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Abstract

We study the soft and collinear (SV) contributions to inclusive Higgs-boson production in gluon-
gluon fusion at four loops. Using recent progress for the quark and gluon form factors and Mellin
moments of splitting functions, we are able to complete the soft-gluon enhanced contributions
exactly in the limit of a large number of colours, and to a sufficiently accurate numerical accuracy
for QCD. The four-loop SV contributions increase the QCD cross section at 14 TeV by 2.7% and
0.2% for the standard choices ug = my; and ug = my /2 of the renormalization scale, and reduce
the scale uncertainty to below £3%. As by-products, we derive the complete 8(1—x) term for
the gluon-gluon splitting function at four loops and its purely Abelian contributions at five loops,
and provide a numerical result for the single pole of the four-loop gluon form factor in dimensional
regularization. Finally we present the closely related fourth-order coefficients D, for the soft-gluon
exponentiation of Higgs-boson and Drell-Yan lepton-pair production.
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The production of the Standard Model (SM) Higgs boson in proton-proton collisions and its
subsequent decay are flagship measurements in run 2 of the Large Hadron Collider (LHC) [1,2].
The main production mechanism for pp — H + X is the gluon-gluon fusion (ggF) process. The
corresponding inclusive cross section serves as a benchmark for the achieved accuracy, both in the
LHC experiments and for theoretical research. The radiative corrections in Quantum Chromody-
namics (QCD) for the ggF process are large and have motivated significant efforts to improve the
precision of the predictions. The QCD corrections are currently known to the next-to-next-to-next-
to-leading order (N°LO) in the effective theory for a large top-quark mass, m, > m 5 [3,4], and to
next-to-next-to-leading order (NNLO) in the full theory for Higgs-boson masses my < 2m; [5-7].

Near the production threshold, for z = m,%, /§ close to unity, where m,; is the Higgs mass and
V/§ the partonic center-of-mass energy, the QCD corrections to the ggF process are dominated
by the well-known large logarithmic corrections. At n-th order they appear in the partonic cross
section in the MS scheme as plus-distributions D = [(1—z) ' In* (1—2)]4 with 2n—1 >k > 0,
while the virtual contributions lead to 8(1—z) terms. In Mellin N-space, where N is the conjugate
variable of z, the threshold logarithms read In* N with 2n > k > 1, and the virtual contributions
lead to a constant in N. The soft-virtual (SV) approximation to the partonic ggF cross section
in N-space yields reliable predictions for the total Higgs production cross section, as has been
demonstrated with comparisons to exact fixed-order results up to NNLO, see, e.g., Refs. [8, 9].
In addition, Mellin N-space lends itself to an all-order exponentiation of threshold contributions
up to next-to-next-to-next-to-leading logarithmic (N°LL) accuracy and beyond [10, 11].

These facts motivate the derivation of approximate QCD corrections to the ggF process at four
loops in the effective theory, which can be achieved thanks to recent progress in the computation
of QCD corrections for related quantities at the four-loop level. This comprises results for specific
colour contributions, including quartic group invariants, and the planar limit of quark and gluon
form factors [12-18], correlators of Wilson lines [19-21], splitting functions for the evolution
of parton distributions (PDFs) [22-25], and, related, the knowledge of a low number of Mellin
moments for the structure functions in deep-inelastic scattering (DIS), see Ref. [26].

Taken together, this knowledge enables us to determine precise numerical results for the com-
plete SV approximation of the ggF process at four loops as well as partial information on terms
suppressed by a power 1/N in Mellin N-space using physical evolution kernels at the same or-
der [9]. The results are used to provide new predictions for the ggF cross section at the collision
energy of 14 TeV, as planned for run 3 of the LHC. We also present the corresponding expres-
sion for the Drell-Yan (DY) process, pp — Y* + X, which is closely related to the ggF process
in the threshold limit, and the N*LL soft-gluon exponentiation coefficient D, for both processes.
As by-products, we obtain a complete result for the so-called gluon virtual anomalous dimension,
i.e. the 8(1—z) terms of the gluon-gluon splitting function at four loops in QCD, together with
partial information at five loops, and we derive a numerical result for the single pole 1/¢ of the
dimensionally regulated gluon form factor at four loops.

