
DEUTSCHES ELEKTRONEN-SYNCHROTRON
Ein Forschungszentrum der Helmholtz-Gemeinschaft

DESY 20-056
PNNL-SA-151985
arXiv:2003.11952
March 2020

Performance of Julia for High Energy Physics Analyses

M. Stanitzki

Deutsches Elektronen-Synchrotron DESY, Hamburg

J. Strube

University of Oregon, Eugene, USA

and

Pacific Northwest National Laboratory, Richland, Washington, USA

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

To be sure that your reports and preprints are promptly included in the
HEP literature database

send them to (if possible by air mail):

DESY DESY
Zentralbibliothek Bibliothek
Notkestraße 85 Platanenallee 6
22607 Hamburg 15738 Zeuthen
Germany Germany

Computing and Software for Big Science manuscript No.
(will be inserted by the editor)

Performance of Julia for High Energy Physics Analyses

Marcel Stanitzki · Jan Strube

Received: date / Accepted: date

Abstract We argue that the Julia programming language is a compelling al-
ternative to implementations in Python and C++ for common data analysis
workflows in high energy physics. We compare the speed of implementations
of different workflows in Julia with those in Python and C++. Our stud-
ies show that the Julia implementations are competitive for tasks that are
dominated by computational load rather than data access. For work that is
dominated by data access, we demonstrate an application with concurrent file
reading and parallel data processing.

Keywords High Energy Physics · Julia Programming Language · Data
Analysis · Multithreading

1 Introduction

In high energy physics, the programming language of choice for most of the
large-scale experiments, like BaBar and Belle, CDF and D0, and the LHC
experiments, has been C++. It is used for the simulation and reconstruction
chain, as well as for data analysis, which also makes heavy use of the Root [1]

Marcel Stanitzki
DESY
Notkestrasse 85, 22607 Hamburg, Germany
Tel.: +49 40 89984930
E-mail: marcel.stanitzki@desy.de

Jan Strube
University of Oregon
1371 E 13th Avenue, Eugene, OR 97403
and
Pacific Northwest National Laboratory
902 Battelle Blvd, Richland, WA 99352, USA
Tel.: +1 509.375.2217
E-mail: jan.strube@pnnl.gov

ar
X

iv
:2

00
3.

11
95

2v
3

 [p
hy

si
cs

.c
om

p-
ph

]
13

 Ja
n

20
21

2 Marcel Stanitzki, Jan Strube

data analysis framework. Recently, a change in this paradigm has been ob-
served, where data analysis has been moving towards using Python. Reasons
for this move include the faster turn-around of a dynamic scripting language,
a lower hurdle for beginners and the growing versatility of Python thanks to
packages like NumPy [2] and SciPy [3], developments like the Python–C++
bindings for Root (PyRoot [4]), and data science packages like pandas [5].
Most of the industry-standard deep learning tool kits include Python bind-
ings.

A frequent criticism of Python compared to compiled languages like C++
or Fortran is the performance penalty due to the dynamic character. The
Julia programming language [6] originates from the high-performance numer-
ical analysis community and is designed to combine the benefits of dynamic
languages like Python with the performance of compiled code by using a
just-in-time compiler (JIT) approach. In this paper we demonstrate that Ju-
lia exhibits three key features that make it uniquely suitable for data analysis
in high energy physics:

1. Julia is fast: We perform benchmarks of data analysis tasks that are typi-
cal in high energy physics, implemented in Julia, Python and C++ and
compare their performance.

2. Julia is easy to interface with existing C++ libraries: As an example, we
have created an interface to the FastJet library [7], the de-facto standard
implementation of jet clustering in high energy physics.

3. Julia has support for parallelism and concurrency: We demonstrate how
even a trivial implementation of event-level parallelism can accelerate real-
istic analysis workflows, even if the underlying I/O libraries do not support
multi-threading.

Additionally, Julia is interactive, being one of the original languages that
integrates with Jupyter [8,9] notebooks.

The first public release of Julia code was on February 13th, 2013. Within
high energy physics (HEP), Julia has been met with interest early on [10,
11], even before the release of 1.0 on August 8, 2018, with its promise of API
stability throughout the release 1.x cycle. We argue that adoption by a wider
user base was for a while largely hampered by the lack of readers of HEP-
specific file formats, such as LCIO and Root. Recently, the number of HEP-
specific developments has seen an uptick, with active developments ranging
from statistical analysis tools [12], over readers for the Root file format [13,
14], to an interface to data from the Particle Data Group [15]. Julia starts
being used to prepare data for HEP publications, e.g. [16]1, and a toolkit
for Bayesian analysis [17] has been implemented in Julia. The main item
missing from the eco-system for carrying out a PhD-level physics analysis is
an implementation of HEP-specific likelihood fitting codes.

Nevertheless, we argue that the ecosystem is mature enough to support a
large variety of tasks encountered in HEP, and here we demonstrate a couple
of workflows. All plots in this paper were created using Julia packages.

