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M. Mühlleitner

Institut für Theoretische Physik, Karlsruher Institut für Technologie

G. Weiglein, J. Wittbrodt

Deutsches Elektronen-Synchrotron DESY, Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG



DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen Informationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in      
case of filing application for or grant of patents. 

To be sure that your reports and preprints are promptly included in the 
HEP literature database 

send them to (if possible by air mail): 

DESY          DESY 
Zentralbibliothek        Bibliothek     
Notkestraße 85          Platanenallee 6 
22607 Hamburg         15738 Zeuthen 
Germany                    Germany 



DESY 19-085
KA-TP-07-2019

Vacuum Instabilities in the N2HDM

P.M. Ferreira∗ and Rui Santos†

Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa 1959-007 Lisboa, Portugal and
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The Higgs sector of the Next-to-Minimal Two-Higgs-Doublet Model (N2HDM) is obtained from

the Two-Higgs-Doublet Model (2HDM) containing two complex Higgs doublets, by adding a real

singlet field. In this paper, we analyse the vacuum structure of the N2HDM with respect to the

possibility of vacuum instabilities. We show that while one type of charge- and CP-preserving

vacuum cannot coexist with deeper charge- or CP-breaking minima, there is another type of vacuum

whose stability is endangered by the possible occurrence of deeper charge- and CP-breaking minima.

Analytical expressions relating the depth of different vacua are deduced. Parameter scans of the

model are carried out that illustrate the regions of parameter space where the vacuum is either

stable or metastable as well as the regions where tunnelling to deeper vacua gives rise to a too

short lifetime of the vacuum. Taking other experimental and theoretical constraints into account,

we find that the vacuum stability constraints have an important impact on the phenomenology of

the N2HDM.

1. INTRODUCTION

The Higgs mechanism [1–5] has been introduced to generate particle masses without violating gauge symmetries. It

is based on a sufficiently stable vacuum with non-zero vacuum expectation value v ≈ 246 GeV. Within the Standard

Model (SM), the stability of the electroweak (EW) vacuum is guaranteed at lowest order as a consequence of the

postulated form of the Higgs potential. Through higher-order corrections, the stability of the EW vacuum becomes

intimately related also to the other Standard Model (SM) parameters [6, 7], in particular the top quark mass. When

extrapolating the SM to high energy scales it turns out that the EW vacuum is metastable for scales larger than

about 1010 GeV, which means that for these scales the vacuum is no longer absolutely stable but has a lifetime that

is longer than the age of the universe.

Extensions beyond the SM (BSM) typically introduce new additional scalar degrees of freedom. While the loop

contributions of these scalar particles may counteract the impact of the top quark loop, the presence of the additional

scalars modifies the structure of the Higgs potential such that additional vacua can occur that are different from

the one related to the correct EW symmetry breaking (EWSB). There can be vacua that break the CP symmetry

(CP breaking) or the conservation of electric charge (charge breaking), in supersymmetric models even color breaking

minima can occur. Moreover, there is the possibility of a second EW minimum but with a wrong vacuum expectation
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value (VEV) v 6= 246 GeV, as for example in the 2-Higgs Doublet Model (2HDM) where this situation was named

“panic vacuum” [8–12]. In case an additional vacuum is deeper than the EW one then tunnelling can occur into

dangerous non-physical vacuum configurations [13]. If this happens at time scales beyond the lifetime of the universe

the EW vacuum is considered as metastable. However, parameter regions giving rise to faster vacuum decays are

regarded as unphysical and should be excluded. Hence the requirement of a stable EW vacuum at cosmological time

scales has immediate consequences for the allowed parameter space of the models. A thorough analysis of their vacuum

structure is therefore crucial to correctly identify the allowed parameter space and consequently make appropriate

predictions for observables and signatures for the experimental studies.

The analysis of the 2HDM [8, 9, 14, 15] has shown that if a “normal” vacuum exists, i.e. a vacuum that is EW

breaking but charge and CP conserving, any stationary point that is charge or CP breaking is necessarily a saddle

point that lies above the normal minimum. There is also the possibility to have a second normal minimum but with

the wrong VEV, i.e. a panic vacuum state. The Inert 2HDM, a 2HDM with an exact Z2 symmetry, can have two types

— Inert and Inert-like — of minima which can coexist with one another for certain parameter relations. The one-loop

study, however, has shown [16] that the parameter regions where this is the case can change at loop level. The analysis

of the possibility of a strong first order phase transition in the context of a CP-conserving and CP-violating 2HDM

conducted in [17, 18] revealed as a side product that the allowed minima at leading order do not necessarily lead to

stable physical configurations at next-to-leading order (NLO) and vice versa. The developed code BSMPT [19] allows for

studies of the vacuum structure at NLO (at zero and at finite temperature) of arbitrary user-defined BSM extensions.

This is also the case for Vevacious [20, 21], designed for general BSM models, including one-loop and temperature

effects. Recently, members of this collaboration have presented an approach at leading order for an efficient and

reliable evaluation of the constraints from vacuum stability and applied it to the minimal supersymmetric extension

of the SM (MSSM) [22]. As shown in [23, 24] and also discussed in [22], for calculations of the vacuum decay lifetime

the loop-corrected effective potential in general does not correspond to a consistent perturbative expansion. A first

analysis of the vacuum structure of the N2HDM has been carried out by some of the present authors in [25]. The

N2HDM, which is obtained upon extension of the 2HDM with a real singlet field (which may acquire a VEV), was

shown to exhibit a different vacuum structure than the 2HDM. Thus e.g. charge or CP breaking minima deeper than

the normal minimum can exist.

In this paper we perform a detailed analysis of the vacuum structure of the N2HDM. We classify the different

possible types of vacua and derive analytical expressions for the comparison of the values of the potential at minima

of different nature. In contrast to [25], where a general phenomenological analysis of the N2HDM was performed

(and where parts of our results have been presented in a numerical approach), we concentrate here on the vacuum

structure itself and its implications on the model. By applying the method of [22], we investigate the requirement

of a sufficiently stable physical minimum on the allowed parameter range. In particular, we investigate here for the

first time the impact of the N2HDM vacuum structure on the phenomenology of the model. Moreover, we discuss

the importance of including parameter regions with a metastable vacuum in phenomenological analyses in order

to avoid incorrect conclusions on the viability of parameter space regions. Our study thus makes important new

contributions to properly constraining the viable parameter space taking into account the theoretical constraints from

the requirement of a stable vacuum.

The paper is organised as follows. In Sec. 2 we introduce the model and the different types of possible minima.