The effective coupling of the Higgs boson to partons is described by the Lagrangian
1
Lo = —3=Clug) HGL G , (1)
where v >~ 246 GeV is the Higgs vacuum expectation value in the SM and G, denotes the gluon
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field strength tensor. The inclusive hadronic cross section for Higgs-boson production at a center-
of-mass energy E.,, = /S is given in standard QCD factorization by

dx, dx T
o(S,mp) = TZ/ —1 —2 fa/h (xlnuF)fb/h (XZHUF)/ dz 5<Z——> X
x &4 Cab(z7 as(HR)»mH/MR7mH/#F) ; 2)

where T = m,%, /S, and up, ug, are the mass-factorization and renormalization scales, and f;, /h (x, ,u%)
the PDFs of the proton. The expansion in the strong coupling o of the large-m, effective vertex
for the Higgs coupling to gluons is included in GOH , Viz

~y _ mCup)?* ) Ot (117) { ot (1) }
= MR with C(ud) = — MRy BWR) 3
GO 8 nA ,DZ w1 (JUR) 3TC + 475 + 9 ( )

where n, = (n2 — 1) denotes the dimension of the adjoint representation of the SU(n.) gauge
group, and the matching coefficient C (,u,%) is fully known up to N*LO in QCD (n. = 3) [27]*. The
coefficient functions ¢/ are expanded in powers of as = os(u3)/(47),

H 2 2 2 2 2 H, 2 2 2 2
(2, o5 (u), miy fud, my Jup) = Y alc " (2, md jug, mb ud) )

where the leading order (LO) is c:l{)’(o) = g Sng(l—z) and the corrections to N°LO have been

computed in Refs. [3,4] 5. For cg;(4) (2), at N4LO, seven of the eight plus-distributions of the SV
approximation are known. The coefficients of Dy for 7 > k > 2 can be inferred from Ref. [8] and
have been written down in Eq. (16) of Ref. [38] and that of D is fixed by the results of Ref. [39]
and has been given in Eq. (13) of Ref. [40]. An approximate result for the Dy term has been
provided before in Egs. (2.13) and (2.14) of Ref. [9].

Here we present a new result for the latter coefficient for a general gauge group. The relevant
Casimir invariants for SU (n.) are C, = n., Cr. = (n?> —1)/(2n.) and

d Aabcd d ;\zbcd 1 d Igbcd d Xde 1 )
7 S S 36 _ = — . +6). 5
n 24" (nE+36), o aglneto) ©)
With the recent progress at four loops on the pole structure of the QCD form factors, on splitting
functions and on Mellin moments for DIS structure functions, and following the same procedure

as employed for DIS structure functions in Ref. [11], the Dy term in cg[é’(‘l) (z) can now be given as

H,(4)
Cgg

Do

A (_40498399 | 28613426 - 10995352 - 2598712 c 7252952 0
A 2187 729  *? 81 3 81 253

3411280 656216 1019381 293488
g G Gt —— - (3Cs — 561344 czcs 9864408,

4See Refs. [28-30] for previous work up to N3LO in QCD.
3See Refs. [31-34] and [35-37] for previous work at lower orders in QCD.
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(6)

Here the term 21 , . .
4,dgbed g gbe
form factor, i.e., to the single pole in dimensional regularization, cf. Ref. [11]. The expressions

b i vaveds DY, and bq denote the four-loop coefficients of the respective colour factor
4,dghedaghed> “4.n C3C, n,C}

in the quark virtual anomalous dimension BY, i.e.,the coefficient of 8(1—z) in the quark-quark
splitting function P,,. Atn-th order, expanding in powers of as = o5 (u3) / (41) analogous to Eq. (4),
the flavor-diagonal splitting functions P; admit the large-z expansion [41,42] as

is related to the eikonal anomalous dimension of the four-loop quark

P VG = AlDy+BIS(1-2) +..., i=q.ue, (7

where the coefficients Ail are the well-known lightlike cusp anomalous dimensions. The quan-
tities f ! bq and bq c3 are not known analytically. They drop out

dadedade ’ 4 dabcddabcd ’ 7 fCI%CA f
in the large-n. limit of Eq. (6). Precise numerical estimates, i.e., b’ 4, dgbed gabed. = —143.6 £0.2,
bj cic —455.24740.005 and bq = = 80.780 - 0.005 have been given in Ref. [11] together
MpCEta 1y Cr
w1thf —100=+100.

