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Sum rule improved double parton distributions

in position space
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Abstract: Models for double parton distributions that are realistic and consistent
with theoretical constraints are crucial for a reliable description of double parton
scattering. We show how an ansatz that has the correct behaviour in the limit of
small transverse distance between the partons can be improved step by step, such as
to fulfil the sum rules for double parton distributions with an accuracy around 10%.
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1 Introduction

To analyse data taken at the Large Hadron Collider in the best possible way, it is of great
importance to have sound theoretical control over the QCD dynamics of proton-proton colli-
sions. The mechanism of double parton scattering (DPS), in which two partons in each proton
participate in a hard-scattering process, can give important contributions to particular final
states and in particular kinematic regions. A prominent example is the production of two
W bosons with the same charge [1–7], a channel that is also a background in searches for
new physics (see e.g. [8–10]). A variety of DPS processes have been studied experimentally
at the LHC [6, 11–21] and at lower energies [22–32] (see e.g. figure 4 of [19] and figure 15
of [33] for overviews). Recent years have seen significant progress in the QCD description of
double parton scattering, see e.g. [34–42] and the brief overview in [43]. In particular, the
formalism developed in [39, 44–47] extends the factorisation proofs for single Drell-Yan pro-
duction [48–50] to double parton scattering with colourless final-state particles and achieves
a consistent combination of single and double parton scattering contributions to a given fi-
nal state. The non-perturbative quantities in DPS factorisation formulae are double parton
distributions (DPDs), which specify the joint distribution of two partons in a proton. In the
formalism just mentioned, these distributions depend in particular on the spatial separation
y of the two partons in the plane transverse to the proton momentum. Alternatively, one
may work with the transverse momentum ∆ that is Fourier conjugate to y.
Given the complexity of measuring and computing DPS cross sections, a largely model-
independent fit of DPDs to experimental data, akin to what is done for single parton distri-
butions (PDFs), will not be possible for a considerable time. It is hence essential to develop
realistic models for DPDs. Considerable efforts have been made to compute them in quark
models [51–62], and lattice calculations of Mellin moments of DPDs are underway [63,64]. In
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addition, there are important theoretical constraints on DPDs. On the one hand, there is the
perturbative splitting of one parton into two [34–39, 41, 42, 45, 57, 65–76], which determines
the behaviour of DPDs at small y and likewise puts constraints on DPDs depending on ∆.
On the other hand, there are sum rules [77, 78], which involve DPDs integrated over y (or
evaluated at ∆ = 0) and express the conservation of momentum and quark number. So far,
only a small number of studies [2,77,79–81] have used these sum rule to constrain DPDs, and
it is the goal of the present paper to continue this line of work. Whereas the DPD models
in [2, 77, 79, 80] are formulated for DPDs at ∆ = 0, we work with DPDs in y space, because
these are the quantities required for computing DPS cross sections in the formalism of [45].
This paper is organised as follows. In section 2, we recall the theory underlying our model
construction, highlighting in particular the nontrivial relation between DPDs depending on
y and those depending on ∆. The starting point for our DPD model, taken from [45], is
described in section 3. In section 4 we give a few technical details about our numerical
calculations. In section 5, we make a series of changes to our model DPDs, improving at each
step their agreement with the sum rules. The scale dependence of our results is studied in
section 6, before we conclude in section 7.

2 Theory

The model analysis in this paper is based on the theory for double parton distributions
developed in [45]. Let us briefly present the most important results of that work for our
context.
Consider the distribution function Fa1a2(x1, x2,y;µ) for finding two partons a1 and a2 in the
proton. The momentum fractions of the partons are x1 and x2, and y denotes their spatial
separation in the transverse plane. At leading order (LO) in αs, the scale dependence of DPDs
is given by evolution equations

dFa1a2(x1, x2,y;µ)

d log µ2
=
αs(µ)

2π

∑
b1

1−x2∫
x1

dz1

z1
Pa1b1

(x1

z1

)
Fb1a2(z1, x2,y;µ)

+
αs(µ)

2π

∑
b2

1−x1∫
x2

dz2

z2
Pa2b2

(x2

z2

)
Fa1b2(x1, z2,y;µ) , (1)

with the same DGLAP splitting functions Pab(v) that govern the evolution of ordinary PDFs
at LO. For simplicity, we take a common factorisation scale µ for both partons in the present
work, but it is straightforward to use different scales µ1 and µ2.
The behaviour of Fa1a2(x1, x2,y;µ) at small y = |y| is dominated by the perturbative splitting
of a single parton a0 into the observed partons a1 and a2. Evaluating the splitting mechanism
at LO in αs, one obtains

Fa1a2,spl,pt(x1, x2,y;µ)
∣∣∣
D=4−2ε

=
µ2ε

y2−4ε

Γ2(1− ε)
π1−2ε

fa0(x1 + x2;µ)

x1 + x2

αs(µ)

2π
Pa1a2,a0

(
x1

x1 + x2
, ε

)
, (2)

in D = 4− 2ε dimensions, where fa0 is the PDF for parton a0. The function Pa1a2,a0(v, ε) is
equal to the ordinary DGLAP splitting function Pa1a0(v) for ε = 0, and its form for nonzero
ε may be found in [82].
Instead of the DPDs F (x1, x2,y;µ) in transverse-position space, one may also consider dis-
tributions depending on the transverse momentum ∆ that is Fourier conjugate to y. Since
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according to (2) the distribution F (x1, x2,y;µ) behaves like 1/y2−4ε at short distances y, its
Fourier transform w.r.t. y requires an additional renormalisation in the ultraviolet.
One way to achieve this is to perform the Fourier transform in 2 − 2ε transverse dimensions.
This gives rise to a 1/ε ultraviolet pole that can be renormalised using standard MS sub-
traction, after which one can set ε to zero. Owing to this additional renormalisation, the
evolution equations of the resulting momentum space distributions F (x1, x2,∆;µ) differ from
those of F (x1, x2,y;µ) by an inhomogeneous term that can readily be deduced from (2). This
inhomogeneous equation has long been known and discussed in the literature [65–68,71,77].
An alternative is to start from the distributions F (x1, x2,y;µ) in D = 4 physical dimensions
and to cut off their 1/y2 singularity at short distances in the Fourier transform:

