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ABSTRACT

One of the more widely advocated solutions for slowing down the spread of COVID-19 has been automated contact tracing.
Since proximity data can be collected by personal mobile devices, the natural proposal has been to use this for automated
contact tracing providing a major gain over a manual implementation. In this work, we study the characteristics of voluntary and
automated contact tracing and its effectiveness for mapping the spread of a pandemic due to the spread of SARS-CoV-2. We
highlight the infrastructure and social structures required for automated contact tracing to work. We display the vulnerabilities
of the strategy to inadequate sampling of the population, which results in the inability to sufficiently determine significant
contact with infected individuals. Of crucial importance will be the participation of a significant fraction of the population for
which we derive a minimum threshold. We conclude that relying largely on automated contact tracing without population-wide
participation to contain the spread of the SARS-CoV-2 pandemic can be counterproductive and allow the pandemic to spread
unchecked. The simultaneous implementation of various mitigation methods along with automated contact tracing is necessary
for reaching an optimal solution to contain the pandemic.

Introduction
A relentless and damaging battle is being fought against the spread of COVID-19. While several countries have managed to
significantly slow down its spread, severe measures have had to be taken to do so and at great cost to the economic and social
well-being of the nations. It is still not certain when a significant control over the spread of SARS-CoV-2 can be attained.
Recent projections propose surveillance for the next few years [1], with several measures that will need to be put in place to
minimize the cost of the pandemic to humankind. Automated contact tracing is one of these measures.

Contact tracing has been observed to be effective in previous pandemics (or epidemics) like the Ebola virus outbreak in
2014-2015 [2]. This preemptive method allows for the containment of the pathogen by isolating potentially infected individuals
that have been traced. Extensive studies of manual contact tracing were done during the previous outbreak of the Ebola
virus [3–5], SARS-CoV and MERS-CoV [6]. More recently, mathematical models have been formulated to study contact
tracing assuming the disease spread to be quantifiable by the SIR model [7]. However, the efficacy of automated contact tracing
during the SARS-CoV-2 pandemic requires a more detailed examination given the distinct difference in the prevalence of this
pandemic from the ones in the recent past and the different modes of transmission of the pathogen.

Manual contact tracing is not very effective against pathogens that spread like the influenza virus but is more effective
for containing smallpox and SARS-CoV and partially effective in containing foot-and-mouth disease [8]. The viral shedding
patterns of SARS-CoV and MERS-CoV are similar [9, 10] and show almost no pre-symptomatic transmission [11],1 while
Ebola is known to be transmitted through the bodily fluids of infected individuals after the onset of symptoms [13]. On the
other hand, influenza shows a significant rate of viral shedding in the pre-symptomatic stage [14]. The important transmission
characteristics of SARS-CoV-2 that set it apart from other HCoV pathogens like SARS-CoV and MERS-CoV and from Ebola
are:

• SARS-CoV-2 transmission is driven by pre-symptomatic spreading like the influenza virus [15–17].

• The pathogen can be transmitted through the air in high contamination regions and through contaminated dry surfaces for
several days [15, 18, 19] leading to its high transmission rates. This brings about additional challenges when the disease

1One study suggested that MERS-CoV can be transmitted before the onset of symptoms [12].
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cannot be contained within an isolated envelope of a healthcare system. While a similar spreading pattern is seen in
SARS-CoV and MERS-CoV, this makes SARS-CoV-2 more easily transmittable than Ebola.

• The ACE2 binding of SARS-CoV-2 is estimated to be relatively stronger than SARS-CoV and might explain its observed
spreading characteristics [20–22].

Similar to SARS-CoV the reproduction number, R0, for SARS-CoV-2 is estimated to be 2.2−2.7 [23–27].2 The dispersion
parameter is estimated to also be similar to that of SARS-CoV (close to 0.1), which could be causing superspreading [26,29–31].

While, theoretically, automated contact tracing can be shown as an effective means of containing SARS-CoV-2 [30], factors
such as long delays from symptom onset to isolation, fewer cases ascertained by contact tracing, and increasing pre-symptomatic
transmission can significantly impact how effective contact tracing will be in practice. Defining significant contact as being
within 2 meters and lasting for at least 15 minutes can result in the detection of more than 4 out of 5 secondary infections
but at the cost of tracing 36 contacts per individual (95th percentile: 0− 182 contacts per individual) [32]. Changes to the
definitions of the parameters can reduce the numbers traced. If the threshold of minimum contact time is increased to at least 4
hours of contact the spread of the pathogen cannot be controlled by automated contact tracing since many potentially infected
contacts will escape detection. Detailed modeling of SARS-CoV-2 transmission shows that the pandemic can be sustained just
by pre-symptomatic transmission and that automated contact tracing can be used to contain the spread of the pathogen if there
are no significant delays to identifying and isolating infected individuals and their contacts [33].

