear in the nonsingular terms in Eq. (3). Analogous to C7 above, they are defined to be µ0 independent and
to satisfy Ci = Ci(µ0 = m̂b). To one-loop order they are given by

C8 = C8(µ0) +
αs(µ0)

4π
ln
m̂b

µ0

[
γ(0)
m C8(µ0) +

∑
i

γ
(0)
i8 Ci(µ0)

]
, Cj 6=7,8 = Cj(µ0) +

αs(µ0)

4π
ln
m̂b

µ0

∑
i

γ
(0)
ij Ci(µ0) .

(S9)
The µ0 dependence of ri(µ0, m̂b, m̂c) in Eq. (S5) is defined such that it cancels that of the coefficients Ci(µ0) in

Eq. (S5), while for µ0 = m̂b, the ri(m̂b, m̂b, m̂c) agree with their usual definitions in the literature. Denoting their αs
expansions at µ0 = m̂b as

ri(m̂b, m̂b, m̂c) =
αs(m̂b)

4π
r

(1)
i +

α2
s(m̂b)

(4π)2
r

(2)
i +O(α3

s) , (S10)

we have at NNLO

r8(µ0, m̂b, m̂c) =
αs(µ0)

4π
r

(1)
8 +

α2
s(µ0)

(4π)2

[
r

(2)
8 + ln

m̂b

µ0
r

(1)
8

(
γ(0)
m + γ

(0)
88 − 2β0

)]
+O(α3

s) , (S11)

while for k = 1, . . . , 6,

rk(µ0, m̂b, m̂c) =
αs(µ0)

4π
r

(1)
k +

α2
s(µ0)

(4π)2

[
r

(2)
k + ln

m̂b

µ0

(∑
i 6=7

γ
(0)
ki r

(1)
i − 2β0 r

(1)
k

)]
+O(α3

s) . (S12)

The results of Refs. [41, 42] give

r
(1)
8 =

CF
3

(
11− 2π2

3
+ 2iπ

)
,

Re r
(2)
8 = CF

{(
ca78,0

2
+

55

3
+

34π2

9
− 8π4

27

)
CF +

(
cna78,0

2
− 3454

81
+

176π2

81
+

88ζ3
9

)
CA

+

(
314

27
− 16π2

27
− 8ζ3

3

)
β0(nl) +

[
976

81
− 4π√

3
− 244π2

81
+ 16

√
3 Cl2

(π
3

)
− 32ζ3

27

]
TF nh

}
. (S13)

A value for Im r
(2)
8 is not yet known, but it only contributes to the spectrum at O(α3

s). In Eq. (S13), nh = 1 is the
number of flavors with mass m̂b, and nl = 4 is the number of massless flavors, since we neglected for simplicity the

m̂c dependence in r
(2)
8 . The full m̂c dependence of Re r

(2)
8 , arising from cc̄ loops inserted into gluon propagators, is

known [41, 42], but the massless approximation is sufficiently accurate for our purposes.
For r1−6(µ0) we have the NLO coefficients [60–62]

r
(1)
1 = −1

6
r

(1)
2 , r

(1)
2 = −1666

243
+ 2a(ρ) + 2b(ρ)− 80

81
iπ , (S14)

r
(1)
3 =

2392

243
+

8π

3
√

3
− a(1) + 2b(1) +

32

9
Xb +

56

81
iπ , r

(1)
4 =

145

243
− 1

6
r

(1)
3 + 2b(ρ) + 2b(1)− 40

81
iπ ,

r
(1)
5 =

6136

81
− 32π√

3
+ 16r

(1)
3 − 128

3
Xb , r

(1)
6 = −310

27
+ 6r

(1)
2 − 4

3
r

(1)
3 + 4r

(1)
4 +

1

3
r

(1)
5 − 104

27
iπ .

Here, ρ = m̂2
c/m̂

2
b and a(ρ), b(ρ), and Xb are given in Ref. [62]. Since the Wilson coefficients C3−6 are small, the r3−6

terms only have very small impacts, and their NNLO contributions r
(2)
3−6 can be safely neglected.

The NNLO contributions r
(2)
1,2(µ0) are only fully known in the large β0 approximation, where they are obtained as

an expansion in mc/mb [63]. They are given by

r
(2)
1 = −r(2)

2 /6 , r
(2)
2 = −3

2
β0

[(
Re r

(2)
2

)
Ref. [63]

+ i
(

Im r
(2)
2

)
Ref. [63]

]
+ · · · , (S15)
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where the terms in the square brackets are given in Eqs. (26) and (27) of Ref. [63], and the ellipses denote other

independent color structures. The full NNLO contributions to r
(2)
1,2 are required to cancel the m̂c-scheme dependence

and have been computed in the limits mc � mb/2 and mc = 0 [38, 39, 64].

The SM prediction for C incl
7 in Eq. (5) is obtained using the above results together with the input parameters and

numerical values for the Wilson coefficients given below in Sec. E. Although the two terms in Eq. (S5) are formally
µ0 independent, there is still residual µ0 dependence from the truncation of perturbation theory. We vary µ0 between
m̂b/2 and 2m̂b to obtain an estimate of the associated perturbative uncertainty, quoted in Eq. (5) with the subscript
“scale”. In addition, to estimate the uncertainty from missing O(α2

s) charm-loop contributions we use the α2
sβ0 result

in Eq. (S15) with a multiplicative prefactor of 1.0 ± 0.5, yielding the uncertainty quoted in Eq. (5) with a subscript
“cc̄”. The parametric uncertainties from input parameters, including the numerical value of m̂c itself, are much
smaller than these two sources of uncertainties and can be safely neglected.