It contains the detailed analytical analysis of the stability of the different minima. Section 3 is dedicated to the

numerical analysis of the vacuum structure of the N2HDM. We describe our parameter scan and the method that we

apply in order to identify the regions where the vacuum is stable or metastable. Subsequently we present and discuss

our numerical results. We conclude in Section 4. The appendix contains a derivation that is used in our determination

of the nature of the stationary points.
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2. THE MODEL AND POSSIBLE MINIMA

The particle content of the N2HDM is identical to the one of the 2HDM in the fermionic and gauge sectors, but

includes an extra real singlet scalar field, ΦS . To reduce the large number of parameters of the scalar potential, and

to allow for the possibility of interesting phenomenology, such as dark matter, three discrete symmetries are imposed:

(a) a Z2 symmetry in which one of the doublets is affected by a sign change, Φ1 → Φ1, Φ2 → −Φ2 and ΦS → ΦS ; (b)

another Z2 symmetry which leaves the doublets unchanged but changes the sign of the singlet, Φ1 → Φ1, Φ2 → Φ2 and

ΦS → −ΦS ; (c) the standard CP symmetry, Φ1 → Φ∗1 and Φ2 → Φ∗2 — since the singlet is real, the CP transformation

does not affect it. After imposing these symmetries only terms quadratic and quartic in the fields are allowed and the

most general scalar potential is given by

V = m2
11|Φ1|2 +m2

22|Φ2|2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +

1

2
λ5

[(
Φ†1Φ2

)2

+ h.c.

]
+

1

2
m2
SΦ2

S +
1

8
λ6Φ4

S +
1

2
λ7|Φ1|2Φ2

S +
1

2
λ8|Φ2|2Φ2

S , (2.1)

where all parameters in the potential are real. We allow for the Z2 symmetry (a) to be softly broken by the m2
12 term.

The theory obviously also includes fermions, and the Yukawa Lagrangian will depend on the choices made to extend

the discrete symmetries imposed upon the scalar sector to the fermion one. Due to gauge invariance the singlet field

ΦS couples to neither fermions nor gauge bosons. Therefore, the Yukawa Lagrangian will have four different possible

forms, identical to the different types of 2HDM Yukawa Lagrangians. All of the four different possibilities lead to

flavour conservation in scalar interactions. One of the possibilities (achieved if all right fermion fields change sign

under the first Z2 symmetry defined above) is a Type-I model, in which all fermions only couple to the doublet Φ2,

and the Yukawa Lagrangian for the third generation is given by

− LY = λtQ̄LΦ̃2tR + λbQ̄LΦ2bR + λτ L̄LΦ2τR , (2.2)

with QL and LL denoting the left-handed quark and lepton doublets, and tR, bR and τR the right-handed top, bottom

and tau singlets. The remaining three Yukawa types can be defined analogously [25].

The N2HDM contains different phases, depending on the type of symmetry breaking that occurs. Vacuum expec-

tation values for the scalar fields will lead to vacua which may, or may not, preserve the symmetries imposed. Let us

now review the different types of vacua possible in the N2HDM. For the purpose of studying the interplay between

different possible vacua, it is convenient to introduce a bilinear formalism, similar to that which has been developed for

the 2HDM [8–10, 14, 15, 26–34]. This formalism has been applied to models with different scalar content, for instance

the 3HDM [35, 36] or the complex singlet-doublet model [37]. For the N2HDM let us define five real quantities,

x1 = |Φ1|2 , x2 = |Φ2|2 , x3 = Re
(

Φ†1Φ2

)
, x4 = Im

(
Φ†1Φ2

)
, x5 =

1

2
Φ2
S . (2.3)

Further, we define the vectors X, A and the symmetric matrix B as

X =


x1

x2

x3

x4

x5

 , A =


m2

11

m2
22

−2m2
12

0

m2
S

 , B =


λ1 λ3 0 0 λ7

λ3 λ2 0 0 λ8

0 0 2(λ4 + λ5) 0 0

0 0 0 2(λ4 − λ5) 0

λ7 λ8 0 0 λ6

 , (2.4)

in terms of which the potential of eq. (2.1) can be rewritten as

V = AT X +
1

2
XT BX . (2.5)

In what follows we shall also make extensive use of the vector

V ′ =
∂V

∂XT
= A + BX . (2.6)
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It can easily be shown that, at a given stationary point in which the fields acquire vacuum expectation values such

that 〈X〉T = (〈|Φ1|〉2 , 〈|Φ2|〉2 , Re〈Φ†1Φ2〉 , Im〈Φ†1Φ2〉 , 1
2 〈ΦS〉

2)T , the value of the potential at that stationary point,

VSP , is given by

VSP =
1

2
AT 〈X〉 = − 1

2
〈X〉TB〈X〉 . (2.7)

As explained in [25], by using the gauge freedom of the model, it is always possible to bring the most generic

possible vacuum (in which, in principle, one would have nine different VEVs to consider, since the scalar doublets

and singlet have a total of nine real component fields) to a simple form, to wit

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
vcb

v2 + ivcp

)
, 〈ΦS〉 = vS , (2.8)

where all VEVs vX are, without loss of generality, real. The charge breaking VEV vcb breaks electromagnetic

symmetry (giving the photon a mass) and the VEV vcp breaks CP conservation. It is easy to verify that these VEVs

cannot coexist simultaneously. In other words, the minimisation of the potential implies that, if vcb 6= 0 then vcp = 0,

and vice-versa.

Different non-zero VEVs lead to different types of symmetry breaking, originating from minima which preserve, or

not, distinct symmetries. The classification of all possible vacua was first made in [25], but here we adopt a different

notation better suited for our analysis. There are two possible charge charge breaking vacua; two CP breaking vacua;

two normal (electroweak breaking, but charge and CP conserving) vacua; and a single vacuum for which electroweak

symmetry is unbroken.1 Thus a total of seven possible types of vacua, or phases, exists in the model. The two

electroweak breaking but charge and CP conserving vacua of the N2HDM most closely resemble a SM-like vacuum,

in that they have a CP-even scalar field which can mimic the SM Higgs boson. However, the N2HDM involves extra

scalars, including a charged one and several neutral ones with definite CP quantum numbers, and possibly a dark

matter candidate.