1 Based on private communication with one of the authors.

Performance of Julia for High Energy Physics Analyses 3

This paper is organized as follows: First, we give a brief introduction into
the features and capabilities of Julia, then we describe the implementation,
the setup, and the results of the benchmarks for typical analysis tasks, and
then we summarize our results.

2 The Julia Language

The Julia language is a multi-paradigm, dynamic language with optional typ-
ing and garbage collection that achieves good run-time performance by using a
just-in-time compiler (JIT). The runtime supports distributed parallel as well
as multi-threaded execution. It has been demonstrated to perform at peta-scale
on a high-performance computing platform [18], and it has strong support for
scientific machine learning [19,20,21,22]. The language implementation is open
source, available under the MIT license. It is available for download for Win-
dows, MacOS X, Linux x86, FreeBSD platforms, among others [23]. Several
universities use the language in their programming courses [24]. As we show
in the following, it is also very well suited for developing software in large dis-
tributed collaborations like those for high energy physics collider experiments.

2.1 Key Features

As Julia is mainly targeted for scientific applications, it supports arbitrary
precision integers and floats using the GNU Multiple Precision Arithmetic
Library (GMP) [25] and the GNU MPFR Library [26]. Complex numbers and
an accurate treatment of rational numbers are also implemented. The base
mathematical library is extensive and includes a linear algebra package with
access to specialized libraries such as BLAS [27] or MKL [28]. The language
fully supports Unicode, which allows the user to write mathematical formulae
close to how they would be typeset in a book or paper.

Julia has a builtin package manager, which uses a central repository for
registered packages, the so-called Julia registry, but the user has the choice
to define their own registry, or to add unregistered packages. Packages with
binary dependencies can be built and distributed for a variety of platforms
automatically [29]. This frees users from concerns about compiler versions or
library incompatibilities.

The three main ways to execute code in Julia are described in the follow-
ing.

Scripts Similar to Python, code is written to a text file, which can be exe-
cuted by the Julia executable.

REPL The default Read-Eval-Print Loop (REPL) in Julia is a highly cus-
tomizable command line interface, with command history and tab com-
pletion. In addition, the REPL comes with several modes, such as a shell
mode to execute commands in the shell of the operating system, a help
mode to inspect Julia code and a package mode to update and maintain

4 Marcel Stanitzki, Jan Strube

the installed packages. Packages can modify the REPL to make additional
modes available.

Jupyter notebooks Jupyter notebooks have become popular in data sci-
ence applications, where they provide a convenient way to combine code
input blocks with graphical output in the same interface. Julia is very well
supported in the Jupyter ecosystem.

3 Implementation details and code distribution

Our study of using Julia in a typical high energy physics analysis workflow
uses the LCIO event data model and persistence format, which has been devel-
oped since 2003 [30]. The code is released under the BSD-3-Clause license and
hosted on Github [31]. The release contains the C++, Fortran, Python,
and Go code by default. The generation of Fortran bindings (through C
method stubs) can be enabled by a flag at build time. The Python bind-
ings can be enabled at build time, if Root is present. In this case, Root
can generate dictionaries for the LCIO classes, which are then made available
to Python through the PyRoot mechanism. Additionally, the distribution
contains some convenience functions to make the bindings more pythonic.

The Julia bindings for LCIO (LCIO.jl [32]) were created by wrapping
the C++ classes using the CxxWrap.jl Julia module and the corresponding
C++ library [33]. This module requires declaring each class and method to be
exposed on the Julia side to the wrapper generator, which then automatically
creates the boilerplate code to translate between Julia and C++. This trans-
lation is transparent to the user, and we have kept the LCIO function names
intact, which means that users can still take advantage of the documentation
of the upstream library to learn about functionality. The workflow for this is
similar to that for creating Boost.Python bindings.

This method allows fine-grained control over how the bindings should be-
have on the Julia side. For example, it allows us to define a more convenient
return type for the three- and four-vectors in LCIO, which are bare pointers
in C++, but properly-dimensioned arrays in Julia. Additionally, the Julia
bindings allow the use of collections of properly typed objects, where LCIO
only provides collections of pointers to a base class. This frees the user from
having to look up the class type for each of the collections that will be used in
the analysis and is helpful particularly for new users. While the shortcomings
in this example are straightforward to address on the C++ side, our work
shows that this method for defining the bindings is a convenient and powerful
way to improve the usability of existing libraries without having to modify the
underlying code.

For the deployment, we are using the BinaryBuilder.jl [29] package
to automatically build binary distributions for the LCIO library, as well as for
the C++ component of the wrapper library. The same goes for the FastJet
library and corresponding glue code. Since our package was added to the gen-
eral Julia registry, it can simply be installed with the command add LCIO

Performance of Julia for High Energy Physics Analyses 5

in the package manager. This downloads the correct compiled binaries for the
package, as well as the glue code between LCIO and Julia, for the user’s
operating system, processor architecture and glibc. The user does not need to
compile the C++ code or worry about compatibility between different library
or compiler versions.