C. Perturbative ingredients for the photon energy spectrum

The perturbative components of the photon energy spectrum are described by Eq. (3), which we repeat here for
convenience

P̂ (k) =
∣∣C incl

7

∣∣2 [W s
77(k) +W ns

77 (k)
]

+ 2 Re
(
C incl

7

)∑
i 6=7

CiW ns
7i (k) +

∑
i,j 6=7

CiCjW ns
ij (k) . (S16)

Definitions for the Wilson coefficients C incl
7 and Ci are given above in Sec. B, W s

77(k) contains the dominant singular
contributions and the W ns

ij (k) are the various nonsingular terms. In our formula for dΓ/dEγ in Eq. (1) we have kept

an overall E3
γ kinematic prefactor. Here one power of Eγ arises from the photon phase-space integration, and for the

dominant 77-like contributions two more factors of Eγ arise from the derivative that acts on the photon field in each
Fµν . Since these factors are universal we do not expand them about the singular limit. This improves the behavior of
the decomposition into singular and nonsingular terms in the tail region where these components become comparable.

1. Singular contributions

The all-order factorization theorem for the singular contributions W s
77(k) is well known [24, 65]. For our treatment

we follow Ref. [10] and make use of the SCET-based factorization theorem, expressing the perturbative ingredients in
a short-distance scheme. (In the notation of Ref. [10], µi = µJ and µΛ = µS .)

W s
77(k) = hs(m̂b, m̂c, µb)UH(m̂b, µb, µJ)

∫
dω dω′m̂b J [m̂b(k − ω), µJ ]US(ω − ω′, µJ , µS) Ĉ0(ω′, µS) . (S17)

Here hs, J , and Ĉ0 are the fixed-order hard, jet, and soft functions, which we include up to NNLO. The evolution
kernels UH and US sum large logarithms of k/m̂b ∼ 1−2Eγ/m̂b to all orders in perturbation theory, and are included

at NNLL order. The perturbative expressions for hs, J , Ĉ0 as well as UH and US together with the required anomalous
dimensions can be found in Ref. [10], where they were obtained using results from Refs. [22, 29–37].

In the appropriate region the logarithmic summation is achieved by choosing µb ∼ m̂b, µS ∼ m̂b − 2Eγ >∼ ΛQCD,
µ2
J ∼ µbµS . The dependence of W s

77(k) on µb, µJ , and µS cancels between the fixed-order functions and evolution
kernels order by order in resummed perturbation theory, and will be used to estimate higher-order perturbative
uncertainties. The precise procedure we use to estimate these uncertainty and to transition into and out of this
resummation region is described in more detail in Sec. C 3 below.

The hard function hs arises from matching the QCD chromomagnetic operator O7 onto a corresponding SCET
operator at the scale µb, which is the second step in the split matching procedure described in the previous section.
To be consistent with the first step of the split matching, also here we integrate out bottom and charm quarks at the
hard matching scale µb. As a result, the hard function includes all effects of virtual massive charm loops inserted into
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gluon propagators, which starting at two loops gives rise to its m̂c dependence given by

hs(m̂b, m̂c, µb) = hs(m̂b) +
α2
s(µb)

(4π)2
CF TF f2s

(m̂2
c

m̂2
b

)
f2s(ρ) =

4

9
ln3 ρ+

50

9
ln2 ρ+

[
−124

9
ln(1− ρ) +

8π2

9
+

794

27

]
ln ρ− 16

3
Li3(ρ) +

(8 ln ρ

3
− 124

9

)
Li2(ρ)

+
124π2

27
+

5578

81
+ ρ
(32

9
ln ρ+

172

9

)
+ 12ρ2

[
−Li2(ρ) +

1

2
ln2 ρ− log(1− ρ) log(ρ) +

π2

3

]
− 2

9

√
ρ(35ρ+ 81)

[
−4Li2(

√
ρ) + Li2(ρ) + 2arctanh(

√
ρ) ln ρ+ π2

]
, (S18)

where hs(m̂b) is the two-loop result for massless quarks given in Ref. [10] and f2s(ρ) is extracted from the results of
Ref. [66]. At the same time, all SCET ingredients are defined for nf = 3 massless flavors.

2. Nonsingular contributions

The remaining nonsingular terms W ns
ij (k) in Eq. (S16) are included using fixed-order perturbation theory. These

terms are power-suppressed by k/m̂b in the B → Xsγ peak region, but loose this suppression in the tail of the
spectrum where k ∼ m̂b. By using C incl

7 and Ci in Eq. (S16), the W ns
ij are also µ independent order by order in αs.

We use the notation µ = µns for the residual scale dependence in all nonsingular terms, and will vary this scale as
part of our perturbative uncertainty estimate. Up to O(α2

s) we write

m̂bW
ns
ij (m̂bx) =

1

(1− x)3

{
αs(µns)

π
CF w

ns(1)
ij (x) +

α2
s(µns)

π2
CF

[
w

ns(2)
ij (x) +

1

2
β0 ln

µns
mb

w
ns(1)
ij (x) + ∆wns

ij (x)
]}

. (S19)

The NLO and NNLO coefficient functions, w
ns(1)
ij (x) and w

ns(2)
ij (x), are determined by taking the full fixed-order

results for dΓ/dEγ calculated in the literature, reorganizing the Wilson coefficients as in Eq. (S16), and then using
Eq. (1) with F(mB−2Eγ −k) = δ(m̂b−2Eγ −k) and subtracting the fixed-order singular terms predicted by W s

77(k)
at each order. When this construction is carried out with the results consistently expressed in a short-distance mass
scheme, there is an additional O(α2

s) correction induced, which is denoted as ∆wns
ij (x) in Eq. (S19).