FΦ,a1a2(x1, x2,∆;µ, ν) =

∫
d2y eiy∆ Φ(yν)Fa1a2(x1, x2,y;µ) . (3)

Here ν is a scale with dimension of mass, and Φ(u) is a suitable function, which may be taken
as a hard cutoff

Φ(u) = Θ(u− b0) with b0 = 2e−γ ≈ 1.12 , (4)

where γ is the Euler-Mascheroni constant. This choice of b0 is such that certain analytical
expressions simplify, see [45,82].
Since the distributions in (3) differ from those defined with MS subtraction only by the treat-
ment of the ultraviolet region, one can use the small y expression (2) to derive a perturbative
matching equation between the two types of DPD:

Fa1a2(x1, x2,∆;µ) = FΦ,a1a2(x1, x2,∆;µ, ν)

+
fa0(x1 + x2;µ)

x1 + x2

αs(µ)

2π

[
log

µ2

ν2
Pa1a2,a0(v, 0) + P ′a1a2,a0

(v, 0)

]
+O

(
∆2

ν2
,

Λ2

ν2
, α2

s

)
, (5)

where we have abbreviated P ′(v, ε) = ∂P (v, ε)/∂ε and v = x1/(x1 + x2). Here Λ denotes a
non-perturbative scale. It is understood that one should take ν ∼ µ to avoid logarithmically
enhanced higher-order corrections . Under this condition, the ν dependence cancels between
the first and second line of (5) within the stated accuracy. We will investigate this numerically
in section 6.2.
We remark in passing that the previous discussion can be extended beyond LO. The higher-
order forms of (2) and (5) involve convolutions instead of ordinary products, and the NLO
kernels for unpolarised partons have been computed in [82].
The distributions F (x1, x2,∆;µ) are of particular interest because at the point ∆ = 0 they
fulfil the sum rules formulated in [77]. Abbreviating F (x1, x2;µ) = F (x1, x2,∆ = 0;µ), these
sum rules read

1−x1∫
0

dx2 Fa1qv(x1, x2;µ) = (Nqv + δa1,q̄ − δa1,q)fa1(x1;µ) (6)

∑
a2

1−x1∫
0

dx2 x2 Fa1a2(x1, x2;µ) = (1− x1)fa1(x1;µ) (7)

and express the conservation of quark number and of momentum, respectively. Here Fa1qv =
Fa1q−Fa1q̄ denotes the valence combination for quark flavor q, andNqv is the number of valence
quarks with flavour q in the target. Equivalent sum rules can be written down for DPDs
integrated over x1, given the trivial symmetry relation Fa1a2(x1, x2;µ) = Fa2a1(x2, x1;µ).
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Note that naively F (x1, x2;µ) just corresponds to the integral of F (x1, x2,y;µ) over all y, as
one would expect for a sum rule. As discussed above, this simple correspondence is however
invalidated by the singular short-distance behaviour of the y dependent distributions. As
shown in [78], it is indeed the momentum space DPDs defined with MS renormalisation and
taken at ∆ = 0 that appear in the above sum rules (together with MS renormalised PDFs).
Already in [77] it was pointed out that the inhomogeneous term in the evolution equations
for momentum space DPDs is essential for ensuring that (6) and (7) are valid at all µ.
The matching relation (5) allows us to devise models for the position space distributions
F (x1, x2,y;µ), which are the primary quantities needed to compute cross sections in the
formalism of [45] and at the same time to use the DPD sum rules (6) and (7) as constraints
for these models. In practice, the sum rules will then only be fulfilled approximately and in
a particular range of momentum fractions. This is the strategy adopted in the present work.
One might think of a different procedure and start with a model for the momentum space
DPDs F (x1, x2,∆;µ), constructed such that the sum rules are satisfied exactly. Using the
extension of (5) to arbitrary values of ∆, given in [82], one can then compute the functions
FΦ(x1, x2,∆;µ, ν). The latter can be used instead of F (x1, x2,y, µ) to compute the double
parton scattering cross section, as shown in section 8 of [45]. This possibility shall not be
pursued here. We note that it has proven to be difficult to devise a general ansatz for
distributions F (x1, x2;µ) that satisfy the sum rules exactly, with the only consistent solution
so far being limited to the pure gluon sector [80]. Until further progress is made in that
direction, the best one can achieve with either momentum or position space models is that
the sum rules are satisfied approximately to a degree one deems satisfactory.

3 Initial model

As starting point of our work, we take the DPD model introduced in [45]. Let us briefly recall
its features and motivation. We require that the DPDs have the small y behaviour given
by the perturbative splitting mechanism at LO. This is achieved by using a two-component
ansatz

Fa1a2(x1, x2,y;µ) = Fa1a2, int(x1, x2,y;µ) + Fa1a2,spl(x1, x2,y;µ) , (8)

where Fspl tends to the perturbative splitting form at small y, whilst Fint remains finite in that
limit. The µ dependence of both components is required to follow the evolution equations (2).
The physical idea behind the separation (8) is that in Fa1a2, int the partons a1 and a2 originate
from the “intrinsic” part of the proton wave function, whilst in Fa1a2,spl they are obtained
from a parton a0 in the proton by perturbative splitting. It should be borne in mind that
this is meant to be a heuristic picture, rather than a distinction that could be formulated in
a field theoretically rigorous way.
For the intrinsic part of the DPD, we make an ansatz at the scale µ0 = 1 GeV. It consists of
the product of two PDFs with a factor for the y dependence and a “phase space factor” ρa1a2

suppressing the distributions close to the kinematic boundary x1 + x2 = 1,

Fa1a2, int(x1, x2,y;µ0) = fa1(x1;µ0) fa2(x2;µ0)
1

4πha1a2

exp

[
− y2

4ha1a2

]
ρa1a2(x1, x2) (9)

with

ρa1a2(x1, x2) =
(1− x1 − x2)2

(1− x1)2 (1− x2)2
. (10)
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Apart from the factor ρa1a2 , this form is obtained if one assumes that the two partons a1 and
a2 in the proton are completely uncorrelated. Under that assumption, one can express a DPD
as a convolution