The first normal stationary point N (denoted I in [25]) occurs when the parameters of the potential are such that

the minimisation conditions of the potential allow a solution for which both doublets have neutral, real VEVs and

the singlet has none. This vacuum therefore preserves the Z2 symmetry of the singlet — the singlet has no VEV and

does not mix with the remaining neutral scalars. Hence this corresponds to the dark matter phase of the model, with

the VEVs

〈Φ1〉N =
1√
2

(
0

v1

)
, 〈Φ2〉N =

1√
2

(
0

v2

)
, 〈ΦS〉N = 0 . (2.9)

This results in the following values for the X and V ′ vectors (defined in eqs. (2.4) and (2.6)):

XN = 〈X〉N =
1

2


v2

1

v2
2

v1v2

0

0

 , V ′N = A + BXN =



v22
v2m

2
H±

v21
v2m

2
H±

− 2v1v2
v2 m2

H±

0

m2
D

 , (2.10)

with v2 = v2
1 +v2

2 . The entries of V ′N are dictated by the N minimisation conditions and by the respective eigenvalues

of the scalar mass matrices, where m2
H± is the squared charged scalar mass at this stationary point and m2

D the

squared mass of the singlet field. These are given by

m2
H± = m2

12

v2

v1v2
− 1

2
(λ4 + λ5) v2 , m2

D = m2
S +

1

2
(λ7v

2
1 + λ8v

2
2) . (2.11)

1 We exclude, from this list, the trivial extremum at the origin, in which no field acquires a VEV.
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Using eq. (2.7) the value of the potential at this stationary point may be written as

VN =
1

2
ATXN = − 1

2
XT
NBXN . (2.12)

The second normal stationary point N s (denoted sI in [25]) corresponds to a solution of the minimisation conditions

where both the doublets and the singlet ΦS acquire non-zero VEVs. This additionally breaks the singlet Z2 symmetry

— thus the singlet ΦS will mix with the remaining neutral scalars. Starting from the following VEV configuration

〈Φ1〉Ns =
1√
2

(
0

v′1

)
, 〈Φ2〉Ns =

1√
2

(
0

v′2

)
, 〈ΦS〉Ns = v′S , (2.13)

we define

XNs = 〈X〉Ns =
1

2


v′1

2

v′2
2

v′1v
′
2

0

v′s
2

 , V ′Ns = A + BXNs =
(
m2
H±

)
Ns



v′2
2

v′2

v′1
2

v′2

− 2v′1v
′
2

v′2

0

0

 , (2.14)

where v′
2

= v′1
2

+ v′2
2

and
(
m2
H±

)
Ns is the squared charged scalar mass at the N s stationary point, given by

(
m2
H±

)
Ns = m2

12

v′
2

v′1v
′
2

− 1

2
(λ4 + λ5) v′

2
. (2.15)

As before, the specific entries of V ′Ns are a consequence of the minimisation conditions, and the eigenvalues of the

scalar mass matrices at an N s stationary point. As for the value of the potential, we have

VNs =
1

2
ATXNs = − 1

2
XT
NsBXNs . (2.16)

As mentioned earlier, another charge and CP conserving vacuum may arise in the model — one for which the singlet

field acquires a VEV but the doublets do not. This type of vacuum — dubbed S in [25] — would lead to massless

electroweak gauge bosons and fermions, and as such it is unphysical. This stationary point exists if m2
S < 0, and the

singlet VEV is found to be

〈ΦS〉2 = − 2m2
S

λ6
. (2.17)

The value of the potential at this stationary point is equal to

VS = − m4
S

2λ6
. (2.18)

Both the N and N s phases can accommodate SM-like physics (provided that v2
1 +v2

2 ∼ (246 GeV)2 and v′1
2

+v′2
2 ∼

(246 GeV)2, respectively), although each of these phases has a different phenomenology (for N dark matter candidates

exist, for N s three CP-even states mix with each other). We will now analyse the stability of both N and N s against

the possible existence of deeper minima of different nature. For a large part of the parameter space of the model

the minimisation conditions yield a single minimum, and its stability is ensured (at least at tree level). However, for

many combinations of the parameters of the potential, multiple minima can coexist. If the tunnelling time from a

minimum of type N (or N s) to a deeper minimum is smaller than the age of the universe then the corresponding set

of parameters should be excluded.



6

2.1. Stability of normal minima against charge breaking

Since charge breaking minima have to be avoided, it is important to know under what circumstances a normal

minimum is safe against eventual tunnelling to a deeper charge breaking minimum. In the 2HDM that question was

answered [8, 9, 14, 15] in a conclusive manner: whenever a normal minimum exists, any charge breaking stationary

point is necessarily a saddle point lying above the normal minimum. In the N2HDM, as we will now show, the situation

is changed. Let us first define both of the possible charge breaking stationary points and introduce some notation

concerning them.

• In the first charge breaking stationary point CB (denoted IIb in [25]) the singlet field has no VEV, and the

doublet VEVs are

〈Φ1〉CB =
1√
2

(
0

c1

)
, 〈Φ2〉CB =

1√
2

(
c2
c3

)
, 〈ΦS〉CB = 0 . (2.19)

Consider also the vectors X and V ′ evaluated at a CB stationary point, given by

XCB = 〈X〉CB =
1

2


c21

c22 + c23
c1c3

0

0

 , V ′CB = A + BXCB =


0

0

0

0

m2
S1

 , (2.20)

where m2
S1 = m2

S + λ7c
2
1/2 + λ8(c22 + c23)/2 is one of the squared scalar masses at the CB stationary point. The

entries of V ′CB are dictated by the CB minimisation conditions.

• In the second charge breaking stationary point CBs (denoted sIIb in [25]) the singlet also acquires a VEV, the

VEV configuration being given by

〈Φ1〉CBs =
1√
2

(
0

c′1

)
, 〈Φ2〉CBs =

1√
2

(
c′2
c′3

)
, 〈ΦS〉CBs = c′4 . (2.21)

Analogously to what we have done for the previous stationary points, we define the following vectors:

XCBs = 〈X〉CBs =
1

2


c′1

2

c′2
2

+ c′3
2

c′1c
′
3

0

c′4
2

 , V ′CBs = A + BXCBs =


0

0

0

0

0

 . (2.22)

And again, the entries of V ′CBs are dictated by the CBs minimisation conditions.

The manipulation of the X and V ′ vectors will allow us to establish analytical formulae relating the value of the

potential at two coexisting stationary points. This technique was first used in ref. [14], and it essentially consists in

following four basic steps: (1) perform the internal product of X evaluated at one of the stationary points with V ′

evaluated at the second one; (2) repeat, with X evaluated at the second stationary point and V ′ at the first one;

(3) use the explicit formulas for V ′ to relate the previous internal products with the value of the potential at each

stationary point; (4) the two internal products will have a common term, through which they can be related to one

another, thus obtaining a relation between the potentials. The technique is best understood going through some

explicit examples of its application, which we will now provide. Note that all of the following conclusions are derived

at the tree-level and may be affected by higher order corrections.
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2.1.1. Extrema N vs. CB and CBs

Let us assume that the parameters of the N2HDM are such that the potential has two stationary points2, one of

type N and another of type CB. These extrema may or may not be minima, at this time we do not need to specify

it. Let us then consider the vectors defined above, containing information about the VEVs and the minimisation

conditions in each extremum, for N in eqs. (2.10), for CB in eqs. (2.20).