Note that the extraction of the nonsingular corrections is somewhat nontrivial. For example, if we take the full
theory result in a short-distance mass scheme and extract the coefficient of the terms proportional to Re[C7C

∗
8]

(setting µ = m̂b), we find

m̂b

2Γ0

dΓ

dEγ

∣∣∣∣∣
C7C8

=
αs(m̂b)

4π

[
Re(r

(1)
8 ) δ(x) + 4CF w

ns(1)
78 (x)

]
(S20)

+
α2
s(m̂b)

(4π)2

{
Re(r

(2)
8 ) δ(x) + Re(r

(1)
8 ) 4CF

[
w

s(1)
77 (x) + w

ns(1)
77 (x)

]
+ 16CF

[
w

ns(2)
78 (x) + ∆wns

78(x)
]}

+O(α3
s) .

Here the δ(x) and w
s(1)
77 (x) terms are both reproduced by the singular E3

γ |C incl
7 |2W s

77 term. Furthermore, the

Re(r
(1)
8 )w

ns(1)
77 (x) term is reproduced by E3

γ |C incl
7 |2W ns

77 . Only the remaining terms contribute to W ns
78 , as indicated by

their superscripts.

By far the numerically dominant nonsingular corrections come from W ns
77 . Using as input the results from Refs. [31,

40, 67], we find that the one-loop and two-loop nonsingular coefficient functions are

w
ns(1)
77 (x) = −8− 7x+ 2x2

2
lnx− 3

4
(1− x)(5− 3x) ,

w
ns(2)
77 (x) =

1

2

(
CF −

1

2
CA

){
(2 + x− x2 − x3)

[
L1(x) +

1

x

(
lnx− 2

3

)
L3(x)

]
+ (2− x+ x2)

[
2Li3(x)− Li2(x) lnx

]
− x2

[
Li3(x2)− Li2(x2) lnx

]
+ (−15 + 11x− 3x2)

ζ3
2

}



14

+ CF

{
(2 + 10x− x2)

1

4x

[
Li3(1− x) + Li3(x)− Li2(x) lnx− 1

2
ln(1− x) ln2 x− ζ3

]
+

8− 32x+ 8x2 + 47x3 − 46x4 − 2x5 + 8x6

12(1− x)
L2(x) +

−6 + 28x− 9x2 − 9x3 − 2x4 + x5

12(1− x)
L3(x)

+
8− 13x+ 9x2 − 3x3

4(1− x)
ln3 x+

195− 405x+ 266x2 − 66x3 + 2x4 − x5

24(1− x)
ln2 x

+
[725− 572x+ 29x2 + 28x3 + 32x4

48
+ (7− 7x+ x2)

π2

12

]
lnx

+
451− 1531x+ 1553x2 − 525x3 − 16x4 + 32x5

96(1− x)
+

59− 149x+ 150x2 − 53x3 − 2x4 + x5

12(1− x)

π2

6

}
+ CA

{
−4 + 12x+ 8x2 − 11x3 + 3x4 + x5

12
L2(x) +

−3− 10x+ 15x2 + 3x3 + 2x4 − x5

24(1− x)
L3(x)

− x2

8
ln3 x+

24 + 9x+ 4x2 + x3 − x4

48
ln2 x

+
[−110 + 188x− 5x2 − 45x3 + 10x4 + 4x5

48(1− x)
+ (9− 7x+ 3x2)

π2

24

]
lnx

+
−10 + 129x− 65x2 + 4x3 + 2x4

48
+

22− 67x+ 54x2 − 7x3 + 2x4 − x5

24(1− x)

π2

6

}
+ β0

{
2 + 2x− x2

8x

[
Li2(1− x)− π2

6

]
+

3(8− 7x+ 2x2)

16
ln2 x+

1− 45x+ 45x2 − 19x3

48(1− x)
lnx

+
−63 + 92x− 41x2

32
+ (8− 7x+ 2x2)

π2

48

}
. (S21)

To write w
ns(2)
77 (x) we defined the following functions of x, which diverge at most logarithmically for x→ 0

L1(x) =
1

x

{
Li3(1− x) + 2Li3

( 1

1 + x

)
− 2Li3

(1− x
1 + x

)
+

1

4
Li3

[(1− x
1 + x

)2]
− 1

6

[
2 ln(1 + x)2 − π2

]
ln(1 + x)− 5ζ3

4

}
,

L2(x) =
1

2x3

{
Li2(x2) + 2

[
x2 + ln(1− x2)

]
lnx− x2

}
,

L3(x) =
1

2
Li2(x2)− Li2(x) + ln(1 + x) lnx . (S22)

Above we mentioned that a factor of E3
γ ∝ (1−x)3 was universal for the 77 contributions. It follows that (1−x)3W ns

77

should also vanish as (1− x)3 as x→ 1, and hence that the wns
77(x) coefficients should vanish like (1− x)3 for x→ 1

to cancel the overall factor 1/(1− x)3 in Eq. (S19). Expanding the above results in the limit x→ 1, we find

w
ns(1)
77 (x) =

9

4
(1− x)3 +O[(1− x)4] ,

w
ns(2)
77 (x) =

[
CF

(
−4933

1728
− 3π2

8
+
ζ3
2

)
+ CA

(599

576
− 3π2

16
− ζ3

4

)
+ β0

(5

4
− π2

24

)]
(1− x)3 +O[(1− x)4] . (S23)

If we would expand the E3
γ in the singular SCET contribution W s

77, then this would modify the nonsingular contri-
bution, such that it would not vanish like E3

γ either. In this situation, as was also noted in Ref. [68], the proper E3
γ

behavior of the spectrum would be obtained only by nontrivial cancellations between the singular and nonsingular
contributions. Although formally the difference between these approaches corresponds to a different treatment of
nonsingular corrections, this difference can be numerically important even to rather low values of x because of the
third power, and the fact that the resummation in the singular terms can potentially spoil the cancellation at small
x. For this reason, our approach of keeping the E3

γ prefactor unexpanded is preferred.

