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Abstract

Axion inflation entails a coupling of the inflaton field to gauge fields through the Chern-Simons

term. This results in a strong gauge field production during inflation, which backreacts on the

inflaton equation of motion. Here we show that this strongly non-linear system generically experi-

ences a resonant enhancement of the gauge field production, resulting in oscillatory features in the

inflaton velocity as well as in the gauge field spectrum. The gauge fields source a strongly enhanced

scalar power spectrum at small scales, exceeding previous estimates. For appropriate parameter

choices, the collapse of these over-dense regions can lead to a large population of (light) primordial

black fholes with remarkable phenomenological consequences.
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1 Introduction

Axion-like particles are among the prime candidates for particle physics implementations of cosmic

inflation. Protected by an approximate shift-symmetry, these Pseudo Nambu Goldstone Bosons nat-

urally come with a sufficiently flat scalar potential to support slow-roll inflation. Many concrete

realizations of axion inflation in field theory have been proposed beginning with Ref. [1], for axions in

string theory see [2, 3].

The shift-symmetry of the axion-like inflaton Φ allows for a derivative coupling to the field strength

tensor Fµν of a (dark) gauge sector,

Lint = −
√−g
4f

ΦFµνF̃
µν , (1)

with f denoting the axion decay constant and for simplicity, we will consider Fµν to describe a hidden

sector abelian gauge group, i.e. a dark photon.1 This interaction triggers a tachyonic instability of

the dark photon driven by the velocity Φ̇ of the inflaton, leading to an exponential production of

dark photons [6–8]. The resulting non-thermal gauge field distribution backreacts on the inflaton,

dampening its motion. At the same time, the gauge fields act as a source of scalar and tensor

perturbations [9–12], in addition to the standard vacuum fluctuations amplified during cosmic inflation.

These perturbations can be probed by CMB observations [9,13], searches for primordial black holes [14–

17] and gravitational wave experiments [12, 18–20], rendering axion inflation not only a theoretically

well motivated but also an experimentally testable proposal for cosmic inflation [10].

In this work we have a closer look at the backreaction of the gauge field distribution on the inflaton

equations of motion. Since this determines the evolution of the homogeneous inflaton field, this has a

crucial impact on all potential observables of this framework. The interaction (1) results in a friction

term in the background equation of motion for Φ which is proportional to 〈FF̃ 〉. In Fourier space, this

non-linear interaction involves an integral over all relevant Fourier modes of the gauge field, leading to

a integro-differential system describing the evolution of the gauge field modes and the homogeneous

component of the inflaton.

In many previous works, this system is solved by assuming the inflaton velocity to be constant

in the gauge field equation of motion (see e.g. [10]), motivated by the usual slow-roll approximation

employed in cosmic inflation. However, since the gauge field enhancement and hence the backreaction

on the inflaton are exponentially sensitive to this velocity, this approximation becomes invalid in the

phenomenologically interesting regime of sizable gauge field production. Recently, several alternative

approaches have been put forward. Lattice simulations [21–23], focusing mainly on the preheating

phase, accurately capture the backreaction but are limited in the amount of time evolution that can

be tracked. Ref. [24] proposed a gradient expansion of the generated electric and magnetic field. Self-

consistent numerical solutions of the integro-differential system have been obtained in Refs. [25–27].

1If the theory contains particles charged under this U(1) (as is e.g. the case for the Standard Model hypercharge),

these particles must be included in the analysis if they are sufficiently light, as they will be produced via Schwinger

production from the vacuum, thereby significantly damping the gauge field production. On the contrary, the impact of

heavier particles is exponentially suppressed and they can be safely integrated out [4, 5].
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These latter studies noted the appearance of remarkable oscillatory features in the inflaton velocity. In

this work, we reproduce these findings and quantitatively explain the occurring resonance phenomenon

based on semi-analytical arguments. Since the enhancement of the gauge field modes is most sensitive

to the inflaton velocity around horizon crossing whereas the backreaction is dominated by super-

horizon gauge field modes, the system responds with a time delay to a change in the inflaton velocity.

This time delay is logarithmically sensitive to the inflaton velocity. As the inflaton velocity increases

during the course of inflation the system hits its resonance frequency, leading to strong oscillations in

the amplitude of 〈FF̃ 〉 as a function of time. This crucially impacts both the background equation of

motion as well as the generation of scalar and tensor perturbations.

The power spectrum of scalar perturbations can be obtained by solving the linearized inhomoge-

neous equation of motion for the inflaton field taking into account the backreaction and source terms

proportional to FF̃ . In the pioneering works [9, 11, 14, 28] this task has been solved in the weak and

very strong backreaction regime. Here we extend these results to arbitrary inflaton gauge field cou-

plings by numerically determining the Greens function including the backreaction term. We report

two important results. Firstly, for a smoothly growing 〈FF̃ 〉, we find that the analytical estimate

in [28] significantly overestimates the backreaction compared to our full numerical results. As a result,

the actual power spectrum is significantly enhanced compared to previous estimates. Consequently, a

large primordial black hole (PBH) abundance can be generated, leading to an early PBH dominated

phase. Requiring the transition to radiation domination to occur before the onset of big bang nucle-

osynthesis imposes stringent constraints on the parameter space. Secondly, for an oscillating 〈FF̃ 〉
as found in the numerical solution of the background equation of motion, the scalar power spectrum

features prominent peaks which, for suitable parameters, may lead to a PBH population peaked at log-

arithmically equidistant masses, accompanied by a gravitational wave spectrum with similar features.

This would be a smoking gun signature of the resonance phenomenon inherent to axion inflation.

The remainder of this paper is organized as follows. In Sec. 2 we review the mechanism of axion

inflation. Sec. 3 explains the resonance inherent to this coupled system of differential equations and

provides analytical estimates for the relevant time scales, which are further refined in appendix A.

This is numerically confirmed by our numerical results presented in Sec. 4 for two exemplary values

of the axion decay constant. Based on these results for the background evolution, we compute the

power spectrum of scalar fluctuations in Sec. 5 before concluding in Sec. 6. Details on our numerical

procedure as well as on the comparison with previous works can be found in appendices B and D,

respectively.

2 Axion inflation

We consider a pseudo-scalar Φ coupled to the field strength tensor Fµν of an abelian gauge group

through a shift-symmetric coupling (see e.g. [10] for a review),

L√−g = −1

2
∂µΦ∂µΦ− 1

4
FµνF

µν − V,Φ −
1

4 f
ΦFµνF̃

µν . (2)
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Here V (Φ) is a scalar potential explicitly breaking the shift-symmetry of Φ and F̃µν = εµνρσFρσ/(2
√−g)

with ε0123 = 1 is the dual field strength tensor. Working in quasi de-Sitter space we introduce the

time variable

N =

∫
Hdt , (3)

where H = ȧ/a denotes the (approximately constant) Hubble parameter. In the separate Universe

picture, the number of e-folds N elapsed in a time interval [t1, t2] between two equal-density hyper

surfaces varies by δN between ‘separate’, locally homogeneous universes, accounting for the inhomo-

geneities in our primordial Universe [29–32]. Expanding2

Φ = ΦδN=0 +
∂Φ

∂N

∣∣∣∣
δN=0

δN ≡ φ+ δφ (4)

we obtain the equation of motion for the homogeneous part

φ′′ +
H ′

H
φ′ + 3φ′ +

V,φ
H2
− 1

fH2
〈 ~E ~B〉 = 0 , (5)

with ′ = ∂/∂N and 〈. . . 〉 denoting the average over many universes, thus selecting the globally

homogeneous contribution.3

Turning to the gauge fields, the CP -odd nature of FµνF̃
µν will be most transparent when expanding

in Fourier-modes of the comoving vector potential in the chiral basis,

~A(τ, ~x) =

∫
d2k

(2π)3/2

∑

σ=±

[
Aσ(τ,~k)êσ(k̂)â(~k)ei

~k~x +A∗σ(τ,~k)ê∗σ(k̂)â†(~k)e−i
~k~x
]
, (6)

with the polarization tensors obeying êσ(k̂) · ~k = 0, êσ(k̂) · êσ′(k̂) = δσσ′ and i~k × êσ(k̂) = σkêσ(k̂)

where ~k = |~k|k̂ = k k̂, â (â†) denoting the annihilation (creation) operators and dτ = dt/a denoting

conformal time. In this basis, the equation of motion for the Fourier coefficients Aσ(τ,~k) is obtained

as

d2A±(τ,~k)

dτ2
+
[
k2 ± 2λξkaH

]
A±(τ,~k) = 0 with ξ ≡ λφ′

2f
> 0 , (7)

where λ ≡ sign(φ′). For a sufficiently large inflaton velocity the effective mass term in the square

brackets for the helicity mode with σ = −λ undergoes a tachyonic instability, leading to an exponential

enhancement. These gauge fields backreact on the inflaton equation of motion. The physical electric

and magnetic fields entering in (5) are obtained as

~E = − 1

a2

d ~A

dτ
, ~B =

1

a2
~∇× ~A , (8)

2Here we are dropping terms of O(δN2), assuming δN � 1. Moreover, throughout this paper, we will neglect the

spatial gradients of the inflaton field. As we will see later, due to the strong enhancement of the scalar power spectrum

in axion inflation, this is a non-trivial limitation of our analysis. To go beyond this and include strong spatial gradients

of the scalar and gauge field into the analysis would require moving beyond the δN -formalism, e.g. along the lines of the

full quantum formalism of [33].
3Here we assume a definite sign for the initial value of φ′. In a CP conserving universe this corresponds to averaging

over a finite subset of Hubble patches.
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leading to

〈 ~E ~B〉 = − λ

a4

∫
dk

4π
k3 d

dτ

∣∣∣A−λ(τ,~k)
∣∣∣
2
, (9)

and the energy density

〈
E2 +B2

2

〉
=

1

a4

∫
dk

4π2
k2



∣∣∣∣∣
dA−λ(τ,~k)

dτ

∣∣∣∣∣

2

+ k2
∣∣∣A−λ(τ,~k)

∣∣∣
2


 , (10)

where we have considered only the dominant, enhanced helicity mode. In summary, Eqs. (5), (7) and

(9), together with the Friedmann equation

3H2M2
P = V (φ) +

1

2
H2(φ′)2 +

〈
E2 +B2

2

〉
, (11)

form a closed, integro-differential system of equations describing the gauge field production induced

by the motion of the inflaton, taking into account the backreaction of these gauge fields.

