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ABSTRACT

In view of the importance of the nonperturbative resolved contributions for the overall uncertainties
of the two inclusive penguin decays B̄ → Xsγ and B̄ → Xs,d`

+`− we reanalyse these contributions using
new estimates of moments of the subleading shape functions and of other input parameters. Within a
systematic approach we find a significant reduction of the nonperturbative uncertainties in the inclusive
decay B̄ → Xs,d`

+`−, but a much less pronounced reduction in the inclusive decay B̄ → Xsγ compared
to a recent analysis on the resolved contributions to the inclusive decay B̄ → Xsγ. We identify the
reasons for this discrepancy.
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1 Introduction and new inputs

The so-called resolved contributions to rare B-decays are non-local power corrections and can be sys-
tematically calculated using soft-collinear effective theory (SCET). In case of the inclusive B̄ → Xs,dγ
decays all resolved contibutions to O(1/mb) have been analysed some time ago [1–3]. Also the analogous
contributions to the inclusive B̄ → Xs,d`` decays have been calculated to O(1/mb) [4, 5]. In both cases
these analyses lead to an additional uncertainty of 4 − 5% which represents the largest uncertainty in
the prediction of the decay rate of B̄ → Xs,dγ [6] and of the low-q2 observables of B̄ → Xs,d`` [7, 8].
The resolved contributions contain subprocesses in which the photon couples to light partons instead of
connecting directly to the effective weak-interaction vertex. In both cases there are four contributions
at O(1/mb), namely from the interference terms O7γ − O8g, O8g − O8g, and Oc1 − O7γ , but also from
Ou1 −O7γ . The latter is CKM suppressed in the b→ s case, but was shown to vanish [1]. It turns out that
the Oc1−O7γ piece has the largest impact. The resolved contributions are given by convolution integrals
of a so-called jet-function, characterising the hadronic final state Xs(d) at the intermediate hard-collinear

scale
√
mbΛQCD, and of a soft (shape) function at scale ΛQCD which is defined by an explicit non-local

heavy-quark effective theory (HQET) matrix element. The hard contribution at the scale mb is factorised
into Wilson coefficients. The resolved contributions in the B̄ → Xs,d`` were calculated in the presence of
a cut in the hadronic mass MX ; such a cut might be necessary also at the Belle-II experiment in order to
suppress huge background from double semi-leptonic decays. However, it was explicitly shown [4,5] that
the resolved contributions stay nonlocal when the hadronic cut is released and, thus, represent an irre-
ducible uncertainty. The support properties of the shape function imply that the resolved contributions
(besides the O8g −O8g one) are almost cut-independent.

The resolved contributions can be estimated in a conservative way by considering the explicit form
of the HQET matrix element which represents the shape function. One can derive general properties
of that matrix element and then use functions fulfilling all these properties in the convolution with the
perturbatively calculated jet function to estimate the impact of the resolved contributions. In a recent
paper [9], new estimates of the moments of the subleading shape function in the interference term Oc1−O7γ

– based on the results in Refs. [10, 14] – were derived and used to significantly reduce the uncertainty
due to this resolved contribution in the decay B̄ → Xsγ. In the present paper we revise our analysis of
this resolved contribution to B̄ → Xs,d`` in view of this new input. In our revised analysis we analyse
all parametric uncertainties of input parameters and also the scale dependence of our results in order to
get a reasonable estimate of this contribution in both inclusive decay modes. In the original analysis of
the B̄ → Xsγ case [1, 2] often just central values of input parameters were used and scale dependences
were not considered.

In the present analysis we follow the original choice in Ref. [1] for the bottom quark and use the
low-scale subtracted heavy quark mass defined in the shape function scheme [18]. As in the new analysis
in Ref. [9] we choose the latest HFLAV determination of that mass [19], namely mb = (4.58± 0.03) GeV.
In comparison the original analysis in Ref. [1] was using a central value of mb = 4.65.

The charm mass dependence originates from the charm penguin diagram with a soft gluon emission
in the Oc1 − O7γ interference term which is naturally calculated at the hard-collinear scale. Thus, it
is appropriate to consider the running charm mass at the hard-collinear scale mMS

c (µhc). In order to
make the ambiguity of the charm mass manifest, we change the hard-collinear scale µhc ∼

√
mb ΛQCD

from 1.3 GeV to 1.7 GeV. With the present PDG value of the charm mass being mMS
c (mc) = 1.27 ±

0.02 GeV we find using three-loop running with αs(mc) = 0.395 and αs(mZ) = 0.1185 down to the
hard-collinear scale mMS

c (1.5 GeV) = 1.19 GeV. The change of the hard-collinear scale then leads to
1.14 GeV ≤ mc ≤ 1.26 GeV. The parametric errors of mMS

c (mc) and αs are neglected in view of the
larger uncertainty due to the change of µhc. We note here that two-loop running and taking into account
parametric errors leads to a central value mMS

c (1.5 GeV) = 1.20 GeV and to a variation of the charm mass,
1.17 GeV ≤ mc ≤ 1.23 GeV, which was used in the analysis in Ref. [9]. In the original analysis in Ref. [1]
just mc(1.5 GeV) = 1.131 GeV was used and uncertainties were neglected. (This value corresponds to a
central value of mMS

c (mc) = 1.225GeV.) As already emphasized by the authors of Ref. [9], controlling
the scale dependence by calculating αs corrections to the decay rate would also help to better control the
uncertainty due to the charm quark mass.

For the operator basis we refer the reader to the original analysis in Ref. [5]. We calculate the
uncertainty due to the resolved contributions relative to the decay rate in the OPE region.1 Therefore,
the Wilson coefficients of the OPE result are calculated at the hard scale.

1For the B̄ → Xs`` case this means that there is no cut in the hadronic mass and for the B̄ → Xsγ case the cut on the
photon region is taken at a value around Ecut

γ = 1.6 GeV. We use the NLO OPE result of the B̄ → Xs`` decay rate as in

the original analysis in Ref. [5] and the LO one of the B̄ → Xsγ rate as in the original analysis in Ref. [1].
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The Wilson coefficients in the resolved contribution are taken at the hard scale but at leading accuracy
because we do not consider any αs corrections or any RG improvements in the calculation of the resolved
power corrections. We then vary the scale in the Wilson coefficients between the hard and the hard-
collinear scale to make the scale dependence of the results manifest.