Considering all the factors that make contact tracing a different game for SARS-CoV-2, in this paper we will examine in
detail how much data and participation from the population will be needed to make automated contact tracing effective. This
will give an estimate of the necessary scale of implementation of automated contact tracing and whether it will be feasible. The
model that we build with factorized parameters will also allow for the estimation of the effects of various mitigation methods
like the use of PPE in enhancing the efficacy of automated contact tracing which we discuss before the discussion section. In
this work we address voluntary and automated contact tracing using proximity data alone excluding methods such as the use of
CCTV, credit card information, logging of identities of individuals during vists to locations and travels, etc. that have been
successfully used by many countries like Singapore [34], Taiwan [35], South Korea [36] and China [33] for contact tracing.

Contact tracing for COVID-19
To begin with, we consider a disease that spreads only in the symptomatic stage. The infected individuals can spread the
disease to their contacts before they are isolated and to medical workers after they are isolated with varying probabilities. Of
significance here is that after the initial period of ignorance of the population about a rising pandemic, infected individuals will
be isolated with higher efficiency (even with manual contact tracing) resulting in the curtailment of the spread of the pathogen.
How is contact tracing more effective in such diseases? Since the mobility of the infected individual usually sees a decline
after the onset of symptoms, the number of contacts at risk become limited to nearest neighbors and possibly next-to-nearest
neighbors in the contact space. This allows the implementation of a manual contact tracing algorithm that identifies these
neighbors and isolates or tests them as suggested in reference [8]. This was seen to be effective during the Ebola, MERS-CoV
and SARS-CoV outbreaks.

However, the spreading of SARS-CoV-2 follows a very different pattern. With the prevalence of spreading of infection
through pre-symptomatic and subclinical hosts, the number of individuals that might need to be traced can be very large.
This has led to the belief that automated contact tracing in a wider gamut should be implemented. Most of the proposed
solutions [30, 32, 33] require the use of historical proximity data to trace contacts. In the context of COVID-19, there are some
obvious pitfalls in the algorithm:

• It is estimated that about 86% (95% CI: [82% – 90%]) of the infected cases in China were undocumented prior to the
travel ban on the 23rd of January 2020 generating 79% of the documented infections [23]. A large number of these
undocumented cases experienced mild, limited or no symptoms and can hence go unrecognized. Similar results were
reported by other studies [37,38]. It is not possible to trace all the contacts of these individuals since they will be partially
reported leading to incomplete coverage of contact tracing.

• While it is assumed that the SARS-CoV-2 spreads within a proximity radius of r0 (assumed to be 2 meters), not much is
known about the probability of transmission, pt when two individuals come within this domain of contact for a minimum
contact time t0. Assuming pt to be large will lead to an unreasonably large estimate of the number of potential contacts
in a crowded region like supermarkets, which remain open even during the period of social distancing. On the other
hand, assuming pt to be small will underestimate the number of infected contacts, especially because there might be
other modes of transmission of SARS-CoV-2 that are not being considered. By definition pt depends on the dynamics

2Much higher reproductive rates have also been estimated with data from Wuhan, China [28]
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Figure 1. A depiction of automated contact tracing. The cross-section is denoted by the dashed circle and is of radius r0/2.
Interactions occur from t = 0 to t = t0 + ε where ε � t0. A will be confirmed as COVID-19 positive in the future and C will be
notified having come in contact with A. E might be notified if E stays in contact with A for a time period greater than t0.

of disease transmission when a healthy individual comes in significant contact with a sick individual. Moreover, pt is
not constant over r0 and also varies with the stage of infection the infected individual is at [17]. Several other factors
contribute to the value of pt in addition to the contagiousness of the disease including, but not limited to, the use of PPE,
public awareness of the disease, etc.