47 dgbcddzbcd -

While the large-n, limit of Eq. (6) is exact, the above general expression uses one assumption
on the relation of quark and gluon form factors 9 and 7 ¢ in QCD in dimensional regularization,
which, in the normalization of Eq. (4), admit the perturbative expansion as

1 1 .
FP = 1+as(_EA’1’—£GIf>+O(a§) i=q,g, ®)

see e.g. Refs. [11,43] for the higher orders.



The logarithms of F9 and & contain double and single poles in €, the former being controlled
by their respective cusp anomalous dimensions, A9 and A8, cf. Eq. (7), which exhibit generalized
Casimir scaling through four loops, see, e.g. [18,24]. The single poles on the other hand, which are
proportional to functions G} (€) at n-th order, are controlled by the collinear anomalous dimensions
and can be converted to appropriate eikonal (Wilson line) quantities, after separation of the virtual
anomalous dimensions BY and BE, cf. Eq. (7), and terms proportional to the QCD [B-function.
In detail (see, e.g. [11,43]), the functions G} (¢) satisfy the following relations to five loops

Gl = 2(BY —8pBo) + 1 +eff),

G5 = 2(B5—28,¢B1) + (/5 +Bof) + /85,

GY = 2(BY—38,4B2) + (fL +BisfL +Bofl) +efhy,

Gy = 2(Bf—48,83) + (/] +Bosff) +Bifly +Bosfis) +fL,.

G = 2(BS—508,5B4) + (f5 +Bsfg) +Bafip + Bursfgs +Boss) +€fs ©)

where the functions fgn(e) at n loops are polynomials in € and 3, are the coefficients of the QCD
B-function normalized as in Eq. (4), i.e., B(as) = —ByaZ — ... with o = 11/3C4 —2/3 ny.

The eikonal anomalous dimensions f9 and f& of these Wilson line quantities for quarks and
gluons exhibit the same maximal non-Abelian colour structure as the cusp anomalous dimensions,
a fact verified explicitly at lower fixed orders [43,44] and generalized in Ref. [45]. Hence we
assume here that also the expressions for f9 and f# are related by generalized Casimir scaling at
four loops (and beyond), in complete analogy to the cusp anomalous dimensions, A9 and A%, see
also the recent work [46].

This leads immediately to the expression for the full colour dependence of the four-loop gluon
virtual anomalous dimension Bf as

B = dgbed g gbed 8075 6155 22714 7789
ci(# ct ) + J (% dgbed qghed ) +”fcj (~os ~ 53 & Gt g o
g ol T G S G G B =3 e, - % B s
+nfc§cF <2;5£6 @ - 8854 e 27269C 2744 ot 6712g N 19328 2
—@ ot b5, cac, ) +nfCACF< 2;33 — 1628, + % C3 +204, + @ 0ol
91285 — 22482 + % Co+ b1, C3) +n,C} (23) +nfdfq bCZijCd (19952 — 23368 G
13312 G+ 10316 C4 + 544@2@3 - 15320 Cs — 14996 G+ b, dabcddgbcd> +n7Cq (% + 3—; G2
F G - Tl - o ) +rfCCr (o + g &)+ (G — T G)
S () e ()



where the n; -dependent terms agree with Ref. [22]. In addition, we have checked that a numerical
fit for the d I?ded Xb“l term in the gluon-gluon splitting function [24] to the known Mellin moments
nicely confirms the value quoted in Eq. (10). Altogether, we take this as strong indications on
the correctness of the assumption made in the derivation of Egs. (6) and (10). The remaining
unknowns can be determined numerically as b% 4ct = 1098 420 and b% —1125.6+1.0

from the Mellin moments N =2, 4, 6 and 8 obtalned via DIS structure functrons see Ref. [25].