In this work we mainly consider the resolved contribution due to the interference Oc1 −O7γ , which is
the numerically most relevant for the case B̄ → Xs,d``, but also for the case B̄ → Xs,dγ. The explicit
form of the subleading shape function for that contribution was derived in Ref. [1]:

h17(ω1, µ) =

∫
dr

2π
e−iω1r

〈B | h̄(0)n/iγ⊥α nβgG
αβ(rn)h(0) |B〉

2MB
, (1)

where n and n are the light-cone vectors and h and G are the heavy quark and gluon field, respectively.
Soft Wilson lines connect the fields to ensure gauge invariance but are suppressed in the notation. The
variable ω1 corresponds to the soft gluon momentum. (The integration over ω which is related to the
heavy quark momentum is already taken here.)

With the help of standard HQET techniques one can derive from PT invariance that the function
h17 is real and even in ω1. The new estimates of the moments of this subleading shape function in the
interference term Oc1 −O7γ as derived in Ref. [9] lead to the additional constraints∫ ∞

−∞
dω1 ω1

0 h17(ω1, µ) = 0.237 ± 0.040 GeV2 ,

∫ ∞
−∞

dω1 ω1
2 h17(ω1, µ) = 0.15 ± 0.12 GeV4 . (2)

The normalisation was already known before. The second moment has been used for the first time in
the case of B̄ → Xsγ in Ref. [9]. All odd moments of h17 in ω1 vanish because the function is even.
It is worth noting that more moments can be expressed in terms of HQET parameters as was shown in
Refs. [9, 10], thus more accurate determinations of the moments might be possible in the future.

However, we note that the determination of the HQET parameters related to the second and also
higher moments are based on the so-called Lowest-Lying State Approximation (LLSA) (see Refs. [11–13]).
This method allows to estimate higher-dimensional operators (related to the higher moments) by assuming
that the lowest lying heavy meson state saturate a sum-rule for the insertion of a heavy meson state sum.
This way LLSA relates higher-dimensional matrix elements to the known lower-dimensional ones. In
Ref. [14] the error due to this approximation was estimated to be 60− 100%. This large uncertainty also
enters the second equation in Eq. 2.

The natural scale of the HQET parameters related to the second moment is of O(Λ4
QCD) or even

higher powers of ΛQCD in case of the parameters related to higher moments. This in principle allows for
a rough dimensional analysis of the n-th moment to be a linear combination of parameters of order Λn+2

QCD

with O(1) coefficients, a feature which is confirmed in existing HQET calculations, in particular in the
case of the second moment of h17. Also the fourth and the sixth moment can be expressed by parameters
of Λ6

QCD and Λ8
QCD, respectively. Assuming that the coefficients are still of O(1) or only slightly larger

in case of the sixth moment one gets led to the following dimensional estimates

−0.3 GeV6 .
∫ ∞
−∞

dω1 ω1
4 h17(ω1, µ) . +0.3 GeV6 ,

−0.3 GeV8 .
∫ ∞
−∞

dω1 ω1
6 h17(ω1, µ) . +0.3 GeV8 . (3)

These estimates were also used in a similar way in the analysis in Ref. [9]; we consistently use these
estimates for all model functions within the present analysis. 2

Finally, one assumes that the subleading shape function as a soft function should not have any
significant structures like maxima outside the hadronic range (−1 GeV< ω1 < 1 GeV) and the values of it

2However, we note that to our knowledge there is no general argument that for the unknown higher moments the
coefficients of HQET parameters scaling with a certain power of ΛQCD are always O(1). A counter example is given by
the model function for the subleading shape function h17 = exp(−|x/Λ|) for which we find

∫∞
−∞ dω1 ω1

n exp(−|x/Λ|) =

Λ ((−Λ)n + Λn) Γ(1 + n). Here the second moment is of order Λ3 with a coefficient 4, the fourth moment is of order Λ5

with a coefficient 48 and the sixth moment is of order Λ7 with a coefficient 1440 (!). Therefore, we analyse the impact of
these two additional dimensional estimates within our analysis.
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should be within the hadronic range (−1 GeV< h17(ω1) < 1 GeV). In the following we will take all those
properties into account when we consider model functions in the convolution with the jet function.

Nothing further is known about the structure of the subleading shape functions. Thus, we follow
the strategy used by authors of Ref. [9] who modelled the shape function h17 by using a complete
set of basis functions. This systematic approach was already advocated before and used in several
applications [15–17].

Due to the importance of the resolved Oc1 −O7γ contribution for the overall uncertainty in the decay
B̄ → Xsγ we first revisit the recent analysis in Ref. [9] in Section 2. We already anticipate that we will
find a significantly larger uncertainty compared to this analysis. We will extend our findings to decay
B̄ → Xs,d`` in Section 3. Section 4 is reserved for our summary and our conclusions.

2 Resolved contributions to the decay B̄ → Xsγ

The relative uncertainty of the decay rate of B̄ → Xsγ due to the non-local resolved contribution within
the interference of O1 −O7γ

3 is given by

F17
b→sγ =

C1(µ)C7γ(µ)

(C7γ(µOPE))2

Λ17(m2
c/mb, µ)

mb
, (4)

where at order 1/mb one finds [1]:

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ ∞
−∞

dω1

ω1

[
1− F

(
m2
c − iε
mb ω1

)
+
mb ω1

12m2
c

]
h17(ω1, µ) , (5)

with the penguin function F (x) = 4x arctan2(1/
√

4x− 1).
We start with the model function used in the original analyses in Refs. [1,5], namely a polynomial of

second grade combined with a Gaussian function:

h17(ω1) =
2λ2√
2πσ

ω2
1 − Λ2

σ2 − Λ2
e−

ω2
1

2σ2 , (6)

in which the two hadronic parameters, Λ and σ, are chosen to be of order ΛQCD. Combining this function
with all constraints mentioned in the last section, one finds that the reduction of the uncertainty due to
the resolved contributions in the decay B̄ → Xsγ is two-fold:

• First, the central value of the charm mass at the hard-collinear scale moved from mc(1.5 GeV) =
1.131 GeV used in the original analysis in Ref. [1] to mc(1.5 GeV) = 1.19 GeV in the recent analysis
in Ref. [9], and the central value of the bottom mass in the shape function scheme moved from
mb = 4.65 GeV to the new value mb = 4.58 GeV. As shown in the upper plot of Fig.1, these
changes in the input parameters have the effect that the jet function moves slightly outside the
hadronic range and the overlap and therefore the convolution integral with the model function
becomes smaller. The dependence on the charm mass is pronounced. Varying the charm mass will
therefore have a noticeable impact on the uncertainty, leading to larger values than in the recent
analysis in Ref. [9].