The first pitfall can be alleviated by increasing the testing rate of individuals for viral RNA in the hope that a larger fraction
of the asymptomatic or mildly symptomatic carriers can be traced. Increasing awareness can also help. The second pitfall can
be alleviated when more detailed knowledge of the spread of SARS-CoV-2 is available and with the help of simulation of
the spread of the disease in a population. For the rest of the work, we will assume pt to be a variable and r0 to be fixed to 2
meters [32].

The real-world applicability of automated contact tracing requires the examination of the effects of finite sampling of the
population. The assumption that we are working with is that enrollment in automated contact tracing will be voluntary and
individuals remain free to do one of the following:

• Choose not to enroll in the program by either not using the application or the devices needed for tracing, including
discontinuity in participation.

• Choose not to report on their health condition which is assumed to be voluntary.

Both types of occurrences have an effect of reducing the efficacy of automated contact tracing but in slightly different manners.
In the first case, not subscribing to the service would not only remove an individual from the pool that is being notified, but it
also removes them from the pool of individuals that are reporting. In the second case only the latter happens.

Modeling automated contact tracing
Since, in automated contact tracing, a significant contact has to be less than r0 distance away for time t0, we describe every
individual by a circle with a radius of r0/2 which we shall call the cross-section of the individual. The cross-section is chosen
such that any overlap between two cross-sections can be taken as a significant contact between the two respective individuals.
Temporally, the cross-sections have to overlap for a time t0 which is the threshold interaction time that is assumed critical for an
individual to infect another by proximity. For the sake of simplicity and without any loss of generality of our argument we can
assume that the probability of getting infected, pt , is independent of the degree of overlap of the cross-sections and for any time
t > t0 as is done normally in automated contact tracing.

Figure 1 gives a depiction of what automated contact tracing would be for a group of individuals. In the left-most panel, B
and C are in contact with A at t = 0 but not with each other. D is isolated from all of them. After a period of time t < t0, B is
isolated but C stays in contact with A. Then at time t = t0 + ε , where ε � t0, we see that C is still in contact with A, B remains
isolated and E has come in contact with both A and C. Using the methods of automated contact tracing, if A reports sick at a
future time, C will be deemed as having had significant contact with A. E might also be deemed as such depending on how long
he maintains proximity with A, but the proximity of E with C need not be counted even if E spends t > t0 in contact with C (if
only primary contacts are traced) unless C reports sick too.

This method of automated contact tracing will work as long as A and C (and possibly E) are enrolled in the service even if
B and D are not. However, D is completely isolated and by remaining so for a long time is observing social distancing from any
other individual. B is representative of an individual who observes partial social distancing. Hence, for D this service is not
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necessary and for B it is of limited value. If C is not enrolled in the service C will never get notified if A gets sick. C might fall
sick or become an asymptomatic carrier and continue contaminating others. If A does not enroll in this service then C never
gets notified leading to the same conclusions but E might get notified if C declares sick and E is enrolled in the service.

An estimated 45% of virus transmission occurs in the pre-symptomatic phase of an infected individual [33]. From both
Hellewell et. al. [30] and Ferretti et. al. [33] it is seen that 60% - 80% of the contacts need to be successfully traced and
quarantined instantly to contain the outbreak over a period of time.Prevalence of subclinical infections of SARS-CoV-2 further
reduces the effectiveness of contact tracing. With automated contact tracing using a definition of r0 = 2 meters and t0 = 15
minutes more than 80% of the cases can be traced [32] if every infected case is reported. In what follows we create a simplified
model of automated contact tracing to deduce the minimum fraction of the population that needs to enroll in the program for it
to be effective.

• Let N be the number of individuals in a population and fi the fraction of the population that is infected, regardless of
whether they know it or not. Therefore, the true number of infected individuals is fiN.

• If testing is conducted only when mild or severe symptoms are seen (i.e. excluding testing of asymptomatic cases), the
number of confirmed cases is rc fiN with rc being the fraction of the infected that will be confirmed as infected by testing.

• We define fe as the fraction of the population that is enrolled for automated contact tracing and fc as the fraction of the
users that will confirm that they have been diagnosed positive. Hence, the number of individuals that have tested positive,
are using automated contact tracing and will confirm that they are sick is fc ferc fiN.

• We define ac as the average number of contacts per person in the period of time t0 who are at risk of being infected due to
proximity with a sick individual and is assumed to be greater than 0.3

Since only fe fraction of contacts are using the service, we can estimate the number of individuals that can be traced as
fc ferc fiN×ac× fe.

