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Abstract: We extend our algorithm for automating the calculation of two-loop dijet soft
functions to observables that do not obey the non-Abelian exponentiation theorem, i.e. to
those that require an independent calculation of the uncorrelated-emission contribution.
As the singularity structure of uncorrelated double emissions differs substantially from the
one for correlated emissions, we introduce a novel phase-space parametrisation that isolates
the corresponding divergences. The resulting integrals are implemented in SoftSERVE 1.0,
which we release alongside of this work, and which we supplement by a regulator that is
consistent with the rapidity renormalisation group framework. Using our automated setup,
we confirm existing results for various jet-veto observables and provide a novel prediction
for the soft-drop jet-grooming algorithm.
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1 Introduction

The perturbative calculation of soft functions provides insights into the infrared structure of
gauge theory amplitudes and enables the resummation of logarithmically enhanced correc-
tions to all orders in perturbation theory. Starting at next-to-next-to-leading order (NNLO)
and beyond, the perturbative computations often become intricate since the divergences in
the phase-space integrations overlap. This motivated us to develop a systematic algorithm
for the calculation of two-loop soft functions in [1, 2], which exploits the fact that the
defining matrix element of the soft functions is independent of the observable for a given
hard-scattering process.

In this work we are concerned with soft functions that arise in processes with two
massless, coloured, hard partons that are in a back-to-back configuration. These dijet soft
functions can be defined in terms of two light-like Wilson lines Sn and Sn̄, which embed
the eikonal form of the soft interactions and which trace the directions nµ and n̄µ of the
(initial or final-state) hard partons with n2 = n̄2 = 0 and n · n̄ = 2. A generic soft function
of this type can be written in the form

S(τ, µ) =
1

Nc

∑
i∈X
M(τ ; {ki}) Tr |〈X|T [S†n(0)Sn̄(0)] |0〉|2 , (1.1)

where M (τ ; {ki}) represents an observable-specific measurement on the soft radiation X
with partonic momenta {ki}, which – after isolating the singularities present in the soft
matrix element – acts as a weight factor for the phase-space integrations.
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In [2] we specified a number of constraints that we impose on the functional form of the
measurement functionM (τ ; {ki}), whose resulting generality was illustrated in applications
to about a dozen e+e− and hadron-collider soft functions. What all of these observables
have in common is that they are consistent with non-Abelian exponentiation (NAE) [3, 4].
In a non-Abelian gauge theory this implies that for any observable the all-order soft matrix
element takes the form of an exponential, which involves only Feynman diagrams with
specific colour structures. At NNLO this fixes one of the three colour structures to the
square of the NLO amplitude, and as long as the measurement function itself factorises into
two single-emission pieces, this contribution to the soft function does not require a dedicated
calculation since it is proportional to the square of the NLO soft function. This allowed us
in [2] to present complete results for NAE observables, although the algorithm devised in
that paper applies only to two out of three NNLO colour structures, which constitute the
so-called correlated-emission contribution.

There exist, however, interesting soft functions that do not comply with NAE, and
which require an independent calculation of the uncorrelated-emission contribution. This
applies, for instance, to soft functions that are defined in terms of a jet algorithm, which
partitions the phase space of the soft emissions into different regions in which the partons
are clustered together. As these clustering constraints do not have an analogue at lower
orders, the respective measurement function does not factorise into single-emission pieces
and the uncorrelated-emission contribution becomes non-trivial.

The singularity structure of uncorrelated double emissions differs, on the other hand,
from the one for correlated emissions, and the phase-space parametrisation we used in [2]
fails to factorise the corresponding divergences. At first sight one may think that the calcu-
lation of the uncorrelated-emission contribution should be simpler than the one for corre-
lated emissions since the underlying matrix element is trivial. As we will see in this paper,
however, the singularity structure imposes more stringent constraints on the required phase-
space parametrisation in a generic, observable-independent approach. It therefore turns out
that one cannot apply a universal parametrisation for all observables in this case, but one
instead has to resort to specific parametrisations for different classes of soft functions. We
actually already presented the phase-space parametrisation we use for uncorrelated emis-
sions in [1, 5], in which we focused on the divergences of the soft functions, whereas we
present complete NNLO results in this paper.

Apart from devising a systematic algorithm for the calculation of dijet soft functions,
we developed a stand-alone program called SoftSERVE for their numerical evaluation [2].
Whereas the previous version SoftSERVE 0.9 could only be used for the calculation of the
correlated-emission contribution, the new version SoftSERVE 1.0 – which we publish along-
side this paper – contains a number of new features. Most importantly, we implemented
the master formula derived in this work for the calculation of the uncorrelated-emission
contribution, such that SoftSERVE 1.0 can now handle generic dijet soft functions that
comply with our ansatz, both for NAE and NAE-violating observables. Moreover, the new
version contains a script for the renormalisation of cumulant soft functions, which differs
from the one for Laplace-space soft functions considered in [2], and we implemented the
formulae from [1], which allow for a direct calculation of the soft anomalous dimension
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(and also the collinear anomaly exponent [6, 7]), without having to calculate the complete
bare soft function. Finally, we argued in [2] that the rapidity regulator that is used in
SoftSERVE 0.9 is not suited for the rapidity renormalisation group (RRG) approach [8],
since it is not implemented on the level of connected webs. In the new version we remedied
this point by adding an option which allows the user to run SoftSERVE with different rapid-
ity regulators. Whereas we briefly comment on all of these changes in this work, we refer
to the SoftSERVE user manual for more detailed explanations. The SoftSERVE distribution
is publicly available at https://softserve.hepforge.org/.

The remainder of the paper develops as follows: in Section 2 we introduce the phase-
space parametrisation we use for uncorrelated emissions as well as the corresponding form
of the measurement function. In Section 3 we employ this parametrisation to obtain a
master formula for the calculation of the uncorrelated-emission contribution to a generic
bare two-loop soft function, which we then renormalise in Section 4. In Section 5 we briefly
review the technical aspects of the SoftSERVE extension, and we present sample results for
NAE and NAE-violating observables in Section 6, including a novel calculation of an NNLO
soft function for the soft-drop jet-grooming algorithm. We finally conclude in Section 7,
and we present some technical aspects of our analysis in an appendix.

2 Measurement function

Following the procedure outlined in [2], we restrict ourselves to soft functions whose defining
measurements are of the form

M(τ ; {ki}) = exp
(
− τ ω({ki})

)
, (2.1)

where it is clear from the exponential that we typically evaluate the soft functions in some
space conjugate to momentum space, e.g. Laplace or Fourier space. The variable τ then
denotes the associated conjugate variable, and the function ω({ki}) characterises the specific
constraint on the final-state momenta that is provided by the observable in question. More
specifically, we assume that

(A1) the soft function is embedded in a dijet factorisation theorem and it has a double-
logarithmic evolution in the renormalisation scale µ and, possibly, also the rapidity
scale ν;

(A2) <
(
ω({ki})

)
≥ 0 and ω({ki}) is allowed to vanish only for configurations with zero

weight in the phase-space integrations, and it is furthermore supposed to be indepen-
dent of the dimensional and the rapidity regulators;

(A3) the variable τ has dimension 1/mass;

(A4) the function ω({ki}) is symmetric under nµ ↔ n̄µ exchange;

(A5) the soft function depends only on one variable τ in conjugate space, although we
already showed in [2] how to relax this condition, which is needed e.g. for multi-
differential soft functions;

– 3 –
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(A6) the function ω({ki}) depends only on one angle θi per emission in the (d− 2)-dimen-
sional transverse plane to nµ and n̄µ as well as on relative angles θij between two
emissions.

For further explanations regarding these assumptions, we refer the reader to the correspond-
ing section in [2].

In order to illustrate the implications of these assumptions, we considered three tem-
plate observables in [2] relevant for e+e− event shapes, threshold resummation and trans-
verse-momentum resummation that are all consistent with NAE. We find it convenient to
proceed similarly in this work, and to highlight the salient features of NAE-violating ob-
servables with a specific example. To this end, we consider the C-parameter-like jet veto
observable TCcm from [9], whose measurement function in Laplace space can be written
in the form (2.1), except for a global factor of 1/τ which arises because the constraint on
the soft radiation is given in momentum space in the form of a θ-function rather than a
δ-function. This factor is typical for cumulant soft functions, and we will investigate its
consequences more closely when we discuss renormalisation in Section 4. For the calculation
of the bare soft function, however, this factor is just a constant and can be ignored.