3 Resonant gauge field production

In the limit of quasi de-Sitter space-time, τ = −1/(aH), and for constant ξ, Eq. (7) can be solved

exactly. For the enhanced mode, this yields

A−λ(τ,~k) =
eπξ/2√

2k
W−iξ,1/2(2ikτ) . (12)

Here Wk,m(z) denotes the Whittaker function and we have imposed Bunch Davies vacuum as an initial

condition for far sub-horizon modes. Inserting this into Eqs. (9) and (10) yields

〈 ~E ~B〉 ' − λe2πξ

221π2ξ4
H4

∫ xuv

0
x7e−xdx ' −2.4 · 10−4 λH4 e

2πξ

ξ4
, (13)

and
〈
E2 +B2

2

〉
' e2πξ

219π2ξ3
H4

[∫ xuv

0
x6e−xdx+

1

(23ξ)2

∫ xuv

0
x8e−xdx

]
' 1.3 · 10−4H4 e

2πξ

ξ3
, (14)

with xuv ' 2ξ ensuring the cut-off of the UV divergence. The last equality is valid for ξ & 3, smaller

values of ξ require a more careful regularization scheme [34, 35].

We shall now provide arguments that once ξ becomes time-dependent, a second time scale (be-

sides H−1) appears, characterizing a resonance phenomenon with a frequency in e-fold time of ωresN =

2π/∆Nξ. This resonance drives self-excited oscillations with frequency ωresN appearing in 〈 ~E ~B〉.

Let us start our analysis by looking again at the gauge field Fourier mode equation of motion (7).

Rewriting this into e-fold time

dN = aHdτ ⇒ d2

dτ2
= a2H2

(
d2

dN2
+ (1− ε) d

dN

)
, (15)

we get

A′′±(~k) + (1− ε)A′±(~k) +
k

aH

(
k

aH
± 2λξ

)
A±(~k) = 0 . (16)
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d ⌧
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|A � � ( ⌧ , k )|2
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⌧ = � 1 , k= e � N

� l n ( ⇠ ) � l n ( 2 / ⇠ )

� l n
k

a  H

Fi g u r e 1:  Bl u e d a s h:  T h e s q u a r e of t h e g a u g e fi el d  m o d e |A − λ ( τ, k ) |2 .  R e d s oli d:  T h e E B i nt e g r a n d k 4 d
d τ

|A − λ ( τ, k ) |2 .

B o t h c u r v e s a r e e v al u a t e d a t τ = − 1, a n d di s pl a y e d a s a f u n c ti o n of  w a v e n u m b e r, s u c h t h a t l n k
a H

= 0 c o r r e s p o n d s

t o a h o ri z o n si z e d  m o d e.  L ef t v e r ti c al li n e:  w a v e n u m b e r ( o r n u m b e r of e-f ol d s af t e r h o ri z o n c r o s si n g ) of t h e  m a xi m al

e x p o n e nti al g r o w t h of |A − λ ( τ, k ) |2 .  Ri g ht v e r ti c al li n e:  T h e E B i nt e g r a n d g e t s i t s d o mi n a nt c o nt ri b u ti o n a t a b o u t

∆ N ξ l a t e r.  H e r e  w e h a v e s e t ξ = 5.

I n t h e r e m ai n d er of t hi s s e cti o n,  w e  will n e gl e ct all t er m s s u p p r e s s e d b y t h e sl o w-r oll p ar a m et er

= − H / H 1 . I n o u r n u m eri c al a n al y si s, d e s cri b e d i n S e c. 4 ,  w e k e e p all sl o w-r oll c or r e cti o n s

t h o u g h.  We s e e t h at t h e  m o d e A − λ b e c o m e s t a c h y o ni c o n c e k / (a H ) < 2 ξ ,  w hil e it st art s f r e e zi n g

o ut d u e t o t h e f ri cti o n t er m A − λ t a ki n g o v e r o n c e k / (a H ) < 1 / ( 2ξ ).  We n o w l o o k at t h e b e h a vi o u r of

t h e  m a s s t er m of t h e gr o wi n g  m o d e  m or e cl o s el y.  F or c o n st a nt ξ , t h e  m a s s t er m s t a k e s it s  m a xi m all y

n e g ati v e v al u e m̂ 2
− λ = − ξ 2 a t k / (a H ) = ξ si n c e t h e q u a d r ati c f u n cti o n of m 2

− λ = k / (a H ) (k / (a H ) − 2 ξ )

h a s z er o e s at k / (a H )  = 0 a n d at k / (a H ) = 2ξ .  H e n c e, d u e t h e b e h a vi o u r of t h e  W hitt a k er f u n cti o n

g o v er ni n g t h e g a u g e fi el d  m o d e s, t h e  m aj or p art of t h e gr o wt h of A − λ o u t of t h e  B u n c h- D a vi e s i niti al

c o n diti o n s h a p p e n s  w hil e k / (a H ) ξ .

H o w e v er, t h e i nt e gr a n d of E B , d u e t o t h e τ - d eri v ati v e a n d t h e k 4 p r ef a ct o r, t a k e s it s  m a xi m u m

c o nt ri b uti o n at a p p r o xi m at el y k / (a H ) = 2/ ξ ( s e e al s o  A p p e n di x A ).  T hi s i m pli e s t h at E B i s d o mi-

n at e d b y  m o d e s  w h o s e ‘ k n o wl e d g e’ of t h e v al u e of ξ g o v er ni n g t h ei r  m a xi m u m gr o wt h p eri o d ori gi n at e s

f r o m a b o ut

∆ N ξ l n
ξ 2

2
( 1 7)

e-f ol d s e a rli er.  T hi s i s cl e arl y vi si bl e i n  Fi g. 1 ,  w h er e  w e s e e t h at t h e E B i nt e gr a n d k 4 d
d τ |A − λ ( τ, k )|2

h a s it s p e a k c o nt ri b uti o n a b o ut  ∆ N ξ aft e r t h e ti m e  w h e n |A − λ ( τ, k )|2 h a s it s  m a xi m u m e x p o n e nti al

gr o wt h.  N ot e, t h at i n  Fi g. 1 w e t o o k τ = − 1 a n d e x p r e s s e d t h e  w a v e n u m b er k a s n u m b er of e-f ol d s

aft er h ori z o n cr o s si n g − l n k / a H .  T hi s  m e a n s t h at t h e g a u g e  m o d e s ar e still s u b- h ori z o n at t h e ti m e of

m a xi m al gr o wt h ( k / a H = ξ > 1), b ut al r e a d y s u p er- h ori z o n  w h e n t h e y pr o vi d e t h e p e a k c o nt ri b uti o n

t o t h e E B i nt e gr a n d (k / a H = 2 / ξ  < 1).
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Figure 2: Black solid: Numerically computed, and rescaled, response of 〈 ~E ~B〉 to the change in ξ with significant lag

' ∆Nξ. Black dash: Almost step function like change of ξ modeled as ξ(N) = ξ0 + ∆ξ
2

(1 + tanh(µξ(N −N0))) with the

jump taking place at N0 = 3 from ξ0 = 5 with amplitude ∆ξ = 1 and steepness µξ = 10 (dashed black).

Using this information, we can ask a simple question – how does 〈 ~E ~B〉 react if we allow for a

sudden step-like change of ξ at a certain moment of time? For explicitness, let us assume that ξ = ξ0

changes to ξ0 + ∆ξ > ξ0 at N = N0 suddenly. At N = N0 the integral 〈 ~E ~B〉 gets its dominant

contribution from modes A−λ(~k) with k/(aH) ' 2/ξ which had their growth happening ∆Nξ e-folds

earlier. At that time N0 −∆Nξ we still had ξ = ξ0 and hence

|〈 ~E ~B〉N0 | ' 2.4 · 10−4H4 e
2πξ0

ξ4
0

. (18)

Conversely, modes A−λ(~k) with k/(aH) ' 2/ξ at N = N0 will grow towards their plateau value and

thus dominate 〈 ~E ~B〉 only starting at time N = N0 + ∆Nξ. These modes experience their growth for

N > N0 when ξ > ξ0. Hence, they will approach a plateau governed by ξ = ξ0 + ∆ξ and thus

|〈 ~E ~B〉N0+∆Nξ | ' 2.4 · 10−4H4 e
2π(ξ0+∆ξ)

(ξ0 + ∆ξ)4
> |〈 ~E ~B〉N0 | . (19)

The transition from the initial plateau to the final plateau happens smoothly, yet clearly the sys-

tem shows ‘lag’: It reacts to a sudden change in ξ by changing to its new 〈 ~E ~B〉 value only with a

time lag of about ∆Nξ. A numerical computation of 〈 ~E ~B〉 displayed in Fig. 2 clearly confirms this lag.