4 The Test Setup

To demonstrate a simple but realistic workflow, we reconstruct the invariant
mass of the process e+e− → Z0 → µ+µ−, i.e. production of a Z0 boson in
electron–positron collisions and subsequent decay to a pair of muons. We also
perform simple event-shape and jet clustering analyses on a set of e+e− →
Z0 → qq̄ events, i.e. decay of the Z0 boson to a pair of quark jets. The events
were generated with the Whizard event generator [34], their interactions with
the SiD [35] model were simulated using Geant4 [36,37,38], and the particles
were reconstructed using the particle flow algorithms of the PandoraPFA
package [39]. Events are stored on a dCache system in the LCIO format,
which uses zlib for compression. The average file size for the data files is 775
MB; each file contains 32400 events. To exclude potential OS variations, all
results were run on a CentOS Linux 7.7 installation, with 20 Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz CPUs and 128 GB RAM.

We have implemented the analysis code in C++ and Python, as well as
in Julia and made it available online [40]. All three implementations share the
same underlying routines for reading LCIO files. For the computation of the
invariant mass in C++ and Python, we use the TLorentzVector class of
the Root package; this is common practice, particularly among students. For
simplicity, we are not implementing a vector class with a Minkowski metric in
Julia and instead compute the invariant mass from energy and momentum
explicitly.

For our tests the following versions were used:

C++: gcc 8.3.0
Python: Python 3.7.6
Root: ROOT 6.22.0
Julia: Julia 1.5.0

The Root version used by the C++ and Python programs was 6.08/06.
The scientific diagrams in this document were created using the histogram
(OnlineStats.jl and Plots.jl) and fitting packages (Distributions.jl)
from the Julia General registry [41].

5 Benchmarking

We compare the performance of different implementations for a number of
toy analysis tasks. These tasks are simple, but representative workflows that

6 Marcel Stanitzki, Jan Strube

include an I/O-dominated application, an application with a heavy computa-
tional component, and an application where the computation is carried out
by a third-party library. Finally, we compare implementations of a complete
processing chain at different levels of parallelism.

5.1 Processing the e+e− → Z0 → µ+µ− sample

In this simple toy analysis we process a series of LCIO files with e+e−→ Z0 →
µ+µ− events to reconstruct the Z0 mass using a Gaussian fit. A real-world
application would presumably use a more appropriate shape for the fit, but
it shall suffice for the purpose of this study. This is mostly an I/O-dominated
application.

For the small-size data set of 30000 events, the C++ implementation is the
clear winner, 75% faster than Julia (see Tab.1). Adding the compile time for
the first run of the C++ variant of 1.76 seconds does not change the conclusion
significantly. This picture changes when one looks at the larger data sets.
The throughputs of the Python and C++ implementations remain more or
less constant, as can be expected for interpreted and ahead-of-time compiled
languages, respectively. Julia, on the other hand, shows a trend of growing
throughput as the data set size increases. This behavior can be attributed to
the diminishing contribution of the overhead of the just-in-time compilation
step. The trends of processing times for the three language implementations
are shown in Fig. 1. For comparison, we have compiled the package with the
largest start-up time, our LCIO.jl, into a static library that the Julia binary
links against. This is version is called “Julia w/ sysimage” in our plots. One
can see that the much reduced overhead compared to the default version leads
to a nearly constant throughput, similar to the C++ and Python versions.
We should note, however, that we would expect most users to run the default
version with the increased start-up cost.

Table 1 Comparison of the performance of Julia, Python and C++ in processing e+e−

→ Z0 → µ+µ− events. The total event samples sizes were 30000 and 150000 events, respec-
tively. In order to reduce fluctuations due to external effects like changes in the network
or I/O performance, each measurement has been repeated five times. We report here the
average and standard deviation of the five runs.

Julia Python C++

Run time (30000 events) (s) 37.32± 1.24 27.19± 0.55 21.37± 0.18
Average number of events / s 803.88 1103.40 1403.88
Run time (150000 events) (s) 127.24± 4.24 118.62± 1.86 97.61± 0.34
Average number of events / s 1178.91 1264.50 1536.79
Overhead (s) 15.28 3.90 2.35

The question is now how large the overheads of the just-in-time compiled
(Julia) and interpreted (Python) languages are compared to the C++ im-
plementation. To get an estimate for this, the execution time (using the Unix

Performance of Julia for High Energy Physics Analyses 7

Fig. 1 Event throughput in 1000 events per second for reading different sample sizes and
fitting the invariant mass of the Z0 boson.

time command) depending on the number of events processed was measured
for the e+e− → Z0 → µ+µ− events data set and fit with a linear regres-
sion. The overhead in Julia is clearly visible, giving the largest intercept at
15.28 seconds. This is consistent with time measurements within Julia (that
start measuring after the initialization step), which are consistently 15 sec-
onds below what is reported by the Unix time command. For Python, we
measure an intercept of 3.90 seconds. The intercept for C++, 2.35 seconds,
can be interpreted as the baseline for the system, and is most likely due to
latency of the access to the data files and libraries hosted on different servers.
The results are summarized in Tab. 1 and Fig. 2.