Fa1a2(x1, x2,y;µ0) =

∫
d2b fa1(x1, b + y;µ0) fa2(x2, b;µ0) (11)

of two impact-parameter dependent PDFs fa(x, b), cf. [83] and section 2.1 of [39]. If one
furthermore assumes that the impact-parameter dependent PDFs can be expressed in terms
of ordinary PDFs and a Gaussian impact parameter profile, i.e.

fa(x, b;µ) = fa(x;µ)
1

4πha
exp

[
− b2

4ha

]
, (12)

then the convolution integral in (11) yields a Gaussian with a width that is the sum of the
single-particle widths, i.e. ha1a2 = ha1 + ha2 . For the single-particle widths we use the values

hg = 2.33 GeV−2 , hq = hq̄ = 3.53 GeV−2 , (13)

whose physical motivation is discussed in [45].
The phase space factor ρa1a2 ensures that the distributions go to zero when approaching the
kinematical boundary x1 + x2 = 1. The first or second power of (1 − x1 − x2) is frequently
used in the literature, but as observed in [77], this results in a strong violation of the sum
rules in the region x1 � 1. A much better agreement is obtained with a phase space factor
that does not yield any suppression in that limit. This is achieved by dividing (1 − x1 − x2)n

by (1− x1)n (1− x2)n.
For the “splitting part” of the DPD, we make the ansatz

Fa1a2,spl(x1, x2,y;µy) = Fa1a2,spl,pt(x1, x2,y;µy) exp

[
− y2

4ha1a2

]
, (14)

where

Fa1a2,spl,pt(x1, x2,y;µy) =
1

πy2

fa0(x1 + x2;µy)

x1 + x2

αs(µy)

2π
Pa1a0

(
x1

x1 + x2

)
(15)

is the splitting form (2) in D = 4 dimensions. As required by theory, the ansatz (14) tends to
the perturbative result for small y, with power corrections of order y2/ha1a2 . At large y, the
1/y2 falloff of the perturbative result is dampened by the Gaussian factor in (14). For lack of
better guidance, we take the same parameters ha1a2 in this factor as in the intrinsic part (9).
The splitting form (14) is evaluated at the scale

µy =
b0
y∗
, y∗ =

y√
1 + y2/y2

max

(16)

with ymax = 0.5 GeV−1. In the perturbative regime y � ymax this corresponds to the natural
choice µ ∼ 1/y, which avoids logarithmically enhanced corrections from higher orders. For
large y, the scale µy approaches a limiting value b0/ymax ≈ 2.25 GeV, which ensures that
neither αs nor the PDFs on the r.h.s. of (14) are evaluated at too small scales.
For the parton densities appearing in both (9) and (15), we take the MSTW2008 LO distribu-
tions [84] with the small modification described in section 3.2 of [77]. The latter ensures that
the d̄ and the s̄ PDFs are positive and thus admit a probability interpretation. For the strong
coupling, we use the starting value αs(µ0) = 0.682 adopted in the MSTW2008 LO analysis.
Throughout this work, we fix the number of active quark flavours to nf = 3.
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4 Technical implementation

With the general prescription (5) and the two-component model (8), the DPDs entering the
sum rules are given by

Fa1a2(x1, x2;µ) = 2π

∫ ∞
b0/ν

dy y Fa1a2, int(x1, x2, y;µ) + 2π

∫ ∞
b0/ν

dy y Fa1a2,spl(x1, x2, y;µ)

+ Fa1a2,match(x1, x2;µ) , (17)

where the matching term

Fa1a2,match(x1, x2;µ) =
fa0(x1 + x2;µ)

x1 + x2

αs(µ)

2π

[
log

µ2

ν2
Pa1a2,a0(v, 0) + P ′a1a2,a0

(v, 0)

]
(18)

follows from (5). In (17) we have used that the position space DPDs depend on y only via
y. Whilst evaluating Fmatch is straightforward, the numerical computation of the intrinsic
and splitting terms is more demanding. In the following paragraphs, we give some details
about our numerical implementation. A reader not interested in these technicalities may skip
forward to section 5.

DPD evolution and grids. To evolve Fint and Fspl from their respective starting scales
in (9) and (14) to the scale µ at which the sum rules are to be evaluated, we use a modified
version of the code employed in the study [45], which was itself a modification of the original
code described in [77]. With this code, we compute position space DPDs on grids in the
momentum fractions x1 and x2, the interparton distance y, and the renormalisation scale µ.
The momentum fraction grids are equidistant in the variables ui = log(xi/(1−xi)). We use 89
grid points in each xi direction, with the smallest and largest xi values being xmin = 5× 10−5

and xmax = 1− xmin.
For the factorisation scale, we use 51 points on an equidistant grid in log µ2, with largest scale
µmax = 172 GeV. For each grid point µi, we define a grid point in yi such that µi = µyi with
the function µy given in (16). This is convenient for evaluating Fspl at its starting scale. The
smallest value µmin on the µ grid thus corresponds to the largest value on the y grid and is
just slightly larger than the limiting value b0/ymax ≈ 2.25 GeV of µy for infinitely large y.
It turns out that for evaluating the integrals in (17), the y grid just described is not quite
dense enough at small y values, and that for Fspl we also need additional points at large y.
Extending the y grid appropriately, we end up with 60 points for the intrinsic part and 90
points for the splitting part of the DPD.