For zero and one emissions, the observable is just the usual C-parameter event shape,
which we discussed at length in [2]. The clustering constraint, on the other hand, only
becomes relevant for two and more emissions. Specifically for two emissions with momenta
k and l, we have

ωCPV (R; k, l) = θ(∆−R) max

(
k+k−
k+ + k−

,
l+l−
l+ + l−

)
+ θ(R−∆)

(k+ + l+)(k− + l−)

k+ + l+ + k− + l−
,

(2.2)

where we introduced light-cone coordinates via k+ = n · k and k− = n̄ · k, and

∆ =

√
1

4
ln2 k−l+

k+l−
+ θ2

kl (2.3)

represents the distance measure of the jet algorithm. From (2.2) we see that emissions
that are closer than the jet radius R are clustered together, whereas those that are further
apart are treated as individual emissions, such that the jet veto constrains the one with
a larger value of the C-parameter. One easily verifies that the assumptions (A1)-(A6)
are satisfied for this observable, and from (2.2) it is obvious that ωCPV (R; k, l) cannot be
written as a sum of single-emission functions, which would be required for a factorisation
of the measurement function (2.1). The observable therefore violates NAE.

In analogy to the correlated-emission calculation from [2], we need to find a parametri-
sation of the double-emission measurement function that has a well-defined behaviour in
the singular limits of the corresponding matrix element. The parametrisation we use for
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uncorrelated emissions was already given in [5],

yk =
k+

k−
, qT =

√
k+k−

(
l− + l+√
l+l−

)n
+
√
l+l−

(
k− + k+√
k+k−

)n
,

yl =
l+
l−
, b =

(
k+k−
l+l−

)n+1
2
(
l− + l+
k− + k+

)n
, (2.4)

where n is a parameter that is related to the power counting of the modes in the effective
theory – see the discussion in [2]. Unlike the correlated-emission case, we thus use specific
parametrisations for classes of observables that correspond to the same value of n. The
parametrisation becomes, for instance, particularly simple for SCET-2 soft functions where
n = 0.

In physical terms, the variables yk and yl are measures of the rapidities of the in-
dividual partons, whereas b and qT only have a simple interpretation for n = 0, where
they correspond to the ratio and the scalar sum of their transverse momenta, respectively
(the n-dependent terms introduce rapidity-dependent weight factors). Similar to [2], the
parametrisation is supplemented by the angular variables

tk =
1− cos θk

2
, tl =

1− cos θl
2

, tkl =
1− cos θkl

2
, (2.5)

with θk = ^(~v⊥,~k⊥), θl = ^(~v⊥,~l⊥) and θkl = ^(~k⊥,~l⊥). The vector vµ encodes a potential
azimuthal dependence of the observable around the collinear axis – see [2] for specific
examples. The inverse transformation to (2.4) can be found in [1].

The integration ranges for the variables yk, yl and b span the entire positive real axis
and, similar to the correlated-emission case, they can be mapped onto the unit hypercube
using symmetry arguments. The implicit phase-space divergences then arise in the following
four limits:

• qT → 0, which corresponds to the situation in which both emitted partons become
soft;

• b→ 0, which implies that the parton with momentum kµ becomes soft (compared to
lµ);

• yk → 0, which reflects the fact that the parton with momentum kµ becomes collinear
to the direction nµ (at fixed transverse momentum);

• yl → 0, which is the corresponding limit for the parton with momentum lµ.

As qT is the only dimensionful variable in our parametrisation and the mass dimension of
the variable τ is fixed by (A3), the function ω({k, l}) = ω(qT , yk, yl, b, tk, tl, tkl) must be
linear in qT . The limit b → 0 is furthermore protected by infrared safety, which means
that the measurement function cannot vanish in this limit since it must fall back to the
one-emission function [2]. Yet, we still have to control the measurement function in the
remaining two limits to make sure that we can properly extract the associated divergences.
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The very fact that one has to control the measurement function in two unprotected
singular limits – as opposed to one for correlated emissions – is the main complication in the
present calculation. To better illustrate this point, let us for the moment consider a generic
observable that obeys NAE, i.e. its two-emission measurement function can be written in
the form

M2(τ ; k, l) =M1(τ ; k)M1(τ ; l) ,

= exp
{
− τ

(
kT y

n/2
k f(yk, tk) + lT y

n/2
l f(yl, tl)

)}
, (2.6)

where we have used the explicit form of the single-emission measurement function from [2],
and the function f(y, t) is by construction finite and non-zero as y → 0. In order to extract
the collinear divergences that arise in the limits yk → 0 and yl → 0, one has to make sure
that the term in the round parenthesis is finite and non-zero in either of the limits and
in the combined limit yk, yl → 0 as well. Except for n = 0 this is obviously not the case.
Factoring out yn/2k , on the other hand, would guarantee that the first term stays finite as
yk → 0, but at the same time the second term would blow up for n > 0. Similarly, factoring
out powers of yl does not help to make the expression in the parenthesis finite as yl → 0.

The problem is solved by the specific form of the parametrisation (2.4). In terms of
these variables, the transverse-momentum variables kT and lT take the form

kT =
√
k+k− =

( √
yl

1 + yl

)n b

1 + b
qT , lT =

√
l+l− =

( √
yk

1 + yk

)n 1

1 + b
qT , (2.7)

which – when inserted into (2.6) – shows that both terms in the parenthesis are proportional
to yn/2k y

n/2
l . Once this term is factored out, the remaining expression is thus finite and non-

zero in the collinear limits as desired. This explains why the phase-space parametrisation
for uncorrelated emissions must be n-dependent, and it motivates the following ansatz for
the double-emission measurement function:

Munc
2 (τ ; k, l) = exp

(
− τ qT yn/2k y

n/2
l G(yk, yl, b, tk, tl, tkl)

)
, (2.8)

where the dependence on qT is fixed on dimensional grounds and the function G is sup-
posed to be finite and non-zero as yk → 0 and yl → 0. Although our discussion started
from the specific form (2.6) of a NAE observable, we expect that generic NAE-violating
observables can be written in the form (2.8) as well. The reason is that the soft function
is by assumption embedded in a dijet factorisation theorem – see (A1) – and the pole
cancellation between the various regions requires that a potential NAE-violating term in
the two-emission measurement function cannot upset the scaling in the limits yk → 0 and
yl → 0. The discussion is actually similar to the one in Appendix A of [2].

As an example we consider the jet-veto template from above, which corresponds to
n = 1, f(yk, tk) = 1/(1 + yk) and

G(yk, yl, b, tk, tl, tkl) = θ(∆G −R)
max(1, b)

(1 + b) (1 + yk) (1 + yl)
(2.9)

+ θ(R−∆G)

(
1 + yl + (1 + yk)b

) (
yk(1 + yl) + byl(1 + yk)

)(
1 + b

) (
1 + yk

) (
1 + yl

) (
yk(1 + yl)2 + byl(1 + yk)2

) ,
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where the distance measure is now given by

∆G =

√
1

4
ln2 yk

yl
+ arccos2(1− 2tkl) . (2.10)

Due to the factorisation of √ykyl in (2.8), we see that the expression in (2.9) is indeed finite
in the limits yk → 0 and yl → 0 as required. The distance measure (2.10) reveals, moreover,
that the precise form in which the collinear limits are evaluated matters, and we will come
back to this point at the end of this section.