5.2 Event Shape Analysis of Hadronic Z0 Events

While studies of an I/O-dominated process are useful tests of a realistic work-
flow, the advantage of Julia over Python comes with a more processing-
intense algorithm, possibly with multiple nested loops over reconstructed ob-
jects. As an example of such an algorithm with a realistic use case, classical
event-shape variables like thrust and the Fox–Wolfram Moments [42] were im-
plemented following the implementations in Pythia 6.4 and Pythia 8.2 [43,
44]. For the analysis a set of LCIO files with e+e− → Z0 → qq̄ events was
used.

The implementation in Julia (EventShapes.jl [45]) is a straightfor-
ward translation of the C++ code, which we have verified to produce iden-
tical output. This process revealed another important feature of Julia: We
found the availability of tools to support the development process to be of a
high quality, particularly for identifying the cause for slowdowns and sources

8 Marcel Stanitzki, Jan Strube

Fig. 2 The dependence of the execution time on the number of events processed for different
implementations.

of memory allocation. While excellent tools exist to identify the sources of
segmentation faults in C++, (e.g. gdb), and to track memory allocations and
benchmark function calls (e.g. callgrind and the gperf tool suite), sev-
eral such tools in Julia are built in and part of the downloaded code, and
the interactive nature of the language makes it very easy to isolate pieces of
code for benchmarking and debugging. Additional tools are available in third-
party packages, and frequently it is sufficient to add macros to the code under
investigation to learn more about its run-time performance.

Our first version was several times slower than the C++ version, but a
simple annotation with the @btime macro from the Benchmarking package
helped us realize that this was mainly due to memory allocations in the inner
loop. Another frequent cause of slowdown is type instability, which prevents
the compiler from generating specialized code. In Julia, it is straightforward to
identify this symptom with the @code_warntype macro. While these features
aided us in our code translation, they are even more important in cases where
no reference code exists and implementations of algorithms are developed from
scratch. The current version of our Julia implementation achieves a processing
rate of 287 events per second, while the C++ implementation processes 182
events per second.

Similar to our Julia version, the implementation in Python started out as
a straightforward translation of the C++ code. It is understood that this does
not result in code that is optimal for performance, but an important aspect
of productivity is how close the performance of a first implementation is to
optimal. Additionally, it is important that algorithms can be implemented in
a straightforward manner from a scientific paper. Vandewalle, Kovacevic and
Vetterli [46] define five levels of reproducibility, with the criteria for the highest

Performance of Julia for High Energy Physics Analyses 9

and most desirable level requiring the research to be re-implemented within
15 minutes or less.

Our naive translation of the Pythia code to Python processed 2000
events in 61 minutes and 14 seconds. To allow a fairer comparison with the Ju-
lia code, we have undertaken some efforts in speeding up the Python code
as well. Our first attempt was to apply an optimization that is common in
NumPy applications, namely vectorization across the outer dimension of the
array (i.e., the innermost loop). In our case, however, this did not lead to a
measurable improvement in execution speed. Our second attempt was to apply
the just-in-time compilation of numba [47]. While the recommended way to
annotate the functions did not work for us, due to its inability to ascertain
a specific type for some of the Python objects for the compilation step, the
nopython=True option led to a dramatic speed-up in our tests, processing
204 events per second. We learned from these tests, though, that this comes at
the cost of significantly complicating the debugging, because the Python in-
terpreter loses the ability to inspect the numba-annotated sections of the code.
Further optimizations are certainly possible, for example by implementing the
code in cython [48] or by including tools from the SciPy [3] distribution.

5.3 Jet Clustering

We anticipate that most users will use Julia for data analysis in high energy
physics in two ways: Either, by writing code directly in Julia, for example, by
translating existing codes, as demonstrated in Section 5.2, or by calling into
existing C++ libraries.2 As a demonstration of the latter, we have written
simple bindings to the frequently used FastJet package (FastJet.jl [49])
in Julia, using the same CxxWrap.jl package that we used to create the
LCIO bindings. Similarly to the LCIO bindings, the code has been added
to the Julia registry and can be installed with add FastJet in the Julia
package manager. Processing the same sample as in Section 5.2, we achieved
319 events per second for the Julia implementation and 445 events per second
for the C++ implementation.

5.4 Parallelizing in Julia

As the number of cores on modern processors keeps growing, the event-level
parallelism that has been exploited by high energy physics experiments for
decades is no longer sufficient to take optimal advantage of the available pro-
cessing power, mainly due to the memory required to process a single event.
Julia has several constructs to support parallel programming. For the pur-
pose of this section, and following the Julia documentation, we distinguish
here between asynchronous, distributed, and multi-threaded programming.

2 Interacting with libraries written in Python is straightforward in Julia, through the
PyCall.jl package.

10 Marcel Stanitzki, Jan Strube

In asynchronous programming, different pieces of the code run indepen-
dently of each other, and a scheduler takes care of assigning processing cycles
to them. For example, a program could read a file concurrently with, i.e. at
the same time as, setting up a canvas for plotting, since the I/O usually has
a small ratio of CPU time over wall clock time. This is a straightforward way
to speed-up programs that wait for I/O tasks to complete, and this level of
concurrency is also available in Python, e.g. in the asyncio module. C++
supports this level of programming as coroutines in the C++ 2020 standard.

