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We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-
singlet twist-two operators in N = 4 supersymmetric Yang-Mills theory at four loops through
Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop
lightlike cusp anomalous dimension and derive the transcendental ζ3 and ζ5 parts of the universal
anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous
dimension and the ζ5 part of the universal anomalous dimension, we confirm previous results.

The AdS/CFT correspondence [1–3], also known as
holographic duality, has been one of the most active and
tantalizing research topics in high-energy theory over the
past two decades. This implies that quantum gravity in
anti–de Sitter space, with constant negative curvature, is
equivalent to a lower-dimensional nongravitational quan-
tum field theory of conformal type, N = 4 supersymmet-
ric Yang-Mills (SYM) theory, living on the boundary of
that gravitational space. The AdS/CFT correspondence
has led to a plethora of intriguing physical insights and
powerful novel methods of calculation [4–16]. The lat-
ter allow us to solve longstanding problems not only in
supersymmetric toy models, but also in real theories of
nature, such as quantum chromodynamics (QCD) [17–
19].

So far, investigations of the AdS/CFT correspondence
have largely been confined to the planar limit, in which
Feynman diagrams of planar topologies contribute, while
nonplanar topologies are far more difficult to tackle. It
is obviously of paramount interest to go beyond the pla-
nar limit, as this will allow us to significantly deepen and
consolidate our understanding of the AdS/CFT corre-
spondence and to access as-yet unexplored regions of it.

Quantities of key interest include the anomalous di-
mensions of the operators, composed of the quantum
fields of N = 4 SYM theory, that are of leading twist,
twist two, and are singlets under the internal symme-
try group SU(4). These operators are sorted by their
Lorentz spin j, which counts the covariant derivatives,
and are multiplicatively renormalized, sharing the same
universal anomalous dimension γuni(j), which just de-
pends on j. Nonplanar contributions to the latter can be
obtained by directly computing, by means of advanced
computerized methods, the relevant Feynman diagrams
in perturbation theory in powers of the gauge coupling g.

The study of the renormalization of composite opera-
tors in N = 4 SYM theory has led to the discovery of the
relation of this problem with exactly solvable models [20].

The integrability in the planar limit was intensively stud-
ied and established from both sides of the AdS/CFT cor-
respondence (see Ref. [15] for a review and Refs. [16, 21]
for the recently developed quantum spectral curve ap-
proach). In the nonplanar case, integrability-based meth-
ods have been considered, in general, in Refs. [22, 23].
Nonplanar contributions to anomalous dimensions serve
as a welcome laboratory for stringent tests of the ideas
and models thus proposed. This provides a strong moti-
vation for our present work.

Once a general result for the universal anomalous di-
mension is established, it is interesting to study its ana-
lytical properties and particular limits. The most inter-
esting one, j → ∞, yields the lightlike cusp anomalous
dimension γcusp [24], which can be computed by alter-
native methods, too. The planar part of γcusp has been
found to all orders a long time ago, through the asymp-
totic Bethe Ansatz equation [11]. Recently, its nonplanar
part has been established through four loops, at O(g8),
via the Sudakov form factor, numerically in Refs. [25, 26]
and analytically in Ref. [27], and via the lightlike polyg-
onal Wilson loops, again analytically, in Ref. [28]. At
four loops in QCD, at O(α4

s) in the strong-coupling con-
stant αs, the quark cusp anomalous dimension in the
planar limit has been found via the quark form factor in
Ref. [29], its contribution with quartic fundamental color
factor has been obtained, again via the quark form fac-
tor, in Ref. [30], and the complete quark and gluon cusp
anomalous dimensions have been established via their
counterpart in N = 4 SYM theory in Ref. [28] and via
the massless quark and gluon form factors in Ref. [31].