For the remaining nonsingular coefficient functions, the fixed-order C7C8 result from Refs. [41, 42] allows us to

extract w
ns(1)
78 and w

ns(2)
78 . Although both of these coefficients are used in our analysis, for brevity of the presentation

we only quote here the first-order term

w
ns(1)
78 (x) =

x

3(1− x)
lnx+

5− 2x+ x2

12
. (S24)
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Finally, for the remaining nonsingular structures, the full theory results at one loop are well known [69–72]. They
enable us to determine the following O(αs) nonsingular coefficient functions

w
ns(1)
88 (x) =

1

36(1− x)

[
2(1 + x2)

(
lnx− 2 ln

µ

mb

)
− 3− 7x2 + 2x3

]
,

w
ns(1)
72 (x) = −8

3
ρ2 G1

(1− x
4ρ

)
, w

ns(1)
71 (x) = −1

6
w

ns(1)
72 (x) , w

ns(1)
18 (x) = −1

6
w

ns(1)
82 (x) =

1

18
w

ns(1)
72 (x) ,

w
ns(1)
22 (x) =

4

9
ρG2

(1− x
4ρ

)
, w

ns(1)
11 (x) = −1

6
w

ns(1)
12 (x) = −1

6
w

ns(1)
21 (x) =

1

36
w

ns(1)
22 (x) , (S25)

where ρ = m̂2
c/m̂

2
b and the charm-loop functions G1,2(u) are given by

G1(u) =

∫ u

0

du′Re
[
G(u′) + u′

]
, G2(u) =

∫ u

0

du′ (1− 4ρ u′)

∣∣∣∣G(u′)

u′
+ 1

∣∣∣∣2 ,
G(u) =

{
−
[
arctan

√
u/(1− u)

]2
, u ≤ 1 ,[

ln
(√
u+
√
u− 1

)
− iπ/2

]2
, u > 1 .

(S26)

The corresponding O(α2
s) nonsingular coefficient functions w

ns(2)
ij are not yet fully known. However, we stress that

analogous to the C7C8 contribution in Eq. (S20), all singular contributions as well as a subset of the nonsingular
contributions appearing at two loops that behave O7-like are already accounted for via the |C incl

7 |2(W s
77 +W ns

77 ) term.

For the remaining two-loop contributions w
ns(2)
ij we use the known results for the α2

sβ0 terms obtained from the full
theory results of Refs. [43–45], and thus leave out contributions with the color structure CA. Again for brevity, we do
not list here the results for these coefficient functions. The nonsingular corrections for i, j = 3, 4, 5, 6 are known to be
very small [72] and are neglected.

3. Scale choices and estimation of perturbative uncertainties

We now discuss our treatment of the central scales µi and their variations used to estimate perturbative uncertainties.
The soft and jet scales take different forms in the three parametrically distinct regions of the spectrum:

1) SCET shape function region: ΛQCD ∼ (mB − 2Eγ)� m̂b ,

2) Shape function OPE: ΛQCD � (mB − 2Eγ)� m̂b ,

3) Local OPE: ΛQCD � (mB − 2Eγ) ∼ m̂b . (S27)

This can be properly accounted for by using profile functions, µS = µS(Eγ) and µJ = µJ(Eγ), as discussed in Ref. [10]
(see also Ref. [73]). The hard scale µb ∼ m̂b is independent of Eγ . For the remaining scales we use

µS(Eγ) =



µ0 E1 ≤ Eγ
µ0 + (µb − µ0)

2(Eγ−E1)2

(E2−E1)2
1
2 (E1 + E2) ≤ Eγ < E1

µb − (µb − µ0)
2(Eγ−E2)2

(E2−E1)2 E2 ≤ Eγ < 1
2 (E1 + E2)

µb Eγ < E2 ,

µJ(Eγ) =
[
µS(Eγ)

](1−eJ )/2
µ

(1+eJ )/2
b ,

µns(Eγ) =
[
µJ(Eγ)

](1−ens)/2
µ

(1+ens)/2
b . (S28)

The constant parameters µ0, µb, E1, E2, eJ , and ens can be varied to assess perturbative uncertainties. In Eq. (S28)
the soft scale µS(Eγ) takes the value µS = µ0 ∼ 1 GeV >∼ ΛQCD in the SCET region given by E1 ≤ Eγ . In the local
OPE region, Eγ < E2, all the scales become equal, µS = µJ = µns = µb, which turns off the resummation and is
crucial for the singular and nonsingular contributions to properly recombine to reproduce the local OPE prediction
for the spectrum. In between these two we have a transition region where we join the soft scales in a smooth manner,
as given by the quadratic functions of Eγ shown in Eq. (S28). Since the transition scales E1 and E2 are not very
widely separated, there is no need to separately implement a shape function OPE scaling region for the soft scale,
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noting that it is anyway well captured by the form of µS(Eγ) used in the transition. The parameters eJ and ens
provide a means to independently vary the jet and nonsingular scales when assessing perturbative uncertainties. By
default we have eJ = ens = 0. For µJ this gives the geometric mean of the soft and hard scales as required. For µns
we choose our default as the geometric mean between the hard and jet scales, and we will vary this choice up to the
hard scale and down to the jet scale. This allows us to capture the fact that the nonsingular perturbative series are
sensitive to lower scales than the hard scale (as would be made explicit in subleading power factorization theorems
for these terms).

Taken together we consider a total of 35 = 243 different variations for the profile parameters to assess the pertur-
bative uncertainty, given by the choices

µb = {4.7, 2.35, 9.4}GeV , µ0 = {1.3, 1.1, 1.8}GeV , E1 = {2.2, 2.1, 2.3}GeV , E2 = 1.6 GeV ,

eJ = {0,−1/3,+1/3} , ens = {0,−1/2,+1/2} . (S29)

For each parameter, the first case in the list is the default central value, and the next two are the variations. We do
not vary E2 since our fit analysis is not sensitive to the uncertainty in the spectrum in the region Eγ <∼ 1.6 GeV. To
assess the theoretical uncertainty we separately carry out the fit for each of these 243 cases and then consider the
spread of the results as giving the range of possibilities for the central values. The results for these 243 fits are shown
by the dark yellow shape function curves in Fig. 2 and as the yellow scatter points in Figs. 3 and S2. The theoretical
uncertainty for a given quantity is then obtained by using the largest absolute deviation of these results from the
default central value.