To compute the number of individuals that need to be quarantined or isolated since they are now at risk of being infected
from coming in contact with a sick person, we define the following.

• Since pt is defined as the probability of transmission of infection within the proximity radius r0 being exposed for a time
greater than t0, the number of individuals at risk is, at most pt fiNac, i.e., pt×number of contacts of the group of infected
individuals.

• Finally, we define fT as the fraction of the individuals at risk of being infected that needs to be successfully quarantined
to quell the spread of the pathogen.

Therefore, the number of individuals that should be quarantined is fT pt fiNac. For automated contact tracing to work effectively,
we have,

f 2
e fcrc fiNac ≥ fT pt fiNac. (1)

The game of big numbers
Eq. (1) simply states that the number of individuals that can be notified by automated contact tracing (on the left-hand side)
has to be greater than or equal to the number of individuals who need to be notified (on the right-hand side). Note that ac, the
average number of contacts, drops out of the inequality and hence, the inequality is independent of the population density of the
region since eq. (1) is in terms of fraction of the population and not the absolute number of individuals. This simply implies that
in a region of denser population a larger number of people need to be contacted and quarantined but leaves fe independent of
the population density. Since the right-hand side is the minimum fraction of the population that needs to be traced we arrive at:

f min
e =

√
fT pt

fcrc
. (2)

The fraction f min
e is the minimum fraction of the population that needs to be enrolled in automated contact tracing for it to be

effective as a means of slowing down the spread of the pandemic. In eq. (2), pt depends on the spreading dynamics of the
pathogen determined by individual-to-individual interactions and, therefore, also depends on the mitigating measures taken
at both the population level and the individual level. Naively, in automated contact tracing, pt is taken as one if the contact
has lasted for over time t0 with the subjects being less than r0 apart. This can be reduced by use of PPE or other mitigation

3Here we make a simplifying assumption that the disease has spread to only a small fraction of the population and the probability of a single healthy person
to meet two sick individuals within the proximity radius in a period of 14 days and be in contact with them for t ≥ t0 is negligibly small in general. There will
be outliers depending on the habits of individuals but we can neglect them for this analysis.
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Figure 2. Percentage of the population that needs to be enrolled ( f min
e ) for automated contact tracing to be successful. Starting

from the left, the solid and dashed lines represent fc = 100%,80% respectively for the first panel, pt = 35%,15% for the
second panel, rc = 75%,95% for the third panel and fT = 50%,90% for the fourth panel. For the left two panels the fraction of
truly infected individuals that will be confirmed as sick, rc is varied between 75%−95%. For the right two panels the fraction
of people who will confirm they are sick if they are enrolled, fc is varied between 70%−90%. Three cases for the minimum
fraction of the individuals at risk that need to be traced are considered with fT = 50%,70%,90% in orange, green and red
respectively in the left two panels and similarly, three cases are considered for pt = 15%,25%,35% in the right two panels.
The blue dotted line in the third panel from the left gives the threshold variation of f min

e with fT when all other parameters are
set to 1. The y axes are identical for all panels. See text for more details.

methods as we discuss later. The parameter fT depends on the disease spreading dynamics and can be estimated from modeling
the disease spreading amongst a population [33]. According to this reference, the slower the response to the identification of
contact at risk higher is fT for the same reduction rate of the reproduction number. We assume that identification of contact
at risk takes less than a day in automated contact tracing. The parameter rc is governed by the ability to identify infected
individuals through testing and depends on the protocols of the testing program and its coverage. On the other hand, fc is
determined solely by the degree to which individuals are willing and able to confirm that they have been tested positive.

Let us examine the limit pt = fc = rc = 1. This is the limit where every significant contact is assumed to be at risk, everyone
who is enrolled in the automated contact tracing program reports sick when tested positive and every sick individual can be
successfully identified by testing. Then we arrive at the relation f min

e =
√

fT (blue dotted line in the third from left panel of
figure 2). Since fT is the fraction of contacts that need to be successfully isolated, it can be extracted from the abscissa of fig. 3
of ref. [33]. For example, if 100% of the infected cases can be isolated, then for a change in the epidemic growth rate by -0.1,
one needs fT ∼ 60%. Hence f min

e ∼ 77%. It is intuitive that f min
e scales as the squareroot of fT since both the infected and the

contact at risk need to be enrolled and the probability that each are enrolled is fe leading to fT ∝ f 2
e . It gives the threshold

which f min
e cannot exceed for any given fT .