Assume now that instead of a sudden change, we provide ξ with a periodic time dependence

ξ(N + 2π/ωN ) = ξ(N) with constant frequency ωN in e-fold time. Clearly, 〈 ~E ~B〉 will now react with

the same lag and thus oscillate with a phase shift

∆α = ωN∆Nξ (20)

as long as this phase shift ∆α < 2π.4 Clearly then, demanding ∆α = π as a necessary condition for

resonance (which can only occur if 〈 ~E ~B〉 couples back to φ̇, this we will discuss shortly), this defines

4To see this from the ‘sudden approximation’ argument before, break up a periodic ξ(N) into small step-wise changes.
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Figure 3: Left: Numerically computed, and rescaled, response of 〈 ~E ~B〉 with significant lag (solid black) for a harmonic

perturbation of ξ with near-critical frequency ωN ∼ ω?N (dashed black). Right: For much larger frequencies the response

averages out to zero. We chose ξ̄ = 5 and the oscillation amplitude ∆ξ = 1.

a critical frequency

ω?N =
π

∆Nξ
. (21)

We can numerically compute the full 〈 ~E ~B〉 responding to a harmonic perturbation of ξ around ξ̄

with frequency ωN . Figure 3 shows this for a frequency near ω?N , and for a frequency much larger

than ω?N . We see clearly, that at ωN ∼ ω?N there is strong response of 〈 ~E ~B〉 with lag. Moreover,

at ωN ∼ ω?N the lag corresponds to a significant phase shift, while for much larger frequencies the

response averages out to zero.

Finally, we can numerically determine the lag ∆Nξ occurring as a function of ξ. This is shown in

Fig. 4 for ωN = 0.2 and clearly shows (solid red line) the scaling ∆Nξ = ln(ξ2/2) derived in Eq. (17).

The refined estimate derived in App. A is depicted by the dashed red line. The oscillations visible

at larger values of ξ are not captured by the estimate (17), which was based on determining the

difference between the points of maximal growth and maximal contribution to 〈 ~E ~B〉 for any given

mode at constant ξ. For a periodically varying ξ these estimates receive corrections, which depend in

particular on the shape of the pulses in the periodic function ξ.

At this point it becomes interesting to turn to our dynamically coupled system, where the ξ-

parameter is determined by the scalar field equation of motion

φ̈+ 3Hφ̇+ V,φ −
1

f
〈 ~E ~B〉 = 0 . (22)

The driving force of the scalar potential V,φ is balanced by the sum of the Hubble friction (second term)

and the gauge-field induced friction (contained in the last term), while the φ̈ only becomes relevant in

the very last stages of inflation. In our full numerical solution which clearly displays a resonance (see

Sec. 4) we can observe that the oscillating parts of the two friction terms 3Hφ̇ and 〈 ~E ~B〉 (sourced

by the time-dependent part of ξ) cancel against each other at N . 60 where the backreaction is not

yet very strong, whereas V,φ, which depends only on φ but not on φ̇, evolves to good approximation

9
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Figure 4: Data points: The lag ∆Nξ for the numerically computed response of 〈 ~E ~B〉 to a harmonic perturbation of ξ

with frequency ωN = 0.2 as a function of ξ. Solid red line: our estimate ∆Nξ ∼ ln(ξ2/2) in Eq. (17). Dashed red line:

refined estimate derived in App. A.

monotonously. This is clearly visible in Fig. 5 where we plot the different parts of the scalar field

equation of motion evaluated on the numerical solution for 1/f = 25, discussed in detail in Sec. 4.

We now parametrize ξ as ξ = ξ̄+ ∆ξ(N) with the long-time average ∆ξ(N) ≡ 1
N

∫
dN∆ξ(N) = 0,

where an over-bar denotes averaging over time while all quantities are implicitly containing an average

over separate universes part of the δN formalism (unless this average is written explicitly as 〈. . .〉).
Consequently, we can recast the time dependent part of φ̇ as ∆ξ(N) and get approximately

6H2 f

λ
∆ξ − 1

f
∆〈 ~E ~B〉(∆ξ) ' 0 (23)

where 〈 ~E ~B〉 = 〈 ~E ~B〉+ ∆〈 ~E ~B〉.
Now we use the properties of the background 〈 ~E ~B〉 given in Eqs. (9),(12) to write

〈 ~E ~B〉 = −λAEB (24)

where AEB > 0 is a positive definite function. Assuming the oscillating part ∆〈 ~E ~B〉 will not change

the sign of the total 〈 ~E ~B〉, we can then define the split of 〈 ~E ~B〉 into background and oscillatory part

with a definite phase relative to the sign of 〈 ~E ~B〉 by writing

〈 ~E ~B〉 = 〈 ~E ~B〉+ ∆〈 ~E ~B〉 ≡ −λ (AEB + ∆AEB) . (25)

This allows us rewrite Eq. (23) as

∆ξ +
1

6f2H2
∆AEB(∆ξ) = 0 ⇔ ∆ξ = −1

6

∆AEB(∆ξ)

f2H2
. (26)

Moreover, from the values of f and H we see that the factor 1/(6f2H2) rescales ∆AEB to be dimen-

sionless and to have the same magnitude as ∆ξ.
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Figure 5: The contributions φ′′ (black dash), ∂φV/H
2 (black solid), (3 − ε)φ′ (red short dash), and 〈 ~E ~B〉/(fH2) (red

dash-dot) to the scalar field equation of motion for f = 1/25 and V (φ) = m2φ2/2 (see Sec. 4) [in units of MP ]. We

have conveniently expressed the derivatives φ̇ and φ̈ in terms of e-fold time derivatives φ′, φ′′. Note that for N . 60 we

find that φ′′ is negligible, while the first long-wave oscillation has φ′ and 〈 ~E ~B〉 of opposite phase. Note further, that for

N & 60 the long-wave oscillations are superimposed by faster damped oscillations. For these, φ′′ is no longer negligible,

and the phase shift at each step of the chain φ′′ → φ′ → 〈 ~E ~B〉 is about π/2.

For this rescaled ∆AEB, the discussion around Eq. (21) and the numerical observation of the time

delay in Fig. 3 indicate the presence of a resonance at ωN = ω?N . The argument for this goes as

follows: At the resonance frequency the observed time delay corresponds to a phase shift of φ, that

is, we observe
∆AEB(∆ξ(N))

6f2H2
∼ ∆ξ

(
N − π

ω?N

)
. (27)

Moreover, if we assume a nearly harmonic perturbation with an approximately constant frequency for

∆ξ, we have by definition

∆ξ

(
N − π

ω?N

)
∼ ∆ξ′′ . (28)

Therefore, in plugging eq. (28) into eq. (27), and this in turn into the right-hand side of Eq. (26) we

find that on a harmonic perturbation the equation of motion of ξ becomes consistent with an oscillator

equation.

∆ξ ∼ −∆ξ′′ . (29)

Next, we observe that for N & 60 in Fig. 5 there is a secondary pattern of damped oscillations

at higher frequency compared to the long-wave ’base frequency’ oscillations discussed above. For this

pattern the oscillating contribution of φ̈ is no longer negligible. Moreover, we observe that the phase

shift at each step of the chain φ′′ → φ′ → 〈 ~E ~B〉 is about π/2. This implies that for this pattern the

corresponding high-frequency (labeled by ‘h.f.’) oscillating parts ∆ξ(h.f.) and ∆A(h.f.)
EB , split off the

full quantities the same way as we did for the base frequency parts above, satisfy

(∆ξ(h.f.))′ + 3∆ξ(h.f.) +
1

2f2H2
∆A(h.f.)

EB (∆ξ) = 0 . (30)
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The observed phase relation in Fig. 5 then states that ∆A(h.f.)
EB (∆ξ) has a phase shift of π/2 to the

right compared to ∆ξ(h.f.) and of π to the right compared to (∆ξ(h.f.))′. Hence, the figure indicates

that for the high-frequency oscillations

∆ξ(h.f.) ∼ (∆A(h.f.)
EB )′ , (∆ξ(h.f.))′ ∼ (∆A(h.f.)

EB )′′ . (31)

Plugging this relation into Eq. (30) we get the structure of the dampened harmonic oscillator differ-

ential equation

(∆A(h.f.)
EB )′′ +O(1)(∆A(h.f.)

EB )′ + (ω(h.f.))2∆A(h.f.)
EB = 0 . (32)

While we cannot determine the frequency of these faster oscillations ω(h.f.) at this time, we consider the

fact that the equation of motion takes the dampened oscillator form to be strong evidence supporting

the existence of these secondary, faster dampened oscillations in the coupled system.

It is due to this line of reasoning that we conclude the presence of resonance occurring in the strong

gauge-field back-reaction regime. Neglecting the resonance phenomenon, ξ is typically a monotonically

growing function of N , while the resonance frequency only scales logarithmically with ξ and thus N .