The internal product of the vectors XCB and V ′N yields

XT
CB V

′
N =

m2
H±

2v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
(2.23)

which may also be written as

XT
CB V

′
N = XT

CB (A + BXN ) = XT
CB A + XT

CB BXN . (2.24)

From eq. (2.7), we know that the quantity XT
CB A is twice the value of the potential at the extremum CB,

XT
CB A = 2VCB , (2.25)

and therefore, combining eqs. (2.23) and (2.24),

XT
CB BXN =

m2
H±

2v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
− 2VCB . (2.26)

We now perform similar operations on the vectors XN and V ′CB, yielding

XT
N V

′
CB = 0 ⇔ XT

N A + XT
N BXCB = 0 . (2.27)

The quantity XT
N A is twice the value of the potential at the extremum N , hence

XT
N BXCB = − 2VN . (2.28)

Since the matrix B (defined in eq. (2.4)) is symmetric, the left-hand sides of eqs. (2.26) and (2.28) are identical. It is

then trivial to obtain the following expression comparing the depth of the potential at both extrema,

VCB − VN =
m2
H±

4v2

[
(v2c1 − v1c3)2 + v2

1c
2
2

]
. (2.29)

Therefore, if N is a minimum one will have m2
H± > 0, and since the terms in square brackets above are surely positive,

one will have VCB − VN > 0. Thus we may conclude that:

If the potential has a minimum of type N , any CB stationary point, if it exists, lies above N .

As such, no tunnelling to a deeper CB minimum can occur.

Similar conclusions are reached when one compares N and CBs stationary points. Again, the starting point is to

analyse the internal products of the vectors X and V ′ for each stationary point. Using eqs. (2.22) and (2.10), we

obtain

XT
NV

′
CBs = 2VN + XT

NBXCBs = 0

XT
CBsV

′
N = 2VCBs + XT

CBsBXN =
1

2

{
m2
H±

v2

[
(v2c

′
1 − v1c

′
3)2 + v2

1c
′
2
2
]

+ m2
Dc
′
4
2
}

(2.30)

and therefore, subtracting both equations one easily obtains

VCBs − VN =
1

4

{
m2
H±

v2

[
(v2c

′
1 − v1c

′
3)2 + v2

1c
′
2
2
]

+ m2
Dc
′
4
2
}
. (2.31)

If N is a minimum all of the squared scalar masses computed therein must be positive, and thus VCBs − VN > 0.

2 That is, the minimisation equations of the N2HDM potential admit both solutions, for a given choice of parameters.
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If the potential has a minimum of type N , any CBs stationary point, if it exists, lies above N .

As such, no tunnelling to a deeper CBs minimum can occur. We can therefore conclude that minima of type N are

completely stable against the possibility of charge breaking.

2.1.2. Extrema N s vs. CB and CBs

The analysis of the previous section can now be extended to the stability of N s minima — but as we will shortly

see, the conclusions are different. Let us begin by comparing N s and CBs stationary points. As before, and using

eqs. (2.14) and (2.22), we have

XT
NsV

′
CBs = 2VNs + XT

NsBXCBs = 0

XT
CBsV

′
Ns = 2VCBs + XT

CBsBXNs =

(
m2
H±

2v2

)
Ns

[
(v′2c

′
1 − v′1c′3)2 + v′1

2
c′2

2
]
, (2.32)

where we use the subscript “N s ” to emphasise that both the squared charged mass and the sum of the square of the

VEVs concern the N s stationary point. From these equations, it is trivial to obtain

VCBs − VNs =

(
m2
H±

4v2

)
Ns

[
(v′2c

′
1 − v′1c′3)2 + v′1

2
c′2

2
]
. (2.33)

Therefore, as before, if N s is a minimum, any CBs stationary point, if it exists, lies above it, and N s is stable against

tunnelling to CBs.
However, when one follows these steps whilst comparing N s and CB stationary points, one finds:

XT
NsV

′
CB = 2VNs + XT

NsBXCB =
1

2
s2m2

S1

XT
CBV

′
Ns = 2VCB + XT

CBBXNs =

(
m2
H±

2v2

)
Ns

[
(v′2c1 − v′1c3)2 + v′1

2
c22

]
, (2.34)

where, recall, s is the singlet VEV at vacuum N s and m2
S1 one of the squared scalar masses at CB. From this one

obtains

VCB − VNs =

(
m2
H±

4v2

)
Ns

[
(v′2c1 − v′1c3)2 + v′1

2
c22

]
− 1

4
s2m2

S1 . (2.35)

There is now no mandatory relationship between the depths of these stationary points — a priori, both of them can

be minima, and none is privileged with respect to the other. As such — and numerical analyses prove this — there

are situations in which a minimum N s coexists with a deeper CB minimum (or vice-versa). Thus we conclude:

Minima of type N s are stable against charge breaking for vacua of type CBs, but not necessarily for those of type CB.

The addition of a real singlet to the 2HDM qualitatively changes the vacuum stability behaviour of the scalar

potential. Whereas in the 2HDM a normal minimum is guaranteed to be stable against any possible deeper charge

breaking minimum, this is no longer the case in the N2HDM. The addition of the singlet field leads to possible

instabilities, where a normal minimum which breaks the Z2 symmetry of the singlet might coexist with a charge

breaking minimum (deeper or not) which does not break that same symmetry. However, any N2HDM normal minimum

which preserves the Z2 symmetry of the singlet is perfectly stable against charge breaking.

2.2. Stability of normal minima against CP breaking

Just like in the 2HDM, spontaneous CP breaking is possible in the N2HDM. In fact, CP in the N2HDM can

be broken by two different minima, whereas in the 2HDM only one such vacuum can occur. Before discussing the
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stability of such vacua, however, some general considerations are in order: it only makes sense to study spontaneous

CP breaking in models were CP is a well-defined symmetry, i.e. models that are invariant under a given CP symmetry,

as is the case with the potential written in eq. (2.1)3. Also, care must be taken when discussing CP breaking, as it

is not sufficient to have a complex valued VEV to be able to affirm that CP violation is occurring. In fact, there are

situations for which CP may be preserved even if complex VEVs arise, and therefore one ought to look for other signs

of CP violation, such as the couplings of scalar mass eigenstates to Z bosons. In the N2HDM, however, with the

field basis we chose, no such problems arise: if the vacuum state contains a complex VEV, CP breaking occurs and

produces scalar states of indefinite CP properties. Finally, as was shown in ref. [25], in the N2HDM it is not possible

to have coexisting CP breaking and charge breaking stationary points — if the minimisation conditions can be solved

for one type (CP breaking or charge breaking) of vacua, then the other type (charge breaking or CP breaking) admits

no solution. Thus the possibility of tunnelling between CP breaking and charge breaking minima is excluded a priori.