D. Shape Functions

1. Shape-function basis

We briefly summarize the functional basis used for expanding the shape function in Eq. (6). For more details we
refer to Ref. [10]. The orthonormal basis functions fn(x) are given by

fn(x) =
√
y′(x)φn[y(x)] , φn(y) =

√
2n+ 1

2

1

2nn!

dn

dyn
(y2 − 1)n , (S30)

where φn(y) is an orthonormal basis on y ∈ [−1, 1], given by the normalized Legendre polynomials. The function y(x)
can be any variable transformation that maps x ∈ [0,∞) to y ∈ [−1, 1], i.e., it has to satisfy y(0) = −1, y(∞) = +1,
and y′(x) > 0. Given any positive and normalized function Y (x) on x ∈ [0,∞), we can construct y(x) from its integral

y(x) = −1 + 2

∫ x

0

dx′ Y (x′) , y′(x) = 2Y (x) . (S31)

With this construction we have

f2
0 (x) = y′(x)φ2

0[y(x)] = Y (x) , F00(k) =
1

λ
Y
(k
λ

)
. (S32)

Hence, Y (x) or equivalently F00(k) acts as the generating function for the basis, for which we can use any suitable
model function.

We consider the following functional forms

Yexp(x, p) =
(p+ 1)p+1

Γ(p+ 1)
xp e−(p+1)x ,

Ygauss(x, p) =
2 ap+1

Γ[(1 + p)/2]
xp e−a

2x2

, a =
Γ(1 + p/2)

Γ[(1 + p)/2]
. (S33)

where the parameter p determines the behavior of F00(k) ∼ kp for k → 0. As explained in Ref. [10], for integer p

we need at least p ≥ 3 to ensure that after short-distance subtractions, which involve taking two derivatives of F̂ (k),
the spectrum vanishes at the kinematic endpoint. We have tested the three functional forms Yexp(x, 3), Yexp(x, 4),
Ygauss(x, 3) in the pre-fit. Of these, Yexp(x, 3) provides the best pre-fits and is thus used as the default functional
form.
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2. Treatment of leading and subleading contributions to F(k)

Our definition of the shape function F(k), appearing in the leading power contributions to the cross section, absorbs
the non-resolved subleading power shape functions appearing in B → Xsγ. This induces corrections in the formulas
for the moments of F(k) which are used in our analysis.

Taking a set of values {cn} as input, from a fit or otherwise, the ith moment of F(k) is given by

M i[F ] =

∫
dk kiF(k) =

∑
m,n

cmcn

∫
dk kiFmn(k) ≡

∑
m,n

cmcnM
i
mn . (S34)

Here in the second step we inserted the basis expansion for F(k), and in the last relation we defined the moment
matrices M i

mn ≡M i[Fmn] as the moments of the Fmn(k) basis functions defined in Eq. (9).
Theoretically moments of F(k) up to O(Λ3

QCD) are given in terms of HQET hadronic parameters by [10, 74]

M0[F ] =
∑
n

|cn|2 = 1 +O(αsΛ
2
QCD/m̂

2
b) , (S35)

M1[F ] =
∑
m,n

cmcnM
1
mn = mB − m̂b +

−λ̂1 + 3λ̂2

2m̂b
+

5ρ̂1 − 3ρ̂2

6m̂2
b

+O(αsΛ
2
QCD/m̂b) ,

M2[F ] =
∑
m,n

cmcnM
2
mn = − λ̂1

3
+
ρ̂1 + 3ρ̂2

3m̂b
− (mB − m̂b)

2 + 2(mB − m̂b)M
1[F ] +O(αsΛ

3
QCD/m̂b) ,

M3[F ] =
∑
m,n

cmcnM
3
mn =

ρ̂1

3
+ (mB − m̂b)

3 − 3(mB − m̂b)
2M1[F ] + 3(mB − m̂b)M

2[F ] +O(αsΛ
4
QCD/m̂b) ,

where m̂b is defined in the 1S scheme, and

λ̂1 = λi1(R) +
T1 + 3T2

m̂b
, λ̂2 = λ2(µ) +

T3 + 3T4

3m̂b
. (S36)

Here, λi1(R) is defined in the invisible scheme [10] with R = 1 GeV, and λ2(µ) is the usual chromomagnetic matrix
element (defined in the MS scheme). The ρ̂i are matrix elements of local dimension-6 operators in HQET in a suitable
short-distance scheme, and the Ti are matrix elements of time-ordered products [75].

The 1/m̂b corrections in Eq. (S35) arise from absorbing the subleading shape functions into F(k). By doing
so, the moment expansion of F(k) in Eq. (S35) reproduces the complete O(Λ3

QCD/m̂
3
b) local OPE corrections for

B → Xsγ [74, 76]. Note that the normalization of F(k) does not receive O(Λ2
QCD/m̂

2
b) and O(Λ3

QCD/m̂
3
b) corrections.

At O(αs) and beyond, the subleading shape functions will in general involve different perturbative prefactors than
the leading shape function. Since O(αsΛQCD/m̂b) corrections are beyond the order we are working, they are also
effectively absorbed into F(k), which means the moments receive relative corrections of O(αsΛQCD/m̂b) as indicated in
Eq. (S35), which we neglect. The exception is the normalization of F(k), which only receives relative O(αsΛ

2
QCD/m̂

2
b)

corrections. (The O(Λ4
QCD) corrections to the moments are not included and not explicitly indicated.)