4 dabcddabcd

We also note that the purely Abelian (QED) contributions in Bﬁ coincide with the respective
terms in the four-loop QCD B-function [47,48]. This concerns the colour factors nfCI%, nng %,
n;'C r and dﬁbc‘ldﬁb“’ and is a direct consequence of the generalized Casimir scaling of f9 and
/&, which implies that ff must have only non-Abelian colour factors (terms proportional to Cy,
dr “ded abed o dj abed g “b"d) This reproduces a pattern already observed for B§ up to third order,
n < 3, see [49], for all terms n; kCp~* with 1 < k < n—1. At four loops, the colour factors nfCF
and dp “ded dbed are unique in the single pole 1/¢ of the gluon form factor, cf. in Gg in Eq. (9), and
therefore can be related directly to those in B3 and, hence, Bg The other two colour factors in
Gi.n fCF and n CF, do also receive contributions from lower orders For instance n; 2C2 terms are

generated from [31 /&, but cancel in extraction of B4 from G¥.

With the help of Egs. (9) and (10) we obtain the single pole in € in the gluon form factor ﬂg at
four loops as

8 _
4 ‘1 -
/e 4<_746918615 N 5951995; N 8305667C N 975575 o 39811 o 781411 ¢
A 104976 216 21T 1458 BT o AT 2537 405 P
41335 272338 739783 14629 563669 1 g
C3C4 - C_C) 144 Cﬁ - C2C5 126 Z;7 + 192 ‘f47d1?h0ddA“th
1 dabcddabcd 80 704 1
g A A g
_Z b4,CX ) T <_? A C3 4 dabcddabcd - Z b47d;‘1bcddgbcd ) + O(nf)
abcddabcd
— cj(—1084.7i5.5) +4 (567.3i 12.8) +ny terms (11)
A

where all nf—dependent contributions have been given analytically in Ref. [18].

The observed relation between the gluon virtual anomalous dimension B and the correspond-
ing coefficient of the B-function for purely Abelian terms leads to new predictions at five loops.
Using the expression for the B-function for a general gauge group at five loops [50-52] (the QCD
result was obtained before in Ref. [53]), one deduces for the splitting function Py, in Eq. (7)

g _
BS_

4157 2509 536 1160
”fCF<_ 12 _64C3> CF< T CS)
d@edgabed 4160 5120 12800 4961 952
2 F F i it o
LA - < 3 T3 8T Cs) ny Cr ( 24 T © C“)
sdgbeddgbed (1760 1312 107
ST GG G ) G (e 55 6)
+nf n (9 3 St 8C4+ CS nCr 486 27C3

+ terms with C,, dPedqibed | ggbed ggbed



Predictions for the purely Abelian part of the gluon form factor at five loops are possible, e.g., for
the nfC }‘ in fsg , which can be read off from Eq. (12) using G‘g in Eq. (9), while finite terms of F§
at lower orders are needed for other colour structures.

Beyond the SV approximation, predictions for the ggF cross section are possible using physical
evolution kernels [9, 54,55]. In z-space, this concerns terms enhanced as In¥ (1—z) with2n—1 >
k > 1 at n-th order, or equivalently power suppressed contributions (lnkN )/N in Mellin N-space.
Such next-to-leading power threshold effects have also been studied in Refs. [S6-63]. At N*LO,
these subleading terms in chg’(4) (z) can be obtained from the physical evolution kernel Kg,, which
one can define by re-expressing Eq. (2) as dimensionless ‘structure functions’ ¥, i.e.,

o(S,m3%) = Yap S8 Fap - (12)

The kernel K, and its perturbative expansion for a scale choice up = my are then given in terms
of the splitting function Py, the B-function and the gluon coefficient function cg, by

d dell(ay) H 1
mfgg = {2ng(as)—|—[3(as) dasg ® (cge(as)) }®fgg
= Kge®Fgg = gz, angKzz(g)@ng (13)
=0

where ® denotes the usual Mellin convolution and B(as) the B-function as defined below Eq. (9).