As before, the question under which conditions a given normal minimum is stable against tunnelling to a deeper

CP breaking vacuum has been previously answered in the 2HDM [8, 9, 14, 15], and the conclusion is analogous to the

charge breaking case: whenever a normal minimum exists, any CP breaking stationary point is necessarily a saddle

point lying above the normal minimum. In the N2HDM the situation of the CP breaking vacua will differ, as it did

for the charge breaking case. The vacua where CP can be spontaneously broken are:

• The first CP-breaking stationary point CP (denoted IIa in [25]) preserves the Z2 symmetry of the singlet but

one of the doublets has a complex VEV. We parametrise the VEVs as

〈Φ1〉CP =
1√
2

(
0

v̄1

)
, 〈Φ2〉CP =

1√
2

(
0

v̄2 + iv̄3

)
, 〈ΦS〉CP = 0 . (2.36)

Let us define

XCP = 〈X〉CP =
1

2


v̄2

1

v̄2
2 + v̄2

3

v̄1v̄2

v̄1v̄3

0

 , V ′CP = A + B̂ XCP =


0

0

0

0

m2
D̄

 , (2.37)

where m2
D̄

= m2
S + λ7v̄

2
1/2 + λ8(v̄2

2 + v̄2
3)/2 is the squared mass of the singlet in this vacuum, and we introduce

the matrix B̂,

B̂ = B + (λ4 − λ5)


0 1 0 0 0

1 0 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 0 0 0

 . (2.38)

The entries of V ′CP are determined by the stationarity conditions and the form of the mass matrices at this

vacuum.

• The second CP-breaking stationary point CPs (denoted sIIa in [25]) also breaks the Z2 symmetry of the singlet

and gives a complex VEV to one of the doublets. The VEVs are therefore

〈Φ1〉CPs =
1√
2

(
0

v̄′1

)
, 〈Φ2〉CPs =

1√
2

(
0

v̄′2 + iv̄′3

)
, 〈ΦS〉CP = v̄′4 , (2.39)

3 As in the 2HDM, more elaborate CP symmetries could be considered, but these would only impose extra restrictions on the parameters
of the model.
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and we define

XCPs = 〈X〉CPs =
1

2


v̄′21

v̄′22 + v̄′23
v̄′1v̄
′
2

v̄′1v̄
′
3

v̄′24

 , V ′CPs = A + B̂ XCPs =


0

0

0

(λ4 − λ5)v̄′1v̄
′
3

0

 . (2.40)

The entries of V ′CPs are determined by the stationarity conditions.

2.2.1. Extrema N vs. CP and CPs

Following the strategy employed for comparing normal and charge breaking vacua, we now assume that the potential

has two stationary points, one of type N and the other of type CP , each of which may, or may not, be a minimum.

With the vector definitions outlined above, we see that the internal product of the vectors XCP and V ′N yields

XT
CP V

′
N =

m2
H±

2v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
(2.41)

and thus

XT
CP V

′
N = XT

CP (A + BXN ) = XT
CP A + XT

CP BXN . (2.42)

Eq. (2.7) tell us that XT
CP A = 2VCP and therefore

XT
CP BXN =

m2
H±

2v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
− 2VCP . (2.43)

With similar manipulations on XN and V ′CP , we obtain

XT
N V

′
CP = 0 ⇔ XT

N A + XT
N B̂ XCP = 0 . (2.44)

Since XT
N A = 2VN , and with the definition of B̂ in eq. (2.38), it is seen that

XT
N B̂ XCP = − 2VN ⇔ XT

N BXCP = −1

4
(λ4 − λ5)

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
− 2VN . (2.45)

Now, since the pseudoscalar squared mass for an N stationary point is given by

m2
A = m2

H± +
1

2
(λ4 − λ5) v2 , (2.46)

we finally obtain

VCP − VN =
m2
A

4v2

[
(v2v̄1 − v1v̄2)2 + v2

1 v̄
2
3

]
. (2.47)

Thus, if N is a minimum one will have m2
A > 0, and therefore inevitably VCP − VN > 0.

Following analogous steps for the N and CPs stationary points, one arrives easily at the following formula comparing

the depths of the potential at each stationary point,

VCPs − VN =
1

4

{
m2
A

v2

[
(v2v̄

′
1 − v1v̄

′
2)2 + v2

1 v̄
′2
3

]
+ m2

Dv̄
′2
4

}
. (2.48)

Therefore, one reaches the same conclusions for CP and CPs stationary points, when they coexist with N :

If N is a minimum, it is deeper than any CP or CPs stationary points.
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2.2.2. Extrema N s vs. CP and CPs

The conclusions of the previous subsection do not extend unchanged to coexisting N s and CP or CPs stationary

points. Starting with CPs, we have

XT
CPs V

′
Ns =

(
m2
H±

2v2

)
Ns

[
(v′2v̄

′
1 − v′1v̄′2)2 + v′1

2
v̄′23

]
= 2VCPs + XT

CPsBXNs . (2.49)

Also, we derive that

XT
Ns V

′
CPs = 2VCPs + XT

Ns B̂ XCPs (2.50)

and after similar calculations as before it may be seen that

VCPs − VNs =

(
m2
A

4v2

)
Ns

[
(v′2v̄

′
1 − v′1v̄′2)2 + v′1

2
v̄′23

]
, (2.51)

and therefore if N s is a minimum it is certainly deeper than CPs— the same type of result we obtained when

comparing N minima and CP ones. On the other hand, if we compare N s and CP stationary points, we obtain

XT
CP V

′
Ns =

(
m2
H±

2v2

)
Ns

[
(v′2v̄1 − v′1v̄2)2 + v′1

2
v̄2

3

]
= 2VCP + XT

CP BXNs . (2.52)

Also, it is easy to obtain

XT
Ns V

′
CP =

1

2
m2
D̄ s

2 = 2VNs + XT
Ns B̂ XCP , (2.53)

and hence, after trivial manipulations,

VCP − VNs =

(
m2
A

4v2

)
Ns

[
(v′2v̄1 − v′1v̄2)2 + v′1

2
v̄2

3

]
− 1

4
m2
D̄ s

2 . (2.54)

This expression shows — as for the pair N s, CB — that N s is not necessarily stable against tunnelling to a deeper

CP minimum.

Minima of type N s are stable against CP-breaking minima of type CPs, but not against those of type CP.