Before doing so, we analyse the general constraints on the double-emission measure-
ment function that arise from infrared safety. Following [2], we express the variables b and
qT in terms of those that parametrise the one-particle phase space for each of the emitted
partons,

b =
kT
lT

( √
yk

1 + yk

1 + yl√
yl

)n
, qT = kT

(
1 + yl√
yl

)n
+ lT

(
1 + yk√
yk

)n
. (2.11)

The limit in which the parton with momentum kµ becomes soft then corresponds to kT → 0,
which translates into b→ 0 and qT → lT

(
(1 + yk)/

√
yk
)n. Infrared safety implies that the

double-emission measurement function is related to the single-emission function in this
limit, which yields

G(yk, yl, 0, tk, tl, tkl) =
f(yl, tl)

(1 + yk)n
. (2.12)

As stated above, this relation guarantees that the function G does not vanish in one of
the singular limits of the uncorrelated-emission contribution. One can derive a similar
constraint in the limit in which the two emitted partons become collinear to each other,
and in this case one finds

G(yl, yl, b, tl, tl, 0) =
f(yl, tl)

(1 + yl)n
. (2.13)

Relations (2.12) and (2.13) reflect the fact that the observable is infrared safe, and they
can easily be checked explicitly for the jet-veto template from above.

As already mentioned, we find it convenient to map the integration region onto the unit
hypercube using symmetry arguments under n ↔ n̄ and k ↔ l exchange. Similar to [2],
this comes at the price of introducing two different versions of the measurement function,
which we label by the letters “A” and “B”. As we will explain in more detail in Section 3,
they are given by

GA(yk, yl, b, tk, tl, tkl) = G(yk, yl, b, tk, tl, tkl) ,

GB(yk, yl, b, tk, tl, tkl) =

{
y−nk G(1/yk, yl, b, tk, tl, tkl) or

y−nl G(yk, 1/yl, b, tk, tl, tkl) .
(2.14)

Physically, region A corresponds to the case in which both partons are emitted into the
same hemisphere with respect to the collinear axis, whereas region B describes the opposite-
hemisphere case.
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Finally, we saw in (2.10) that the distance measure of the jet algorithm is ambiguous
in the double limit yk → 0 and yl → 0, since it matters if the limit is evaluated at a fixed
ratio yk/yl or if it is evaluated sequentially. Physically, this corresponds to a distinction
between the joint collinear limit of the emitted partons at a fixed rapidity distance and
the individual collinear limits of each of the partons. The ambiguity only arises in the
same-hemisphere case, and it can be disentangled via a sector decomposition strategy. As
we will show in the next section, this introduces two subregions in region A with

GA1(y, r, b, tk, tl, tkl) = GA(y, ry, b, tk, tl, tkl) ,

GA2(y, r, b, tk, tl, tkl) = GA(ry, y, b, tk, tl, tkl) . (2.15)

3 Calculation of the bare soft function

Having specified the measurement function for two uncorrelated emissions, the calculation
of the bare soft function defined in (1.1) proceeds along the lines outlined for the correlated-
emission contribution in [2]. In the following we adopt the notation from that paper and
we assume that the Wilson lines are given in the fundamental colour representation.

The bare soft function has a double expansion in the dimensional regulator ε = (4−d)/2

and the rapidity regulator α, which we implement on the level of the phase-space integrals
via the prescription [10] ∫

ddp

(
ν

n · p+ n̄ · p

)α
δ(p2)θ(p0) . (3.1)

The rapidity regulator is required only for SCET-2 soft functions, and we will introduce an
alternative version that is compatible with the RRG framework later in Section 4.2. Up to
NNLO the bare soft function can then be written in the form

S0(τ, ν) = 1 +

(
Zααs

4π

)
(µ2τ̄2)ε (ντ̄)α SR(ε, α)

+

(
Zααs

4π

)2

(µ2τ̄2)2ε

{
(ντ̄)α SRV (ε, α) + (ντ̄)2α SRR(ε, α)

}
+O(α3

s) , (3.2)

where τ̄ = τeγE and αs is the renormalised strong coupling constant in the MS scheme.
In [2] we presented the calculation of the single real-emission correction SR(ε, α), the mixed
real-virtual interference SRV (ε, α) and two out of three colour structures (CFCA, CFTFnf )
of the double real-emission contribution SRR(ε, α), and the goal of the present paper consists
in computing the last missing NNLO ingredient, i.e. the C2

F contribution to SRR(ε, α).
The starting point of our calculation is the representation

S
(CF )
RR (ε, α) =

(4πeγEτ2)−2ε τ̄−2α

(2π)2d−2

∫
ddk δ(k2) θ(k0)

∫
ddl δ(l2) θ(l0)

× |A(CF )
RR (k, l)|2

(n · k + n̄ · k)α (n · l + n̄ · l)α M
unc
2 (τ ; k, l) , (3.3)
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∞

0
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b

(a) n↔ n̄ exchange

1
∞1

∞ 1

∞

0

yk

yl

b

(b) k ↔ l exchange

1
∞1

∞ 1

∞

0

yk

yl

b

(c) Reduced integration region

Figure 1: Reduction of the integration domain in the variables yk, yl and b for the un-
correlated-emission contribution. Cubes of the same colour correspond to integration re-
gions which yield the same result according to the stated symmetries. The second inte-
gration region B, complementing the highlighted region A in (c), can be any of the white
adjacent cubes. In practice it is most easily recovered from A by inverting either yk or yl.

where – due to NAE – the squared matrix element is given by

|A(CF )
RR (k, l)|2 =

|AR(k)|2 |AR(l)|2
2

=
2048π4C2

F

k+k−l+l−
. (3.4)

From (3.3) it is evident that the calculation reduces to the square of the NLO soft function
if the observable obeys NAE, i.e. if its double-emission measurement function is of the form
(2.6). We do not assume here, however, that this is the case and instead use the more
general parametrisation (2.8) of the measurement function.

Starting from (3.3), we thus switch to the variables introduced in (2.4) and (2.5) and
perform the observable-independent integrations, following [2] for a convenient parametri-
sation of the angular integrals in the (d− 2)-dimensional transverse plane. In order to map
the integration ranges in the variables yk, yl and b onto the unit hypercube, we exploit the
fact that the variables transform under n↔ n̄ exchange as

yk →
1

yk
, yl →

1

yl
, b→ b , tk → tk , tl → tl , tkl → tkl , (3.5)

whereas the corresponding relations under k ↔ l exchange are given by

yk → yl , yl → yk , b→ 1

b
, tk → tl , tl → tk , tkl → tkl . (3.6)

Proceeding in analogy to the correlated-emission calculation in [2], we can use these sym-
metry considerations to map the integration domain onto two independent regions that are
illustrated in Figure 1. In region A, which we take to be the highlighted dashed blue cube
in Figure 1(c), the integrand is simply the original integrand in which no substitutions are
made. The second region B, on the other hand, refers to any of the white adjacent cubes
in this figure, and it can be most easily recovered from the original integrand by inverting
either of the variables yk or yl.
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After performing all of these manipulations, we arrive at the following master formula
for the calculation of the uncorrelated-emission contribution

S
(CF )
RR (ε, α) =

128C2
F e
−2γE(ε+α) Γ(−4ε− 2α)

π3/2 Γ(−ε) Γ(1/2− ε)

∫ 1

0
dyk

∫ 1

0
dyl

∫ 1

0
db

∫ 1

0
dtkl

∫ 1

0
dtl

∫ 1

0
dt′5

× b−1−2ε−α (ykyl)
−1+nε+(n+1)α/2 (1 + b)4ε+2α

[
(1 + yk)(1 + yl)

]2nε+(n−1)α

×
(
4tklt̄kl

)−1/2−ε (
4tl t̄l

)−1/2−ε (
t′5(2− t′5)

)−1−ε

×
{
GA(yk, yl, b, t

+
k , tl, tkl)

4ε+2α +GB(yk, yl, b, t
+
k , tl, tkl)

4ε+2α + (t+k → t−k )
}

(3.7)

with
t±k = tl + tkl − 2tltkl ± 2

√
tl t̄ltklt̄kl (1− t′5) (3.8)

and

GA(yk, yl, b, tk, tl, tkl) = G(yk, yl, b, tk, tl, tkl) ,

GB(yk, yl, b, tk, tl, tkl) =

{
y−nk G(1/yk, yl, b, tk, tl, tkl) or

y−nl G(yk, 1/yl, b, tk, tl, tkl) .
(3.9)

In physical terms region A describes the emission of two soft partons into the same hemi-
sphere with respect to the collinear axis, whereas region B covers the opposite-hemisphere
case. Similar to [2], the expression in region B is not unique, since the symmetry arguments
only guarantee that the integrals in (3.7) are equal, but not necessarily the integrands. One
is therefore free to derive the functional form of GB using either of the expressions on the
right-hand side of (3.9).