The key feature of the kernel K, is its single-logarithmic enhancement. In z-space, this implies
at n-th order that all terms In* (1—z) with2n—1 >k > n+ 1 have to cancel in Eq. (13) to all orders
in (1—z), which leads to predictions for coefficient function cgfé, cf. Ref. [9]. In Mellin N-space the
leading large-N logarithms of the sub-dominant N ~! contributions in K, take the simple form,

K =~ (8BoCy+32€F) InN + O(1),
K = — (16B3C, + 11280 CF) In°N + O(InN) .
896
K o = (32[33CA+T Bgcj) In3N + O(In2N) ,
K| = — (64BiCa+&] BICT) n*N + O(n’N) (14)
88 [y 0Ca TGy Pota ;

where the first three lines follow from the known coefficient functions cgg(n) up to N°LO. The

expression for Kg) contains an unknown coefficient ig), to be determined at N*LO by explicit
computations (the corresponding coefficient for DIS has been obtained in Refs. [57,58])6. Eq. (14)
predicts the following next-to-leading power threshold terms in the four-loop gluon coefficient

function 62(4) for the ggF process at the scale up = up = my,
H.,(4 H.,(4 4096 19712 3584
') = V|, - c:1n7<1—z>+{ Gl =5-al Bo} In®(1-2)

® We note that the pattern of the ratios of the lower order coefficients is 112/32 = 7/2 and (896/3)/112 = 8/3.

A generalization of this pattern leads to an estimate of E.\S) = 670 + 300 with a conservative numerical uncertainty,
which has a sub-percent effect on the N~! In* N coefficient in Eq. (16) below.
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64576 1024
- {(—2240+23552§2)c;‘ - ch By — Tc} Bg} In°(1-2)
80384 313600 104128 47408
+ {(T—slszocz— 3 c3> Ci+ ( 5 3 c2> CiBo  (15)

1 640
+<1856+ Zéﬁ;‘))cﬁ B3 +32C, B+ TCK&} In*(1-z) + 0 (In*(1-2))

where c§1g’(4) (z)|qy denotes the z-space SV approximation at N*LO as discussion above.
We are now ready to assemble the results of Refs. [9, 38, 40] and Egs. (6) and (14) for the
inclusive ggF process at N*LO. The resulting threshold expansion of cg,’m in N-space reads

ke @ (N) ~ 055296 InBN +3.96654 In7N +21.2587 In°N + 62.2985 In>N
+150.141 In*N +212.443 In>N +255.911 In>N + (128.78 £ 0.11) InN + K, 8,4
+N1 {2.21 184 1n’N +19.6890 In®N +93.04391n° N

+(256.454+ 13225, ;) In*N + O(In )} (16)

with k, = 1/25000 ~ 1/(4m)*, which approximately converts the coefficients to an expansion
in 0. We have inserted the QCD values of the group factors in Eq. (5) and above, used the
physical value of ne = 5 light flavors at scales of order m,%,, and truncated all exact numbers to

six decimals. The quoted uncertainty in the coefficient of In/N stems entirely from f 4q Jabed Jabed>
(e o A
as the uncertainties in the values of b} bl and b? . are completely negligible.

4,dpbeddgbed> "4 nCECy 4,n,C}
The constant-N contribution g, , has been estimated in Ref. [9] by three Pad€ approximants which
yield a fairly wide spread of values suggesting ¥, g, 4, = 65+ 65.

The N*LO coefficient function in the SV approximation, together with the sub-dominant N~
contributions in Mellin N-space, can be expected to provide a reliable approximation of the exact
result. As pointed out earlier, the exact Mellin N-space result at lower orders resides inside the
band spanned by the SV and SV+N ~! terms at moderately large N. This is shown in Fig. 1 (left)
at N*LO (for corresponding NLO and NNLO plots see Fig. 1 of Ref. [9]). The exact coefficient
functions differ from the approximation based on the SV+N ~! terms by 0.44% at NLO, 0.83%
at N°LO and 1.15% at N°LO at N = 12. For smaller N values the difference between the exact
results and the approximation based on the SV+N ~! terms is larger, however they always remain
inside the SV and SV+N ~! band. At N*LO, see Fig. 1 (right), the SV approximation of Eq. (16) is
shown including the N-independent constant g,, and the known 1 /N terms as specified in Eq. (16).