Explicit knowledge of γuni(j) for general value of j
would unfold the nonplanar anatomy of the anomalous
dimensions in N = 4 SYM theory. A possible avenue to
this goal is to evaluate γuni(j) for as many values of j
as possible and to try and extract from this the general
result. In N = 4 SYM theory, nonplanarity appears for
the first time at O(g8). In Refs. [32–34], the nonplanar
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contributions to γuni(j) at O(g8) were analytically calcu-
lated for the first three nontrivial values j = 4, 6, 8. Re-
cently, these results have been confirmed and extended to
j = 10 applying the method of asymptotic expansions to
the four-point functions of length-two half–Bogomol’nyi-
Prasad-Sommerfield operators [35]. The purpose of this
Letter is to push this endeavor as far as possible, which
turns out to be through j = 18, thanks to cutting-edge
technology and computing power. We will thus be able
to reconstruct the general coefficients of ζ3 and ζ5 and
to obtain an independent numerical result for γcusp at
O(g8). The former is new, and the latter confirm previ-
ous findings in Ref. [32] and Refs. [25–28], respectively.
Specifically, the set of local, gauge-invariant, SU(4)-

singlet, twist-two operators of definite Lorentz spin j in
N = 4 SYM theory reads:

Oλ
µ1,...,µj

= Ŝλ̄a
i γµ1

Dµ2
· · ·Dµj

λa,i , (1)

Og
µ1,...,µj

= ŜGa
ρµ1

Dµ2
Dµ3

· · · Dµj−1
Ga,ρ

µj
, (2)

Oφ
µ1,...,µj

= Ŝφ̄a
rDµ1

Dµ2
· · · Dµj

φa,r , (3)

where the spinors λi refer to the gauginos, the field
strength tensor Gµν to the gauge fields, φr are the com-
plex scalar fields of extended supersymmetry, and Dµ

are covariant derivatives. The indices i = 1, . . . , 4 and
r = 1, . . . , 3 refer to the SU(4) and SO(6) ≃ SU(4)
groups of internal symmetry, respectively. The symbol
Ŝ implies a symmetrization of the respective tensor in
the Lorentz indices µ1, ..., µj and a subtraction of all
its possible traces. As mentioned above, these oper-
ators form the multiplicatively renormalized operators,
whose anomalous dimensions are expressed through the
so-called universal anomalous dimension up to integer ar-
gument shifts [36],

γuni(j) =

∞
∑

n=1

γ
(n−1)
uni (j) g2n, g2 =

λ

16π2
, (4)

where λ = g2YMNc is the ’t Hooft coupling constant.
In the planar limit, γuni(j) is analytically known for

arbitrary j through seven loops [37–42] and for special
values of j even through ten loops [43–50], e.g. for j = 4
corresponding to the Konishi operator. In the latter case,
we quote the result through four loops [43–45] here

γKonishi,planar = γuni,planar(4) = 12g2 − 48g4 + 336g6

+ 96g8(−26 + 6ζ3 − 15ζ5) +O(g10) . (5)

As for the nonplanar contributions to γuni(j) at O(g8),
the state of the art is given by [32–34]

γ
(3)
uni,np(4) = −360ζ5

48

N2
c

, (6)

γ
(3)
uni,np(6) =

25

9
(21 + 70ζ3 − 250ζ5)

48

N2
c

, (7)

γ
(3)
uni,np(8) =

49

600
(1357 + 4340ζ3 − 11760ζ5)

48

N2
c

, (8)

FIG. 1: Typical Feynman diagrams contributing to γ
(3)
uni,np(j).

The operators are inserted in the lines or gauge vertices.

where we have pulled out common factors. If such a
factorization were preserved for the higher j values, this
could considerably simplify the procedure of finding the

general form of γ
(3)
uni,np(j). In fact, the prefactors in

Eqs. (6)–(8) resemble the harmonic sums
∑j−2

i=1
1
i
for

j = 4, 6, 8, with values 3/2, 25/12, 49/20, and harmonic
sums are also expected to appear as building blocks of

γ
(3)
uni,np(j), as explained below.
In this Letter, we extend Eqs. (6)–(8) by the next

five terms. Our computational procedure is similar to
Refs. [32–34]. We work in the programming language
form [51]. Specifically, we generate all the contributing
Feynman diagrams with diana [52] based on qgraf [53],
evaluate the color traces with color [54], reduce the oc-
curring scalar integrals to the master integrals of Ref. [55]
with the custom-made program package bamba based on
the Laporta algorithm [56], and reduce the propagator-
type diagrams to fully massive tadpole diagrams using
infrared rearrangement [57] (see also Refs. [55, 58, 59]
for details). Typical Feynman diagrams are depicted
in Fig. 1. This setup allows us to proceed to j = 10
only. Further progress is enabled by the recently de-
veloped package forcer [60] based on form [51], which
was also used to compute anomalous dimensions of twist-
two operators in QCD [61, 62]. We may thus proceed to
j = 18, where about one year of running on the modern
high-performance computing facilities available to us is
required. Altogether, we have