Hence, the sweep of ξ effectively scans over possible resonance frequencies. Hence we expect the

increasing value of ξ to eventually trigger the resonance behaviour with approximately the predicted

frequency. Some of the ideas presented here have been qualitatively previously presented in Refs. [25–

27]. After formalizing these arguments, we here succeed in quantitatively explaining the observed

resonance frequency. Strictly speaking, the arguments spelled out above form a necessary, but not

sufficient condition to ensure a resonance. However, in our numerical solutions to this coupled system

of differential equations (see next section) we always see this resonance, indicating that this is indeed

a generic feature.

4 Numerical results

We performed a full numerical analysis taking MP /f = {20, 25} and V (φ) = m2φ2/2 with m =

6× 10−6MP , reproducing the observed amplitude of the scalar power spectrum at CMB scales.5 Our

final goal is to find the solution of the system of coupled integro-differential equations (5), (7) and (9).

The first step is to solve the inflaton equation of motion using the estimate of 〈 ~E ~B〉 given in Eq. (13),

which is obtained by solving the equations of motion of the gauge field modes, A−λ(τ, k), assuming a

constant inflaton speed, Eq. (12). Then, choosing an appropriate array of k-modes, we solve Eq. (7)

for each mode and we compute the discretized integral of equation Eq. (9), getting a new estimate

of the backreaction. We reach the final solution by iterating this procedure until we reach the end of

inflation with a self-consistent solution, see App. B for details. The initial conditions for the inflaton

field are chosen at CMB scales in accordance with the vacuum slow-roll solution while the Ak modes

satisfy Bunch-Davies vacuum conditions; we stop the time evolution when the system reaches the end

of inflation ε ' 1.

5As expected for the discussion in Sec. 3, the generic features of the results discussed here are not very sensitive to

the precise form of the scalar potential. In particular, we confirm similar results using a potential linear in φ.
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Figure 6: Top: 1/f = 20. Bottom: 1/f = 25. The left panels show the numerical results of ρEB and 〈 �E �B〉 (solid lines)

compared to their analytical estimate (13), (14) (dashed lines). The vertical lines refer to the end of inflation in absence

of backreaction (black line) and for the full numerical analysis (red line). The right panels show the oscillatory behaviour

of the ξ parameter (solid black line) compared to its analytical result coming from the solution of the inflaton equation

of motion when the gauge field backreaction is given by (13) (dashed red line). For better visibility, we display only the

last ∼ 20 e-folds of inflation.

The results of our analysis for 1/f = {20, 25} are shown in Fig. 6 where we compare the final

solution for 〈 �E �B〉 and ρEB = 〈E2+B2

2 〉 with the analytical estimate of Eqs. (13) and (14). We also

plot the ξ parameter which shows that the oscillatory behaviour of the inflaton speed becomes more

apparent in case of strong backreaction.6 We see that the numerical solution including the backreaction

oscillates around the analytical estimate, with an oscillation period of ∆Nξ ∼ 3, in accordance with

our estimate in Sec. 3. For f = 1/25 the value of φ′ temporarily changes sign (at N � 62). The reason

for this is the delay in gauge friction term discussed in Sec. 3. As |φ′| drops, the gauge friction drops

and the opposite sign of φ′ (encoded by λ) entails the opposite sign for the gauge friction term as one

would expect of a friction term. However, since the gauge friction term is dominated by modes which

are controlled by the value of φ′ some ∆Nξ e-folds earlier, the sign change in the gauge friction term

is delayed, allowing φ′ to temporarily change sign.

Our results are in accordance with those previously found in Refs. [25–27], which reported oscilla-

tory features in the inflaton velocity with a period of 3− 5 e-folds. All these studies are based on fully

6At the maxima of these oscillations, the value of ξ exceeds the threshold ξ � 4.7 bounding the perturbative regime

for approximately constant ξ [36, 37]. This threshold cannot be immediately applied to a strongly oscillating ξ and we

will comment on perturbativity constraints in more detail in Sec. 5.
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independent codes and numerical methods, and the results observed can be nicely explained with the

semi-analytical arguments presented in Sec. 3.

5 Scalar power spectrum and primordial black holes

5.1 Scalar power spectrum sourced by gauge field configuration

The gauge field population does not only backreact on the dynamics of the homogeneous inflaton field

but also acts as source term for the scalar inhomogeneities sourcing the density perturbations of the

Universe. In the separate universe picture, curvature fluctuations on super-horizon scales are obtained

as [29–32] 7

ζc ' δN(t∗) ' N,φ(t∗) δφ(t∗) . (33)

Here N(t∗) denotes the average number of e-folds elapsed between t∗ and the end of inflation, whereas

δN(t∗) denotes the deviation occurring in a particular patch of the Universe induced by super-horizon

scalar fluctuations. The perturbed version of Eq. (5) reads

0 =φ′′ +

(
3 +

H ′

H

)
φ′ +

V,φ
H2

+
H ′

H
δφ′ + φ′

∂

∂N

(
H ′

H

)
δN +

∂

∂N

(
V,φ
H2

)
δN +

2H ′

fH3
〈 ~E ~B〉 δN

+ δφ′′ + 3 δφ′ − 1

fH2
~E ~B − 1

fH2

∂〈 ~E ~B〉
∂N

δN . (34)

Since we are keeping only fluctuations to first order, all occurrences of H, V and 〈 ~E ~B〉 are here

understood to be evaluated in terms of the homogeneous field φ. On the contrary, the factor ~E ~B in

the third term of the third line includes the inhomogeneities in the gauge fields sourced by δφ. Using

Eq. (5) to replace the terms in the first line, dropping the slow-roll suppressed terms in the second

line and inserting Eq. (33) this simplifies to

LN [δφ(N)] ≡ δφ′′ + 3 δφ′ − N,φ

fH2

∂〈 ~E ~B〉
∂N

δφ =
1

fH2
( ~E ~B − 〈 ~E ~B〉) ≡ 1

fH2
δEB . (35)

This inhomogeneous linear differential equation can be solved by the Greens function method, see

e.g. [11, 28].8

For any linear operator LN , the Greens function satisfying

LN G(N,N ′) = δ(N −N ′) , (36)

7This expression relies on the assumption that ∆N (φ1, φ2), the time in e-folds required for the inflaton to move from

φ1 to φ2 does not depend on any further independent parameters, such as e.g. the inflaton velocity. For the attractor

solution, this is justified even taking into account the strong, velocity-dependent friction. In the strongly oscillatory

phase towards the end of inflation we expect corrections due to the break-down of the slow-roll approximation.
8For a comparison with these pioneering works see App. D. In short, we confirm the results found in the weak

backreaction regime but disagree in the strong backreaction regime. We find the backreaction to be weaker than

previously estimated, leading to a significant enhancement of the scalar power spectrum in this regime.
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can be convoluted with the source term S(N),

δφ(N) =

∫
G(N,N ′)S(N ′)dN ′ , (37)

to obtain a solution of the inhomogeneous equation LN δφ(N) = S(N). In Eq. (35) we identify S(N) =

δEB/(fH
2). Moreover, for any given function 〈 ~E ~B〉(N) we can determine (at least numerically)

the Greens function of the corresponding linear operator LN by solving the ordinary differential

equation (36). Since this is a second order differential equation we need to specify two boundary

conditions which we take to be G(N,N) = 0 and G′(N,N) = 1.9

With this, the two-point function of scalar perturbations exiting the horizon at e-fold N can be

computed as

〈ζ2〉 = 〈δN2〉 = N2
,φ〈δφ2〉 = N2

,φ

∫
dN ′G(N,N ′)

∫
dN ′′G(N,N ′′)〈S(N ′)S(N ′′)〉 . (38)

We parametrize the unequal time correlations by g(N ′,∆N),
∫ ∞

N ′+∆N
dN ′′〈S(N ′)S(N ′′)〉 = 〈S(N ′)2〉g(N ′,∆N) . (39)

with

g(N ′,∆N) =




γ ∆N = 0

ε ∆N > 0
(40)

where γ = O(1) and ε → 0 in the limit of vanishing unequal time correlators, i.e. in the limit of

white noise. If G(N,N ′′) and 〈S2(N ′)〉 do not vary significantly over the support of g(N ′,∆N) we

can approximate10

∫
dN ′′G(N,N ′′)〈S(N ′)S(N ′′)〉 ' G(N,N ′)〈S2(N ′)〉g(N ′, 0)

' G(N,N ′)

f2H4
〈δ2
EB(N ′)〉

=
G(N,N ′)

f2H4
σ2
EB(N ′) , (41)

9For the retarded Green’s function G(N,N ′) = 0 if N ′ > N . In addition we know that G(N,N ′) must be a continuous

function since LNG(N,N ′) does not involve generalized functions beyond δ(N−N ′) functions and in particular it does not

contain derivatives of δ functions. Imposing continuity at equal time requires lim
N′→N−

G(N,N ′) = lim
N′→N+

G(N,N ′) = 0.

On the other hand, integrating (36) over an infinitesimal neighbourhood of N = N ′ we get

∫ N′+ε

N′−ε
LNG(N,N ′)dN = 1.

G being continuous, ∂NG must be bounded and we immediately see that if we shrink the integration domain to zero

size the only term which can give a finite contribution is lim
ε→0

∫ N′+ε

N′−ε
LNG(N,N ′)dN = lim

ε→0

∫ N′+ε

N′−ε
∂2
NG(N,N ′)dN =

∂NG(N ′+, N
′)− ∂NG(N ′−, N

′) = ∂NG(N ′+, N
′) = 1.