It turns out that the numerical effect of the included subleading shape functions on the first moment is significant.
For typical values of the λ̂i and ρ̂i parameters, the 1/m̂b corrections to the first moment contribute about 70−80 MeV
causing a corresponding 70 − 80 MeV shift in the extracted value of m̂b. In other words, without including these
effects we would obtain a value of m̂b that is 70− 80 MeV too small.

Values for λ̂2 and ρ̂2 are obtained from meson mass relations as discussed below in Sec. E 3, whereas values of m̂b,
λ̂1, and ρ̂1 are obtained whenever necessary from M1[F ], M2[F ], and M3[F ] by inverting the moment relations in
Eq. (S35). In particular, the moment relations are inverted when the current value of m̂b is needed inside the fit.

3. Resolved-photon contributions

Considerable attention has been paid to the so-called resolved photon contributions, as they were estimated to yield
a 5% theoretical uncertainty in the total rate, not reducible below 4% [47]. More recently Ref. [48] estimated their
impact to be substantially smaller. Using somewhat different considerations, we also find that these contributions are
not as large as estimated in Ref. [47]. From our analysis we find that the only marginally relevant contributions are
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those related to the calculable O(λ2/m̂
2
c) corrections to the total rate [49–51], which enter via the subleading shape

function g27(k) as discussed below.
The resolved-photon contributions coming from O8O7 [77, 78] and O2O7 are expected to be most significant [47],

while contributions from O2O2, O2O8, and O8O8 can be neglected.
As pointed out in Ref. [79], the potentially relevant O8O7 contribution can be constrained using the measured

isospin asymmetry in B → Xsγ, defined by

∆0− =
Γ(B̄0 → Xsγ)− Γ(B− → Xsγ)

Γ(B̄0 → Xsγ) + Γ(B− → Xsγ)
≡ Γ0 − Γ−

Γ0 + Γ−
. (S37)

To see this, we decompose these contributions to Γ0 and Γ−, denoted as δΓ− and δΓ0, according to the quark to
which the photon couples (besides the O7 operator),

δΓ− = QuδΓ
a + (Qd +Qs)δΓ

b = Qu(δΓa − δΓb) ,
δΓ0 = QdδΓ

a + (Qu +Qs)δΓ
b = Qd(δΓ

a − δΓb) , (S38)

where for δΓa the photon couples to the valence quark flavor, and for δΓb to any non-valence flavors. For the
non-valence contribution we used that SU(3) flavor symmetry implies that δΓb is universal at leading order. Since
Qu +Qd +Qs = 0, both contributions are proportional to δΓa − δΓb. The isospin asymmetry is given by [79]

∆0− =
δΓ0 − δΓ−

Γ0 + Γ−
= −δΓ

a − δΓb

Γ0 + Γ−
. (S39)

Hence, the relative impact of these contributions to the isospin-averaged rate is given by

δΓ− + δΓ0

Γ0 + Γ−
=

1

3

δΓa − δΓb

Γ0 + Γ−
= −∆0−

3
= (0.16± 0.71)% . (S40)

where we used the latest Belle measurement ∆0− = −(0.48 ± 2.12)% [80] (for mXs < 2.8 GeV or equivalently
Eγ > 1.9GeV), which is nearly a factor of three more precise than earlier results. Hence, the O7O8 contribution is
experimentally constrained to be much smaller than the current sensitivity, and can be neglected.

Concerning the O2O7 contribution, unlike Ref. [47], we treat the charm quark as heavy in our analysis, which
amounts to expanding the charm loop in ΛQCD/mc. The resulting contribution to the spectrum is then given in terms
of an unknown O(Λ2

QCD) subleading shape function g27(k) as

dΓg27

dEγ
= 2Γ0

(2Eγ)3

m̂3
b

1

m̂2
b

∫
dk P̂27(k) g27(mB − 2Eγ − k) ,

P̂27(k) = 2Re(C incl
7 )

(
C2 −

C1
6

)(
− m̂2

b

18 m̂2
c

)
UNLL(k) . (S41)

In a complete factorization analysis, this contribution would involve some evolution between hard, jet, and soft
contributions, which is currently not known. To provide some reasonable Sudakov suppression in the peak re-
gion, which is important to avoid artificially enhancing this contribution relative to the leading, resummed W s

77

in Eq. (S17), we include in it the NLL evolution factor of the leading contribution given by the product UNLL =
[UH(µb, µJ)US(k, µJ , µS)]NLL with µb,J,S fixed to their central scales.

The subleading shape function g27(k) is not known, but its moments can be calculated in terms of local matrix
elements. To parametrize it, we expand it as

g27(k) = λ̂2

2∑
n=0

dn Fn(k) , Fn(k) =
1

λ
fn

(k
λ

)
, (S42)

where we use our default λ = 0.55 GeV and the functional basis fn(x) is generated from Yexp(x, p). For our central
results we use p = 2, corresponding to linear scaling Fn(k) ∼ k for k → 0, and for the uncertainties we also use p = 4.
The dΓg27,n/dEγ in Eq. (S1) are obtained by inserting the basis expansion in Eq. (S42) into Eq. (S41).

At present, we have no sensitivity to determine the basis coefficients di from the data. Instead, we determine d0

and d1 for a given value of d2 from the norm and first moment of g27(k), which are given by

M0[g27] = λ̂2 , M1[g27] =
ρ̂2

2
. (S43)
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FIG. S4. Variations for g27(k) for fixed norm and first moment. The solid orange line shows the default choice (p = 2, d2 = 0),
the blue dashed lines the d2 variations, and the green lines the different basis (p = 4) for d2 = 0 (long-dashed) and with d2

varied (dotted).

For our central results we set d2 = 0, and to estimate the uncertainties we vary d2 by an O(1) amount to provide
a reasonably large variation in the shape of g27(k). The variations for g27(k) for fixed norm and first moment are
illustrated in Fig. S4, with the solid orange line showing the default central choice.