The predictions for the ggF cross sections at the collision energy of 14 TeV use a Higgs mass
my = 125 GeV, an on-shell top quark mass m; = 172.5 GeV, ne = 5 active quark flavors and the
PDF sets ABMP16 [64] and MMHT2014 [65] using the 1hapdf [66] interface. The PDF sets and
as well as the value of the strong coupling constant o corresponding to the respective PDF set are
taken order-independent at NNLO throughout. The prefactor C (,u,%) in Eq. (3) is improved with the
full top-mass dependence of the Born cross section. The results up to N°LO are computed with the
program iHixs [67] which directly provides the cross sections in this rescaled effective field theory.
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Figure 1: Soft-virtual (SV) and SV +N -1 approximations to the N3LO (left) and N*LO (right) ggF
coefficient functions. The N3LO curves, where the N~ contributions are complete, are compared to the
exact result. At N*LO the highest four N ~! logarithms are includes as given in Eq. (16).

The residual uncertainty in the SV approximation of the ggF cross section due to the coeffi-
cients f 4q Jabed jabed in Eq. (6) and g, in Eq. (16), which are currently least constrained, is practically
UF A
negligible: the 100% error on g, leads to an uncertainty of 0.3% for the cross section, while the
100% error on f 4q Jabed jabed is completely negligible. The virtual anomalous dimension Bﬁ only
UF A

appears in the scale-dependent terms at N*LO and its contribution vanishes for the central scale
choice up = up = my. For the scale setting up = ur = mp /2 a change below 0.002% is observed
for the cross-section at 14 TeV LHC due to the numerical uncertainty in Bi. Thus, precise predic-
tions at N*LO are now possible for all relevant kinematics and scale choices.

The impact of the SV corrections at N*LO is shown in Fig. 2 (left) in a range of center-of-mass
energies for two different choices of renormalization scale, u, = my and ug = my; /2, keeping
always up = mpy. The corresponding K-factors, defined as the ratio of the SV corrections at N*LO
over the exact N°LO result, are displayed in the lower panel. The SV correction at N*LO increases
the cross-section at the LHC with 14 TeV by 1.41 pb for the scale up = my and by 0.08 pb for
the scale up = my /2. The K-factor shows little dependence on the collision energy in the entire
range of center-of-mass energies displayed in Fig. 2 (left). For the scale choice ug = my /2, which
is closer to the point of minimal sensitivity, the effect of higher order corrections is indeed small,
leading to a K-factor close to unity, cf. also Ref. [9]. At the scale up = mpy a K-factor of 1.027 is
obtained for the LHC at 14 TeV.

In Fig. 2 (right) we show the dependence of the cross section for the Ecy = 14 TeV on the
renormalization scale up. The up dependence indeed decreases order by order in perturbation the-
ory up to N*LO. In the range m /4 < ug < 2mpy the effect of the u, variation decreases drastically
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Figure 2: Left panel: The contribution of the SV approximation at N*LO to the ggF cross section in proton-
proton collisions as a function of the center-of-mass energy Ecm for g = my at two renormalization scales,
g = my and pp = my /2, using the MMHT2014 PDFs [65]. The corresponding K-factors with respect to
N’LO are shown in the lower panel. Right panel: The ggF cross section up to N*LO with a variation of the
renormalization scale g for the LHC at 14 TeV using the same PDFs and pyp = my,.

from 427% at NLO and +14% at NNLO to £5% at N°LO, while it amounts to less than 3%
at N*LO. Also here the factorization scale is kept fixed, at u; = my,, since beyond NNLO only
flavour non-singlet results have published for the QCD splitting functions P (z) [22,23, 68], and
PDFs fits have been limited to NNLO so far.

The uncertainty in the predicted ggF cross sections due to the truncation of the perturbation
series is now, at N*L.O, smaller than that due to the use of different sets of PDFs and corresponding
different values of the strong coupling constant o. For /S = 14 TeV, my = 125 GeV, the central
scale up = my, and including the PDF uncertainties at N3LO, one obtains

Glnlm = 49.6+0.5 Pb? GINALD =50.8 P‘b, ABMPI&,
Glypo = 32.3+0.8pb, Gln2p.0=33.8 pb, MMHT2014 , (17)
where the spread in predictions is due to different values of the strong coupling constant at NNLO

corresponding to the different PDF sets used, i.e., as(Mz) = 0.1147 for ABMP16 and as(Mz) =
0.1180 for MMHT2014, and due to different gluon PDFs in the relevant kinematic range. These
are consequences of different choices for the theoretical framework and assumptions on parameters
used in the respective global fits, see Ref. [69], which lead to systematic shifts that are often
significantly larger than the PDF and os(Mz) uncertainties associated to individual PDF sets.