From (3.7) we can analyse the divergence structure of the uncorrelated-emission con-
tribution. For SCET-1 observables with n 6= 0, one can set the analytic regulator α to zero,
and one finds an explicit divergence encoded in Γ(−4ε) that originates from the analytic
integration over the dimensionful variable qT . The integrand is, moreover, divergent in the
limits b→ 0, yk → 0 and yl → 0 as anticipated in Section 2. In addition, there exists a spu-
rious divergence in the limit t′5 → 0, which is cancelled by the prefactor 1/Γ(−ε) as in [2].
The overall contribution to the bare soft function therefore starts with a 1/ε4 divergence
for SCET-1 observables.

For SCET-2 soft functions with n = 0, the analytic regulator cannot be set to zero,
since the yk and yl-integrations generate poles in α in this case. As the α-expansion has to
be performed first, the terms b−1−2ε−α and Γ(−4ε−2α) introduce additional ε-divergences,
and they trade α-poles for ε-poles in the double expansion. The leading divergences in the
SCET-2 case are therefore of the form 1/(α2ε2), 1/(αε3) and 1/ε4.

Finally, we noted towards the end of Section 2 that the collinear limits yk → 0 and
yl → 0 can be ambiguous on the observable level. In order to disentangle the joint collinear
limit of the emitted partons from the individual ones, we apply a sector decomposition
strategy in the same-hemisphere contribution and write∫ 1

0
dyk

∫ 1

0
dyl I(yk, yl) =

∫ 1

0
dy

∫ 1

0
dr y

{
I(y, ry) + I(ry, y)

}
, (3.10)

– 10 –



where I(yk, yl) symbolically represents the integrand in (3.7), which implicitly depends on
the other integration variables. This generates two subregions in region A with

GA1(y, r, b, tk, tl, tkl) = GA(y, ry, b, tk, tl, tkl) ,

GA2(y, r, b, tk, tl, tkl) = GA(ry, y, b, tk, tl, tkl) . (3.11)

In the numerical implementation of our algorithm we perform a number of additional sub-
stitutions that are designed to improve the numerical convergence. For more details on this
technical point we refer to Section 6 of [2] and the SoftSERVE user manual.

4 Renormalisation

With the master formula of the uncorrelated-emission contribution at hand, we have assem-
bled all ingredients required for the calculation of bare NNLO dijet soft functions. In [2] we
went one step ahead and extracted the anomalous dimensions and matching corrections that
are needed for resummations within SCET. To do so, we assumed that the renormalised
soft function S = ZSS0 obeys the renormalisation group equation (RGE)

d

d lnµ
S(τ, µ) = − 1

n

[
4 Γcusp(αs) ln(µτ̄)− 2γS(αs)

]
S(τ, µ) (4.1)

for SCET-1 observables, whereas we focused on the collinear anomaly exponent F(τ, µ)

defined via

S(τ, µ, ν) = (ν2τ̄2)−F(τ,µ) WS(τ, µ) (4.2)

in the SCET-2 case. The calculations provided in the current paper are fully compatible
with this setup, and they provide the C2

F coefficients of the anomalous dimensions and
matching corrections that were derived in [2] on the basis of NAE.

In this paper we generalise the renormalisation programme in two respects. First, we
consider soft functions that renormalise directly in momentum (or cumulant) space rather
than Laplace space, which is relevant e.g. for certain jet-veto observables. Second, we
discuss the renormalisation of SCET-2 soft functions in the RRG approach [8], which is
equivalent to the collinear anomaly framework from [6, 7], but which requires a specific
implementation of the rapidity regulator. We will address both of these questions in turn.

4.1 Cumulant soft functions

Soft functions for jet-veto observables typically involve measurement functions that are
formulated in terms of a θ-function, which reflects the fact that the jet veto provides a
cutoff for the phase-space integrations of the soft radiation. Instead of the exponential
form (2.1), their measurement function can be expressed as

M̂(ω; {ki}) = θ
(
ω − ω({ki})

)
, (4.3)

where ω is the cutoff variable and the function ω({ki}) is assumed to obey the same con-
straints that were listed in detail in Section 2.
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The measurement function of such cumulant soft functions can easily be brought into
the form (2.1) via a Laplace transformation,∫ ∞

0
dω e−τω θ

(
ω − ω({ki})

)
=

1

τ
exp

(
− τ ω({ki})

)
. (4.4)

The factor 1/τ is just a constant for the bare soft function calculation, but it is relevant for
inverting the Laplace transformation. From (3.2) we see that the individual contributions
to the soft function come with different powers of the Laplace variable τ , which can be
transformed back to momentum space using the relation∫ ∞

0
dω e−τω ωm = Γ(1 +m) τ−1−m , m > −1 . (4.5)

Up to NNLO a generic bare cumulant soft function therefore takes the form

Ŝ0(ω, ν) = 1 +

(
Zααs

4π

)(
µ2

ω2

)ε ( ν
ω

)α eγE(2ε+α)

Γ(1− 2ε− α)
SR(ε, α) (4.6)

+

(
Zααs

4π

)2(µ2

ω2

)2ε {( ν
ω

)α eγE(4ε+α)

Γ(1− 4ε− α)
SRV (ε, α)

+
( ν
ω

)2α eγE(4ε+2α)

Γ(1− 4ε− 2α)
SRR(ε, α)

}
+O(α3

s) ,

where the terms Si(ε, α) for i ∈ {R,RV,RR} can be calculated with the formulae provided
in [2] and the present paper, and their prefactors in terms of Euler’s constant and Gamma
functions slightly reshuffle the coefficients in the ε and α expansions. They do not modify,
however, the divergence structure of the soft function since they all expand to 1 +O(α, ε).

We now assume that the RGEs for cumulant soft functions take the same form as (4.1)
and the corresponding equation in the SCET-2 case, with the replacement τ̄ → 1/ω. The
renormalisation procedure that we developed for Laplace-space soft functions in [2] can
then be carried over to cumulant soft functions if the prefactors in (4.6) are included. As
we will explain later in Section 5, SoftSERVE 1.0 contains a script for the renormalisation
of cumulant soft functions which applies these modifications and which takes the correct
error propagation into account.

4.2 Rapidity renormalisation group

The collinear anomaly [6, 7] and the RRG [8] provide two equivalent frameworks for the
renormalisation of SCET-2 soft functions. In the latter the soft function is renormalised
via multiplication with a Z-factor, S = ZSS0, that absorbs the divergences both in the
dimensional regulator ε and the rapidity regulator α. The renormalised soft function is
furthermore assumed to satisfy the RRG equation

d

d ln ν
S(τ, µ, ν) =

[
4AΓ(µs, µ)− 2γSν (τ, µs)

]
S(τ, µ, ν) , (4.7)
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where AΓ(µ1, µ2) is an RG kernel that was given explicitly in [2], and the ν-anomalous
dimension can be identified with the collinear anomaly exponent defined in (4.2) via

γSν (τ, µs) = F(τ, µs) . (4.8)

In the RRG approach the renormalised soft function is in addition supposed to obey a RGE
in the scale µ,

d

d lnµ
S(τ, µ, ν) =

[
4 Γcusp(αs) ln(µτ̄)− 4 Γcusp(αs) ln(ντ̄)− 2γSµ (αs)

]
S(τ, µ, ν) , (4.9)

whereas the corresponding quantity in the collinear anomaly framework – the soft remainder
function WS(τ, µ) in (4.2) – does not obey a simple RGE without its collinear counterpart.
The RRG therefore makes stronger assumptions than the collinear anomaly framework,
and we argued in [2] that the RGE (4.9) only holds if the rapidity regulator is implemented
on the level of connected webs – a necessary requirement for the consistency of the RRG
approach that was not formulated so clearly in the original literature.1

As we implement the rapidity regulator via the prescription (3.1) for individual emis-
sions, our default setup is not suited for the RRG approach. In other words the α0-pieces
calculated with SoftSERVE 0.9 cannot be renormalised in a way that is consistent with
(4.9) (as the problem does not affect the 1/α poles, all results presented in [1, 2, 5] are
nevertheless correct). In SoftSERVE 1.0 we remedy this point and implement an alter-
native prescription that fulfils the requirements of the RRG approach. To do so, we add
a factor w2 to (3.1), where w is a bookkeeping parameter that fulfils the RRG equation
dw/d ln ν = −αw/2 [8], and we implement the rapidity regulator for double correlated
emissions via

w2

∫
ddk

∫
ddl

(
ν

k+ + k− + l+ + l−

)α
δ(k2)θ(k0) δ(l2)θ(l0) (4.10)

rather than

w4

∫
ddk

(
ν

k+ + k−

)α
δ(k2)θ(k0)

∫
ddl

(
ν

l+ + l−

)α
δ(l2)θ(l0) , (4.11)

whereas the remaining contributions to the bare soft function are not changed, except for
trivial factors of w.