The main impact of this contribution is due to the norm of g27(k) ∼ λ̂2, which reproduces the well-known O(λ2/m
2
c)

correction to the total rate [49–51]. The central values and uncertainties used for λ̂2 and ρ̂2 are discussed in Sec. E 3.
The uncertainties due to the unknown shape of g27(k) beyond its norm and first moment are much smaller than the
fit uncertainties. They change the extracted |C incl

7 | by at most 0.25% and m1S
b by 4 MeV, and are thus irrelevant at

the present level of accuracy and can be neglected. With more available data in the future, the dn coefficients could
also be included in the fit and constrained by the data.

E. Numerical inputs

Here, we collect all numerical input values entering in our analysis. The following values are taken from Ref. [52]:

α(5)
s (mZ) = 0.1181 , αem(0) = 1/137.036 , GF = 1.1663787× 10−5 ,

mZ = 91.1876 GeV , mW = 83.379 GeV , mt = 173 GeV ,

mc(mc) = (1.27± 0.02) GeV , mb(mb) = (4.18+0.03
−0.02) GeV ,

|Vtd| = 0.00896+0.00024
−0.00023 , |Vts| = 0.04133± 0.00074 , |Vtb| = 0.999105± 0.000032 ,

mB = 5.279 GeV , τB = 1.581 ps ,

∆mB = 45.22 MeV , ∆mD = 141.315 MeV , (S44)

where mB , ∆mB = mB∗ −mB , ∆mD = mD∗ −mD are averaged over charged and neutral mesons.

1. Wilson coefficients

At and above the split-matching scale µ0 = 4.7 GeV, we always use the exact 4-loop running of αs(µ) with nf = 5
flavors. To obtain the SM values of the Wilson coefficients at µ0, we start from the full NNLO O(α2

s) boundary
conditions [81, 82] at the weak scale µweak = 160 GeV and evolve them down to µ0 with the anomalous dimensions
up to O(α3

s) [59, 83–88]. To perform the evolution, we use the exact numerical solution of the coupled RGE system.
For the boundary conditions we convert the above top-quark pole mass to mb(160 GeV) = 163.3 GeV. For C7,8(µ0)
we evolve mb(mb) to µ0 with 4-loop running and for m̂b we use m̂fix

b = 4.7 GeV (see Sec. E 2 below).
The resulting NNLO Wilson coefficients Ci are given by

C1 = −0.27189 , C2 = 1.00967 , C3 = −5.195× 10−3 , C4 = −8.060× 10−2 ,

C5 = 3.611× 10−4 , C6 = 9.375× 10−4 , C7 = −0.25594 , C8 = −0.13801 . (S45)
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For theory predictions at µ0, µb, and below, we treat the coefficients as fixed input values, i.e., we do not expand
them in αs against the perturbative corrections they multiply. Varying µweak = 160 GeV by a factor of two has very
little impact on the Ci(µ0). In particular, the combinations of Ci 6=7 that enter the theory predictions for the photon
energy spectrum via Eq. (3) only vary below the percent level when varying µweak, so we can safely neglect their
uncertainties and keep their values fixed in the fit. Similarly, their uncertainties are irrelevant for the SM prediction
of C incl

7 .

2. αs, m̂b, m̂c

As discussed in Secs. B and C, we integrate out both bottom and charm quarks at the scale µ0 = µb = 4.7 GeV.
At µb and below we then always use the 3-loop running for αs(µ), consistent with the NNLL resummation, with

nf = 3 flavors. As the starting value we use α
(3)
s (µb) = 0.207, which is obtained as follows. We first use α

(5)
s to evolve

mb(mb) to mb(µb) and use it to decouple the b quark at µb to obtain α
(4)
s (µb). Then, we use α

(4)
s to evolve mc(mc)

to mc(µb) and use it to decouple the c quark at µb to obtain α
(3)
s (µb). The decoupling and running of the MS masses

is performed at 4 loops using the RunDec package [89]. The uncertainties on mb(mb) and mc(mc) are negligible for
this purpose, only affecting the result in the 4th digit.

Several perturbative ingredients, such as the hard-matching coefficient hs and the nonsingular corrections W ns
ij ,

depend on the value of m̂b. As a result, the perturbative fit inputs dΓij,mn/dEγ in Eq. (S1) have a mild dependence
on m̂b, which is subleading compared to the dominant dependence entering through the shape function. To be able
to precompute the perturbative inputs, for simplicity we use a fixed value m̂b = 4.7 GeV obtained from mb(mb) =
4.18 GeV for their computation. We have checked that changing this value by ±50 MeV, which also covers our final
fit result for m1S

b , has a negligible impact on the fit. (For the dΓ77 terms it changes the fit results for |C incl
7 | by 0.15%

and for m1S
b by less than 1 MeV.)

The corrections ∼ C1,2 also require a value for the charm-quark mass m̂c. In fact, the main dependence in the
perturbative inputs on both m̂b and m̂c comes from the dependence on ρ = m̂2

c/m̂
2
b in wns

i2 and wns
22. (The sensitivity

of hs on the precise value of ρ is negligible.) While mc(mc) is known precisely, the perturbative scheme to use for
mc is also relevant, and this scheme dependence is only canceled by the still unknown non-β0 O(α2

s) corrections.

Since the difference between the bottom and charm pole masses, δbc = mpole
b −mpole

c , is free of renormalons, we use
m̂c ≡ m̂b − δbc as a suitable charm-mass definition consistent with our treatment of the charm quark. We obtain a
value for δbc by converting mb(µb) and mc(µb) obtained above to the pole scheme and taking their difference. As

expected, while the individual values for mpole
b,c strongly depend on the order at which the conversion is performed,

the resulting δbc = 3.4 GeV only changes by about 15 MeV when the conversion is performed at two vs. three loops

and when using α
(4)
s (µb) vs. α

(5)
s (µb). Accounting also for the uncertainties in mc(mc) and mb(mb), we assign a

conservative uncertainty of 50 MeV for δbc.