10 To verify these approximations and quantify the importance of the unequal time contributions, we numerically

evaluate g(N ′,∆N) using the mode functions Ak(N) from the numerical computation in Sec. 4. See App. C for details.

Far away from the resonance regime, we find this approximation to be unproblematic. As we approach the resonant

regime, the unequal time correlators become more important while at the same time σ2
EB varies more rapidly. We find

values of g(N ′, 0.1)/γ ' 0.9 and g(N ′, 0.5)/γ ' 0.4, indicating that most of the support of g is focused on a small region

over which σ2
EB varies only moderately. We conclude that the unequal time correlators most likely lead to an O(1)

correction to (42) in the resonance regime, slightly smearing out the peaks and troughs.
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Figure 7: Scalar power spectrum for 1/f = 20 (left) and 1/f = 25 (right). The resonantly enhanced gauge field

population leads to strong enhancement of the scalar power spectrum at small scales, with peaks reflecting the resonance

structure. The gray and red shaded areas indicate the limitations of the δN formalism, see text for details.

with σ2
EB ≡ ( �E �B − 〈 �E �B〉)2 denoting the variance of �E �B at a given time. For a given set of mode

functions Ak(N) the variance σ2
EB can be computed explicitly, see e.g. App. A of [14]. The final

expression for the power spectrum then reads

∆2
ζ = 〈δζ2〉 � N2

,φ

∫
dN ′G

2(N,N ′)σ2
EB(N

′)

f2H2(N ′)
+ 〈ζ2〉vac , (42)

where 〈ζ2〉1/2vac = H/(2πφ′) is the usual vacuum contribution.

The result obtained by numerically evaluating the Greens function G(N,N ′) and the variance σEB

is depicted in Fig. 7. The power spectrum is dramatically enhanced towards the end of inflation and

inherits the resonant oscillations present in the source term. As highlighted by the gray band, the

power spectrum extends above ζ ∼ 0.3, indicating the breakdown of the perturbative expansion used

in our analysis. Moreover, for f = 1/25, the inflaton speed temporarily changes sign (see Fig. 6),

implying that φ is not monotonously increasing. Strictly speaking, this requires to go beyond the

standard δN formalism (see footnote 7). In practice, since this only happens for a very short period

of time, we expect the δN formalism (with the inflaton speed regularized to some small value round

N � 62) to nevertheless give a good estimate. The corresponding problematic region is highlighted

in red in the right panel of Fig. 7. Due to these caveats, we cannot make a prediction about the

precise amplitude of the scalar power spectrum at small scales. However, we can conclude that power

spectrum reaches values of ∆2
ζ � 0.01 in the last e-folds of inflation, exceeding the threshold for

primordial black hole formation (see below).

The very large values for the scalar perturbations at small scales, indicating an inhomogeneous

field configuration with large gradient energy, may trigger a premature end of inflation. This would

relax the bounds from primordial black hole formation and consequently the bound on the coupling

1/f (see below). However, recent findings [38–41] indicate that high-scale inflation is quite robust

against large gradient energies. How much of this stability against large gradients remains on the

� 2..3MP of field range corresponding to the last about 5 e-folds of inflation in a quadratic potential

is an open question which we leave for future work. We hope that our findings will trigger a more

detailed non-perturbative analysis of this last stage of inflation.
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Even discarding the peaks arising from the resonant enhancement, the amplitude of the power

spectrum in Fig. 7 at small scales is significantly larger than expected from previous estimates [14,28].

We provide a detailed comparison and discussion in Appendix D. In summary, we conclude that

previous analytical analyses have overestimated the amount of backreaction in Eq. (35) and have hence

underestimated the amplitude of the power spectrum in the strong backreaction regime. Consequently,

the amplitude of the scalar power spectrum we report is in particular significantly larger than found

in [25], which accounted for the oscillating inflaton velocity but used the estimate for the power

spectrum derived in [14].

5.2 Primordial black hole formation and phenomenology

If the scalar perturbations at a given scale exceed a critical threshold ζc ∼ 0.5 they collapse into

a primordial black hole upon horizon re-entry [42]. The mass of the corresponding black hole is

determined by the energy contained in a Hubble volume at the time of horizon re-entry,

MPBH(N) ' γ 4π

3
(e−jNHinf)

−3 × 3 (e−jNHinf)
2M2

P ' 55 g γ

(
10−6MP

Hinf

)
ejN , (43)

with N counting the number of e-folds from the horizon exit of the respective fluctuation until the

end of inflation, Hinf denoting the Hubble parameter at this time, j = 2 (j = 3) for radiation (matter)

domination after inflation and γ ' 0.4 parametrizes the efficiency of the gravitational collapse [43,44].

Once formed, the PBHs can slowly decay by emitting Hawking radiation. In particular, PBHs with

MPBH . 1011 kg decay into thermal radiation before the onset of big bang nucleosynthesis and their

abundance can thus be very large [45,46]. On the other hand, PBHs with 1011 kg .MPBH . 1014 kg

have a life-time comparable with the age of the universe and their abundance is highly constrained by

the non-observation of their Hawking radiation. Heavier black holes are stable and contribute to dark

matter, their abundance is constrained by the observed dark matter abundance as well as by direct

searches, see e.g. Refs. [42, 47] for an overview.

For a given amplitude of the scalar power spectrum, the probability of forming PBHs depends

on the statistical properties of the scalar fluctuations, since typically PBH formation is a rare event

occurring in the tail of the distribution function. For a gaussian distribution any power spectrum

generating stable black holes with 〈ζ2〉 & 10−2 leads to an overclosure of the universe [48]. For a

positive χ2-distribution, as expected for the sourced scalar perturbations in axion inflation, this value

is lowered to 〈ζ2〉 & 10−3 [14]. The amplitude of the power spectrum in Fig. 7 clearly exceeds these

values towards the end of inflation. Thus requiring MPBH(N) < 1011 kg to avoid these overclosure

bounds restricts the enhancement of the scalar power spectrum to the last ∼ 10 e-folds, see Eq. (43).

Here we have set j = 3 since the expected large abundance of PBHs generated right after inflation

will lead to an early matter dominated phase.

Consequently, the power spectrum depicted in Fig. 7 which is only enhanced in the last ∼ 5 (9)

e-folds for f = 1/20 (1/25), is (marginally) compatible with bounds from PBH formation. Signifi-

cantly larger values of 1/f will lead to overproduction of stable PBHs, though the precise bound will

depend on the details of the last stages of inflation, see discussion below Eq. (42). On the contrary,
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a large abundance of metastable black holes as found for 1/f . 25 entails several interesting phe-

nomenological consequences. Firstly, an early PBH dominated phase, eventually releasing its energy

into thermal Hawking radiation, provides a remarkable reheating mechanism. Any radiation released

during preheating or in the inflaton decay is strongly red-shifted during the PBH dominated era, and

hot big cosmology is re-ignited once the PBHs decay. Among others, this poses interesting challenges

for baryogenesis. Secondly, there are three significant sources of gravitational waves (GWs): (i) GWs

sourced by the gauge field population during inflation [12], (ii) GWs sourced (at second order) from

the large scalar perturbations [49–51] and (iii) GWs sourced as a component of the Hawking radiation

of the decaying PBHs [45,52]. All of these sources result in high frequency (∼MHz and beyond) GWs,

beyond the scope of current experiments but suggesting a potential target for potential future high

frequency experiments. We expect that the characteristic oscillating features of the source 〈 ~E ~B〉 will

also be visible in the GW spectrum. Note that any GWs which are sub-horizon during the PBH dom-

inated phase will be strongly diluted, leading to an interesting interplay between the GW and PBH

spectrum. This applies in particular to GWs generated during preheating right after inflation [23].

6 Conclusions

Axion inflation is generically accompanied by an explosive gauge field production, triggered by a

tachyonic instability of roughly horizon sized gauge field modes, which is in turn sourced by the

inflaton velocity. The energy budget of this gauge field configuration is drained from the kinetic

motion of the inflation, which can be described as a backreaction of the classical gauge fields on the

homogeneous inflaton equation of motion. In this paper we study the resulting coupled system of

differential equations numerically, pointing out several new aspects which point to a more complex

dynamics than previously anticipated.

The tachyonic instability is most effective on slightly sub-horizon scales, and hence the amplitude

of any gauge field mode is set by the value of the inflaton velocity just before this mode crosses the

horizon. On the other hand, the non-linear backreaction term is dominated by super-horizon gauge

field modes, and hence reacts with a time lag to any change in the inflaton velocity. As the average

speed of the inflaton increases over the course of inflation this system eventually hits a resonance

frequency, where this time-lag corresponds to a phase shift of π. This leads to oscillations with

increasing amplitude and fixed frequency in e-fold time, clearly visible in the inflaton velocity, the

backreaction term and the gauge field energy density. This drastically changes the dynamics of axion

inflation in the strong backreaction regime.

An example of an observable which is significantly impacted by this change in the inflaton dynamics

is the scalar power spectrum. At very early times, when the scales relevant for the CMB exited the

horizon, the backreaction is irrelevant and the spectrum closely resembles the usual spectrum of

vacuum fluctuations. On smaller scales, corresponding to later stages of inflation, the scalar power

spectrum receives an additional contribution sourced by the inhomogeneous part of the gauge field

distribution, leading to an enhancement by many orders of magnitude. In this paper we re-visit the

equation of motion for the scalar perturbations, reproducing results found previously in the weak
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backreaction regime but finding a significant larger amplitude for the scalar power spectrum in the

strong backreaction regime. This result holds even when working with a time-averaged backreaction,

i.e. discarding the resonance discussed above. Including the resonance leads to additional oscillatory

features in the power spectrum at small scales. However, our results also indicate that the strong

backreaction regime entails such large scalar perturbations (invoking in particular significant spatial

gradients in the inflaton field) that the perturbative description fails. The formation of (metastable)

primordial black holes seems unavoidable, entailing interesting phenomenological consequences, but

any more quantitative analysis requires a non-perturbative description which is beyond the scope of

the present paper.