• Second, the new bound on the second moment of the shape function, given in Eq. 2, significantly
restricts the shape of the soft function and consequently leads to a reduction of the extreme values
of the convolution integral as shown in the bottom plot of Fig.1.

In the recent analysis [9] the authors modelled the shape function h17 by using a complete set of basis
functions, namely the Hermite polynomials multiplied by a Gaussian4 in order to make a systematic
analysis of all possible model functions - as already advocated by the authors of Ref. [15]. Because the
shape function h17 is even, one needs only even polynomials in the systematic expansion:

h17(ω1) =
∑
n

a2nH2n

(
ω1√
2σ

)
e−

ω2
1

2σ2 . (7)

3To simplify the notation we leave out the superscript ”c” in the following.
4The Hermite polynomials are orthogonal with respect to a weight function e−x

2
, so that we have∫ ∞

−∞
Hm(x)Hn(x)e−x

2
dx = π1/22nn! δnm .

The Hermite polynomials form an orthogonal basis of the Hilbert space of functions which satify
∫∞
−∞ |f(x)|2e−x2dx <∞.

The inner product is defined as 〈f, g〉 =
∫∞
−∞ f(x)g(x)e−x

2
dx.
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Figure 1: The top figure shows the jet (weight) function in the case B̄ → Xsγ for mc = 1.131 GeV and
mb = 4.65 GeV (dashed dotted, green) and for mc = 1.19 GeV and mb = 4.58 GeV (dotted blue) with the shape
function in Eq. 6 (solid, red). The bottom figure shows in addition the shape function with a second moment
which satisfies the new constraint (dotted, blue).

5



The Hermite polynomials are very suitable for this purpose because they are orthogonal and, thus, the
2k-th moment of h17 only depends on the coefficients a2n with n ≤ k. Therefore, the zeroth moment only
depends on a0 and the second moment depends on a0 and a2. This also means that the first 2k moments
determine a2n with n ≤ k [9].

Our present analysis follows the strategy of Ref. [9], but we will not only use Hermite polynomials
with a Gaussian but also try model functions with exp(−x4) or exp(−x6) suppression. Of course, these
functions can also be expressed in the basis above. However, this requires an infinite sum and is there-
fore not considered in an approach that only takes into account a limited number of terms, the recent
analysis [9] does not consider polynomials with a degree higher than 10. We anticipate that the extreme
values for the uncertainty are realised with polynomials of degree 6 with an exp(−x2) suppression or with
polynomials of degree 4 and 6 with an exp(−x4) suppression and that already polynomials of degree 8
and higher suppression factors like exp(−x6) do not lead to larger values.

Our grid of input parameters of the model function is the following: We scan through the one-sigma
ranges of the input parameters 1.14 GeV ≤ mc ≤ 1.23 GeV with 10 steps, 4.55 GeV ≤ mb ≤ 4.61 GeV
with 3 steps, the first moment m0 from 0.197 GeV2 to 0.277 GeV2 with 8 steps and the second moment m2

from 0.03 GeV4 to 0.27 GeV4 with 12 steps, and also the fourth and the sixth moment between −0.3 GeV6

and 0.3 GeV6 and between −0.3 GeV8 and 0.3 GeV8, respectively, in 30 steps. Moreover, we vary the
hadronic parameter σ from −1 GeV to +1 GeV in 40 steps.

We also anticipate that – except for the upper bound in case of the sum of Hermite polynomial of
degree 0 and 2 – the extreme values of Λ17 for all the different model functions can be found using the
mass parameters mc = 1.14 GeV and mb = 4.61 GeV. This is expected, since for any larger value of mc

and any smaller value of mb the jet function moves further out of the hadronic range (see Fig. 1).
In the case of the model function with the sum of n = 0 and n = 2 polynomials (see Eq. 7) we find

in our multi-parameter scan

− 24 MeV ≤ Λ17 ≤ −1 MeV (n ≤ 2, exp(−x2)). (8)

The lower bound is found with σ = 400 MeV, with the zeroth moment m0 = 0.200 GeV2 and with the
second moment m2 = 270 GeV4. This implies for the higher moments m4 = 0.244 GeV6 and m6 =
0.286 GeV8. The upper bound corresponds to the parameter set, σ = 140 MeV, m0 = 0.280 GeV2, and
m2 = 0.0030 GeV4. The sum of n = 0, n = 2, and n = 4 polynomials leads to

− 27 MeV ≤ Λ17 ≤ +4 MeV (n ≤ 4, exp(−x2)). (9)

The lower bound corresponds to the parameter set σ = 300 MeV, m0 = 0.260 GeV2, m2 = 0.270 GeV4,
and m4 = 0.260 GeV6, the upper bound to σ = 340 MeV, m0 = 0.220 GeV2, m2 = 0.030 GeV4, and
m4 = −0.100 GeV6. An even larger interval is found with a sum of Hermite polynomials up to order 6,
namely

− 29,MeV ≤ Λ17 ≤ +6 MeV (n ≤ 6, exp(−x2)), (10)

with the lower bound corresponding to the parameters σ = 280 MeV, m0 = 0.200 GeV2, m2 = 0.270 GeV4,
m4 = 0.280 GeV6, and m6 = 0.300 GeV8 and the upper bound with σ = 300 MeV, m0 = 0.200 GeV2,
m2 = 0.030 GeV4, m4 = −0.120 GeV6, and m6 = −0.220 GeV8.
With an additional polynomial of degree 8 one does not find larger values:5

− 29 MeV ≤ Λ17 ≤ +6 MeV (n ≤ 8, exp(−x2)). (11)

The lower bound is obtained for σ = 260 MeV, m0 = 0.280 GeV2, m2 = 0.270 GeV4, m4 = 0.260 GeV6,
m6 = 0.300 GeV8, and m8 = 0.380 GeV10, the upper bound for σ = 300 MeV, m0 = 0.280 GeV2,
m2 = 0.030 GeV4, m4 = −0.120 GeV6, m6 = −0.220 GeV8, and m8 = −0.340 GeV10.