In Julia, the Distributed module allows scheduling tasks in different
processes, either on the same CPU, or on different CPUs that are connected
by a network. In a distributed application, different pieces of the code run
in different processes. Similar facilities are available in Python (for use on
the same node) in the multiprocessing module. We are not aware of an
implementation in the C++ standard library, but a commonly used library for
using distributed computing across different computers is MPI, while shared-
memory parallelism can be implemented by using programming interfaces like
OpenMP and TBB [50].

The level of thread-multi-threaded programming that is supported in Julia
since version 1.3.0 is not available in Python, due to the global interpreter
lock (GIL). In this level of parallelism, different parts of the program run in
the same process space. On multiple cores, they can be scheduled such that
each thread takes full advantage of a different core. C++ has support for
using different threads since the addition of the threads library to the C++11
standard.

Our implementation of multi-threaded event processing is based on Julia
Tasks that we spawn on different threads, and we have implemented parallel
programming concepts on two levels. The communication between different
Tasks happens via Channels, which promotes a design similar to that of
the Go programming language, for example. We are combining data readers
on separate distributed processes (in our case on the same CPU) using the
Distributed module with data processors running in parallel on different
threads using the Threading module. Combining these two levels in Julia is
straightforward, as shown below. This allows us to make optimal use of the
available processing power given the specific I/O and processing characteristics
of our application.

5.4.1 File-parallel Data Access

Many C++ libraries used in high energy physics analyses are not thread-safe.
While LCIO has recently gained a thread-safe mode of operation, we are using
the conventional, non-thread-safe version of the library to demonstrate a code
pattern that allows using such C++ libraries in a parallel program neverthe-
less. For this, we are taking advantage of the fact that common workflows
operate on data sets that frequently span multiple files. In our implemen-
tation, we combine several different LCIO readers, each running in its own
independent process and reading a different set of files. This comes at the cost

Performance of Julia for High Energy Physics Analyses 11

of having additional overhead from inter-process communication, but our ap-
proach is applicable to basically any C++ library, regardless of whether it is
thread-safe or not. Furthermore, it is straightforward to change the number of
concurrently running instances of LCIO to optimize the ratio of event readers
to event processors. In our implementation, the different LCIO processes run
on the same node, but the extension of this kind of concurrency to multiple
connected nodes is straightforward. This would allow processing parts of the
data set hosted on different machines, but it comes with its own trade-offs of
network connectivity, communication between the nodes, and the processing
power present on the individual nodes. A detailed investigation of such a use
case exceeds the scope of this paper.

5.4.2 Putting It All Together: Processing Event Shapes and Jets in Parallel

Since Julia version 1.3.0, the runtime supports multi-threaded execution,
which simplifies the implementation of within-event parallelism tremendously.
To demonstrate the achievable speed-up, we are processing the event thrust
and the Fox–Wolfram moments, implemented in Julia, and the jet clustering
in C++ FastJet, for each event. Our example executes multiple event ana-
lyzers in parallel on different threads. While this paradigm allows for shared-
memory parallelism, we have opted here to also use Channels for communi-
cation. In the following we sketch the implementation in Julia, show-casing
how straightforward it is to set up multi-threaded event processing using the
Distributed package. The number of available workers can be defined dur-
ing the Julia startup, e.g. julia -p 8 would start eight worker nodes within
Julia. However the number of threads needs to be set using the environment
variable JULIA_NUM_THREADS before or via the -t flag when invoking the
Julia executable.

In the Julia main function, several RemoteChannel(()->Channel()) are
being opened to ensure communication between the data readers and the data
processors. The channels are buffered to a given depth, which allows the readers
to continue filling them up to the buffer depth, while the processors deplete
them from the other end. A write on a full buffer blocks until at least one
element has been removed from the other end. The code skeleton of the main
function for this is shown in Listing 1, illustrating the usage of channels and
spawning the data readers on specific processes (using @spawnat), and the
spawning of the data processors on different threads within the main process
using the Threads.@spawn command.

Listing 1 The Julia main function used for the parallel event processing� �
function main()

let's start with reading up to four files concurrently
fnames = RemoteChannel(()->Channel{String}(4))

let's presume we can buffer up to 200 events.
Adjust according to available memory and
relative speed of readers and processors.

12 Marcel Stanitzki, Jan Strube

events = RemoteChannel(()->Channel(200))

the data readers can signal when they are done reading events
done = RemoteChannel(()->Channel{Int}(4))

up to 10 data processors
nProcessed = RemoteChannel(()->Channel{Int}(10))

spawn the data readers
for w in workers()[1:NREADERS]

@spawnat w readEvents(fnames, events, done)
end
spawn the data processors, one per thread on this process
processors = [

Threads.@spawn processEvents(events, nProcessed)
for w in 2:Threads.nthreads()

]

we now have several functions waiting for input on their channels
prepare the file names
for f in ARGS

put!(fnames, f)
end
close(fnames)

wait for all readers to be done
then we can close the event queue and the processors can finish
nDone = 0
nEvents = 0
while nDone != nworkers()

nEvents += take!(done)
nDone += 1

end
close(events)

wait for the processing to finish
totalProcessed = 0
for p in processors

wait(p)
totalProcessed += take!(nProcessed)

end
close(nProcessed)
if all of the channels are closed, the Tasks can finish
at this point, we should have: nEvents == totalProcessed

end� �
The data reader function is shown in Listing 2. The @everywheremacro in-

structs Julia to make this function available on all processes. The data reader
ingests events from an LCIO file and pushes them into a RemoteChannel().