We will address the technical aspects of the SoftSERVE implementation in the following
section, and show here how to extract the two-loop anomalous dimensions and matching

1Connected webs were discussed in [8] only in the context of gauge invariance and NAE, but it has not
been stated explicitly in that paper that the RGE (4.9) looses its validity if the rapidity regulator is not
implemented on the level of connected webs.
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corrections from the bare soft function in the RRG setup. To do so, we start from

S0(τ, ν) = 1 +

(
Zααs

4π

)
w2 (µ2τ̄2)ε (ντ̄)α

{
1

α

(
x1

1

ε
+ x1

0 + x1
−1 ε+ x1

−2 ε
2 + x1

−3 ε
3

)
(4.12)

+
x0

2

ε2
+
x0

1

ε
+ x0

0 + x0
−1 ε+ x0

−2 ε
2 + α

(
x−1

3

ε3
+
x−1

2

ε2
+
x−1

1

ε
+ x−1

0 + x−1
−1 ε

)
+O

(ε4
α
, ε3, αε2, α2

)}
+

(
Zααs

4π

)2

(µ2τ̄2)2ε

{
w4 (ντ̄)2α

[
1

α2

(
y2

2

ε2
+
y2

1

ε
+ y2

0

)
+

1

α

(
y1

3

ε3
+
y1

2

ε2
+
y1

1

ε
+ y1

0

)
+
y0

4

ε4
+
y0

3

ε3
+
y0

2

ε2
+
y0

1

ε
+ y0

0 +O
( ε

α2
,
ε

α
, ε, α

)]
+ w2 (ντ̄)α

[
1

α

(
z1

3

ε3
+
z1

2

ε2
+
z1

1

ε
+ z1

0

)
+
z0

4

ε4
+
z0

3

ε3
+
z0

2

ε2
+
z0

1

ε
+ z0

0 +O
( ε
α
, ε, α

)]}
,

where the only difference with respect to [2] consists in the presence of the bookkeeping pa-
rameter w. Due to (4.10) the correlated-emission contribution is, moreover, now contained
in the zij coefficients along with the real-virtual interference term. The single real-emission
and uncorrelated double-emission contributions constitute the xij and yij coefficients, re-
spectively, as before. The coefficients xij are thus proportional to the colour factor CF , the
yij to C

2
F , and the zij consist of two contributions with colour factors CFTfnf and CFCA.

We now expand the anomalous dimensions to two-loop order,

Γcusp(αs) =
(αs

4π

)
Γ0 +

(αs
4π

)2
Γ1 , (4.13)

γSµ (αs) =
(αs

4π

)
γSµ,0 +

(αs
4π

)2
γSµ,1 ,

γSν (τ, µ) =
(αs

4π

){
2Γ0Lµ + γSν,0

}
+
(αs

4π

)2 {
2β0Γ0L

2
µ + 2

(
Γ1 + β0γ

S
ν,0

)
Lµ + γSν,1

}
,

where Lµ = ln(µτ̄) and the coefficients γSν,i correspond to the di+1 in the collinear anomaly
language of [2]. Using Zα = 1−β0αs/(4πε)+O(α2

s), we can solve the RGEs (4.7) and (4.9)
for the soft function and the corresponding equations for the Z-factor ZS = S/S0 explicitly.
In order to avoid cross terms from higher orders, the latter is conveniently determined via
its logarithm, which in the MS scheme takes the form

lnZS =
(αs

4π

)
w2

{
2Γ0

αε
+

4Γ0Lµ + 2γSν,0
α

− Γ0

ε2
+
γSµ,0 − 2Γ0(Lµ − Lν)

ε

}
+
(αs

4π

)2
w2

{
− β0Γ0

αε2
+

Γ1

αε
+
(

4β0Γ0L
2
µ + 4(Γ1 + β0γ

S
ν,0)Lµ + 2(γSν,1)C + w2(γSν,1)U

) 1

α

+
3β0Γ0

4ε3
− 1

4

(
Γ1 + 2β0γ

S
µ,0 − 4β0Γ0(Lµ − Lν)

) 1

ε2

− 1

2

(
2Γ1(Lµ − Lν)− (γSµ,1)C − w2(γSµ,1)U

)1

ε

}
, (4.14)

where Lν = ln(ντ̄) and we have split the correlated and uncorrelated-emission contributions
to the two-loop anomalous dimensions γSµ,1 and γSν,1 since – according to (4.12) – they come
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with different powers of the bookkeeping parameter w. For the renormalised soft function,
we obtain up to the considered two-loop order

lnS(τ, µ, ν) =
(αs

4π

){
2Γ0L

2
µ − 4Γ0LµLν − 2γSµ,0Lµ − 2γSν,0Lν + cS1

}
+
(αs

4π

)2
{

4

3
β0Γ0L

3
µ − 4β0Γ0L

2
µLν + 2

(
Γ1 − β0γ

S
µ,0

)
L2
µ − 4

(
Γ1 + β0γ

S
ν,0

)
LµLν

− 2
(
γSµ,1 − β0c

S
1

)
Lµ − 2γSν,1Lν + cS2 −

1

2
(cS1 )2

}
, (4.15)

where we have set w = 1. As the cusp anomalous dimension and the beta function are
known to the required order,

Γ0 = 4CF , Γ1 = 4CF

{(
67

9
− π2

3

)
CA −

20

9
TFnf

}
, β0 =

11

3
CA −

4

3
TFnf , (4.16)

the higher poles in the product of the Z-factor and the bare soft function provide checks
of our calculation, whereas the coefficients of the 1/α and 1/ε poles determine the rapidity
anomalous dimension γSν and the µ-anomalous dimension γSµ , respectively. In terms of the
coefficients introduced in (4.12), we obtain

γSν,0 = −x
1
0

2
,

γSν,1 = −y1
0 −

z1
0

2
+ x0

−1x
1
1 + x0

0x
1
0 + x0

1x
1
−1 + x0

2x
1
−2 +

β0x
1
−1

2
, (4.17)

which is precisely the relation we found for the collinear anomaly exponent in [2]. The
non-logarithmic terms of the renormalised soft function are, on the other hand, in the RRG
framework given by

cS1 = x0
0 , (4.18)

cS2 = y0
0 + z0

0 − x0
2x

0
−2 − (x0

1 + β0)x0
−1 − x1

1x
−1
−1 − x1

0x
−1
0 − x1

−1x
−1
1 − x1

−2x
−1
2 − x1

−3x
−1
3 ,

whereas one can show that the µ-anomalous dimension is unphysical for SCET-2 soft func-
tions since it drops out in the final expressions once the soft and collinear RG kernels
are combined. Following the procedure outlined in [1], we can actually prove that the
µ-anomalous dimension is a universal number in our setup, i.e. it is independent of the
observable given by

γSµ,0 = 0 , γSµ,1 =

{
224

27
− 4π2

9

}
CFTFnf +

{
− 808

27
+

11π2

9
+ 28ζ3

}
CFCA . (4.19)

Rather than extracting this quantity from the coefficient of the 1/ε pole, we therefore turn
the argument around and use these numbers in SoftSERVE to check if the singularities
cancel out as predicted by the RRG framework.