If one uses model functions with exp(−x4) or exp(−x6) suppression instead of a Gaussian (exp(−x2))
one still finds slightly larger intervals for Λ17. In case of the Hermite polynomials up to degree 4 with a
weight function exp(−x4) one gets

− 31 MeV ≤ Λ17 ≤ +9 MeV (n ≤ 4, exp(−x4)). (12)

The lower bound corresponds to the parameter set σ = 740 MeV, m0 = 0.280 GeV2, m2 = 0.270 GeV4,
m4 = 0.300 GeV6 and the upper bound to σ = 800 MeV, m0 = 0.200 GeV2, and m2 = 0.030 GeV4 and

5We note that in contrast to the authors of the recent paper [9] we also find solutions with polynomials up to degree 8
due to our more dense grid.
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m4 = −0.120 GeV6. With the Hermite polynomials up to degree 6 with an exp(−x4) suppression, one
obtains the same result:

− 31 MeV ≤ Λ17 ≤ +9 MeV (n ≤ 6, exp(−x4)). (13)

The corresponding parameter sets are σ = 720 MeV, m0 = 0.200 GeV2, m2 = 0.270 GeV4, m4 =
0.440 GeV6, and m6 = 0.580 GeV8 for the lower bound and σ = 760 MeV, m0 = 0.280 GeV2, m2 =
0.030 GeV4, m4 = −0.120 GeV6, and m6 = −0.200 GeV8 for the upper bound. If one uses a higher sup-
pression, namely exp(−x6) for example with a Hermite polynomial up to degree 4, one gets a significantly
smaller interval, namely

− 29 MeV ≤ Λ17 ≤ +1 MeV (n ≤ 4, exp(−x6)), (14)

with σ = 900 MeV, m0 = 0.200 GeV2, m2 = 0.270 GeV4, m4 = −0.300 GeV6 for the lower bound and to
σ = 900 MeV, m0 = 0.280 GeV2, and m2 = 0.030 GeV4 and m4 = 0.300 GeV6 for the upper bound.

Summing up, the largest interval we find is −31 MeV ≤ Λ17 ≤ +9 MeV. Our new result has a 42%
smaller range than the original one in Ref. [1], −42 MeV ≤ Λ17 ≤ +27 MeV where the model given
in Eq. 6 and no constraint on the second, fourth and sixth moments was used. In the recent analysis
in Ref. [9] a stronger reduction by almost 60% compared to the result in Ref. [1] was found, namely
−24 MeV ≤ Λ17 ≤ +5 MeV 6 The reasons for this discrepancy between our and the recent analysis in
Ref. [9] are threefold:

• The first difference is the fact that we take into account the charm mass dependence via a realistic
change of the hard-collinear scale.

• We use a denser grid of parameters to find the extrema of the resolved contributions.

• We use the fact that also polynomials with suppression factors exp(−x4) or exp(−x6) can be
expressed in terms of the original basis given in Eq. 7, and, thus, have also to be considered within
a systematic analysis.

A further subtlety arises from kinematic corrections. The original analysis of the B̄ → Xsγ case
included an additional large 1/m2

b correction due to kinematic factors [1]. In order to make this manifest,
Eq. 5 should be replaced by

Λ17

(m2
c

mb
, µ
)

= ec Re

∫ Λ̄

−∞
dω

∫ ∞
−∞

dω1

ω1

×

{(
mb + ω

mb

)3 [
1− F

(
m2
c − iε

(mb + ω)ω1

)]
+
mb ω1

12m2
c

}
g17(ω, ω1, µ) ,

(15)

where h17(ω1, µ) =
∫
dω g17(ω, ω1, µ).7 Obviously, the factor (mb + ω) was approximated by mb within

the prefactor and within the function F in Eq. 5 at order 1/mb. If we include this 1/m2
b effect, we find

the extreme range for Λ17 for the same parameters as in the cases without the 1/m2
b correction. If one

chooses a Gaussian suppression, it is again the sum of Hermitian polynomials up to degree 6 which leads
to the largest interval:

− 54 MeV ≤ Λ17 ≤ −1 MeV . (16)

And if one chooses a exp(x−4) suppression, the polynomials up to degree 4 and 6 lead again to the
maximal results:

− 59 MeV ≤ Λ17 ≤ +4 MeV , (17)

− 61 MeV ≤ Λ17 ≤ +5 MeV . (18)

This should be compared to −60 MeV ≤ Λ17 ≤ +25.0 MeV found in the original analysis [1]. Our final
result shows a reduction of the uncertainty of approximately 25%.

We emphasise that this 1/m2
b piece directly originates from the O1 − O7γ contribution as shown

above. It has a large numerical impact increasing this resolved contribution by more than 50%. In
contrast, resolved contributions like the ones due to the operator pairs O1 −O8g or O1 −O1 which also
occur at the order 1/m2

b were shown to be numerically negligible in the original analysis [1]. The recent
analysis in Ref. [9] did not take this 1/m2

b correction into account.

6We note here that we have fully reproduced these results using their input and their assumption with our numerics.
7For the precise limits of integration we refer the reader to the discussion in Section 6 of Ref. [1].
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• Thus, dropping this numerically large 1/m2
b term represents the largest piece of reduction of the

uncertainty in the analysis in Ref. [9] compared to the original analysis in Ref. [1] and also represents
the main difference to our present analysis.