In this context, it is interesting to note the recent progress made in simulating the preheating

phase of this model on the lattice [21–23] (see also [53] for related work). The challenges induced

by the growing separation of scales in an expanding Universe limits the amount of e-folds which can

be tracked, but the characteristic time scale ∆Nξ ' ln(ξ2/2) of the resonance seems to be within

reach of such analyses. The preheating phase, and in particular its gravitational wave production,

can impose stringent bounds on the axion to photon coupling, down to 1/f . 10 [23]. However,

an early PBH dominated phase, triggered by the drastically enhanced scalar power spectrum, would

significantly dilute the energy density in gravitational wave radiation which redshifts faster than the

PBH component. This could re-open the parameter space of larger couplings. We leave a more detailed

study of this question to future work.

The observed resonance phenomenon will not only affect the scalar power spectrum but also

the tensor power spectrum, since it too receives a contribution sourced by the gauge field population.

Moreover, we expect that similar resonance phenomena can occur in other cosmological systems which

feature a tachyonic instability of gauge fields modes driven by a non-vanishing axion velocity. This

includes models of baryogenesis driven by the motion of axion-like particle [34, 54] and models of

cosmological relaxation of the electroweak scale utilizing gauge field friction [55–60]. We leave these

questions to future work.
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Figure 8: Evolution of
∣∣∣Ãk
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(N) evaluated at Nk = 0 (red and purple lines) and support of 2ĨEB(N) (blue, orange and

green lines) for various values of constant ξ.

A Phase shift

In this appendix we derive in a slightly different manner the value of the characteristic time scale ∆Nξ

that denotes the lag between 〈 �E �B〉(N) and ξ(N), given in Eq. (17).

First, we notice that in the case of constant ξ we can define a self-similar function Ã(N) that

captures the growth of the gauge modes for any large enough value of ξ. If we evaluate the enhanced

gauge modes A−λ(N, k) at the timeN+ln 2ξ and additionally rescale their amplitude with
√

2πkξ
eπξ sinh(πξ)

(such that they asymptote to unity) their equation of motion in e-folds reads

Ã′′
k + Ã′

k +
k

aH

(
k

4aHξ2
− 1

)
Ãk = 0 . (44)

Therefore, plugging in the constant ξ solution for the gauge modes given in Eq. (12), we find that

Ãk =

√
πξ

sinh(πξ)
W−iξ,1/2

(
−i

k

aHξ

)
(45)

is a ‘self-similar’ solution that only depends on N (and on a trivial way on k) as long as the k/4aHξ2

correction can be neglected in Eq. (44). Numerically, we find indeed that the ξ-dependence drops out

for ξ � 2. See Figure 8. The original gauge mode Ak can then be expressed in terms of Ãk as

Ak(ξ,N) =

√
sinh(πξ)

2πkξ
eπξ/2Ãk(N − ln 2ξ) . (46)

Similarly, using Eq. (9), we define a self-similar function for the integrand of 〈 �E �B〉

ĨE·B(N) =
πξe−3N

sinh(πξ)
∂N |W−iξ,1/2

(
−2ie−N−ln 2ξ

)
|2, (47)
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such that the integrand of 〈 ~E ~B〉 (in d ln k) is given by

IE·B(k, ξ,N) =
H4 sinh(πξ)eπξ

64π3ξ4a3
0

ĨE·B(N − ln 2ξ −Nk) , (48)

where Nk is the time that the mode k crosses the horizon. The self-similar integrand (47) indeed

becomes independent of ξ, but only for ξ & 4. This is because of the additional e−3N that shifts the

peak almost 3 e-foldings to sub-horizon scales. We find that ĨE·B peaks at N ≈ −1.38 ≈ ln(1/4) with

amplitude Ĩ ≈ 0.57 and has most of its support ±1.5 e-foldings around it. See Figure 8. The inte-

grand therefore peaks approximately at the wavenumber that crosses the horizon at Npeak = N−ln ξ/2.

Second, when ξ is time-dependent, the gauge mode function Ak grows to a plateau value, corre-

sponding to the value reached for some constant ξeff, Ak(ξ(τ); kτ � 1) = Ak(ξeff; kτ � 1). If ξ is

slowly varying in time, we expect ξeff to track ξ adiabatically with some time delay. Indeed, we find

that a good fit is given by

ξeff(Nk) = ξ(N∗) with N∗ = Nk − log(ξ(N∗)/a), (49)

where N∗ is implicitly defined and a ≈ 1.2 − 2.0. This refines the argument given in Sec. 3 that the

value of ξ at k/aH ' ξ determines the growth of Ak. If we deviate from adiabatic tracking, however,

the effective ξ averages out to some degree. This makes sense, as the growth of the gauge modes will

start to feel a range of values of ξ. As we can see from Fig. 2, the effective ξ that 〈 ~E ~B〉 feels is not

exactly the value of ξ evaluated at a particular instance of time, but rather an average over a range

of values. We can imagine a smoothing window of width ∼ ln 4ξ2 going over the dashed curve as time

proceeds. Only if the smoothing window has completely passed the jump at N0, then 〈 ~E ~B〉 will have

reached its final plateau value. Therefore, we expect that Eq. (49) needs to be refined if ξ changes

considerably over the coarse of ∼ ln 4ξ2 e-folds.

At this point we make an ansatz: the integrand of 〈 ~E ~B〉 is given by IE·B(k, ξeff(Nk), N). This

indeed seems to be a good approximation for slowly varying ξ, see Figure 9, where we take a = 1.45.

The above considerations allow us to find a semi-analytical estimate for ∆Nξ. Let us focus on the

harmonic

ξ(N) = ξ̄ +A cos(ωξN) . (50)

The first maximum of ξeff reflecting the maximum of ξ at N∗ = 0 will be at

0 = Nmax − ln
(
(ξ̄ +A)/a

)
−→ Nmax = ln

(
(ξ̄ +A)/a

)
. (51)

Meanwhile, the integrand of 〈 ~E ~B〉(N) peaks at Np = N − ln(ξeff(Np)/2) and will take the maximal

value at N = ∆Nξ when Npeak = Nmax, hence

Nmax = ∆Nξ − ln
(
(ξ̄ +A)/2

)
−→ ∆Nξ = ln

(
(ξ̄ +A)2/2a

)
. (52)

We find that a good fit is given for a ≈ 1.45 and is shown in Figure 4 together with the original

estimate ∆Nξ = ln(ξ2/2) that was argued for in the main text.
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Figure 9: Comparison of the integrand of 〈 ~E ~B〉 (discrete points) with IEB(Nk, ξeff(Nk), N) (solid lines) for an oscillating

ξ = 5 + cos(0.1N) evaluated at various times N .

B Details on the numerics

In order to obtain our numerical results we use an iterative procedure whose starting point is given

by the analytical estimate of the mode function Ak assuming constant inflaton speed φ′(N), Eq. (12):

〈 ~E ~B〉(0) = 1
221 π2

H4
0
ξ4 e

2πξ
∫ 8ξ

0 x7e−xdx , (53)

〈ρEB 〉(0) = 〈E2+B2

2 〉(0) = 6!
219π2

H4
0
ξ3 e

2πξ , (54)

where H0 is given by the Hubble parameter in absence of any backreaction, H2
0 = V (φ)

3− 1
2
φ′2

. Denoting

the j-th order iteration quantities with the subscript j, our first step is to find the solution of the

following differential equation for a given 〈 ~E ~B〉(j−1) obtained in the previous iteration:

φ′′(j) + (3− ε(j))φ′(j) +
1

H2
(j)

(
Vφ(φ(j)) +

α

Λ
〈 ~E ~B〉(j−1)

)
= 0 , (55)

where

H2
(j) =

V (φ(j)) + 〈ρEB 〉(j−1)

3− φ′2
(j)

2

; ε(j) =
1

2
φ′2(j) +

2

3H2
(j)

〈ρEB 〉(j−1) . (56)

Once we get the solution of this equation, φ(j)(N), we plug the derived quantities H(j)(N), ε(j)(N)

and ξ(j)(N) inside the gauge mode equations

A′′k,± + (1− ε(j))A′k,± + k
aH(j)

(
k

aH(j)
∓ 2 ξ(j)(N)

)
Ak,± = 0 . (57)

Then, choosing an array of k-modes with an exponential spacing, we estimate the discretized version

of 〈ρEB 〉(j) and 〈 ~E ~B〉(j)

〈ρEB 〉(j) =
1

4π2a4

M∑

i=1

d ln ki

(
k3
i a

2H2
(j)|A

′σ
ki
|2 + k5

i |Aσki |
2 − k4

i

)
θ (N −Ni) , (58)
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〈 ~E ~B〉(j) = σ
H(j)

4π2a3

M∑

i=1

d ln ki k
3
i

∂

∂N
|Aσki |

2θ (N −Ni) , (59)

where σ is the polarization which experiences the tachyonic behaviour and the third term in Eq. (58)

accounts for the subtraction of the Bunch-Davies contributions. With Ni = minN {2aHξ − ki < 0}
the Heaviside θ function is introduced to take into account only those modes that have already become

tachyonic.