Listing 2 The data reader function used for the parallel event processing� �
@everywhere function readEvents(fnames, events, done)

iEvents = 0
while true

try
take the next file out of a Julia channel
fn = take!(fnames)
LCIO.open(fn) do reader

for evt in reader
write the read Event into the event channel
put!(events, collection)
iEvents += 1

end

Performance of Julia for High Energy Physics Analyses 13

end
catch e

break
end

end
write the number of processed events to done channel
put!(done, iEvents)

end� �
The data processors that have been spawned using Threads.@spawn are

now listening on the RemoteChannel() for events being available for process-
ing as shown in Listing 3.

Listing 3 The data processor function used to demonstrate multi-threaded processing� �
function processEvents(events, nProcessed)

while true
try

collection = take!(events) #receive next event
h10, h20, h30, h40 = EventShapes.foxWolframMoments(collection)
#more analysis and clustering

catch e
#store number of Events that have been processed
put!(nProcessed, iEvents)
break

end
end

end� �
The available speed-up using this paradigm is shown in Fig. 3. It shows

clearly that the processing is I/O–dominated: More data readers give a better
performance, up to a maximum of 15. The maximum value of 20 readers in our
test leads to a decrease in performance, most likely due to contention between
different processes. Additionally, one can see that more data processors do not
necessarily lead to a better overall throughput. The optimal values for num-
bers of readers and processors, as well as the buffer depth on the Channel
between the two, depend on the workload and the details of the hardware con-
figuration. A detailed analysis exceeds the scope of this paper, but our chosen
paradigm for setting up concurrent processing makes it trivial to evaluate the
performance for a given setup and optimize parameters for larger processing
jobs.

Fig. 4 shows the relative speed-up that can be achieved in this way over a
single-threaded C++ application. For reference, a single-threaded application
processing the events in Julia takes 15 minutes and 2 seconds and the C++
processing takes 22 minutes and 25 seconds.

6 Summary

For many years, the high energy physics community has spent significant re-
sources on adding interactivity to their software to facilitate plotting and data
exploration. Data science packages developed by other fields have realized the

14 Marcel Stanitzki, Jan Strube

Fig. 3 Time (in seconds) for processing 233857 events in 23 files with different numbers of
data readers and data processors in Julia.

Fig. 4 Relative speed-up of the multi-threaded Julia code relative to the single-threaded
application for different numbers of concurrent data readers and data processors. The single-
threaded application processes 259 events/s.

same need for interactive data access, and the standard packages in this sector
are all accessible from the interpreted language Python. In this paper, we
have demonstrated that the Julia programming language can offer a com-
pelling option for data analysis in high energy physics. The interactivity of
the language is on par with Python, with support for Jupyter notebooks

Performance of Julia for High Energy Physics Analyses 15

and a rich ecosystem for plotting and statistical data analysis, as well as deep
learning.

With a large set of specialized codes in C++ and Fortran, developed over
several decades, interoperability with these languages is a key requirement for
any data analysis solution in high energy physics. We have shown that it is
straightforward to interface Julia with existing libraries. What is more, the
package manager in Julia makes it easy to install the code, without requiring
the availability of a compiler for the other languages. The overhead of calling
these third-party codes is measurable for simple applications, but negligible
for applications with a computation-heavy component.

Fast execution is a requirement for code that has to process millions or
even billions of collision events. We have demonstrated that complex algo-
rithms consisting of loops nested multiple levels deep, when implemented in
Julia, perform on par with, or even better than, an implementation in C++.
The language and package ecosystem have strong support for debugging and
studying the software performance. As the language has reached version 1.0
only two years ago, we expect that many opportunities for optimizing the
performance further can still be exploited.

The increased use of many-core systems and the growing demand on multi-
threading applications to take advantage of the available hardware position Ju-
lia extremely well for a growing role in scientific applications in general. We
have demonstrated a straightforward way to speed up processing of existing al-
gorithms, without requiring that the algorithms themselves be multi-threaded.
The composable parallelism in Julia allows combining this level of parallelism
with algorithms that are themselves multi-threaded in nature3. A growing set
of examples of such algorithms are available online. This feature is what makes
Julia an excellent choice as an analysis language in high energy physics, as it
allows exploring new algorithms directly at the analysis level without having
to drop down to the underlying C++ reconstruction framework for want of
better performance.