Finally, we analyze the impact of the dimensionally estimated bounds on the fourth and the sixth
moment given in Eqs. (3). Without these estimates we would find the extreme values again for the Hermite
polynomials up to degree 4 or 6 with a suppression factor exp(−x4), namely −72 MeV ≤ Λ17 ≤ +4 MeV
and −76 MeV ≤ Λ17 ≤ +5 MeV. But also with polynomials up to degree 6 and a Gaussian suppression
we would already get a rather large result: −63 MeV ≤ Λ17 ≤ +1 MeV. The direct comparison of these
results with the extreme one we have found using the dimensionally estimated bounds given in Eqs.(3),
shows their large impact.

Summary: Our result for Λ17 at order 1/mb, −31 MeV ≤ Λ17 ≤ +9 MeV , as given in Eqs. (12) and
(13), translates into the following relative uncertainty of the decay rate of B̄ → Xsγ via Eq. 4:

F17
b→sγ |1/mb ∈ [−0.7%, 2.4%] , (19)

which is significantly larger than the result of the recent analysis in Ref. [9]. but also significantly smaller
than the corresponding result in the original analysis in Ref. [1]. Several reasons for this difference to the
result in Ref. [9] were indicated in detail in our analysis.

Moreover, if we include the large additional 1/m2
b piece - as not done in the recent analysis in Ref. [9]

- our result, −61,MeV ≤ Λ17 ≤ +5 MeV , as given in Eq. 18, leads to our final result:

F17
b→sγ ∈ [−0.4%, 4.7%] , (20)

which represents a significant reduction of the uncertainty compared to the result of the original analysis
in Ref. [1], F17

b→sγ ∈ [−1.9%, 4.7%], but is still much larger than the result in the recent analysis in

Ref. [9], F17
b→sγ ∈ [−0.4%, 1.9%]. These latter numbers of Ref. [1] and of Ref. [9] are translated to our

scale fixing.8

If we did not use the dimensional estimates on the higher moments, given in Eq. (3), we would find
a much larger uncertainty, F17

b→sγ |1/mb ∈ [−0.4%, 5.9%] what shows the large impact of these estimates.
Finally, we consider scale variations in our final result. The present results are leading order results, no

αs corrections are calculated and no RG improvements were implemented. The only scale in our resolved
contribution is within the hard function, represented by the Wilson coefficients. Therefore we have chosen
the scale in the Wilson coefficients of the resolved contribution at the hard scale as our default value. If
we run down the LO Wilson coefficients C1(µ)C7γ(µ) to the hard-collinear scale, the result increases by
more than 40% compared to our default value. There is no strict argument here that this specific scale
variation in our result can be connected to an estimate of the unknown NLO corrections. However, this
observation calls for a calculation of the αs corrections and RG resummations.

We also emphasize that the local Voloshin term9 is subtracted from the resolved contribution F17
b→sγ .

This has been traditionally done in all analyses of this specific resolved contribution to the B̄ → Xsγ
decay rate. Therefore this local Voloshin term has still to be added to the decay rate. It corresponds to
ΛVoloshin

17 = (−1)(mbλ2)/(9m2
c) which translates in

FVoloshin
b→sγ = − C1 C7γ λ2

(C7γ)2 9m2
c

= +3.3% , (21)

There are two more resolved contributions at order 1/mb as discussed in the introduction. In the
original analysis in Ref. [1] the resolved contributions due to the interference O7γ − O8g and O8g −
O8g were estimated to F78,VIA

b→sγ = [−3.0%, −0.3%] and F88
b→sγ = [−0.3%, 2.1%], using our scale fixing.

The superscript VIA indicates that the resolved contribution F78 was determined by using the vacuum
insertion approximation. We add up the three contributions using the scanning method and arrive at the
final result for all resolved contributions:

F total
b→sγ ∈ [−3.7%, 6.5%] (VIA). (22)

8The numbers do not agree with the quoted ones in the original analysis Ref. [1] because the authors use the hard-
collinear scale in the Wilson coefficients of the resolved contribution and also in the Wilson coefficients of the OPE rate.
The same scale fixing was used in the recent analysis Ref. [9]. In contrast, we have chosen the hard scale as our default
value within the resolved contribution as mentioned in the introduction and the OPE rate is naturally fixed at the hard
scale.

9This local term can be derived from the resolved contribution Oc1 − O7γ by neglecting the shape function effects and
under the assumption that the charm quark mass is treated as heavy (see section 3.2 of Ref. [5]). It was shown that this
local term derived in Refs. [25–28] does not fully account for the corresponding resolved contribution.
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This has to be compared to the final result in the original analysis, which reads when translated to our
default scales: F total

b→sγ ∈ [−5.2%, 6.5%].

We finally note, that there is an alternative estimation of F78 offered in Ref. [1] based on experimental
data on ∆0−, the isospin asymmetry of inclusive neutral and charged B → Xsγ decay using Babar
measurements [20,21]. In the recent analysis [9], the authors derived new bounds based on the inclusion
of a new Belle measurement of ∆0−, which leads to the experimental determination of F78 being the
same order of magnitude as the determination using VIA.

3 Resolved contributions to the decay B̄ → Xs,d`
+`−

We now update our analysis in Ref. [5] using the new estimate of the second moment of the shape
function h17. In the case of the decay B̄ → Xs,d`` the relative contribution due to the interference of O1

with O7γ is given at order 1/mb by

F17
b→s`` =

1

mb

C1(µ)C7γ(µ)

COPE
ec

∫ +∞

−∞
dω1 J17(q2

min, q
2
max, ω1)h17(ω1, µ) , (23)

where the shape function h17 is the same one as in the decay B̄ → Xsγ and the jet function is given by

J17(q2
min, q

2
max, ω1) = Re

1

ω1 + iε

∫ q2max
MB

q2
min
MB

dn · q
n · q

1

ω1

[
(n · q + ω1)

(
1− F

(
m2
c

mb(n · q + ω1)

))
− n · q

(
1− F

(
m2
c

mbn · q

))

−n · q
(
G

(
m2
c

mb(n · q + ω1)

)
−G

(
m2
c

mbn · q

))]
. (24)

COPE is defined via the OPE result of the decay rate ΓOPE.10 F (x) is the penguin function defined in
the previous section. The second penguin function is given by G(x) = 2

√
4x− 1 arctan(1/

√
4x− 1)− 2.