Integration. At the starting scale µ0, the y dependence of the intrinsic part Fint is given by
a simple Gaussian factor. This does not remain true at other scales µ, because quark and gluon
distributions mix under evolution and have different Gaussian widths in our model. However,
we find that at the µ values we consider, the y dependence of the evolved distributions Fint

is reasonably well approximated by a linear superposition of Gaussians with widths hqq, hqg,
and hgg. Determining the appropriate superposition by a fit for each pair (x1, x2) on our grid,
we can evaluate the first y integral in (17) analytically.
This strategy does not work for the splitting part Fspl, for which we perform the y integral
numerically, using the values of the distribution on the grid in y. Finally, the integral over x2

in the sum rules is evaluated numerically, using the values of Fa1a2(x1, x2;µ) on the x2 grid.
For both the y and the x2 integrals, integration rules for equidistant grids with errors of order
1/N4 are used if N > 4, where N is the number of grid points in the relevant integration
interval.
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5 Refining the model

In this section, we describe how the initial model described in section 3 is modified so as to
fulfil the DPD sum rules to a good approximation over a wide range in x1. The modifications
are performed in several steps, after each of which we quantify the degree to which the sum
rules are satisfied. To this end, we follow [77] and consider the “sum rule ratios”

Ra1qv(x1;µ) =

∫
dx2 Fa1qv(x1, x2;µ)

(Nqv + δa1,q̄ − δa1,q)fa1(x1;µ)
, (19)

Ra1(x1;µ) =

∑
a2

∫
dx2 x2 Fa1a2(x1, x2;µ)

(1− x1)fa1(x1;µ)
(20)

with a1 being a quark, an antiquark, or a gluon. Note that a number sum rule ratio cannot
be defined for Fddv in this way, because the denominator of Ra1qv is zero in that case. The
same holds for Fa1sv unless a1 = s or a1 = s̄.
Postponing the discussion of Fddv to the end of this section, we now take a closer look at
the number sum rules involving sv. We first observe that the PDFs underlying our DPD
model satisfy the relation fs(x) = fs̄(x), which is of course stable under LO evolution. As a
consequence, our initial DPD model satisfies

Fssv = −Fs̄sv , Fa1sv = 0 for a1 6= s, s̄ (21)

at all scales µ. This will remain true with the modifications made in the present section. One
thus obtains Rssv = Rs̄sv and needs to consider only one of these ratios. Furthermore, the
number sum rules for Fa1sv with a1 6= s, s̄ are satisfied exactly. To prove the relations (21), we
first note that they hold separately for Fint(x1, x2,y, µ0) and for Fspl(x1, x2,y, µy) in the model
specified in section 3. It is easy to see that they are stable under LO evolution. Since they
also hold for the matching term in (17), they are valid for the distributions Fa1sv(x1, x2;µ)
entering the sum rules.
We will separately evaluate the contributions of the three terms in (17) to the numerators
of Ra1qv and Ra1 , so as to see which part of the DPD model requires adjustment to improve
a specific sum rule. We will show plots for selected sum rules that are representative of the
general situation, or – when there are large differences between sum rules – show the best and
worst cases.
Throughout this section, we evaluate the distributions (17) for ν = µ = µmin, where µmin =
2.25 GeV is the smallest value on the grid described in the previous subsection. Other scale
choices will be explored in section 6.

5.1 Zeroth iteration: Initial ansatz

Let us start with the DPD model described in section 3 and consider the momentum sum rules.
They turn out to be satisfied surprisingly well, as is illustrated in figure 1. Notice that there
is a rather large contribution from Fspl to Rg. This is readily explained by identifying which
parton combinations can be produced by perturbative splitting at LO, namely qq̄, qg, q̄g, and
gg, as well as channels obtained from those by interchanging the two partons. All 2nf + 1
DPDs appearing in the g momentum sum rule thus receive a sizeable splitting contribution.
By contrast, for the u momentum sum rule shown in figure 1(a) there are just two parton
combinations with a large splitting contribution, namely uū and ug. Another noteworthy
feature is the relatively small size of the matching contribution, which is a consequence of our
choice ν = µ.
Let us investigate at this point the phase space factor ρa1a2 in (9). In some of the earlier
works on DPDs, a simple factor (1 − x1 − x2) has been suggested [85–88], whilst the more
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R
u

Splitting Intrinsic Total
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0.0
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x1

(a) u momentum sum rule

R
g

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1

(b) g momentum sum rule

Figure 1: Momentum sum rule ratios Ru and Rg for the initial model of section 3, evaluated
at the scale µmin = 2.25 GeV. Shown are the individual contributions from the intrinsic
and splitting parts in (17), as well as the full result. The ±10% deviations from unity are
indicated by a light grey band. Not shown is the separate contribution from the matching
term Fmatch, which is negligible in this case. The remaining plots in this section will follow
the same conventions unless explicitly stated otherwise.

recent study [89] argued that a factor (1−x1−x2)2 is more appropriate. Even higher powers
n would be obtained if one were to generalise the Brodsky-Farrar quark counting rules [90,91]
from PDFs to DPDs. Each of these variants leads to a very strong suppression of DPDs in the
region where x1 ≈ 1 and x2 ≈ 0 (or vice versa), since in that region the suppression from the
phase space factor comes on top of the suppression of the corresponding PDF. As discussed
in section 3, it is more appropriate to divide (1− x1 − x2)n by (1− x1)n (1− x2)n for a given
n in order to remove the phase space suppression in the regions x1 ≈ 0 and x2 ≈ 0. Including
this division, we have investigated the momentum sum rules for different values of n and find
that best agreement is achieved for n = 2, as is illustrated by the comparison of figure 2 with
figure 1(b).
Turning to the number sum rules, we find that these are violated quite strongly in the initial

R
g

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1

(a) n = 1, g momentum sum rule

R
g

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1
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Figure 2: The momentum sum rule ratio Rg for different powers n in the phase space factor
ρa1a2 = (1−x1−x2)n (1−x1)−n (1−x2)−n of the intrinsic part (9). The case n = 2 is shown
in figure 1(b).