The discussion of cumulant soft functions from the previous section applies identically
to the RRG setup, with the sole exception that the correlated-emission contribution in (4.6)
comes with a prefactor eγE(4ε+α)/Γ(1−4ε−α) rather than eγE(4ε+2α)/Γ(1−4ε−2α) because
of (4.10). Once again, SoftSERVE 1.0 provides a script that takes these modifications into
account.
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5 Extending the SoftSERVE distribution

The central new element of SoftSERVE 1.0 is the direct calculation of the uncorrelated-
emission contribution, whereas SoftSERVE 0.9 reconstructs this term from the NLO cor-
rection, assuming that the observable is consistent with NAE. For the SoftSERVE user, this
means that calling make all – or calling make without target – now generates executables
for all colour structures, and the target list is supplemented with the uncorrelated, CFA
and CFB targets. The latter correspond to the two contributions from regions A and B
in (3.7), and uncorrelated refers to them as a pair. For observables obeying NAE, the
correlated target now provides all the required input, skipping the C2

F contributions.2

In addition we implemented the new features discussed in Section 4 concerning cumu-
lant soft functions and the RRG. Apart from the existing script for the renormalisation
of Laplace-space soft functions (laprenorm), there now also exists a script for the renor-
malisation of cumulant soft functions (momrenorm) that applies the changes discussed in
Section 4.1. Both scripts come in two versions designed for observables that obey NAE
(postfix NAE) and those that violate NAE (no postfix). The latter require the full set of
results files, whereas the former do not need the CFA and CFB results – they reconstruct the
C2
F contribution directly from the NLO result. Execution and summary scripts to run and

refine the results now also exist in two versions for observables that obey/violate NAE, sim-
ilarly postfixed. To prevent accidentally calling non-NAE scripts on results that are derived
assuming NAE, some safeguards are implemented.

Moreover, the SCET-2 executables can now be generated with a rapidity regulator that
is compatible with the RRG approach. As discussed in Section 4.2, this requires that one
implements the regulator on the level of connected webs rather than individual emissions.
At NNLO the only difference arises in the correlated-emission contribution for which the
regulator is implemented via (4.10) rather than (4.11). This feature is switched off by
default, but it can be used by setting a nonzero RRG variable during the make call. In
other words, to generate e.g. the CFTFnf colour structure binary for some observable using
the RRG regulator, one calls make NF RRG=1. In the SCET-2 branch, there are scripts to
summarise (sftsrvres), renormalise (laprenorm or momrenorm) and to account for Fourier
phases (fourierconvert) that use the results derived with the new regulator, and they are
all postfixed RRG. These scripts of course also exist for observables that obey NAE, and they
then simply carry both postfixes like laprenormNAERRG. Again, safeguards to avoid calling
RRG scripts on results that were derived with the default rapidity regulator and vice-versa
are implemented.

Finally, we added the formulae derived in [1] that allow for a direct calculation of the
soft anomalous dimensions and collinear anomaly exponents without having to calculate
the complete bare soft function. As the SoftSERVE input differs slightly from the con-
ventions of [1], we rederived these formulae in a form that is suitable for SoftSERVE and
summarise the corresponding expressions in Appendix A. To access these formulae the
user must call make with targets ADLap or ADMom, which generates the respective executa-
bles for Laplace-space and cumulant soft functions. These executables then reside in the

2In version 0.9 correlated was synonymous to all, or no target at all.
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Executables folder and must be called manually. While they allow for a fast evaluation
of the anomalous dimension/anomaly exponent, we do not recommend using them for a
precision determination since they are numerically less robust. Observables which exhibit
features that reduce numerical accuracy, like integrable divergences, slow them down dispro-
portionately. In addition, the term (A.6), which is conjectured to vanish for all observables,
happens to sometimes be numerically unstable due to the peculiar structure in its last line.
For observables for which this expression is non-trivial, the integration converges compar-
atively slowly.

6 Results

We are now in a position to use SoftSERVE 1.0 to compute NNLO dijet soft functions for
various e+e− event shapes and hadron-collider observables. As in [2], we present our results
for SCET-1 soft functions in the form

γS0 = γCF
0 CF ,

γS1 = γCA
1 CFCA + γ

nf

1 CFTFnf + γCF
1 C2

F ,

cS1 = cCF
1 CF ,

cS2 = cCA
2 CFCA + c

nf

2 CFTFnf + cCF
2 C2

F , (6.1)

where the coefficients γSi of the soft anomalous dimension and the finite terms cSi of the
renormalised soft function refer to the conventions introduced in Section 4.1 of [2]. In
contrast to that work, we now use SoftSERVE to calculate the γCF

1 and cCF
2 numbers, which

were derived in [2] on the basis of NAE.
For SCET-2 soft functions we quote our numbers in the RRG notation of Section 4.2.

The relevant resummation ingredients are in this case the coefficients γSν,i of the rapidity
anomalous dimension and the finite terms cSi of the RRG renormalised soft function, which
we decompose analogously to (6.1) according to their colour structures. Whereas the former
are equivalent to the anomaly coefficients di+1 used in [2], the latter are not well defined in
the collinear anomaly framework and were therefore not given in [2]. As explained in Section
4.2, the µ-anomalous dimension γSµ is, moreover, unphysical for SCET-2 soft functions and
will therefore be disregarded in the following.

Similar to [2], SoftSERVE 1.0 comes with a number of template files that can be used to
rederive the numbers quoted in this section. For most of the observables the runtime of the
uncorrelated-emission contribution turns out to be comparable to the correlated-emission
calculation, which can of course be tailored to the specific needs of the user by adjusting
the respective Cuba settings.3 Although the focus of the present paper is on NAE-violating
observables, we first consider a few observables that respect NAE, since this allows us to
test the new algorithm and to gauge the accuracy of our numerical predictions. We then
switch to some exemplary NAE-violating soft functions in a second step.

3As in [2], the numbers presented in this section were produced with the precision setting, while the
plots were produced with the standard setting.
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6.1 Observables that obey NAE

For all observables in this section NAE implies γCF
1 = 0 and cCF

2 = 1/2(cCF
1 )2 for SCET-1

soft functions, and similarly γCF
ν,1 = 0 and cCF

2 = 1/2(cCF
1 )2 in the SCET-2 case.

C-parameter

We first consider the C-parameter event shape, which was one of the template observables
we studied in [2]. The only new element required for the uncorrelated-emission contribution
is the function4

G(yk, yl, b) =
1

(1 + yk)(1 + yl)
(6.2)

defined in (2.8), which can be translated into the relevant input functions GA1 , GA2 and
GB using the relations (3.9) and (3.11). We then find using SoftSERVE 1.0

γCF
0 = 1 · 10−10 ± 2 · 10−7 [0] , cCF

1 = −3.28987± 9 · 10−7 [−3.28987] ,

γCA
1 = 15.7940(10) [15.7945] , cCA

2 = −57.9814(35) [−57.9757] ,

γ
nf

1 = 3.90983(14) [3.90981] , c
nf

2 = 43.8181(4) [43.8182] ,

γCF
1 = −0.0004(24) [0] , cCF

2 = 5.41178(592) [5.41162] ,

(6.3)

which is in excellent agreement with the analytic results from [2, 11] shown in the square
brackets.

W-production at large transverse momentum

We next consider the soft function for W -production at large transverse momentum which
we also discussed in detail in [2]. We now have

G(yk, yl, b, tk, tl, tkl)=
b(1 + yl)(1 + yk − 2

√
yk(1− 2tk))

(1 + b)
+

(1 + yk)(1 + yl − 2
√
yl(1− 2tl))

(1 + b)

(6.4)

and obtain

γCF
0 = −1 · 10−9 ± 2 · 10−6 [0] , cCF

1 = 9.86960(2) [9.86960] ,

γCA
1 = 15.7945(24) [15.7945] , cCA

2 = −2.64324(890) [−2.65010] ,

γ
nf

1 = 3.90987(22) [3.90981] , c
nf

2 = −25.3069(10) [−25.3073] ,

γCF
1 = −1 · 10−7 ± 0.003 [0] , cCF

2 = 48.7050(96) [48.7045] , (6.5)

which is again in perfect agreement with the analytic results from [12].