For the analysis of the resolved contribution from the interference of O1 and O7 in the case of
B̄ → Xs,d`` we follow the same strategy as in the case of B̄ → Xsγ and use the same base of functions.
We also take the Wilson coefficients in the resolved contributions at the hard scale as our default value and
explore the scale dependence by running down to the hard-collinear scale. The hard scale is the natural
choice for the OPE results. We also use the same grid of input parameters and make a multi-parameter
scan to find the extreme values of the convolution integral.

There are two features which are crucial to understand our results which we present below.

• First, due to the rather symmetric structure of the jet functions, in contrast to the B̄ → Xsγ case,
the various model functions lead to very similar extreme values of the convolution integral as we will
see below. This feature is already manifest in the bottom of Figure 2, where some model functions
are shown. Thus, using higher-order polynomials does not increase the uncertainties compared to
the second-order polynomial used in the original analyses.

• Second, in the upper plot of Figure 2, two input values of the jet function, namely the charm
and the bottom masses, mc and mb, are varied within their 1σ uncertainties. As in the case of

10The OPE result of the decay rate is given by (see for more details Ref. [5])

ΓOPE =
G2
Fαm

5
b

32π4
|V ∗tbVts|

2 1

3

α

π

∫
dn̄ · q
n̄ · q

(
1−

n̄ · q
mb

)2

[
C2

7γ

(
1 +

1

2

n̄ · q
mb

)
+ (C2

9 + C2
10)

(
1

8

n̄ · q
mb

+
1

4

(
n̄ · q
mb

)2
)

+ C7γC9
3

2

n̄ · q
mb

]

≡
G2
Fαm

5
b

32π4
|V ∗tbVts|

2 1

3

α

π
COPE .
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B̄ → Xsγ one finds that larger mc and smaller mb values move the jet function to the right, outside
the hadronic range. Thus, as in the case of B̄ → Xsγ the convolution with the shape functions
leads to larger values, if mc = 1.14 and mb = 4.61 GeV. However, in contrast to the B̄ → Xsγ case,
the jet function has a comparatively broad peak. Therefore the variation of the charm mass has a
lower impact on the magnitude of the convolution integral in the B̄ → Xs`` case.
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Figure 2: The top figure shows the jet (weight) function in the case B̄ → Xs`` for mc = 1.14 GeV and
mb = 4.61 GeV (dashed-dotted, green) and for mc = 1.23 GeV and mb = 4.55 GeV (dotted blue) with a second
order polynomial as shape function (solid, red). The bottom figure shows two shape functions which lead to the
extreme values for the convolution. The polynomials are of order two (solid, red) and of order 4 (dotted, blue).

In order to systematically compare our results we define the parameter Σ17 in view of Eq. (23)) via

F17
b→s`` =

1

mb

C1(µ)C7γ(µ)

COPE
Σ17 , (25)

analogously to Eq. (4). Starting with the sum of Hermite polynomials of n = 0 and n = 2 (see Eq. 7) as

10



model function for h17 we find in our multi-parameter scan

− 195 MeV ≤ Σ17 ≤ −48 MeV (n ≤ 2, exp(−x2)). (26)

The lower bound is found with σ = 320 MeV, with the zeroth moment m0 = 0.200 GeV2 and with the
second moment m2 = 0.030 GeV4. This implies for the higher moments m4 = 0.009 GeV6 and m6 =
0.005 GeV8. The upper bound corresponds to the parameter set, σ = 360 MeV, m0 = 0.200 GeV2, and
m2 = 0.270 GeV4. The sum of Hermite polynomials up to order n = 4 leads to

− 209 MeV ≤ Σ17 ≤ −46 MeV (n ≤ 4, exp(−x2)). (27)

The lower bound corresponds to the parameter set, σ = 300 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4,
and m4 = 0.040 GeV6, the upper bound to σ = 320 MeV, m0 = 0.200 GeV2, m2 = 0.270 GeV4 and
m4 = 0.180 GeV6. The sum of Hermite polynomials up to order 6 leads to a slightly larger interval for
Σ17:

− 209 MeV ≤ Σ17 ≤ −42 MeV (n ≤ 6, exp(−x2)). (28)

with the lower bound corresponding to the parameters σ = 280 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4,
m4 = −0.060 GeV6, and m6 = −0.120 GeV8 and the upper bound to σ = 320 MeV, m0 = 0.200 GeV2,
m2 = 0.270 GeV4, m4 = 0.240 GeV6, and m6 = 0.280 GeV8. With an additional polynomial of degree 8
one finds a slightly smaller interval:

− 201 MeV ≤ Σ17 ≤ −43 MeV (n ≤ 8, exp(−x2)). (29)

The lower bound is obtained for σ = 380 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4, m4 = 0.060 GeV6,
m6 = 0.100 GeV8, and m8 = 0.200 GeV10, the upper bound for σ = 320 MeV, m0 = 0.200 GeV2,
m2 = 0.270 GeV4, m4 = 0.220 GeV6, m6 = 0.260 GeV8, and m8 = 0.400 GeV10.

As in the case of B̄ → Xsγ, we also use model functions with exp(−x4) and exp(−x6) suppression
instead of a Gaussian (exp(−x2)). In that case we find only slightly larger intervals for Σ17.