9



R
du
v

Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1

(a) duv number sum rule

R
gd
v

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1

(b) gdv number sum rule

R
u
u
v

Matching Splitting

Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

x1

(c) uuv number sum rule

R
dd
v

Matching Splitting

Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

x1
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Figure 3: Number sum rule ratios Ra1qv for the initial model. The upper plots are for
unequal flavors of the two partons, and the lower ones are for equal flavours. The ratio Rduv
is completely dominated by the intrinsic part of the DPD.

model, as is illustrated in figure 3. The agreement does not improve with other choices of the
power n just discussed.
The adjustments discussed in the following will improve the situation considerably. Let us at
this point note that the number sum rules for equal quark flavours (such as those in the lower
row of figure 3) can receive a substantial contribution from g → qq̄ splitting at the starting
scale µy of Fspl. This contribution is negative for a1 = q and positive for a1 = q̄, given that
Fa1qv = Fa1q − Fa1q̄.

5.2 First iteration: number effects and modified phase space factor

In the first iteration of our model, we implement the same two adjustments that were already
made in [77]. To describe these adjustments, it is convenient to specify the ansatz (9) for
Fa1a2, int with a1 and a2 taking the values qv, q̄, g instead of q, q̄, g (with qv denoting the linear
combination q − q̄). This switch from quarks and antiquarks to “valence” and “sea” quarks
is familiar from the parametrisation of ordinary PDFs.
Following the argumentation in [77], it is natural to change the ansatz for distributions with
two valence quark labels so as to take into account “number effects”, i.e. the fact that we
have a finite number of valence quarks in the proton, two u and one d. To do this, we set
Fuvuv ,int to half the value given by (9) and set Fdvdv ,int to zero. The latter corresponds to
the simple intuition that the probability to find two “valence d quarks” in the proton is nil.
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The second adjustment argued for in [77] is to modify the phase space factor from the parton
independent form in (10) to

ρa1a2(x1, x2) = (1− x1 − x2)2 (1− x1)−2−α(a2) (1− x2)−2−α(a1) , (22)

with

α(a) =

{
0.5 for a = qv

0 for a = q̄, g
(23)

Whilst the original form in (10) satisfies 0 ≤ ρa1a2 ≤ 1, the phase space factor in (22) becomes
greater than 1 when the momentum fraction of a valence parton tends to 0 and the momentum
fraction of the other parton (valence or sea) tends to 1. Due to the PDFs in the ansatz (9),
the intrinsic part of the DPD still goes to zero in that limit.
With these modifications, we find that the momentum sum rules are further improved, such
that for most of the x1 range, relative deviations are less then 10%. This is illustrated in
figure 4, which is to be compared with figure 1 for the initial model.
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(a) u momentum sum rule
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(b) g momentum sum rule

Figure 4: Momentum sum rule ratios for the first iteration of our model, taking into account
number effects (explained in the second paragraph of section 5.2) and the modified phase
space factor given by (22) and (23). The corresponding plots for the original model are shown
in figure 1.

A more significant improvement is obtained for the number sum rules, as can be seen from
the comparison of figure 5 with figure 3. The modified phase space factor yields a weaker
suppression for valence partons at large momentum fractions of the other parton. This largely
mitigates the steep decrease of the sum rule ratios with x1 in the initial model. Taking into
account number effects strongly reduces the value of Ruuv at low x1, which is much too high
in figure 3(c).

5.3 Second iteration: parameter scan for the phase space factor

Given that there is no strong motivation to take the particular value 0.5 for α(uv) and α(dv)
in (23), it is natural to explore whether tuning these parameters can improve the sum rule
ratios further. We have therefore performed a parameter scan over these two powers. To
quantify the degree to which the sum rules are fulfilled, we introduce

δ =

0.8∫
xmin

dx1 |R(x1)− 1| (24)
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(d) d̄dv number sum rule

Figure 5: The same number sum rule ratios as in figure 3, but for the first iteration of our
model.

as a quality measure for each sum rule ratio R, where xmin = 5 × 10−5. A global quality
measure is then the sum δgl of these measures over all sum rules, excluding of course the cases
for which Ra1qv cannot be defined, as specified below (20).
Notice that in (24) we have taken an upper integration limit of x1 = 0.8. This is because
for very high x1, we consider even large relative deviations from the DPD sum rules to be
acceptable: DPDs in this region are expected to be very small and should hence not play any
role in cross sections that are of measurable size.
The values of δgl obtained in our parameter scan over α(uv) and α(dv) are shown in figure 6.
A minimum is reached at

α(a) =


0.63 for a = uv

0.49 for a = dv

0 for a = q̄, g

(25)

which we take as the second iteration of our model.
As illustrated in figure 7(a), the momentum sum rules are not strongly affected by this change
of parameters. The same holds for number sum rules that do not involve u quarks, which is
not surprising because α(uv) has significantly changed whereas α(dv) has not. Furthermore,
we see in figure 7(b) that the change in Rudv is very small. By contrast, all number sum rules
for uv are significantly improved in the range x1 ≤ 0.8, as illustrated in the lower plots of
figure 7.
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Figure 6: The quality measure δgl defined after (24), evaluated as a function of the powers
α(uv) and α(dv) in the phase space factor. The right panel gives a zoom into the parameter
space shown on the left.
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Figure 7: Sum rule ratios in the first and second interactions of the model, which respectively
correspond to the powers (23) and (25) in the phase space factor.
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One may wonder whether tuning other parameters in our model can lead to further improve-
ments. Candidates for such an endeavour are the parameter ymax in the starting scale µy of
Fspl, as well as the widths ha1a2 of the Gaussian damping factor, which appears in both Fint

and Fspl. We find, however, that changing these parameters does not lead to a significant
decrease of δgl, and that the minimum of δgl is achieved for parameter values very close to
those specified in section 3. We hence leave these parameters at their initial values.
Notice that the Gaussian factor in the intrinsic part (9) of the DPD is normalised such that
its integral over all y gives unity. Restricting this integral to y ≥ b0/ν has little effect, which
explains why a change of ha1a2 has almost no impact on the contribution of Fint to the sum
rules.