4As in [2] we suppress the angular variables in the arguments of the measurement function if the observ-
able does not depend on any of these angles.
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Jet broadening

In order to illustrate the new RRG routine of SoftSERVE, we consider the SCET-2 event-
shape variable jet broadening. As in [2] we consider a recoil-free definition here and refer
to that paper for more details on the observable. The relevant input for the uncorrelated-
emission contribution is then given by

G(yk, yl, b) =
1

2
, (6.6)

which yields

γCF
ν,0 = −5.54518(1) [−5.54518] , cCF

1 = −20.2930(1) [−20.2930] ,

γCA
ν,1 = 7.03652(110) [7.03605] , cCA

2 = −56.6537(21) ,

γ
nf

ν,1 = −11.5393(1) [−11.5393] , c
nf

2 = 24.1971(3) ,

γCF
ν,1 = −0.00001(163) [0] , cCF

2 = 205.902(5) [205.902] . (6.7)

For the rapidity anomalous dimension, this agrees with the expressions found in [13], and
the one-loop matching coefficient cCF

1 = −8 ln2 2− 5π2/3 can be extracted from that paper
as well. Our results for the two-loop coefficients cCA

2 and cnf

2 are, on the other hand, new.

Transverse-momentum resummation

We finally examine the soft function for transverse-momentum resummation in Drell-Yan
production, which is an example of a Fourier-space rather than a Laplace-space soft func-
tion. As argued in [2], these can be computed with SoftSERVE by using the absolute value
of the naive measurement function, which in the specific case of transverse-momentum
resummation is given by

G(yk, yl, b, tk, tl, tkl) =
2

1 + b

∣∣b(1− 2tk) + 1− 2tl
∣∣ . (6.8)

Running the fourierconvertRRG script before renormalisation, we then obtain

γCF
ν,0 = 1 · 10−9 ± 2 · 10−6 [0] , cCF

1 = −3.2899(1) [−3.2899] ,

γCA
ν,1 = −3.7407(94) [−3.7317] , cCA

2 = −16.749(169) [−16.507] ,

γ
nf

ν,1 = −8.2963(20) [−8.2963] , c
nf

2 = 10.338(27) [10.347] ,

γCF
ν,1 = −0.0322(281) [0] , cCF

2 = 5.1718(3987) [5.4116] . (6.9)

While we already calculated the rapidity anomalous dimension for this observable in [2], we
did not have access to the finite terms in the RRG framework at the time, which are however
known analytically from the calculation in [14]. Our SoftSERVE numbers compare well to
these results, although we observe a slightly reduced accuracy in comparison to the prior
examples, which is due to integrable divergences in the bulk of the integration region as
well as the required Fourier shuffle, which mixes coefficients and adds up the corresponding
errors. The agreement is, however, still acceptable.
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Figure 2: Two-loop anomalous dimension and finite term of the renormalised C-parameter
jet-veto soft function. Red dots indicate values calculated with SoftSERVE and green dashed
lines represent the interpolating functions from [15].

6.2 Observables that violate NAE

Having established that SoftSERVE 1.0 satisfactorily reproduces known results for sample
NAE observables, we now turn to soft functions that do not respect the NAE theorem
and which require an independent calculation of the uncorrelated-emission contribution.
Whereas we already presented our results for the corresponding anomalous dimensions
in [1, 5], we compute the matching coefficients in this work for the first time.

Rapidity-dependent jet vetoes

The first family of NAE-violating observables are the rapidity-dependent jet vetoes from [9].
Specifically, we consider the beam-thrust and C-parameter-like jet-veto variables TBcm and
TCcm defined in that paper, which are both SCET-1 observables with n = 1. For the
C-parameter jet veto, one further has f(yk, tk) = 1/(1 + yk) and

F (a, b, y, tk, tl, tkl) = θ(∆F −R) max
(

ab

a(a+ b) + (1 + ab)y
,

a

a+ b+ a(1 + ab)y

)
+ θ(R−∆F )

1

1 + y
, (6.10)

where R is the jet radius and ∆F =
√

ln2 a+ arccos2(1− 2tkl), and the corresponding
expression for the uncorrelated-emission measurement function was given in (2.9). The jet-
veto observables renormalise multiplicatively in cumulant space, and therefore the formalism
from Section 4.1 applies in this case. Furthermore, as the jet algorithm has no effect on
a single emission, the NLO coefficients γCF

0 = 0 and cCF
1 = π2 are independent of the jet

radius R, whereas the NNLO coefficients are displayed in the range 0 ≤ R ≤ 1 in Figure 2.
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Figure 3: The same as in Figure 2 for the finite term of the renormalised beam-thrust
jet-veto soft function.

From the plots it is evident that our SoftSERVE numbers agree well with the numerical
results from [15] indicated by the dashed lines.

For the beam-thrust jet veto, the input functions are slightly more complicated and we
refer to the SoftSERVE manual for their explicit expressions. As the two jet vetoes have
the same anomalous dimension, we refrain from showing the corresponding plots in this
case, since they are – in view of the negligible numerical uncertainties – literally identical
to the upper plots in Figure 2. The one-loop matching coefficient is, moreover, now given
by cCF

1 = π2/3, and the two-loop coefficients are displayed as a function of the jet radius
in Figure 3. Our numbers are once more in perfect agreement with the results from [15].

Standard jet veto

The standard way of implementing a jet veto uses a cutoff on the transverse momenta of
the emissions. The corresponding soft function is in this case defined in SCET-2, and the
required SoftSERVE input is given by n = 0, f(yk, tk) = 1 and

F (a, b, y, tk, tl, tkl) =

√
a

(1 + ab)(a+ b)

{
θ(∆F −R) + θ(R−∆F )

√
1 + b2 + 2b(1− 2tkl)

}
,

G(yk, yl, b, tk, tl, tkl) = θ(∆G −R)
max(1, b)

1 + b
+ θ(R−∆G)

√
1 + b2 + 2b(1− 2tkl)

1 + b
. (6.11)

As for the rapidity-dependent jet vetoes, the soft function renormalises multiplicatively
in cumulant space, and the respective NLO coefficients are now given by γCF

ν,0 = 0 and
cCF

1 = −π2/3. Our numbers for the two-loop rapidity anomalous dimension are shown in
the upper plots of Figure 4, and they confirm the existing results from [16–18] indicated
by the dashed lines. In the RRG setup the two-loop matching corrections can furthermore
be compared to [18], which gives these numbers in an expansion in R � 1 up to terms of
O(R0). As is evident from the lower plots in Figure 4, this expansion works surprisingly
well for the cCA

2 and cnf

2 coefficients even for large values R ' 1, but it misses the leading
O(R2) correction to cCF

2 .

Soft-drop jet groomer

Finally, we present novel results for the soft-drop groomed jet mass discussed in [19]. Ac-
cording to this definition, the groomer depends on a parameter β, and for values β > 0
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Figure 4: Two-loop rapidity anomalous dimension and finite term of the RRG renormalised
pT veto soft function. Red dots indicate values calculated with SoftSERVE and green dashed
lines show the interpolating functions from [17] (upper plots) and [18] (lower plots).

considered here, the soft function is defined in SCET-1 with n = −1− β. As the formulae
for the measurement functions are rather lengthy, we refer to the SoftSERVE distribution
for their explicit expressions. The renormalisation of the soft function is, moreover, again
performed in cumulant space, and the one-loop coefficients are found to be γCF

0 = 0 and
cCF

1 = −π2(3 + 3β + β2)/3/(1 + β). Our results for the two-loop coefficients are shown
in Figure 5 together with the numbers from [19] for the anomalous dimension. For β = 0

these values have been extracted from an analytic calculation, whereas the β = 1 numbers
stem from a fit to the EVENT2 generator. From the plots we see that our results confirm
these numbers, but they are far more precise than the EVENT2 extraction. Our results for
other values of the grooming parameter β are new, as are the finite terms of the renor-
malised soft function which are shown in the lower plots of the figure.5 Our numbers have
actually already been used to extend the resummation for the soft-drop groomed jet mass
to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [21, 22].

7 Conclusions

We have extended our automated approach for calculating NNLO dijet soft functions to the
uncorrelated-emission (C2

F ) contribution. While one can trivially obtain this term from the
NLO calculation for observables that obey the NAE theorem, one must calculate it explicitly
for NAE-violating observables like those that depend on a jet algorithm. From the technical
point of view, the divergence structure of the C2

F matrix element differs from the other
colour structures treated in [2], and we have devised a novel phase-space parametrisation
that isolates these singularities.