− 211 MeV ≤ Λ17 ≤ −48 MeV (n ≤ 4, exp(−x4)). (30)

The lower bound corresponds to the parameter set, σ = 660 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4,
m4 = 0.040 GeV6, the upper bound to σ = 800 MeV, m0 = 0.200 GeV2, m2 = 0.270 GeV4 and m4 =
0.140 GeV6. With the Hermite polynomials up to degree 6 with an exp(−x4) suppression, one obtains
the largest interval:

− 215 MeV ≤ Σ17 ≤ −36 MeV (n ≤ 6, exp(−x4)). (31)

The corresponding parameter sets are σ = 620 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4, m4 =
0.060 GeV6, and m6 = 0.060 GeV8 for the lower bound and σ = 760 MeV, m0 = 0.200 GeV2, m2 =
0.270 GeV4, m4 = 0.240 GeV6, and m6 = 0.260 GeV8 for the upper bound. If one uses a higher suppres-
sion, namely exp(−x6) for example with a Hermite polynomial up to degree 4, one already gets a slightly
smaller interval again, namely

− 215 MeV ≤ Σ17 ≤ −52 MeV (n ≤ 4, exp(−x6)) , (32)

with σ = 720 MeV, m0 = 0.280 GeV2, m2 = 0.030 GeV4, m4 = −0.300 GeV6 for the lower bound and
σ = 740 MeV, m0 = 0.200 GeV2, and m2 = 0.270 GeV4. m4 = 0.200 GeV6 for the upper bound.

Therefore the largest interval for Σ17 is again found for a sum of Hermite polynomials up to degree
6 with an exp(−x4) suppression, which leads to a range −215 MeV ≤ Σ17 ≤ −36 MeV. However, all the
other model functions used above lead to very similar results. Thus, adding higher-grade polynomials and
using higher suppression factors has almost no effect in the B̄ → Xs`` case in contrast to the B̄ → Xsγ
case. This effect can be regarded as a consequence of the rather symmetric jet function as anticipated
at the beginning of this section. The interval found in the original analysis of B̄ → Xs`` in Ref. [5] was
−355 MeV ≤ Σ17 ≤ +50 MeV.11 Therefore the size of the interval found in our new analysis is by more
than a factor of two smaller.

Furthermore, as in the case of B̄ → Xsγ there exists an additional 1/m2
b correction in our formula

which was neglected in Eq. 23 at order 1/mb. In order to take it into account we have to replace Eq. 23

11We note that the factor ec was not included in Σ17 in Ref. [5], so in section 6.1 of that reference one finds the interval
−532 MeV ≤ Σ17 ≤ +75 MeV.
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by the following original one12

F17 =
1

mb

C1(µ)C7γ(µ)

COPE
ec Re

∫ +∞

−∞

dω1

ω1 + iε

∫
dn · q
n · q

∫
dω

(mb + ω)3

m3
b

1

ω1

[
(n · q + ω1)

(
1− F

(
m2
c

(mb + ω) (n · q + ω1)

))
− n · q

(
1− F

(
m2
c

(mb + ω)n · q

))

−n · q
(
G

(
m2
c

(mb + ω) (n · q + ω1)

)
−G

(
m2
c

(mb + ω)n · q

))]
g17(ω, ω1, µ) . (33)

If we include the 1/m2
b term we again find the extrema for Σ17 for almost the same parameters as in the

corresponding cases without the 1/m2
b correction. Using a Gaussian suppression in the model function

the largest interval is found for the sum of Hermitian polynomials up to degree 6 which leads to the
largest interval:

− 259 MeV ≤ Σ17 ≤ −30 MeV . (34)

If one chooses an exp(x−4) suppression, the polynomial of degree 6 leads to the maximal result

− 268 MeV ≤ Σ17 ≤ −18 MeV . (35)

We note that this 1/m2
b effect which belongs to the O1−O7γ contribution was not included in the original

analysis in Ref. [5].
Finally, the shape functions which lead to extreme convolutions with the jet functions do all have

relatively small higher moments because large higher moments correspond to shape functions with maxima
close to the hadronic limits. Therefore the dimensional estimates on the fourth and sixth moments, given
in Eq. (3), namely that their values are between −0.3 GeV6 and 0.3 GeV6 and between −0.3 GeV8 and
0.3 GeV8, respectively, have almost no impact on the results in the case of the decay B̄ → Xs`` because
these constraints are automatically fulfilled in almost all cases due to the symmetric jet function. Only
the model function with n ≤ 6 and exp(−x4) which leads to the largest interval would allow for even
larger values when the dimensional estimates were not used; the upper bound would slightly move up from
−18 MeV to −6 MeV (with the 1/m2

b correction included). In contrast, the jet function in the B̄ → Xsγ
case is peaked and asymmetric; thus, maxima of the shape function at the border of the hadronic range
lead to larger convolutions with this jet function and this leads to larger higher moments of the shape
functions. This explains the large impact of the additional estimates of the fourth and sixth moment
found in the B̄ → Xsγ case.

Summary: We found the new conservative estimate for Σ17 at order 1/mb given in Eq. 31 , namely
−220 MeV ≤ Σ17 ≤ −40 MeV. This result translates into the following relative uncertainty of the decay
rate of B̄ → Xs`

+`− via Eq. 25:

F17
b→s``|1/mb ∈ [+0.4%, +2.1%] , (36)

which is more than a factor of two smaller than the uncertainty of our original analysis in Ref. [5], namely
F17

b→s``|1/mb ∈ [−0.5%, +3.4%]. Including the large additional 1/m2
b contribution, given in Eq. 35 ,

−270 MeV ≤ Σ17 ≤ −20 MeV, we arrive at our final result:

F17
b→s`` ∈ [+0.2%, +2.6%] . (37)

Our results are rather independent from the specific choice of the degree of the polynomial and of the
suppression function used. Moreover, the dimensional estimates on the fourth and sixth moments in Eqs.
(3) have almost no impact on our result in the b → s`` case in contrast to the b → sγ case We showed
that both features are consequences of the specific form of the jet functions.

Regarding scale variations in our final result, all remarks made in the B̄ → Xsγ case also apply in
this case.

The two other resolved contributions at order 1/mb due to the interference O7γ −O8g and O8g −O8g

were estimated in our original analysis in ref. [5] to F78
b→s`` = [0%, 0.1%] and F88

b→s`` = [0%, 0.5%],
respectively. Adding the three contributions by using the scanning method, we arrive at the final result
for all resolved contributions at order 1/mb (including the additional 1/m2

b piece within F17) :

F1/mb
b→s`` ∈ [0.2%, 3.2%] . (38)

12For the precise limits of integration we refer the reader to the discussion in Section 6.1 of Ref. [5].