Lastly, we define the effectiveness of the automated contact tracing, η , as the ratio of the actual number of individuals that
will be notified ( f 2

e fcrc fiNac) to the minimum number of individuals that should be notified to quell the spread of the disease
( f min

e
2 fcrc fiNac) and get:

η ≡ f 2
e

f min
e

2 . (3)
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Figure 2 depicts how the fraction of the population that needs to be enrolled for the automated contact tracing program to be
successful ( f min

e ) varies with the four factorized parameters. In the left-most panel of figure 2, we show the minimum percentage
of the population that needs to be enrolled in automated contact tracing f min

e (in %) versus the transmission probability pt . We
consider two values for fc = 80%, 100%, the fraction of individuals who test positive and will confirm their symptoms to trigger
automated contact tracing, by the solid and dashed lines respectively. The solid and dashed lines represent pt = 15%,25%
respectively. The bands are generated by varying the fraction of sick individuals that can be confirmed as sick by testing, rc,
between 75% and 90%. The other panels show the variation of f min

e with fc, fT and rc.
If we take a closer look at eq. (1) and the left-most panel of figure 2 we see that even with a modest probability of

transmission pt (e.g. about 30%) quite a large fraction of the population (about 40% – 60%) needs to be enrolled in automated
contact tracing even when we assume almost all of them will be actively participating in confirming when they get infected.
Assuming all the traced contacts within radius r0 lasting for more than t0 period of time are going to be infected is equivalent
to stating pt = 100%. From the panel on the right, we can see how a fall in the fraction of individuals that confirm that they
are sick, fc, can increase f min

e . Even with quite low values of pt nearly half the population needs to be enrolled in automated
contact tracing.

Let us try to understand why the effectiveness of automated contact tracing seems to drop so drastically with the enrollment
fraction fe. From the left-hand side of eq. (1) we see that the effectiveness of automated contact tracing drops as f 2

e . We see
that η drops to 64% when fe = 0.8 f min

e and 25% when fe = 0.5 f min
e . This non-linearity exists because fe not only reduces the

number of sick individuals who can report their status but also the number of individuals who can receive a notification that
they have come in contact with a sick person. The primary reason behind this is the fact that the automated contact tracing
depends on voluntary participation whereas manual contact tracing or the use of CCTV, credit card information or identity
logging at visited location to trace contact are not voluntary in their current form of implementation4.

Furthermore, as seen in figure 2, when the percentage of sick individuals who report that they are sick, fc, is lower than
100%, automated contact tracing becomes even less effective. In addition, the percentage of cases that can actually be detected,
rc, will realistically be less than 100% for SARS-CoV-2 because of the prevalence of subclinical cases that will escape detection
and other clinical factors.

In our analysis, we have inclined towards an optimistic picture of the spread of SAR-CoV-2. We have considered only
spreading due to proximity and not considered other means of spreading like contaminated surfaces and aerosol that are
common for SARS-CoV-2 [15, 18, 19] and can increase pt . In figure 2 we have taken a minimum rc of 75% when this can be
even lower if widespread testing is not conducted to identify subclinical cases that can go undetected. We have also neglected
the requirement for tracing secondary or tertiary contacts. In addition, we have also ignored events where a large number of
individuals are infected in very a crowded location like public events for which thresholds like r0 and t0 need to be modified.
Despite this optimistic picture, our analysis shows that a majority of the population has to enroll and actively participate in
automated contact tracing for the measure to work in the absence of active social distancing measures.

We have not addressed the sociological aspect of selection bias in the enrollment process. Diversity in socio-economic
conditions, awareness of technology and willingness to participate in a community effort will create variation in representations
amongst the population. This can lead to the most vulnerable in society getting the least benefit from the implementation of
automated contact tracing. Addressing the challenges of implementing automated contact tracing in developing nations where
the necessary technologies might not be accessible to a large fraction of the population lies beyond the scope of this work.

Assisted contact tracing
The necessary scale of implementation of automated contact tracing appears to be too large for it to be considered an effective
measure to slow down the ongoing pandemic. For automated contact tracing to be a viable option, f min

e has to be as low as
possible. To achieve this either the product fT pt needs to be decreased or the product fcrc needs to be increased as seen from
eq. (2).