2.3. Other coexisting neutral minima

Another possibility for vacuum instability is the existence of multiple minima of types N , N s or even S. If for

instance two N and N s stationary points coexist, we can follow similar steps to those outlined in the previous sections

and arrive at the following formula relating the depths of the potential:

VNs − VN =
1

4

[(
m2
H±

4v2

)
N
−
(
m2
H±

4v2

)
Ns

]
(v1v

′
2 − v2v

′
1)2 +

1

4
m2
D s

2 . (2.55)

Therefore, we see that since either one of N or N s can be minima, none of them is guaranteed to be deeper than the

other. Therefore, though N is stable against tunnelling to a deeper charge breaking or CP breaking minimum, it is

not guaranteed to be stable against a deeper N s vacuum. Likewise, an N s minimum, which is safe against tunnelling

to possible charge breaking or CP breaking minima, may be unstable against a deeper N minimum. Nonetheless, we

can derive another conclusion considering this formula in tandem with the results of previous sections:

If the parameters of the potential are such that N and N s minima coexist in the potential, then the global minimum

of the potential preserves charge and CP.
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The demonstration is simple: though from eq. (2.55) we cannot be certain whether N or N s is the global minimum,

the existence of an N minimum places it certainly below any charge/CP breaking stationary points that might exist.

Therefore, the conclusion becomes that either N or N s is the global minimum.

The other possibility still in play would be the coexistence of an N (or N s) minimum with an S minimum of the

type described in eqs. (2.17) and (2.18), where only the singlet acquires a VEV. This is the simplest possibility of

vacuum instability to verify: provided we find a solution of the N type, it will be safe against tunnelling to an S

minimum provided we verify the following three conditions:

• Since the S vacuum only exists if m2
S < 0, we need not worry about tunnelling from N to S if m2

S > 0.

• If however m2
S < 0, then the N vacuum is deeper than S if VN is smaller than VS , with VS having a very simple

form given by eq. (2.18).

• If m2
S < 0 and VN > VS then the tunnelling time between both vacua must be computed.

Likewise for an N s vacuum, the analogous conditions for stability of N s would hold.

Finally, there is still another possibility for instability of vacua of types N (or N s): that the minimisation conditions

of the N2HDM may yield more than one solution for a given type of vacuum. This means that a solution of the type

N ≡ 〈{Φ1,Φ2,ΦS}〉 = {v1, v2, 0}/
√

2 exists, with v2
1 + v2

2 = 2462 GeV2, as well as another, N ′ ≡ {w1, w2, 0}/
√

2

exists, with w2
1 + w2

2 6= 2462 GeV2. This possibility already arises in the 2HDM [8–12] — therein dubbed “panic

vacua” — and it remains in the N2HDM as an avenue for instability of the N vacuum (and also of the N s one, since

the minimisation equations of the potential may well yield more than one solution of type N s). We do not study this

possibility analytically, but it is included in the numerical analysis presented in section 3.

We end this section with a very interesting scenario for the limit m2
12 = 0, when all symmetries are exact. The N

and N s stationary points are related by eq. (2.55). This equation can re-written as

VNs − VN =
m2

12

16

[
1

v1v2
− 1

v′1v
′
2

]
+

1

4
m2
D s

2 . (2.56)

It we set m2
12 = 0, and N is a minimum it is a global minimum because not only VNs − VN > 0, but also because we

proved before that it is stable with respect to other charge breaking or CP breaking minima. However, this conclusion

is only valid provided both doublet VEVs are non-zero, that is, the only dark matter candidate has origin in the

singlet.

2.4. Vacuum stability

The results of the previous sections show that, unlike what happened for the 2HDM, when normal minima occur in

the N2HDM they are not necessarily the global minima of the model. We summarise the results we obtained in table I,

where we illustrate the relation between the various types of possible minima. If a minimum of type N exists (i.e.

a minimum where the singlet has no VEV and its discrete symmetry is preserved even after spontaneous symmetry

breaking) then N is certainly deeper than any charge or CP breaking stationary points that the potential might have

— the stability of N against CP or charge breaking is perfectly guaranteed in the model. In fact, it is even possible

to demonstrate (see appendix A) that in this situation any charge breaking stationary points are necessarily saddle

points: an N minimum implies that at least one, but not all, of the squared masses of a CB(s) stationary point is

negative. Presumably the same applies to CP(s) stationary points as well, assuming the 2HDM analysis generalizes.

Of course, for considerations of stability, the nature (minimum, maximum, saddle point) of extrema that lie above N
is of no consequence.

The stability found for N minima does not hold, however, for minima of type N s: for these — the discrete symmetry

of the singlet is spontaneously broken in addition to EW symmetry — coexistence with minima of certain types is

indeed possible. An N s minimum will certainly be deeper than any stationary points of types CBs or CPs — which

break, respectively, charge conservation and CP symmetry, and also break the discrete symmetry of the singlet. But
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Extrema N N s CB CBs CP CPs S

N × × Stability Stability Stability Stability ×

N s × × × Stability × Stability ×

TABLE I: Stability of extrema of types N and N s in the potential. For a given pair of extrema, “Stability” means that if one

of them is a minimum, the other is necessarily above it. A pair of “Undefined” extrema (marked in the table with “×”) means

that both of them can be simultaneously minima, and neither is guaranteed to be the deepest one, depending on the choice of

parameters.

it is possible to have coexisting N s and CB or CP minima — which break, respectively, charge conservation and CP

symmetry, but do not break the discrete symmetry of the singlet.

These results underline the curiously unique nature of the vacuum structure in the 2HDM, where the existence of

a minimum of a given nature automatically implies that no minima of different types may exist. That property is

not shared by models with a different scalar content — even in models with a simpler scalar content, such as the

doublet + singlet (real or complex) model, the vacuum structure is much more complex, and no general, 2HDM-like

conclusions may be drawn [37]. In models with more than two doublets the 2HDM stability also breaks down, at

least concerning charge breaking [38]. What the analysis above has also shown is that the mere addition of just a real

singlet to the 2HDM is enough to qualitatively change the vacuum structure of the model. The N2HDM preserves

some of the nice vacuum properties of the 2HDM – wherein the N minimum mimics the stability behaviour of the

normal minima of the 2HDM — but when N s minima are considered, the possibility of tunnelling to deeper minima

of different types arises.

3. NUMERICAL ANALYSIS

In order to illustrate the impact of the N2HDM vacuum structure on the phenomenologically relevant regions of

the parameter space we perform a numerical study. We study combinations of parameters that are allowed by all

available theoretical and experimental constraints and analyse their vacuum structure. We first outline our method

for scanning the parameter space and present the constraints we apply. In order to judge whether deeper minima are

indeed excluded it is necessary to calculate the tunnelling time from the EW vacuum. We use the method developed

in [22] to numerically study the vacuum structure of these parameter points and estimate the lifetime of their EW

vacua.