5.4 Third iteration: modifying the splitting part at large distances

After several modifications to the intrinsic part Fint of our DPD model, we now turn to the
splitting part Fspl. While the latter can be computed for perturbatively small y, its form at
large distance y needs to be modelled. We now modify the initial ansatz (14) and multiply
Fspl,pt by the superposition of two Gaussians in y, with a relative weight depending on the
momentum fractions:

F̃a1a2,spl(x1, x2,y;µy) = Fa1a2,spl,pt(x1, x2,y;µy) exp

[
− y2

4ha1a2

]
×

{
1 +

(
exp

[
y2

4h∗a1a2

]
− 1

)
ga1a2(x1 + x2)

}
. (26)

The factor multiplying Fspl,pt can be rewritten as the sum of two Gaussians, one multiplied
with 1 − ga1a2(x1 + x2) and the other multiplied with ga1a2(x1 + x2). For the new width
parameters h∗a1a2

we make the same ansatz as we did for ha1a2
, i.e. we set h∗a1a2

= h∗a1
+ h∗a2

.
We take values

h∗g = 3.015 GeV−2 , h∗q = h∗q̄ = 5.375 GeV−2 (27)

such that the Gaussian factor exp
[
−y2/(4ha1a2) + y2/(4h∗a1a2

)
]

multiplying ga1a2 is approx-
imately the same for all parton combinations. Admittedly, the form (26) is rather special
among all possible functions that have the correct limit at small y. Clearly, the requirement
of fulfilling the sum rules is not nearly enough to determine the functional form of DPDs at
large y, so that a particular ansatz must be made. Our choice has the feature of introducing
a nontrivial interplay between the dependence on y and on the parton momentum fractions,
controlled by a one-variable function ga1a2(x1 + x2) for each LO splitting process a0 → a1a2.
We will find that this is an adequate degree of complexity, in the sense that the sum rule
constraints are sufficient to determine this function.
Whilst strict positivity of F̃spl requires ga1a2(x1 + x2) > 0, the procedure described below
yields negative values of this function in some cases. We checked that the resulting full DPDs
Fint + F̃spl are still positive in the range of x1, x2 and y covered by our DPD grids. This holds
for all scales µ on our grid, from the starting scale µmin = 2.25 GeV up to the highest value
µ = 172 GeV.
Let us first consider the splitting g → qq̄, where q takes one of the values u, d, s. This splitting
feeds into the number sum rules for equal quark flavours, which at this stage are least well
satisfied. Judging the impact of the function ga1a2(x1 + x2) is complicated by the fact that
the ansatz (26) for F̃spl is made at the y dependent scale µy and needs to be evolved to the
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scale µmin where we evaluate the sum rules. For definiteness, we consider the sum rule

(Nqv + 1) fq̄(x1;µmin) =

1−x1∫
0

dx2

∫
d2y

[
Fq̄qv ,int(x1, x2,y;µmin) + F̃q̄qv ,spl(x1, x2,y;µmin)

]

+

1−x1∫
0

dx2 Fq̄qv ,match(x1, x2;µmin) , (28)

where here and in the following it is understood that the integrals over y are restricted
to y ≥ b0/ν = b0/µmin. To simplify the determination of ga1a2(x1 + x2), we make two
approximations. Firstly, we use that for small y the initial and modified splitting model do
not differ significantly, i.e.

F̃q̄qv ,spl(x1, x2,y;µmin) ≈ Fq̄qv ,spl(x1, x2,y;µmin) . (29)

Secondly, we recall that for large y the scale µy is close to µmin, so that we have

F̃q̄qv ,spl(x1, x2,y;µmin) ≈ F̃q̄qv ,spl(x1, x2,y;µy) . (30)

Combining both approximations gives∫
d2y F̃q̄qv ,spl(x1, x2,y;µmin) ≈

∫
d2y Θ(ysep − y)Fq̄qv ,spl(x1, x2,y;µmin)

+

∫
d2y Θ(y − ysep) F̃q̄qv ,spl(x1, x2,y;µy) , (31)

where we use (29) below ysep and (30) above. Taking ysep = 1 GeV−1 ensures that (30) is
rather well fulfilled, as µmin and µy differ by at most 12%. We will find that |gqq̄| < 12, which
corresponds to a relative discrepancy below 30% between the l.h.s. and the r.h.s. of (29).
While this may not seem to be very precise, it will turn out to be sufficient for improving the
sum rules significantly.
Using (26) and (31), the sum rule (28) can be approximated as

kq̄(x1) =
def

(Nqv + 1) fq̄(x1;µmin) −
1−x1∫
0

dx2 Fq̄qv(x1, x2;µmin)

=

1−x1∫
0

dx2

∫
d2y Θ(y − ysep)Fqq̄,spl(x1, x2,y;µy)hqq̄(y) gqq̄(x1 + x2) , (32)

where Fq̄qv(x1, x2;µ) denotes the full DPD (17) in the second iteration of our model and we
have abbreviated

hqq̄(y) = exp
[
y2/(4h∗qq̄)

]
− 1 . (33)

Here we used that at the scale µy one has Fq̄qv ,spl = Fq̄q,spl = Fqq̄,spl and a corresponding
relation for F̃a1a2,spl. Shifting the integration variable on the r.h.s. of (32) from x2 to x =
x1 + x2 gives

kq̄(x1) =

x1∫
1

dx Kqq̄(x1, x) gqq̄(x) (34)
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with

Kqq̄(x1, x) = −
∫

d2y Θ(y − ysep)Fqq̄,spl(x1, x− x1,y;µy)hqq̄(y) . (35)

We recognise in (34) a Volterra equation of the first kind [92]. We discretise this equation
by taking both x1 and x on the grid for DPDs discussed in section 4. The integral over x is
turned into a sum using a simple trapezoidal rule in the variable u = log(x/(1 − x)). The
result is a linear system of equations