The array of k-modes is defined as kp = kine
∑p−1
i=1 ∆i where p = 2 . . .M , k1 = kin is the lowest

momentum taken into account and ∆i = {0.1, 0.02}. The value we choose for ∆i depends on the

oscillatory behaviour of the solution: the stronger the backreaction, the thinner the momentum grid.

Given this choice, we can write down the integration step as dk = k d ln k. The weight related to the

contribution of a single mode to the integral is evaluated using the trapezoidal rule, i.e. d ln kp =
1
2 log

(
kp+1

kp−1

)
= ∆p and d ln k1 = 1

2 log
(
k2
k1

)
= ∆1

2 , d ln kM = 1
2 log

(
kM
kM−1

)
=

∆M−1

2 .

Once we have evaluated the integrals (58) and (59) in this way we are able to define next iteration

quantities ε(j+1), H(j+1) and the new approximated equation of motion that the inflaton field needs

to satisfy. Iterating this procedure allows us to find better approximations of the real solution of the

system. We stop the calculations when there is no appreciable difference between the consecutive

iterations. We do not prove here that this procedure always converges at a reasonable rate. But if

convergence is reached (as is the case in our explicit numerical examples), this procedure ensures a

self-consistent solution of the integro-differential system (5), (7) and (9).

During the algorithm we check that the contributions coming from the non-tachyonic polarizations

is completely negligible.

C Estimate of non-equal time correlation function

C.1 Analytical estimate

Far away from the resonance region the parameter ξ varies only slowly and we can estimate the

importance of the non-equal time contributions to Eq. (38) by looking at the result Eqs. (A3) and

(A4) from [28]. These expressions are based on parametrizing the gauge field mode functions with

Whittaker functions, see Eq. (12). Massaging the expressions a little bit, we get for the correlator

∫
d3x ei~p~x 〈0|δEB(N ′, 0)δEB(N ′′, x)|0〉 ∼ H ′H ′′

a′3a′′3
e2π(ξ′+ξ′′)

(
√
ρ′ +
√
ρ′′)10

C(κ) , (60)

C(κ) =κ5

∞∫

0

dqq3

1∫

−1

dα
√

1 + q2 + 2qαe−
√
κ(q+
√

1+q2+2qα)

×
(

1 +

√
q

(1 + q2 + 2qα)1/4

) 2π∫

0

dφ|ε+(−q̂) · ε+(q̂ + êz)|2 .
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Here, we define ρ ≡ 2ξ/(aH), ~q ≡ ~k/|p|, ~p ≡ |p|êz and κ ≡ 4|p|(√ρ′ +
√
ρ′′)2. In this appendix

only, for notational brevity the superscripts ()′ and ()′′ denote the given quantity at time N ′ and

N ′′, respectively. We now see, firstly, that the κ5 factor inside C(κ) and the factor 1/(
√
ρ′ +

√
ρ′′)10

multiplying C(κ) cancel each other. Secondly, we recognize that the correlator is bounded from above

by its value on far super-horizon scales κ→ 0, and that the correlator depends only polynomially on

a′ and a′′ in this limit. Hence we find that the correlator at late times scales as

∫
d3x ei~p~x 〈0|δEB(N ′, 0)δEB(N ′′, x)|0〉 ∼ 1

a′3a′′3
∼ e−3(N ′+N ′′) = e−6N ′e−3∆N , (61)

assuming N ′′ > N ′ with loss of generality. By comparison, we conclude that the argument of g(N,∆N)

scales as e−3∆N . For a functional form f(∆N) = exp(−c∆N) the integral

g(N ′, 0) =

∫ ∞

N ′
dN ′′ exp(−c∆N) =

1

c
(62)

is of O(1) for O(1) values of c. Since in our case we have c = 3, the inclusion of unequal time

correlations does not significantly alter our result. This can also be confirmed by a comparison of our

results with previous analysis [11, 28] which included this unequal time correlator, see App. D.

C.2 Numerical evaluation

In the resonant regime the Whittaker functions used in App. C.1 are no longer a good approximation

to the full mode functions. In this region, we evaluate the non-equal time correlator numerically, based

on the mode functions obtained in Sec. 4.

In order to compute the shape of the non-equal time correlation function, we define symmetrized

version of δEB (see Eq. (35)), analogous to the symmetrized 〈 ~E ~B〉 introduced in Eq. (9) (see also [34]),

δEB(τ, x)S =
(
Ei(τ, x)Bi(τ, x)

)
S
− 〈 ~E ~B〉S(τ ′)

=
1

2

(
Ei(τ, x)Bi(τ, x) +Bi(τ, x)Ei(τ, x)

)
− 〈 ~E ~B〉S(τ) , (63)

and consequently

〈0|
[
δEB(τ ′, x)S δEB(τ ′′, 0)S

]
S
|0〉

=
1

2
〈0|δEB(τ ′, x)SδEB(τ ′′, 0)S + δEB(τ ′′, 0)SδEB(τ ′, x)S〉|0〉 . (64)

If we consider only positive helicity modes, λ = +, and we use the following short notation

Ei1 = Ei(k, τ ′′, ~x,+) , Bi
1 = Bi(k, τ ′′, ~x,+) , Ej2 = Ej(k, τ ′, 0,+) ,

Bj
2 = Bj(k, τ ′, 0,+) , Bj

2 = Bj(k, τ ′, 0,+) , A+(τ,~k) = A(τ,~k) (65)

we end up with
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∫
d3~xei~q·~x〈0|

[
δEB(τ ′, x)SδEB(τ ′′, 0)S

]
S
|0〉 =

=
1

2

∫
d3~xei~q·~x

[
〈Ei

1E
j
2〉〈Bi

1B
j
2〉+ 〈Ei

1B
j
2〉〈Bi

1E
j
2〉+

+〈Ej
2E

i
1〉〈Bj

2B
i
1〉+ 〈Ej

2B
i
1〉〈Bj

2E
i
1〉
]

=
1

2a′4a′′4

∫
d3~k

(2π)3
|~k|2

∣∣∣~ε+(~k) · ~ε+(−~k − ~q)
∣∣∣
2
×

×
{
∂τA(τ ′,−~k − ~q)∂τA∗(τ ′′,−~k − ~q)A(τ ′,~k)A∗(τ ′′,~k) +

+ 2
| − ~k − ~q|
|~k|

Re
[
∂τA(τ ′,−~k − ~q)A∗(τ ′′,−~k − ~q)A(τ ′, ~k)∂τA

∗(τ ′′, ~k)
]

+

+
| − ~k − ~q|2
|~k|2

A(τ ′′,−~k − ~q)A∗(τ ′,−~k − ~q)∂τA(τ ′′,~k)∂τA
∗(τ ′,~k)

}
(66)

where in this appendix only, a′ ≡ a(τ ′) and a′′ ≡ a(τ ′′). Given that the positive polarization vector

can written as

ε+(~k) =
k̂ · êx + i

(
k̂(k̂ · êx)− êx

)

√
2|k̂ · êx|

, (67)

if we assume that ~q = {0, 0, q}, we can see that using polar coordinates and setting cos(θ) = α, the

polarization dependent factor inside Eq. (66) becomes
∣∣∣ε+(~k) · ε+(−~q − ~k)

∣∣∣
2

=
2k2 + 4kqα+ q2(1 + α2)

4k2
(

1 + 2α qk + q2

k2

) +

+
k3 + 3k2qα+ q3α+ kq2(1 + 2α2)

2k3
(

1 + 2α qk + q2

k2

)3/2
. (68)

In order to have a more compact notation we also define

C1(k, q, α) =
∣∣∣ε+(~k) · ε+(−~q − ~k)

∣∣∣
2
,

C2(k, q, α) = C1(k, q, α)

√
1 + 2α

q

k
+
q2

k2
, (69)

and since the gauge mode equation of motion depends just on the magnitude of the k-vector, we can

write

A(N,~k) = A(N, k);

A(N,−~k − ~q) = A(N, k

√
1 + 2α

q

k
+
q2

k2
) ≡ A(N, k, q, α). (70)

Rearranging Eq. 66 and using the number e-foldings as time variable we get
∫
d3~xei~q·~x〈0|

[
δEB(N ′, x)SδEB(N ′′, 0)S

]
S
|0〉 =

H ′H ′′

a′3a′′3

∫ ∞

0

dk

(4π2)
k4

∫ 1

−1
dα×

{
C1(k, q, α)Re

[
∂NA(N ′, k, q, α)∂NA

∗(N ′′, k, q, α)A(N ′, k)A∗(N ′′, k)
]

+C2(k, q, α)Re
[
∂NA(N ′, k, q, α)A∗(N ′′, k, q, α)A(N ′, k)∂NA

∗(N ′′, k)
]}

(71)
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where in this appendix only, H ′ ≡ H(N ′) and H ′′ ≡ H(N ′′). It is easy to see that the final result has

the desired properties: it is real and symmetric under N ′ ↔ N ′′ and ~x↔ −~x.