In summary, Julia currently presents a compelling option for data analy-
sis in high energy physics, and its multi-threading capabilities positions Julia
well for future developments. A common challenge for supervisors of summer
students is which language to teach them. With C++, significant time is spent
teaching them the details of memory management and how to avoid segmen-
tation faults. This is particularly true when interfacing with analysis code in
high energy physics, much of which is written in C++98 style and looks very
different from the recommended syntax in C++17 or newer. With Python,
on the other hand, different packages use different syntax to avoid the inher-
ent slowness of for loops. Julia advertises itself as solving the two-language
problem, where users combine a statically compiled language for performance-
critical code with an interpreted language for interactivity. Our studies show
that the language keeps this promise and it is straightforward to write high-

3 For a more detailed discourse on this topic, the interested reader is referred to https:
//julialang.org/blog/2019/07/multithreading/

https://julialang.org/blog/2019/07/multithreading/
https://julialang.org/blog/2019/07/multithreading/

16 Marcel Stanitzki, Jan Strube

performance code. The language enables an interactive exploration of data
and facilitates the exploration of complex algorithms and is thus an excellent
partner to the C++ processing frameworks used in high energy physics.

Acknowledgements The authors gratefully acknowledge the feedback and support of the
Julia community, in particular Bart Janssens, the author of CxxWrap.jl. We acknowledge
DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision
of experimental facilities. Parts of this research were carried out at the National Analysis
Facility (NAF). MS acknowledges the support from DESY (Hamburg, Germany), a member
of the Helmholtz Association HGF.

7 Conflict Of Interest Statement

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

References

1. I. Antcheva, M. Ballintijn, B. Bellenot, et al., Computer Physics Communications
180(12), 2499 (2009). DOI https://doi.org/10.1016/j.cpc.2009.08.005. URL http:
//www.sciencedirect.com/science/article/pii/S0010465509002550. 40
YEARS OF CPC: A celebratory issue focused on quality software for high performance,
grid and novel computing architectures

2. T.E. Oliphant, A guide to NumPy, vol. 1 (Trelgol Publishing USA, 2006)
3. P. Virtanen, R. Gommers, T.E. Oliphant, et al., Nature Methods (2020). DOI https:

//doi.org/10.1038/s41592-019-0686-2
4. F. Rademakers, P. Canal, A. Naumann, et al. ROOT. https://doi.org/10.5281/

zenodo.3895860 (2019). DOI 10.5281/zenodo.3895860
5. pandas. https://pandas.pydata.org/
6. J. Bezanson, A. Edelman, S. Karpinski, V. Shah, SIAM Review 59(1), 65 (2017). DOI

10.1137/141000671
7. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C72, 1896 (2012). DOI 10.1140/epjc/

s10052-012-1896-2
8. T. Kluyver, B. Ragan-Kelley, F. Pérez, et al., in Positioning and Power in Academic

Publishing: Players, Agents and Agendas, ed. by F. Loizides, B. Schmidt (IOS Press,
2016), pp. 87 – 90

9. Jupyter. http://jupyter.org/
10. J. Pata. Julia: a fast dynamical language for technical computing and data analysis.

https://indico.cern.ch/event/349459/contributions/822791/ (2015)
11. DIANA-HEP Meeting. https://indico.cern.ch/event/545738/ (2016)
12. O. Schulz, Cornelius-G, L. Hauertmann, et al. bat/bat.jl (2019). DOI 10.5281/zenodo.

3568167
13. T. Gal. UnROOT.jl. https://github.com/tamasgal/UnROOT.jl
14. O. Schulz, A. Lusiani. UpROOT.jl. https://github.com/JuliaHEP/UpROOT.jl
15. T. Gal, J. Schumann. Corpuscles.jl (2020). DOI 10.5281/zenodo.3933364
16. J.L. Tastet, I. Timiryasov, JHEP 04, 005 (2020). DOI 10.1007/JHEP04(2020)005
17. O. Schulz, F. Beaujean, A. Caldwell, C. Grunwald, V. Hafych, K. Kröninger, S. La Cagn-

ina, L. Röhrig, L. Shtembari, (2020)
18. J. Regier, K. Pamnany, K. Fischer, et al., (2018). arXiv 1801.10277
19. C. Rackauckas, Y. Ma, J. Martensen, et al., (2020). arXiv 2001.04385
20. M. Innes, E. Saba, K. Fischer, et al., CoRR (2018). arXiv 1811.01457
21. M. Innes, Journal of Open Source Software (2018). DOI 10.21105/joss.00602

http://www.sciencedirect.com/science/article/pii/S0010465509002550
http://www.sciencedirect.com/science/article/pii/S0010465509002550
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.5281/zenodo.3895860
https://pandas.pydata.org/
http://jupyter.org/
https://indico.cern.ch/event/349459/contributions/822791/
https://indico.cern.ch/event/545738/
https://github.com/tamasgal/UnROOT.jl
https://github.com/JuliaHEP/UpROOT.jl

Performance of Julia for High Energy Physics Analyses 17

22. D. Yuret, in Machine Learning Systems Workshop (NIPS, 2016). URL https://goo.
gl/zeUBFr

23. Julia - currently supported platforms. https://julialang.org/downloads/
#currently_supported_platforms

24. Julia in the classroom. https://julialang.org/learning/classes/
25. T. Granlund, G.D. Team, GNU MP 6.0 Multiple Precision Arithmetic Library (Samurai

Media Limited, London, GBR, 2015)
26. L. Fousse, G. Hanrot, V. Lefèvre, et al., ACM Trans. Math. Softw. 33(2), 13–es (2007).