5As in [2] we validated these predictions with independent pySecDec runs [20].
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Figure 5: Two-loop anomalous dimensions and finite term of the renormalised soft function
for the soft-drop jet groomer. Red dots indicate values calculated with SoftSERVE and the
green diamonds show the numbers from [19].

Our algorithm permits a systematic numerical evaluation of NNLO dijet soft func-
tions, and it is implemented in SoftSERVE 1.0 which we release alongside of this paper at
https://softserve.hepforge.org/. In addition to the new core routine for calculating
the uncorrelated-emission contribution to bare dijet soft functions, SoftSERVE 1.0 includes
novel renormalisation scripts that are compatible with the RRG formalism and observables
that renormalise directly in momentum space rather than Laplace space.

SoftSERVE has therefore become a powerful program for calculating NNLO dijet soft
functions, and we have used it to cross-check existing calculations for multiple e+e− and
hadron-collider observables, as well as to obtain some novel predictions. In particular, our
results for the angularity event shape derived in [2] enabled NNLL [23] and NNLL′ [24] re-
summations, and our novel predictions for the soft-drop groomed jet mass have recently been
employed in a precision N3LL resummation in [21, 22]. While we hope that SoftSERVE will
prove useful for many further applications, an extension of our algorithm to soft functions
that depend on more than two light-like directions is currently in progress [25].
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A Anomalous dimensions

In this appendix we rederive the integral representations from [1], which allow for a fast
evaluation of the soft anomalous dimension γS and the collinear anomaly exponent F(τ, µ)

for SCET-1 and SCET-2 observables, respectively. While our derivation follows the conven-
tions from [1], it differs in one aspect from that work; namely the sector decomposition step
in (3.11) is performed only for the same-hemisphere contribution for uncorrelated emissions
(region A), while it was also applied to the opposite-hemisphere case (region B) in [1].

We start with the C2
F contribution to the soft anomalous dimension for SCET-1 ob-

servables, for which (22) of [1] is replaced by

γCF
1 =

128

π

∫ 1

0
dy

∫ 1

0
dtl

1√
4tl t̄l

1

y
ln2

(
(1 + y)n f(y, tl)

f(0, tl)

)
+

256

π

∫ 1

0
dy

∫ 1

0
dtl

ln f(0, tl)√
4tl t̄l

ln f(y, tl)

y+

− 512

π2

∫ 1

0
dtk

ln f(0, tk)√
4tk t̄k

∫ 1

0
dy

∫ 1

0
dtl

1√
4tl t̄l

ln f(y, tl)

y+

− 128

π2

∫ 1

0
dy

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H1(y, b, tl, tkl)

y+b+

− 64

π2

∫ 1

0
dr

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H2(r, b, tl, tkl)

r+b+

− 128

π2

∫ 1

0
dyk

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H3(yk, b, tl, tkl)

yk+b+

− 128

π2

∫ 1

0
dyl

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H4(yl, b, tl, tkl)

yl+b+
, (A.1)

with

H1(y, b, tl, tkl) = lnGA1(y, 0, b, t+k , tl, tkl) + lnGA2(y, 0, b, t+k , tl, tkl) + (t+k → t−k ) ,

H2(r, b, tl, tkl) = lnGA1(0, r, b, t+k , tl, tkl) + lnGA2(0, r, b, t+k , tl, tkl) + (t+k → t−k ) ,

H3(yk, b, tl, tkl) = lnGB(yk, 0, b, t
+
k , tl, tkl) + (t+k → t−k ) ,

H4(yl, b, tl, tkl) = lnGB(0, yl, b, t
+
k , tl, tkl) + (t+k → t−k ) , (A.2)

and

t±k = tl + tkl − 2tltkl ± 2
√
tl t̄ltklt̄kl . (A.3)

Similar to [1], we find that this result only holds if the following constraint

8

π

∫ 1

0
dtl

ln2 f(0, tl)√
4tl t̄l

− 16

π2

∫ 1

0
dtk

ln f(0, tk)√
4tk t̄k

∫ 1

0
dtl

ln f(0, tl)√
4tl t̄l

− 4

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H0(b, tl, tkl)

b+
= 0 (A.4)
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is satisfied, where

H0(b, tl, tkl) = lnGA1(0, 0, b, t+k , tl, tkl) + lnGA2(0, 0, b, t+k , tl, tkl)

+ 2 lnGB(0, 0, b, t+k , tl, tkl) + (t+k → t−k ) . (A.5)

Moreover, we find an additional contribution to the soft anomalous dimension, which we
conjecture to vanish for all observables, given by

∆γCF
1 =

64

n

{
4

π

∫ 1

0
dtl

ln3 f(0, tl)√
4tl t̄l

− 2

π

∫ 1

0
dtl

ln(16tl t̄l)√
4tl t̄l

ln2 f(0, tl) (A.6)

− 8

π2

∫ 1

0
dtk

ln f(0, tk)√
4tk t̄k

∫ 1

0
dtl

ln f(0, tl)√
4tl t̄l

ln
f(0, tl)

16tl t̄l

+
1

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

[
1

b
ln

256 tl t̄ltklt̄kl b
2

(1 + b)4

]
+

H0(b, tl, tkl)

− 2

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H5(b, tl, tkl)

b+

+
2

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

∫ 1

0
ds

1√
16tl t̄ltklt̄kl

1

b

[
1

s
√

1− s2

]
+

H6(b, tl, tkl, s)

}
,

with

H5(b, tl, tkl) = ln2GA1(0, 0, b, t+k , tl, tkl) + ln2GA2(0, 0, b, t+k , tl, tkl)

+ 2 ln2GB(0, 0, b, t+k , tl, tkl) + (t+k → t−k ) ,

H6(b, tl, tkl, s) = lnGA1(0, 0, b, t⊕k , tl, tkl) + lnGA2(0, 0, b, t⊕k , tl, tkl)

+ 2 lnGB(0, 0, b, t⊕k , tl, tkl) + (t⊕k → t	k ) , (A.7)

and

t⊕k = tl + tkl − 2tltkl + 2
√
tl t̄ltklt̄kl(1− s2) ,

t	k = tl + tkl − 2tltkl − 2
√
tl t̄ltklt̄kl(1− s2) . (A.8)

For SCET-2 observables the relevant formulae are dCF
2 = −γCF

1 ,

∆dCF
2 = 64

{
− 4

π

∫ 1

0
dtl

ln3 f(0, tl)√
4tl t̄l

+
8

π2

∫ 1

0
dtk

ln f(0, tk)√
4tk t̄k

∫ 1

0
dtl

ln2 f(0, tl)√
4tl t̄l

− 1

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

[
1

b
ln

b2

(1 + b)4

]
+

H0(b, tl, tkl)

+
2

π2

∫ 1

0
db

∫ 1

0
dtl

∫ 1

0
dtkl

1√
16tl t̄ltklt̄kl

H5(b, tl, tkl)

b+

}
, (A.9)

and the same constraint (A.4) has to be fulfilled. According to [1], these relations are
slightly modified for cumulant soft functions, and we will not repeat the required changes
here.
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While the above formulae hold under the assumptions specified in Section 2, our
SoftSERVE implementation is subject to one additional constraint, i.e. the measurement
function ω({ki}) must be strictly real and non-negative. The SoftSERVE routines ADLap
and ADMom therefore cannot immediately be applied to Fourier-space soft functions, but as
we explained in Appendix B of [2], there exists a workaround in SoftSERVE, which consists
in replacing the complex-valued measurement functions by their absolute values, and by
multiplying the result with appropriate factors that reshuffle the expansion in the dimen-
sional and rapidity regulators. For the anomalous dimensions considered here, there exists
a similar workaround, and in the SCET-1 case one finds that the anomalous dimension in
(A.1) is not changed, whereas (A.4) and (A.6) receive additional contributions in this case
given by (−π2) and −128π/n

∫ 1
0 dtl/

√
4tl t̄l ln f(0, tl), respectively. For SCET-2 soft func-

tions, we find that the collinear anomaly exponent itself is shifted by −2π2β0CF , whereas
(A.4) and (A.9) are changed by (−π2) and 128π

∫ 1
0 dtl/

√
4tl t̄l ln f(0, tl).
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