(kq̄)i =
∑
j

(Kqq̄)ij (gqq̄)j (36)

with an upper diagonal matrix Kij , which is readily solved using Gauss-Jordan elimination.
In order to have an analytic formulation for our model, we fit the obtained discrete values of
ga1a2(x) to the form

g(x) = A+Bxb + Cxc1(1− x)c2 , (37)

for each of the splittings g → uū, g → dd̄, and g → ss̄. This reproduces the general shape of
the numerical results rather well, except for some deviations at very large x. The resulting
functions are shown in figure 8(a) to 8(c), and the fitted parameters are given in table 1.
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Figure 8: Modification functions ga1a2(x) for the g → qq̄ and g → gg splittings. For each
channel we display the fit to the form (37) and the direct solution of the discretised Volterra
equation (36). The direct solution is shown as a dashed curve with linear interpolation between
each data point.
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a0 → a1a2 A B b C c1 c2

g → uū −0.4193 1.0627 7.7448 60.8558 0.9881 2.2641
g → dd̄ −0.8020 1.7291 0.0988 932.0289 1.8515 6.8244
g → ss̄ −1.5409 3.0985 2.3609 49.8862 1.0964 7.2093
g → gg 25.8143 −26.1923 0.0600 −5.3466 0.0764 2.6904

Table 1: Parameters of the modification functions ga1a2 defined by (26) and (37).

With these modified g → qq̄ splittings, the agreement of the model with the q̄qv number sum
rules improves significantly, as can be seen in figure 9(b) to 9(d). Remarkably, the modification
of the g → uū splitting improves not only the sum rule for ūuv but also one for uuv, as seen
in figure 9(a).
At this point, we recall that the ratio Ra1qv is undefined for Fddv . In order to quantify how
well the number sum rule for this distribution is satisfied, we introduce the modified ratio

R̃ddv(x1;µ) =

∫
dx2 Fddv(x1, x2;µ)

fd(x1;µ)
, (38)

in which the zero prefactor in the denominator of (19) has been replaced with unity. The ratio
R̃ddv should be close to zero. We see in figure 10 that this is indeed the case: the modification
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Figure 9: Change of the number sum rules for equal flavours due to the modification of the
g → qq̄ splittings at large y.
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Figure 10: Change of the sum rule ratio (38) due to the modification of the g → dd̄ splitting
at large y. The sum rule is exactly satisfied if R̃ddv = 0.

of the g → dd̄ splitting improves not only the sum rule for Fd̄dv but also the one for Fddv .
Altogether, we have reached a satisfactory agreement of our model with all number sum rules.
The modification of the g → qq̄ splitting also affects the quark momentum sum rules, as
illustrated in figure 11. In the cases shown in the figure, the agreement of the momentum
sum rule becomes slightly worse, whereas the changes in the remaining cases are insignificant.
One could improve Rū and Rd̄ by modifying the g → gū and g → gd̄ splittings, but this would
also affect the number sum rules ratios Rguv and Rgdv . We refrain from such an exercise,
considering that the agreement shown in figure 11 is still satisfactory.
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Figure 11: Change of momentum sum rules due to the modification of the g → qq̄ splittings
at large y.

The sum rule ratio that is farthest away from 1 after these improvements is the one for the
gluon momentum sum rule. This can be adjusted by modifying the g → gg splitting at large y
in the same way as discussed for g → qq̄. The parameters of the modification function ggg(x)
are given in table 1, and the function itself is shown in figure 8(d). The resulting improvement
of the sum rule can be seen in figure 12, and we have checked that none of the other sum rule
ratios is adversely affected by this final modification of our model.
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Figure 12: Change of the gluon momentum sum rule due to the modification of the g → gg
splitting at large y.

Let us finally take a look at the relative importance of intrinsic and splitting contributions to
the sum rules in the final iteration of our model. In figures 13 and 14, we show the situation
for the same sum rules that were shown in figures 1 and 3 for our initial model. We find that
for Ru, Rduv , and Rgdv the main change between the initial and final versions is due to the
intrinsic part. By contrast, for Rg and Ruuv , and Rd̄dv there are important changes both in
the intrinsic and in the splitting parts, where the latter are restricted to the small x1 region
in the case of Ruuv . That these sum rules are strongly affected by the splitting modification
at large y was already seen in figures 12, 9(a), and 9(c).
In the final iteration of our model, the sum rules that receive positive or negative splitting
contributions larger than 20% in at least part of the x1 range are the momentum sum rules
for sea quarks (ū, d̄, s̄, and s) and the number sum rules for equal flavours (qqv and q̄qv).
Compared with the initial model, the contribution of the g → gg splitting to Rg has strongly
decreased due to its modification at large y.
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Figure 13: Momentum sum rule ratios Ru and Rg for the final iteration of our model. The
corresponding plots for the initial model are in figure 1 and those for the first iteration in
figure 4. Not shown is the separate contribution from the matching term Fmatch, which is
negligible in this case.
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Figure 14: Number sum rule ratios Ra1qv for the final iteration of our model. The corre-
sponding plots for the initial model are in figure 3 and those for the first iteration in figure 5..
The ratio Rduv is completely dominated by the intrinsic part of the DPD.

6 Scale dependence

So far, we have evaluated the sum rules for DPDs and PDFs at the scale µ = µmin = 2.25 GeV,
and with the matching between position and momentum space DPDs computed for a cutoff
scale ν = µ. In this section, we investigate how the sum rules change if these scales are chosen
differently.

6.1 Renormalisation scale

As shown in [77], the DPD sum rules are preserved under LO evolution. If they are approxi-
mately valid at some scale, one may expect that they are still approximately valid when the
DPDs and PDFs are evolved to a different scale. We verified that this is indeed the case
for the DPD model developed in the previous section. This is illustrated in figure 15 for
momentum sum rules and in figure 16 for number sum rules. We evolved the distributions
from µmin to µ = 144.6 GeV, which is a point on our µ grid. The DPD matching at the high
scale is evaluated with ν = µ.
In the case of the g momentum and the guv number sum rule, we notice that the individual
contributions from Fint and Fspl to the sum rule ratios change considerably under evolution,
while the sum of all contributions remains nearly the same. This highlights the relevance of
the perturbative splitting mechanism for ensuring the scale independence of the DPD sum
rules, which was pointed out in a number of different studies [70,71,78].
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Figure 15: Comparison of the gluon momentum sum rule ratio for the final iteration of our
model at two different scales. The contribution of the matching term is small and not shown.