γ
(3)
uni,np(10) =

(

220854227

1411200
+

27357

56
ζ3 −

579121

490
ζ5

)

48

N2
c

,

(9)

γ
(3)
uni,np(12) =

(

28337309747461

144027072000
+

345385183

571536
ζ3

−
54479161

39690
ζ5

)

48

N2
c

, (10)

γ
(3)
uni,np(14) =

(

9657407179406311

41493513600000
+

158654990663

224532000
ζ3

−
7399612441

4802490
ζ5

)

48

N2
c

, (11)

γ
(3)
uni,np(16) =

(

74429504651244877

280496151936000
+

205108095887

256864608
ζ3

−
1372958223289

811620810
ζ5

)

48

N2
c

, (12)
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γ
(3)
uni,np(18) =

(

8122582838282649980649377

27516111512617728000000
(13)

+
72169501556777041

81811377648000
ζ3 −

5936819760481

3246483240
ζ5

)

48

N2
c

.

Our result for j = 10 agrees with Ref. [35]. In contrast
to Eqs. (6)–(8), it is not possible to extract common fac-
tors in Eqs. (9)–(13), so that our expectations regarding
factorization have to be dropped.

Equipped with the information contained in Eqs. (6)–
(13), we now try to reconstruct the general form of

γ
(3)
uni,np(j), i.e. to determine the j dependence of the co-

efficients of ζ5 and ζ3 and the rational reminder in the
Ansatz

γ
(3)
uni,np(j) =

[

γ
(3)
uni,np,ζ5

(j) ζ5 + γ
(3)
uni,np,ζ3

(j) ζ3

+ γ
(3)
uni,np,rational(j)

] 48

N2
c

. (14)

For this purpose, we adopt a powerful method based on
number theory which has been proposed in Ref. [63] and
successfully applied to the reconstruction of anomalous
dimensions in N = 4 SYM theory [41, 42, 64] and QCD
in Ref. [65] and after in Refs. [61, 66]. This method is

based on the assumption that γ
(3)
uni,np,ζ5

(j), γ
(3)
uni,np,ζ3

(j),

and γ
(3)
uni,np,rational(j) in Eq. (14) are linear combinations

of certain basis functions with certain coefficients. As
for the basis functions and coefficients, we are guided by
several heuristic observations.

As for the basis functions, in the case of anomalous
dimensions of twist-two operators in N = 4 SYM theory,
these are known to be generalized harmonic sums, defined
as [67, 68]

Sa1,...,an
(M) =

M
∑

j=1

[sign(a1)]
j

j|a1|
Sa2,...,an

(j) , (15)

where the indices a1, . . . , an may take all (positive and
negative) integer values, except for −1. The weight or
transcendentality ℓ of the sum Sa1,...,an

is defined as the
sum of the absolute values of its indices, ℓ = |a1|+ · · ·+
|an|, and the weight of a product of generalized harmonic
sums is equal to the sum of their weights.

For twist-two operators, there is an additional sim-
plification, thanks to the so-called generalized Gribov-
Lipatov reciprocity [69–72], which reflects the symmetry
of the underlying processes under the crossing of scatter-
ing channels. As a consequence, the harmonic sums can
enter the anomalous dimensions only in the form of spe-
cial combinations satisfying the above-mentioned prop-
erty by themselves. In practice, this allows us to impose
restrictions on the choice of basis functions leaving us
with a smaller number of so-called binomial harmonic

sums, defined as [67]

Sa1,...,an
(N) =

N
∑

j=1

(−1)j+N

(

N

j

)(

N + j

j

)

Sa1,...,an
(j) .