3.1. Parameter Scan

We performed a scan of the N2HDM parameter space using an improved private version of ScannerS [25, 39–41].

We generated parameter points where the EW vacuum is of type N s since — following the analytical analysis — this

is the most interesting case for vacuum stability. All of the resulting parameter points fulfil the applied theoretical

constraints and are compatible with the applied current experimental constraints at the 2σ level.

The included theoretical constraints are tree-level perturbative unitarity [25] as well as boundedness from below [42].

A global minimum of the scalar potential only exists at finite field values if eq. (2.1) is bounded from below. This is

a prerequisite for any study of vacuum stability. The allowed region is given by

Ω1 ∪ Ω2 (3.1)

with

Ω1 =

{
λ1,2,6 > 0;

√
λ1λ6 + λ7 > 0;

√
λ2λ6 + λ8 > 0;

√
λ1λ2 + λ3 +D > 0;λ7 +

√
λ1

λ2
λ8 ≥ 0

}
(3.2)
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mHy ,mHz ,mA mH± tanβ m2
12 vS

min 30 GeV 150 GeV 0.8 0 GeV2 1 GeV

max 1.5 TeV 1.5 TeV 20 5 × 105 GeV2 3 TeV

TABLE II: Input parameter ranges for the N2HDM parameter scan (y, z ∈ {1, 2, 3}). The three mixing angles α1,2,3 in the

CP-even scalar sector are scanned through their whole allowed range.

and

Ω2 =

{
λ1,2,6 > 0;λ2λ6 ≥ λ2

8;
√
λ1λ6 > −λ7 ≥

√
λ1

λ2
λ8;
√

(λ2
7 − λ1λ6)(λ2

8 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
(3.3)

and depends on the discriminant

D = min(λ4 − |λ5|, 0) . (3.4)

In contrast to earlier works [25, 43] we do not impose absolute stability of the EW vacuum as a theoretical constraint

since we want to study the vacuum structure in detail and take into account that metastable regions of the parameter

space are allowed.

The experimental constraints include bounds from flavour physics in the mH± -tanβ plane [44] — the Bd →
µµ constraint being the strongest in type I. We also require compatibility with the oblique parameters S, T and

U [45, 46] including the full correlation between these quantities [44]. We check for agreement with the collider Higgs

data using HiggsBounds (v5.3.2beta) [47–51] and HiggsSignals (v2.2.3beta) [49, 52–54]. With HiggsBounds

we check for 2σ compatibility with all searches for additional scalars, and with HiggsSignals we employ a cut on

∆χ2 = χ2
N2HDM − χ2

SM < 6.18 (corresponding approximately to a 2σ region). This cut ensures that the N2HDM

predictions yield a χ2 in the fit to the LHC Higgs data that is at most 2σ worse than the one of the SM. The required

model predictions for branching ratios and total widths are obtained from N2HDECAY [25, 55] and the hadron collider

production cross sections from SusHi [56, 57].

We use this setup to generate a sample of valid parameter points on which to study the vacuum structure and

vacuum stability. One of the CP-even, neutral Higgs masses is fixed to

mHx
= mh125

= 125.09 GeV . (3.5)

The remaining input parameters are independently drawn from uniform distributions with the ranges given in table II.

The three mixing angles in the CP-even scalar sector are scanned through their whole allowed range. In this work

we only consider the N2HDM of type I, i.e. where all fermions couple to Φ2, just mentioning briefly the results for a

type II model as the vacuum structure and vacuum stability behaviour is unaffected by the choice of Yukawa type.

Note that we do not specify a mass ordering for mHx,y,z
— the h125 can be the lightest or heaviest state as well as

the one in between.

3.2. Numerical Vacuum Stability

We use the approach presented in [22] to numerically study the vacuum structure and vacuum stability of the

obtained parameter points. This approach is a highly efficient and numerically reliable method to study vacuum

stability at the tree level in BSM models with extended scalar sectors. We will now give a short review of our

approach and refer to [22] for more details.

Our code uses polynomial homotopy continuation (PHC) (see e.g. [58] or [59]) to find all stationary points of the

scalar potential eq. (2.1). This method reliably finds all solutions of a system of polynomial equations — in our case

given by

∂V

∂ϕi
= 0 , (3.6)
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for the real component fields ϕi of the doublets and singlet. The value of the scalar potential eq. (2.1) at each of

these stationary points is then compared to the depth of the EW vacuum. If there is no stationary point deeper than

the EW vacuum we consider the EW vacuum at this parameter point as absolutely stable. If stationary points deeper

than the EW vacuum exist we calculate the tunnelling time to each of these deeper extrema. The decay width per

(space-)volume VS to tunnel to a deeper point in field space is [60, 61]

Γ

VS
= Ke−B . (3.7)

We approximate the tunnelling path by a straight path connecting the two minima in field space and use the semi-

analytic solution given in [62] along this path to obtain the bounce action B. The prefactor K is a subdominant

contribution requiring an involved calculation and is therefore estimated on dimensional grounds. We consider the

vacuum of the potential for a given parameter point to be short lived and the corresponding deeper minimum dangerous

if

B < 390 . (3.8)

This is a conservative estimate where only vacua with a survival probability through the age of the universe

P � 1− 5σ ∼ 5.73× 10−7 (3.9)

are considered short lived.

3.3. Discussion

In this section we present a numerical and phenomenological analysis of the N2HDM vacuum structure and vacuum

stability. The analysis is based on the sample of 106 phenomenologically viable parameter points generated according

to section 3.1. We aim to investigate whether the possible coexistence of minima discussed analytically in section 2

• is found in a substantial region of the N2HDM parameter space that is compatible with current theoretical and

experimental constraints,

• can be directly related to phenomenological observations at colliders.

Since we assume the EW vacuum to be of type N s the potentially dangerous minima are CB, CP , N , and a second

different minimum of type N s (see below for a discussion of minima of type S). Unless otherwise stated, in the

following we will distinguish three possibilities for these potentially dangerous vacua:

• they coexist with the EW vacuum (shown in green in the following plots),

• they are also deeper than the EW vacuum (shown in blue in the following plots),

• they are additionally dangerous, i.e. tunnelling from the EW vacuum is fast (as defined in eq. (3.8)) (shown in

red in the following plots).