Due to the universality of threshold dynamics for colourless final states in hadronic collisions,
relevant formulae for the Drell-Yan process, pp —+¥* + X, can be easily obtained from the above
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considerations, using Eq. (2) with the replacement 6}/ ¢/ — 52;* DY with
5! = 4na?/(3Q%n,.) . (18)

Here o is the fine-structure constant of QED and Q? the virtuality of the produced photon Y*.
The coefficient functions cDY enjoy a perturbative expansive analogous to Eq. (4) with the leading

order normalization cDb ©f = 04495 0(1—z). The coefficients of Dy for 7 > k > 2 of the four-loop

term cC][)qY (4) can be found in Eq. (6) of Ref. [38] and that of D; in Eq. (14) of Ref. [40].

We are now in the position to present the four-loop Dy term for the DY process. It is given by

o <32704 3+ 113152885 — 196608 (s — 15360L3 — 491520 (585 — 195584384

206444 32740 T46878, 146768 1011088
+983040§7)+C£CA<— - g Gt g G 0l

27 9
127443205 — 2 L — 73728 Lols + 76000 L <;4>

484192 356048
15086188 12535492 3043898 2522080 2968640
HORCG (T - e e T L S L Gl

1046528 82592 30184 60944 28325071
+ 9 s — 3 G- Co+ 3072885 + C3C4> +CpCy <—W

5761670 867584 150632 1 19624 49840 4664 41789
+—n G+ > G — 5 Cs— CzCz— Cs——C3

dabcdd abcd
+832 CZCS + 1440 C3C4 + 3400 €7 + f dabcddabul > + E ng <_2 fq dubcddubcd )

80221 25744 95936 11492 189824 130624
3 —_— —_— —_— —_—
(o — T T G g a5 Gl Cs
1 16084 2 711 122264
06336 608 0 Cotd bq o ) +CI%CAnf(_955 85 3057110 648
ada

G- 1458 T 729 Cz_ 81

1261168 306400 11728 164
— G+ {03 — 376165 + = C+4bq

Co

C3

cic, )
10761379 2418814 948884 213280 28064 29552
+CrCy ”f< 016 23 2 g BTy &t Gas -

9736 32930 1 . .
G- S — 12 74 dgbed ggbed —2b, . CEC, b4 n,C3 )

d“b"dd“b“‘ 9088 10624 1600 43520 2432
+ny 3 G+ 5 G+ G4 —256 8203 + 5 (s———03

2368 c 142769 99184 113456 23200
79360 33056 898033 293528 87280 1744
GG+ Cs) +CpCyn; < 016 T a3 G+ o1 G — 3 Ca
608 608 10432 3200 3680 112
S ) (B2, )
5 Lol + Cs) i} (Sres — g1 @~ ey Gt 5 G

Cs

(768 _
nr

19)
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where the quartic Casimirs are normalized by the dimension of the fundamental representation of
the SU (n.) gauge group, n, = n.. As Eq. (6), this result is exact in the large-n, limit and has an
amply sufficient numerical accuracy for all phenomenological applications in QCD.

The next-to-leading power threshold terms for the DY process can also be derived with the help
of the corresponding physical evolution kernel K, which exhibits the same simple form in Mellin
N-space as Eq. (14) for the leading large-N logarithms of the N ~! contributions with the obvious
replacement C4 — Cr, see Ref. [9] for further details.