12



As was already emphasised in our original analysis, there are subleading contributions due to the
interference of O9,10 and O1 at order 1/m2

b which are numerically relevant due to the large ratio C7γ/C9,10

and which will be presented in Ref. [24].
The necessary modifications for the B̄ → Xd`` decay can be found in Refs. [8, 23].

4 Final summary and conclusions

The nonlocal power corrections to the decays B̄ → Xsγ and B̄ → Xs,d`` represent the largest uncertainties
(around ±5%) of the theoretically clean inclusive penguin modes [6–8]. These resolved contributions had
been estimated using soft-collinear effective theory (SCET) for the B̄ → Xsγ in Ref . [1] and for the
B̄ → Xs`` case in Ref. [5]. The largest resolved contribution in both cases is due to the interference of
the effective operators O1 and O7γ .

The resolved contributions are given by convolution integrals of a so-called jet function, characterising
the hadronic final state Xs at the intermediate hard-collinear scale

√
mbΛQCD, and of a soft (shape)

function at scale ΛQCD which is defined by an explicit non-local heavy-quark effective theory (HQET)
matrix element while the hard contribution at the scale mb is factorised into the Wilson coefficients.
Knowing the explicit form of the HQET matrix element one derives general properties of this shape
function and uses model functions with all these properties to estimate the convolution integral with the
perturbatively calculable jet function.

In the two original analyses of the most important resolved contribution of O1−O7γ [1,5] only polyno-
mials of second order with a Gaussian suppression were used as model functions for the shape functions.
Their parameters were scanned in order to find the most conservative estimate for the convolution integral
with the corresponding jet functions.

In a recent analysis in Ref. [9] the authors offered a reevaluation of this resolved contribution in the
case of b→ sγ. They derived a new constraint on the second moment of the corresponding shape function
and then made a systematic analysis of model functions based on a complete basis of functions using
the Hermite polynomials as was already advocated and used in several applications by the authors of
Refs [15–17]. Using additional dimensional estimates on the fourth and sixth moment, the authors of
Ref. [9] found the uncertainty due to this resolved contribution of O1−O7γ reduced by a factor of three.

In our present analysis of this resolved contribution to the B̄ → Xsγ and also to the B̄ → Xs`` decay,
we followed the same strategy of a systematic analysis and also used the constraint on the second and the
dimensional estimates of the fourth and the sixth moment. We found a significantly smaller reduction in
the case B̄ → Xsγ and a reduction by a factor of two in the case B̄ → Xs``. We explicitly worked out the
difference of our result compared to the recent analysis of the B̄ → Xsγ case in Ref. [9]. First, we included
the very large 1/m2

b contribution which directly originates from the resolved contribution O1 −O7γ and
which was also included in the original analysis in Ref. [1]. Other resolved 1/m2

b contributions like the
ones due to the operator pairs O1−O8g or O1−O1 were shown to be numerically negligible in the original
analysis. However, the 1/m2

b term in O1 − O7γ was dropped in the recent analysis in Ref. [9]. Second,
we take into account the charm mass dependence via a change of the hard-collinear scale. These two
differences have the largest impact. Third, we explore the full space of functions. given by the Hermite
polynomials and also used polynomials with suppression factors exp(−x4) or exp(−x6). Such functions
can be expressed in terms of the original basis given in Eq. 7. Fourth, we use a more dense parameter
grid in our analysis.

In contrast to the B̄ → Xsγ case we found that the additional constraint on the second moment –
established in the recent analysis in Ref. [9] – has a much larger impact in the B̄ → Xs`` decay. It leads
to a reduction of the uncertainty due to O1−O7γ by a factor of two compared to the result in our original
analysis [5]. We also identified the main reason which lead to these different results in the two penguin
modes. The jet function in the B̄ → Xs`` case is symmetric and has a broad peak, while the jet function
in the B̄ → Xsγ case is asymmetric and peaked. Therefore, the choice of higher-order polynomials has
no impact on the convolution integral in contrast to the B̄ → Xsγ case. The special features of the jet
function in the B → Xs`` case also implies that the charm dependence is less pronounced and that the
dimensional constraints on the fourth and sixth moments on the shape function have no impact either.
Finally, we mention that we also estimated the large 1/m2

b term in the O1 − O7γ contribution to the
B̄ → Xs`` decay which we now included in the final result.

We found a large scale ambiguity in the final results which was not analysed in previous analyses. The
only scale in our resolved contribution is within the hard function, represented by the Wilson coefficients.
Therefore we have chosen the hard scale for the Wilson coefficients as our default value. If we run down
the LO Wilson coefficients, i.e. C1(µ), C7γ(µ) in the O1-O7γ term, to the hard-collinear scale, the result
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increases by more than 40%. There is no strict argument here that this specific scale variation in our
result can be connected to an estimate of the unknown NLO corrections. However, this observation calls
for a calculation of the αs corrections and RG resummation. We found that the charm dependence of
our result in the B̄ → Xsγ case is very pronounced. A calculation of the αs corrections would also allow
to control the charm mass dependence of our result.

We conclude that the nonperturbative nonlocal corrections to the B̄ → Xsγ decay still represents
the largest uncertainty in this decay mode. In the case of the B̄ → Xs`` decay we found a reduction
of the uncertainty by factor of two due to the new second moment constraint at order 1/mb. However,
the calculation of the relevant resolved contributions to the B̄ → Xs`` is not complete yet. There are
subleading contributions due to the interference of O9,10 and O1 at order 1/m2

b which are numerically
relevant due to the large ratio C7γ/C9,10 and which will be presented in Ref. [24].

As already discussed by the authors of Ref. [9], further improvements might be possible in the near
future. More accurate and new determinations of HQET parameters using future data of the Belle-II
experiment and lattice QCD will allow to determine the moments of the subleading shape function h17

more accurately and will allow to reduce the error due the resolved contributions within the two inclusive
penguin decays. However, this is a difficult task because determinations of higher moments rely on the
so-called Lowest-Lying State Approximation (LLSA).
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