DOI 10.1145/1236463.1236468
27. R. van de Geijn, K. Goto, BLAS (Basic Linear Algebra Subprograms) (Springer US,

Boston, MA, 2011), pp. 157–164. DOI 10.1007/978-0-387-09766-4_84
28. Intel Corp. Math Kernel Library. https://software.intel.com/en-us/mkl
29. BinaryBuilder.jl. https://github.com/JuliaPackaging/BinaryBuilder.jl
30. F. Gaede, T. Behnke, N. Graf, T. Johnson, eConf C0303241, TUKT001 (2003)
31. F. Gaede, T. Behnke, N. Graf, T. Johnson. LCIO. https://github.com/iLCSoft/

LCIO
32. J. Strube. LCIO.jl: v1.8.0. https://doi.org/10.5281/zenodo.3986687 (2020).

DOI 10.5281/zenodo.3986687
33. B. Janssens. CxxWrap.jl. https://github.com/JuliaInterop/CxxWrap.jl
34. W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C71, 1742 (2011). DOI 10.1140/epjc/

s10052-011-1742-y
35. H. Abramowicz, et al. The International Linear Collider Technical Design Report -

Volume 4: Detectors (2013)
36. S. Agostinelli, J. Allison, K. Amako, et al., Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
506(3), 250 (2003). DOI https://doi.org/10.1016/S0168-9002(03)01368-8. URL http:
//www.sciencedirect.com/science/article/pii/S0168900203013688

37. J. Allison, K. Amako, J. Apostolakis, et al., IEEE Transactions on Nuclear Science
53(1), 270 (2006)

38. J. Allison, K. Amako, J. Apostolakis, et al., Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
835, 186 (2016). DOI https://doi.org/10.1016/j.nima.2016.06.125. URL http://www.
sciencedirect.com/science/article/pii/S0168900216306957

39. M.A. Thomson, Nuclear Instruments and Methods in Physics Research A 611, 25
(2009). DOI 10.1016/j.nima.2009.09.009

40. J. Strube. Julia_in_HEP_paper. https://doi.org/10.5281/zenodo.3911414
(2020). DOI 10.5281/zenodo.3911414

41. Julia Community. The official registry of general Julia packages. https://github.
com/JuliaRegistries/General

42. G.C. Fox, S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). DOI 10.1103/PhysRevLett.
41.1581

43. T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). DOI 10.1088/1126-6708/
2006/05/026

44. T. Sjöstrand, S. Ask, J.R. Christiansen, et al., Comput. Phys. Commun. 191, 159 (2015).
DOI 10.1016/j.cpc.2015.01.024

45. J. Strube. EventShapes.jl v0.1.1. https://doi.org/10.5281/zenodo.3698379
(2020). DOI 10.5281/zenodo.3698379

46. P. Vandewalle, J. Kovacevic, M. Vetterli, IEEE Signal Processing Magazine 26(3), 37
(2009). DOI 10.1109/MSP.2009.932122

47. Anaconda Inc. Numba - A High Performance Python Compiler. http://numba.
pydata.org/

48. S. Behnel, R. Bradshaw, C. Citro, et al., Computing in Science Engineering 13(2), 31
(2011). DOI 10.1109/MCSE.2010.118

49. J. Strube. FastJet.jl. https://doi.org/10.5281/zenodo.3929866 (2020). DOI
10.5281/zenodo.3929866

50. Intel Corp. Threading Building Blocks. https://software.intel.com/content/
www/us/en/develop/tools/threading-building-blocks.html

https://goo.gl/zeUBFr
https://goo.gl/zeUBFr
https://julialang.org/downloads/#currently_supported_platforms
https://julialang.org/downloads/#currently_supported_platforms
https://julialang.org/learning/classes/
https://software.intel.com/en-us/mkl
https://github.com/JuliaPackaging/BinaryBuilder.jl
https://github.com/iLCSoft/LCIO
https://github.com/iLCSoft/LCIO
https://doi.org/10.5281/zenodo.3986687
https://github.com/JuliaInterop/CxxWrap.jl
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900203013688
http://www.sciencedirect.com/science/article/pii/S0168900216306957
http://www.sciencedirect.com/science/article/pii/S0168900216306957
https://doi.org/10.5281/zenodo.3911414
https://github.com/JuliaRegistries/General
https://github.com/JuliaRegistries/General
https://doi.org/10.5281/zenodo.3698379
http://numba.pydata.org/
http://numba.pydata.org/
https://doi.org/10.5281/zenodo.3929866
https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html
https://software.intel.com/content/www/us/en/develop/tools/threading-building-blocks.html

	desy056
	InnenseiteDESY-Berichte
	desy20-056
	1 Introduction
	2 The Julia Language
	3 Implementation details and code distribution
	4 The Test Setup
	5 Benchmarking
	6 Summary
	7 Conflict Of Interest Statement