In the figures for the ūuv sum rule, we observe that the oscillatory behaviour of Rūuv , which is
a consequence of the modified splitting term in our model, is less pronounced after evolution
to µ = 144.6 GeV. This is a typical feature of scale evolution, which tends to “wash out”
details of distributions when going from low to high scales.

6.2 Cutoff scale

The matching relation given in (5) is only accurate up to higher orders in αs and up to power
corrections in Λ/ν. The higher order analysis in [82] reveals that the term of order αns in
the matching relation is accompanied by up to n powers of log(µ2/ν2). Varying ν around
its “natural value” µ thus provides an estimate of higher order and power corrections in the
matching relation. Following a widespread practice for scale variations, we vary ν between
µ/2 and 2µ, taking again µ = µmin. The resulting variation of the sum rule ratios for our
final DPD model is illustrated in figure 17.
We find the ν dependence to be moderate, with changes of 10% or less in the sum rule ratios
in almost all cases. These variations are hence of the same order as the agreement of the sum
rule ratios with 1. The theoretical uncertainties reflected by the ν variation also suggest that
it is of limited value to tune the sum rule ratios obtained for ν = µ much further than we
have done.
The only sum rule ratio with a larger ν dependence is Rs̄sv , shown in figure 17(d), which varies
up to 20%. To understand this, we note that the ν dependence of the splitting and matching
terms in (17) is stronger than the ν dependence of the intrinsic term. The latter gives an
important contribution to all sum rule ratios, except for Rs̄sv , where within our model it is
strictly zero.
One might wonder whether a change of the scale ν could systematically improve the agreement
of our initial model with the sum rules. The examples in figure 18 show that this is not the
case: the ν variation is not able to bring the ratios Rū or Rūuv close to 1 for all x1 ≤ 0.8. We
also note that the change of the sum rules with ν is roughly of the same size in our initial
and final models. This justifies our choice of ν = µ for the tuning of the model described in
the previous section.
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R
u
u
v

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x1

(c) ūuv number sum rule at µ = 2.25 GeV
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(d) ūuv number sum rule at µ = 144.6 GeV
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(e) duv number sum rule at µ = 2.25 GeV
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(f) duv number sum rule at µ = 144.6 GeV

Figure 16: Comparison of number sum rule ratios for the final model at low and high scales.
The contribution of the matching term is small and not shown.

7 Conclusions

The number and momentum sum rules for DPDs put important constraints on DPD parametri-
sations. We have shown that one can construct physically plausible models for DPDs in
position space that approximately fulfil these constraints. Our starting point was the DPD
ansatz used in [45], the construction of which ensures the correct small y limit given by LO
perturbation theory, but does not take into account DPD sum rule constraints at all. That
ansatz was then sequentially modified: we started by adapting the modifications discussed
in [77] to our case and furthermore tuned some model parameters, using parameter scans and
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Figure 17: Cutoff scale dependence of sum rule ratios, evaluated at µ = µmin for the final
iteration of our model. The solid curve is for ν = µ, and the band corresponds to a variation
of ν between µ/2 and 2µ.

a measure that quantifies how well the sum rules are globally satisfied. In the last step, we
modified the form of the parton splitting term at large y, where perturbation theory is not
applicable and this term has to be regarded as part of the non-perturbative model. Whilst
the specific form of that modification was motivated more by practical considerations than
by physical intuition, our exercise shows that one can adapt position space DPDs up to the
point where all momentum and number sum rules are satisfied within about 10% accuracy.
An exception to this statement is the region of parton momentum fractions x > 0.8, where
even ordinary PDFs are poorly known and where double parton scattering processes will have
tiny cross sections.
We verified that the approximate validity of the sum rules remains stable under evolution
from low to high scales. Furthermore, we find that the sum rules are robust under variation
of the cutoff scale ν, which appears when converting DPDs from position to momentum space.
The largest ν variation is observed for the number sum rule that involves only strange quarks,
where we see effects of up to 20%. Since the ν variation reflects in particular the size of
uncomputed higher orders in the parton splitting, and since we vary ν around a central value
of 2.25 GeV, we find a scale variation of this size not too surprising. One can expect that
the inclusion of perturbative splitting terms at NLO, which have been computed in [82], will
improve the situation.
For any given DPD model and PDF set, one can verify to which extent the sum rules are
fulfilled. If they are violated significantly, one can unfortunately not fully deduce the region
of variables x1, x2, y in which the DPDs are unreliable, since the sum rules are integrated over
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Figure 18: As figure 17, but for the initial DPD model described in section 3.

one momentum fraction and over y. If, however, one has a given functional form of DPDs and
needs to choose its parameters, the sum rules can be of more direct use. Whilst imposing that
they be satisfied exactly will in general be a condition that cannot be fulfilled, the type of
quality measure for the sum rules we introduced in section 5.3 provides a simple quantitative
criterion for the theoretical consistency of the model. In a more sophisticated treatment, one
should also take into account the uncertainties on the PDFs, which appear on the r.h.s. of
the sum rules and typically are also an input to the DPD model.
Whilst perturbative calculations for double parton scattering have been pushed to higher
orders in recent years, the construction of more reliable DPD models remains an outstanding
task. The present work shows that two major theoretical constraints on DPDs, namely the
small y limit and the sum rules (where y is integrated over) can be satisfied simultaneously
at least in an approximate way. Of course, this theoretical input alone is not sufficient to pin
down the DPDs, and ultimately, the predictions obtained with any DPD model should be
compared with experiment. This will be a huge endeavour and must be left to future work.
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