As in App. C.1 we focus on far super-horizon scales q → 0,

〈δEB(N ′)δEB(N ′′)〉 = lim
q→0

∫
d3~xei~q·~x〈0|

[
δEB(N ′, x)SδEB(N ′′, 0)S

]
S
|0〉

=
H ′H ′′

a′3a′′3

∫ ∞

0

dk

(2π2)
k4×

{
Re
[
∂NA(N ′, k)∂NA

∗(N ′′, k)A(N ′, k)A∗(N ′′, k)
]

+

+Re
[
∂NA(N ′, k)A∗(N ′′, k)A(N ′, k)∂NA

∗(N ′′, k)
]}
. (72)

For numerical purposes we discretize the integral as follows

〈δEB(N ′)δEB(N ′′)〉 =
H ′H ′′

(2π2)a′3a′′3

∑

ki

d ln ki k
5
i

∑

j

∆α ×

{
Re
[
∂NA(N ′, ki)∂NA

∗(N ′′, ki)A(N ′, ki)A
∗(N ′′, ki)

]
+

+Re
[
∂NA(N ′, ki)A

∗(N ′′, ki)A(N ′, ki)∂NA
∗(N ′′, ki)

]}
. (73)

the discretization scheme is the same as in App. (B).

We can now compute a numerical estimate of the normalized non-equal time correlation function

that was introduced in Eq. (39),

g(N ′,∆N) = 〈δ2
EB(N ′)〉−1

∫ ∞

N ′+∆N
dN ′′〈δEB(N ′)δEB(N ′′)〉 . (74)

Fig. 10 shows the integrand of g(N ′,∆N) at five distinct times deep in the resonance regime. As in our

analytical estimate in App. C.1, the integrand of g(N ′,∆N) drops exponentially as exp(−c∆N ) with

c = O(1). For small values of ∆N the behaviour deviates from the exponential decay. Numerically

performing the integral for some representative choices of ∆N yields

• N ′ = 60, ∆N = {1, 0.5, 0.1}, g(N ′,∆N)/γ = {0.19, 0.46, 0.86}

• N ′ = 61.4, ∆N = {1, 0.5, 0.1}, g(N ′,∆N)/γ = {6.6× 10−2, 0.31, 0.82}

• N ′ = 61.8, ∆N = {1, 0.5, 0.1}, g(N ′,∆N)/γ = {6.4× 10−2, 0.24, 0.76}

• N ′ = 62, ∆N = {1, 0.5, 0.1}, g(N ′,∆N)/γ = {0.13, 0.31, 0.76}

• N ′ = 62.2, ∆N = {1, 0.5, 0.1}, g(N ′,∆N)/γ = {0.15, 0.34, 0.79}

We conclude that the support of g(N ′,∆N) is mainly focused at small values of ∆N , i.e. that unequal

time correlations are mainly relevant on time scales over which 〈δ2(EB)〉 does not change too drasti-

cally. However, the contributions from more distant times are not fully negligible, and hence we expect

O(1) corrections to the power spectrum in the resonance regime. These will tend to slightly smooth

the maxima and minima of the power spectrum in this regime. However, since the minima are unob-

servable and the maxima violate perturbativity (see discussion in Sec. 5) this does not significantly

impact our discussion in the main text.
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Figure 10: Integrand of g(N ′,∆N), for various values of N ′ for 1/f = 25. The top left panel corresponds to the

bottom left panel of Fig. 6 and serves as an orientation to identify the position of the maxima and minima. All other

panels show the integrand of g(N ′,∆N) for local minima (N ′ = 61.4), local maxima (N ′ = 62) and steep regions

(N ′ = {60, 61.8, 62.2}) of 〈 �E �B〉. The red lines give the best fit for the exponentially decreasing tail of the distributions.

27



D Scalar power spectrum: comparison with earlier work

The scalar power spectrum generated during axion inflation has been previously estimated in Refs. [9,

11, 14, 28] based on the analytical estimate for 〈 ~E ~B〉 given in Eq. (13). In this appendix we briefly

review these derivations and their limitations. Of particular interest to us are Refs. [11, 28] which are

based on the Greens function method. Generalizing this approach leads to the results for the power

spectrum reported in the main text.

We start from the equation of motion for the scalar perturbations, Eq. (35),

δφ′′ + 3 δφ′ − N,φ

fH2

∂〈 ~E ~B〉
∂N

δφ =
1

fH2
δEB . (75)

Ref. [11] focuses on the regime of weak or mild backreaction (wb) where the ∂〈 ~E ~B〉/∂N term can be

neglected,11

L
(wb)
N [δφ(N)] ≡ δφ′′ + 3 δφ′ ' 1

fH2
δEB . (76)

Following the steps in Eq. (35) to (42) of the main text yields

〈δN2〉(wb) ' N2
,φ

∫
dN ′

G2
wb(N,N

′)σ2
EB(N ′)

f2H2(N ′)
, (77)

with Gwb(N,N
′) denoting the Greens function of the linear operator L

(wb)
N .

Ref. [28] focuses on the opposite limit of strong backreaction. In this case, the the backreaction

term in Eq. (75) can be approximated as

N,φ

fH2

∂〈 ~E ~B〉
∂N

δφ ' 1

2f2H2

∂〈 ~E ~B〉
∂ξ

δφ′ ' 1

2f2H2

(
2π〈 ~E ~B〉

)
δφ′ ' 2π

2fH2
V,φδφ

′ . (78)

In the first step, we have Taylor expanded 〈 ~E ~B〉 in terms of ξ instead of N . This is valid if 〈 ~E ~B〉 can

be expressed as a function of ξ only and if ξ is strictly monotonic, implying that the evolution of ξ

can serve as a well-defined ‘clock’ during inflation. As long as the fluctuations are small, δN, δξ � 1,

both descriptions are then equivalent. In the full system studied in the main text where ξ becomes an

oscillating function, this procedure can not be applied. The second step relies on the explicit form of

〈 ~E ~B〉 in Eq. (13) with the additional assumption of H being approximately constant. The final step

uses the background equation of motion in the strong backreaction regime where the φ̇-term can be

neglected.12 Based on this, Eq. (75) can be expressed as

L
(sb)
N [δφ(N)] ≡ δφ′′ + 3δφ′ − π

fH2
V,φδφ

′ ' 1

fH2
δEB , (79)

and correspondingly

〈δN2〉(sb) ' N2
,φ

∫
dN ′

G2
sb(N,N

′)σ2
EB(N ′)

f2H2(N ′)
, (80)

with Gsb(N,N
′) denoting the Greens function of the linear operator L

(sb)
N .

11We note that Eq. [11] includes the slow-roll suppressed mass term for δφ and (working in Fourier space) the unequal

time correlations in 〈δEB(N)δEB(N ′)〉. However, as the very good agreement in Fig. 11 shows, these do not significantly

change the result.
12In our numerical evolution of this system of 1/f = 35 we find all three terms of the background eom to be of similar

size towards the end of inflation. This approximation thus induces an O(5) error in the Greens function, which is squared

in the power spectrum and essentially accounts for the discrepancy between the black and dashed orange curve.
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Figure 11: Scalar power spectrum sourced by Eq. (13) for 1/f = 35. The black curve is our full result, the dashed blue

and orange curves implement the weak and strong backreaction approximation of Refs. [11] and [28], respectively. The

corresponding dotted curves indicate the very good agreement with the final expressions for the power spectrum derived

in these references. In this appendix we use the convention that inflation ends at N = 0.

Fig. 11 compares our formalism (black curve) with the approximations performed in Ref. [11] (blue

curves) and Ref. [28] (orange curve). In all cases, for the purpose of the comparison with previous

results, we assume in this appendix 〈 ~E ~B〉 to be given by Eq. (13) and correspondingly σ2
EB ' 〈 ~E ~B〉

(see e.g. Ref. [14]). The black solid curve indicates our result based on (42), i.e. including the gauge

field backreaction in the δφ equation of motion, with the gray dashed curve displaying for reference

the vacuum contribution. The dashed blue curve (essentially coinciding with the black curve) is the

result obtain based on the linear operator (76) in the weak backreaction regime, the dashed orange

curve is correspondingly based on the linear operator (79) in the strong backreaction regime13. The

dotted blue and orange curves are the results derived in Refs. [11] and [28] for the weak and strong

backreaction regime, respectively, demonstrating our ability to reproduce these results when using the

same approximations. Finally, in the gray shaded region ζ ≥ 0.3, indicating that we cannot trust the

perturbative analysis underlying our computations.

The excellent agreement between our full result (black) and the weak backreaction approximation

(blue) indicates that the backreaction term in the δφ equation of motion is essentially irrelevant for

the parameters discussed here. This conclusion is in contradiction to the conclusion drawn in [14, 28],

which would indicate that backreaction dominates roughly above the dotted orange horizontal line in

Fig. 11, consequently suppressing the resulting power spectrum. We can track this difference down to

the approximations performed in Eq. (78), in particular in the last step thereof. We conclude that the

sourced scalar power spectrum is two to three orders of magnitude larger than previously estimated.

Nevertheless, our procedure also entails approximations which need to be scrutinized, most notably

the omission of the gradients ∇Φ and the dropping the unequal time contribution of the δEB two-

point correlator. Given the importance of this result for the production of primordial black holes, this

clearly calls for further investigation.

13Note that the strong backreaction approximation can only be expected to be valid at large values of ξ, towards the

end of inflation.
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Finally, Ref. [14] presents a simplified derivation of the results obtained in Refs. [11, 28]. In the

strong backreaction regime this relies on the same approximations as [28], hence it is not surprising

that Ref. [14] also finds a strong suppression of the power spectrum in the strong backreaction regime.
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