• Both fT and pt depend on the dynamics of the disease spreading amongst humans. The fraction of traced cases that need
to be quarantined to stop the spread of the disease fT can be reduced by extensive monitoring of the disease to make sure
sick cases are isolated as soon as possible and their contacts are traced. Even a day or two of delays can increase fT
making automated contact tracing ineffective [33].

• Variations in pt can be caused by several factors some of which are controllable. Since pt depends on the contagiousness
of the disease and any protective measures taken against the spread of the infection, pt can be reduced by measures of
limited social distancing, the use of PPE and raising public awareness about the contagiousness of COVID-19. This can
pose a significant challenge in densely populated regions and regions with poor living conditions and might lead to the
breakdown of the applicability of automated contact tracing.

4These effectively makes fe close to 100% for both those who have been diagnosed as infected and their contacts.
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• fc is somewhat more difficult to control assuming the reporting of those who are confirmed sick is voluntary. This can
only be increased by increasing the population’s willingness to contribute to automated contact tracing.

• rc is the parameter that is least under control since without very large-scale testing, asymptomatic and mildly symptomatic
cases will be difficult to find. This is especially true if the infection can spread by means other than proximity alone as
might be the case for SARS-CoV-2 [15, 18, 19].

Thus we see that a combination of several measures along with a large participation of the population in contact tracing
would be the optimal solution for avoiding extensive population-wide social distancing measures and reducing the cost to the
economy and well-being of a nation and also allow for greater freedom of movement during a pandemic.

Discussion
We have shown that in real-world scenarios, automated contact tracing alone cannot contain a pandemic driven by a pathogen
like the SARS-CoV-2. Advocating it as such can lead to an exasperating the spread of the pathogen. The primary reasons
why such a strategy will not work as effectively as projected for SARS-CoV-2 is because of a large degree of spreading from
pre-symptomatic and subclinical hosts, and the rapidity with which the virus spreads through proximity alone if no additional
measures are taken to mitigate the spread. All of these conjugated with the vulnerability of automated contact tracing to
insufficient sampling due to limited participation amongst the population and possibly incomplete reporting of sick cases
will lead to reduction in the efficacy of automated contact tracing. A small fraction of the population being infected with
SARS-CoV-2 can quickly lead to a majority of the population being needed to participate in the program.

We put together all the factors of concern and show that they follow a simple relationship. We further discussed how
factors like the transmission probability pt should be reduced and the fraction of infected individuals that test positive, rc,
should be increased to assist in reducing the burden on automated contact tracing while keeping the entire process voluntary.
The strength of our model lies in the fat that we factorize the various parameters that separately contribute to the efficacy of
automated contact tracing. This allows for individually addressing each parameter through improved clinical intervention,
logistics, mitigation strategies and public awareness of automated contact tracing to increase adoption of the method. While
our focus in this paper was to address the feasibility of automated contact tracing for containing the spread of SARS-CoV-2,
eq. (2) can be applied for using automated contact tracing to contain other pathogens too. Our analysis is also independent of
the methods of implementation of automated contact tracing and the definitions of r0 and t0. Therefore, our approach is quite
general.

During the final stages of this work, a similar result was reached by the authors of [39] using a branching process model and
arguments from statistical mechanics. They reached a similar conclusion as we do in our paper showing that nearly 75% to 95%
of the population need to participate in automated contact tracing for it to be effective. The results in their work corresponds to
ours when pt = fc = rc = 1 or fe =

√
fT .

The trust in contact tracing stems from the effectiveness with which it was used to contain pathogens like Ebola, SARS-CoV
and MERS-CoV. However, the dynamics of the spread of SARS-CoV-2 is very different from these pathogens. Hence, the
effectiveness of contact tracing in stopping the spread of these pathogens should not be seen as a validation of the effectiveness
of automated contact tracing for SARS-CoV-2. To make automated contact tracing work, a majority of the population has to
enroll for this service and actively participate in it. If this cannot be established then other measures of mitigating the spread of
SARS-CoV-2 should be implemented in addition. As can be seen by the success of several nations in containing the spread
of COVID-19, only a judicious combination of contact tracing with measures such as partial social distancing, wide use of
PPE and dissemination of information about the disease can prove to be effective in slowing down the spread of the ongoing
pandemic.
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