Finally, by combining our new result (6) with Eq. (2.13) in Ref. [9], and proceeding anal-
ogously with its Drell-Yan counterpart (19), we can derive the four-loop coefficient D4 for the
soft-gluon exponentiation of inclusive Higgs production via ggF and DY lepton-pair production.
The two results are, as expected, related by generalized Casimir scaling [24] which reduces to
standard ‘numerical’ C4 /CF lower-order Casimir scaling in the their exact large-n. limit:

Dy =
28325071 5761670, 867584 150632 119624 49840
G-t et b C ah TG
4664 41789
SO T4 83200 + 144008+ 300G + 13 2 )
dbed gabed 10761379 2418814, 948384, 213280
AT (g ) C c2( - -
l’l1 < f4 dabcddabcd + n’f I“~A 2916 243 Cz 81 (:3 + 27 C4
28064 29552 9736 32930 . .
C2C3 g C3 - C6 - 12 4 dabcddabcd 2b fCI%CA b4 ”fCF )
2149049 56222 8932 113360 3808 21904
C,CrC ( . - - 2070
1 CCrCa — g6 > G2 5 Cs 77 Ca+ GG+ Cs
6300 27949 2240
53— 143606+ 4 )+nfc,c1%<———632z;2+—t;3+6682;4
4,1, CiCy 54
1024 7744 29336 dgbed ggbed 9088
+—§2z;3——z;5—736z;3 Lo+ fc3>+nf—1<768——§2
10624 1600 43520 2432 2368
9 C3 C4 - 256 (;2€3 9 C §3 - C 4 b dabcddabcd )
898033 293528 87280 1744 608 608
2
e — )
TG " 5016 T o3 G+ Cs Ca — C2C3 Cs
110059 10768 160
+c,nch( g F 38+ G+ c4—256CzC3+32§5>
10432 3200 3680 112
— 2
+C’”f< 2187 81 2 8l C C“) 20

with C; = C, d“b“l d“de and n; = ny for the DY case, and C; = C,, df‘bc‘l = djbc‘l and n; = ny
for Higgs productlon The lower-order coefficients can be found in Egs. (33) - (35) of Ref. [8].

With this result, and the approximate values of Ref. [68] for the small effect of the five-loop
cusp anomalous dimensions As, all ingredients are now available for extending the soft-gluon
exponentiation to the next-to-next-to-next-to-next-to-leading logarithmic (N*LL) accuracy. The
corresponding function g5 can be inferred from the DIS result in Eq. (2.9) of Ref. [11] as described
below Eq. (3.6) of Ref. [10].
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Using recent progress on related fourth-order quantities, we have been able to determine the
final soft-gluon enhanced contribution (6) to the N*LO coefficient function for inclusive Higgs-
boson production in gluon-gluon fusion in the heavy-top limit, and the corresponding result (19) for
the Drell-Yan process pp — 7* + X. These results also fix the respective N*LL coefficients Dy for
the soft-gluon exponentiation (20) which are related by the same fourth-order generalization of the
well-known Casimir scaling observed before in the cusp anomalous dimensions, now completely
known at this order [21]. Our results are exact in the limit of a large number of flavours n..
Their colour-factor decomposition in full QCD involves a few quantities which are known only
numerically at this point. The resulting uncertainties are practically negligible as can be seen from
the InN coefficient in Eq. (16) above.

We have employed the latter Mellin N-space results to add the N*LO soft + virtual (SV) cor-
rections to the known complete N3LO results [3, 4] for the LHC at 14 TeV. With the effect of the
only uncomputed quantity, the soft-gluon coefficient g, for this process, being well below 1%,
we find that the cross sections are enhanced by 2.7% for the scale choice up = my, while the re-
sults are almost unchanged for up = 0.5my. It should be noted that these values refer to the not
entirely realistic case of an order-independent ois-value and PDFs at u = my;. The renormalization-
scale variation, estimated using the interval 0.25my < up < 2my, is reduced from about 5% at
N3LO to less than 3% at N*LO. Based on similar calculations at lower orders, we definitely expect
that difference between the present N-space SV approximation and the complete N*LO coefficient
function will amount to well below 1% of the total cross section.

As by-products of our analysis, we have derived the expression (10) for the four-loop gluon
virtual anomalous dimension (and determined the corresponding purely Abelian contributions at
five loops), and provided a sub-percent accurate value (11) for the hitherto unknown 1 /¢ coefficient
of the matter-independent contribution to the four-loop gluon form factor for which the n-terms
have been recently computed in Ref. [18].
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