(16)
They only have positive-integer indices, while their tran-
scendentality is the same as for usual harmonic sums.
There are 2ℓ−1 binomial harmonic sums at transcenden-
tality ℓ. While reciprocity has not yet been rigorously
proven, counterexamples have not been encountered ei-
ther. In particular, the anomalous dimensions of the
twist-two operators in the planar limit of N = 4 SYM
theory, which are known through seven loops, may all
be represented in terms of binomial harmonic sums and
their derivatives. In the planar limit of QCD, the non-
singlet quark anomalous dimensions at four loops can
also be written in terms of binomial harmonic sums and
their derivatives [61]. Furthermore, the Feynman dia-

grams contributing to γ
(3)
uni,np(j) at subleading order in

Nc also contribute to its planar counterpart, as may be
seen from Fig. 1. These observations suggest that reci-
procity should work for the case at hand, which is also
confirmed by a nontrivial self-consistency test within our
calculation, as explained below.
According to the maximal-transcendentality princi-

ple [36], the anomalous dimensions of twist-two opera-
tors at ℓth order in N = 4 SYM theory are of transcen-
dentality 2ℓ − 1, which is seven for our case of ℓ = 4.

Thus, γ
(3)
uni,np,ζ5

(j), γ
(3)
uni,np,ζ3

(j), and γ
(3)
uni,np,rational(j) in

Eq. (14) are of transcendentalities 2, 4, and 7; i.e., they
are composed of 2, 8, and 64 binomial harmonic sums of
the respective transcendentality.
As for the coefficients in front of the basis functions,

inspection of the expressions of the j-dependent anoma-
lous dimensions that are already known reveals that they
are usually small integer numbers. So, in general, we ob-
tain a system of Diophantine equations. If the number
of equations is equal to the number of variables, then
we can solve such a system exactly. However, this re-
quires the knowledge of the anomalous dimensions for a
large number of fixed j values. Fortunately, the system
of Diophantine equations can be solved with the help of
special methods from number theory even if the num-
ber of equations is less than the number of variables. In
fact, we may then apply the Lenstra-Lenstra-Lovasz algo-
rithm [73], which allows us to reduce the matrix obtained
from the system of Diophantine equations to a form in
which the rows are the solutions of the system with the
minimal Euclidean norm.
Equation (6) is sufficient to fix the two coefficients in

the Ansatz for γ
(3)
uni,np,ζ5

(j). The result,

γ
(3)
uni,np,ζ5

(j) = −40 S21(j − 2) , (17)

thus obtained a long time ago [32] has been confirmed by
all subsequent results in Eqs. (7)–(13). To determine the
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eight coefficients in the Ansatz for γ
(3)
uni,np,ζ3

(j), we need
five input relations. Using Eqs. (6)–(10), we find

γ
(3)
uni,np,ζ3

(j) = 8(8 S4 − 9 S1,3 − 3 S2,2 − 4 S3,1

+ 4 S1,1,2 + 5 S1,2,1 − S2,1,1) , (18)

where Saaa = Saaa(j − 2), which is in agreement with
Eqs. (11)–(13). By the way, this nicely supports our sug-

gestion that reciprocity should work for γ
(3)
uni,np(j) as well.

At any rate, the eight inputs from Eqs. (6)–(13) uniquely
fix Eqs. (17) and (18). Unfortunately, these inputs do not
yet suffice to determine the coefficients of the 64 binomial

harmonic sums of transcendentality 7 in γ
(3)
uni,np,rational(j)

beyond all doubt via the number theoretical procedure
outlined above.
Nevertheless, we may exploit the information encoded

in Eqs. (6)–(13) to numerically recover the nonplanar
contribution to the cusp anomalous dimension with use-
ful precision. To this end, we proceed along the lines
of Refs. [61, 62] and approximately reconstruct the four-
loop splitting function. We recall that the n-loop split-
ting function P (n)(x) is related to the anomalous di-
mension of the respective twist-two spin-j operator, with
j = 2, 4, 6, . . ., by a Mellin transformation,

γ(n)(j) = −

∫ 1

0

dxxj−1P (n)(x) , (19)

where the negative sign is a standard convention.
In QCD, the diagonal splitting functions at n loops,

in general, assume the following form in the limit x → 1
[71]:

P
(n−1)
kk (x) =

A
(n)
k

(1− x)+
+B

(n)
k δ(1− x) + C

(n)
k ln(1 − x)