To summarize, to compute all perturbative inputs for the fit, we use

α(3)
s (µ = 4.7 GeV) = 0.207 , m̂b = (4.70± 0.05) GeV , δbc = (3.40± 0.05) GeV , m̂c = m̂b − δbc . (S46)

3. λ̂2 and ρ̂2

The HQET parameters λ2 and ρ2 are needed in the moment relations for F(k) in Eq. (S35), and also in the moment
constraints for g27(k) in Eq. (S43). Here, we discuss how we extract λ2 and ρ2 from the measured heavy meson masses
using relations that are free of leading renormalon ambiguities.

The B and D meson masses can be expanded in 1/mQ, following the notation of Ref. [75], as

mM = mQ + Λ̄− λ1 + dM CG(mQ, µ)λ2(µ)

2mQ
+
ρ1 + dMρ2

4m2
Q

− T1 + T3 + dM (T2 + T4)

4m2
Q

+O
(

Λ4
QCD

m3
Q

,
αsΛ

3
QCD

m2
Q

)
, (S47)

where mM with M = B,B∗, D,D∗ are the masses of the lightest pseudoscalar and vector mesons containing the heavy
quark Q with dB,D = 3 and dB∗,D∗ = −1 for the pseudoscalar and vector mesons. Here, mQ is the pole mass of the
heavy quark Q. We have included the MS Wilson coefficient CG(mQ, µ) for the scale-dependent chromomagnetic MS
matrix element λ2(µ), but neglect Wilson coefficients for the terms of higher order in 1/mQ.
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Only three linear combinations of Ti appear in expressions for inclusive B decays [90], which are

τ1 = T1 − 3T4 = (0.161± 0.122) GeV3 ,

τ2 = T2 + T4 = (−0.017± 0.062) GeV3 ,

τ3 = T3 + 3T4 = (0.213± 0.102) GeV3 . (S48)

The numerical values are taken from a global fit in the 1S scheme to semileptonic B → Xc`ν and radiative B → Xsγ
moments [20]. The parameters are only weakly correlated and are insensitive to whether or not the radiative moments
are included in the fit [91].

Denoting ∆mB = mB∗ −mB and ∆mD = mD∗ −mD, we have

∆mB = 2CG(mb, µ)
λ2(µ)

mb
− ρ2 − τ2

m2
b

= 2CRG(m̂b, µ,R)
λ2(µ)

m̂b
− ρ̂2(R)− τ2

m̂2
b

,

∆mD = 2CG(mc, µ)
λ2(µ)

mc
− ρ2 − τ2

m2
c

= 2CRG(m̂c, µ,R)
λ2(µ)

m̂c
− ρ̂2(R)− τ2

m̂2
c

. (S49)

The first equality in each of these expressions involves the MS Wilson coefficient CG(mQ, µ), which has aO(ΛQCD/mQ)
renormalon ambiguity that is canceled by a corresponding ambiguity in ρ2. In the second equalities, we switched
to renormalon-free quantities, where the Wilson coefficient CRG(m̂Q, µ,R) and matrix element ρ̂2(R) are defined in
the renormalon-free MSR scheme [92]. To evaluate the Wilson coefficient CG or CRG we use the fixed-order results
evaluated at µ = R =

√
m̂bm̂c (which are known to 3-loops [93]) and evolve down to µ = R = 1 GeV, using the

MS RGE or RRGE [92, 94] respectively. To highlight the improvement obtained in the renormalon-free scheme, we
note that in MS we have CG(m̂c,

√
m̂bm̂c) = {1.26, 1.46, 1.69} at 1, 2, and 3-loops respectively, whereas in MSR the

results exhibit convergence with CRG(m̂c,
√
m̂bm̂c,

√
m̂bm̂c) = {0.991, 1.034, 1.045} at 1, 2, and 3-loops. Inverting the

MSR results in Eq. (S49), we obtain

λ2(µ) =
1

2

m̂2
b ∆mB − m̂2

c ∆mD

m̂bCRG(m̂b, µ,R)− m̂cCRG(m̂c, µ,R)
,

ρ̂2(R)− τ2 =
m̂cC

R
G(m̂c, µ,R) m̂2

b∆mB − m̂bC
R
G(m̂b, µ,R) m̂2

c∆mD

m̂bCRG(m̂b, µ,R)− m̂cCRG(m̂c, µ,R)
. (S50)

With the input values for the meson and quark masses from above we then find

λ2(µ = 1GeV) = (0.128± 0.005) GeV2 , ρ̂2(R = 1GeV)− τ2 = (0.110± 0.052) GeV3 . (S51)

Here the uncertainty in ρ̂2 comes from varying the low scale down to 0.8 GeV and up to 1.3 GeV, which in MSR provides
an estimate of the size of neglected O(ΛQCD/m̂

3
b,c) corrections in Eq. (S49). We then combine this in quadrature with

an estimate of O(αsΛ
3
QCD/m̂

2
c) corrections to Eq. (S49). (The additional variation of the starting scale by a factor of

two has a very small effect.) These uncertainty estimates for higher-order terms are then propagated to obtain the
uncertainty quoted for λ2(µ = 1 GeV) in Eq. (S51).

Finally, for the parameters appearing in the moment relations we take µ =
√
m̂bm̂c ' 2.5 GeV for λ2(µ), still taking

R = 1 for ρ̂2(R), and hence will use

λ̂2 = λ2(2.5 GeV) +
τ3

3m̂b
= (0.135± 0.009) GeV2 , ρ̂2(1 GeV) = (0.093± 0.081) GeV3 , (S52)

where we added the uncertainties from Eqs. (S48) and (S51) in quadrature.
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