+D
(n)
k +O

[

(1− x) lnℓ(1− x)
]

, (20)

where k = q, g and the + distribution is defined as usual,
∫ 1

0
dx f(x)/(1 − x)+ =

∫ 1

0
dx[f(x) − f(1)]/(1 − x). A

(n)
q

and A
(n)
g are the n-loop quark and gluon cusp anomalous

dimensions, respectively [24]. In N = 4 SYM theory, the
splitting functions, being related to the anomalous di-
mensions through the Mellin transformation in Eq. (19),
satisfy the maximal-transcendentality principle [36], and

we may use Eq. (20), with kk replaced by np. Since C
(n)
k

and D
(n)
k can be predicted from lower-order information

[71] and nonplanarity appears for the first time at n = 4,

we have C
(4)
np = D

(4)
np = 0. Following Refs. [61, 62], we

makeAnsätze for approximations of the splitting function

P
(3)
uni,np(x), which consist of (i) the two large-x parameters

A
(4)
np and B

(4)
np , (ii) two out of the three large-x logarithms

(1−x) lnk(1−x) with k = 1, 2, 3, (iii) two out of the three
small-x logarithms lnk x with k = 1, 2, 3, and (iv) two out
of the five polynomials (1−x)xk with k = 0, . . . , 4. These
are

(

3
2

)(

3
2

)(

5
2

)

= 90 trial functions with eight coefficients

each, which we pin down using the eight available inputs
in Eqs. (6)–(13). For each coefficient, we determine, from
the values thus resulting, the central value to be half of
the sum of the largest and smallest ones and the error to
be half of their difference. Using all 90 solutions, we find

A
(4)
np = −48× (98.1± 5.8) and B

(4)
np = 48× (203.6± 32.4).

We may considerably improve these results by reject-
ing 20 unlikely solutions, involving particularly large

coefficients, to obtain A
(4)
np = −48 × (97.5 ± 0.6) and

B
(4)
np = 48 × (207.0 ± 3.0). The former result nicely

agrees with the one from Refs. [27, 28, 31], A
(4)
np =

−48(992π6/315+1152ζ23) = −48×97.75, while the latter
is new. We emphasize that our method of computation
is completely independent from Refs. [25–28, 31]. Our fi-
nal result for the cusp anomalous dimension through four
loops is

γcusp = 8 g2 − 26.32 g4 + 190.49 g6

−
(

1874.86 + (97.5± 0.6)
48

N2
c

)

g8 +O(g10) .(21)

To summarize, using modern computational tech-
niques, we have considerably advanced our knowledge of
the nonplanar sector of N = 4 SYM theory by studying
the universal anomalous dimension of the local, gauge-
invariant, SU(4)-singlet, twist-two operators of definite
Lorentz spin j at four loops. Specifically, we have pushed
the state of the art from j = 10 [32–35] to j = 18
upon providing a first independent confirmation of the
recent result for j = 10 [35]. The four new terms for
j = 12, . . . , 18 are all in agreement with the generic coef-
ficient of ζ5 already derived in Ref. [32]. The new infor-
mation allowed us to uniquely determine also the generic
coefficient of ζ3, but it does not yet suffice to pin down
the generic expression of the rational term. However, fol-
lowing Refs. [61, 62], we managed to find a rather precise
numerical result for the j → ∞ limit of the universal
anomalous dimension by considering the x → 1 limit of
the corresponding splitting function. The result for the
cusp anomalous dimension thus obtained agrees with pre-
vious determinations based on very different approaches
[25–28, 31].

Our computations were performed in part with re-
sources provided by the PIK Data Centre in PNPI NRC
“Kurchatov Institute.” The research of B.A.K. was sup-
ported in part by BMBF Grant No. 05H18GUCC1 and
DFG Grants No. KN 365/13-1 and No. KN 365/14-1.
The research of V.N.V. was supported in part by RFBR
Grants No. 16-02-00943-a, No. 16-02-01143-a, and No.
19-02-00983-a and a Marie Curie International Incom-
ing Fellowship within the Seventh European Community
Framework Programme under Grant No. PIIF-GA-2012-
331484.
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