Table III shows the prevalence of these cases for the different possible secondary minima in our sample. While

the precise numbers in table III have no physical significance as they depend on the applied method for sampling

the parameter space, the displayed results clearly show that the possibilities discussed in section 2 remain relevant

even after all other applicable constraints are considered. Especially, dangerous minima of type N (the dark matter

phase with wrong EW symmetry breaking pattern) occur frequently in our sample. Table III also shows that the

requirement of absolute stability would correspond to a substantially stronger constraint on the parameter space

compared to the requirement that the EW vacuum should be sufficiently long-lived. As a consequence, important

parts of the parameter space that are actually viable would be discarded if the requirement of absolute stability was

imposed.
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N s ′ N CB CP
exists 0.05% 23.3% 4.49% 2.80%

deep 0.0015% 20.9% 4.11% 2.55%

dangerous 0% 6.89% 1.12% 0.678%

TABLE III: Percentage of phenomenologically viable points that have a second minimum in addition to an EW vacuum of type

N s. In the first line we present the percentage of coexisting minima, in the second line the ones that are deeper and in the

third line the dangerous, short-lived, ones. The minima of type N s ′ have VEVs like those of N s but such that v �= 246 GeV,

and differ from the EW vacuum in depth.

FIG. 1: The distribution of secondary charge and CP breaking minima. The left plot shows the plane of the CP-odd Higgs

mass mA and charged Higgs mass mH± . The right plot shows the plane of the scalar potential parameters λ4 and λ5. In

grey we show all parameter points fulfilling the theoretical and experimental constraints. On top we show the points where a

secondary minimum of type CB (dark green) or CP (light green) exists.

The only case missing in table III that is allowed by the analytical analysis are secondary minima of type S.

However, we have not found a single parameter point in our sample where a stationary point of type S is a minimum.

This could mean that minima of type S cannot coexist with an N s vacuum, that all points where this is possible are

ruled out by current constraints, or that these minima are exceedingly rare. Either way, since secondary minima of

type S do not occur in our sample they are of limited phenomenological interest, and we will not discuss them further

here.

Figure 1, left, shows the distribution of charge and CP breaking secondary minima in the plane of the pseudoscalar

Higgs mass mA and charged Higgs mass mH± . The overall distribution of the phenomenologically viable parameter

points is primarily driven by the EW precision measurements which force the neutral Higgs bosons to be relatively

close in mass to the charged Higgs boson. Note that parameter points without any secondary minima as well as

parameter points with secondary N minima exist throughout the allowed region. In contrast, secondary CB minima

only exist as long as mA > mH± while CP minima only exist when mH± > mA.

The origin of this strict separation — making mH± = mA the boundary between regions where only one of these

types of minima exists — can be understood analytically. The pseudoscalar and charged masses in an N minimum

are such that (see eq. (2.46))

m2
A − m2

H± =
1

2
(λ4 − λ5) v

2 . (3.10)

Then, it is easy to show for CB and CP extrema, with VEVs given by eqs. (2.19) and eqs. (2.36), that the eigenvalues
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FIG. 2: The difference in the value of the scalar potential between the EW N s vacuum and a secondary N minimum according

to eq. (2.55) as a function of tanβ at the EW vacuum. Only parameter points where a secondary N vacuum exists are shown.

The color code is based on the results of the numerical analysis. The green parameter points have a secondary N minimum but

tunnelling from the EW vacuum is not possible. For the blue parameter points tunnelling is possible but slow (see eq. (3.8))

while the EW vacuum in the red points (plotted on top) is short-lived for tunnelling to the N minimum.

of the scalar mass matrix are given by

m2
CB =

1

2
(λ4 − λ5) (c

2
1 + c22 + c23) , m2

CP = −1

2
(λ4 − λ5) (v̄

2
1 + v̄22 + v̄23) . (3.11)

Thus a CB minimum will imply λ4−λ5 > 0 and therefore, according to (3.10), mA > mH± . Similarly, a CP minimum

requires λ4 − λ5 < 0 which then implies mA < mH± . The same behaviour can be seen in fig. 1, right, showing the

plane of λ4 and λ5. The N minima are again scattered throughout the allowed parameter space while the CP and

CB minima can only occur in sharply defined regions. Therefore, λ4 = λ5 would be the expected border between the

regions where CP and CB can exist. However, fig. 1, right, shows that there is an additional region

λ5 < 0 ∧ λ4 < −λ5 (3.12)

where neither CP nor CB minima can exist (see appendix A for an explanation).

In fig. 2 we compare the analytical result for the relative depth of N and N s vacua to the numerical results. The

relative depth of an N s and N vacuum, as given by eq. (2.55), is shown as a function of tanβ at the N s EW vacuum.

The plot only includes parameter points where a secondary N minimum exists and shows its depth relative to the

depth of the N s EW vacuum. As expected, in all parameter points where VNs−VN > 0 the N minimum is classified

as either deep (blue points) or dangerous (red points). The parameter points with dangerous N only begin to appear

if VNs − VN � 107, and their distribution shows some dependence on tanβ. For small tanβ � 2 the N vacuum is

only unstable if the depth difference is � 109 while for large tanβ � 12 the majority of deep N vacua in our sample

is dangerous.4

So far we have illustrated how the analytical results of section 2 are reflected in the phenomenologically viable

parameter space. We will now discuss the vacuum stability constraints arising from these secondary vacua. In

imposing vacuum stability constraints we distinguish the following cases:

4 This is more clearly visible when reversing the plotting order of fig. 2 and plotting the parameter points with deep but not dangerous
N vacua on top.
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FIG. 3: The signal strength µγγ of h125 → γγ as a function of the charged Higgs mass. The parameter points without any

secondary minima (grey) are plotted on top, followed by the absolutely stable (green), and long-lived (blue) parameter points.

Below these, the points with dangerous secondary minima are shown in different shades of red denoting the type of dangerous

minimum present (N – light red, CB – red, CP – dark red).

• parameter points where the EW vacuum is the only vacuum,

• absolutely stable parameter points where secondary minima exist but are never deep,

• long-lived parameter points where secondary vacua are deep but never dangerous,

• short-lived parameter points that have dangerous secondary minima.

Figure 3 clearly demonstrates the phenomenological impact of vacuum stability constraints. It shows the signal

strength of h125 in the γγ channel defined as

µγγ =
σ(pp → h125)BR(h125 → γγ)

σ(pp → hSM)BR(hSM → γγ)
(3.13)

as a function of the charged Higgs mass. The short-lived (different shades of red) parameter points are plotted below

the grey points, for which no secondary minima exist. This means that any region where only the red parameter points

are visible is excluded by vacuum stability. One can see that significant parts of the parameter space corresponding

to an enhanced signal strength, µγγ > 1, are excluded because they have a dangerous N , CP or CB minimum below

the EW vacuum. If for instance a charged Higgs is found with a mass of 500 GeV, a bound of about µγγ � 1.03 in

the N2HDM of type I can be derived from fig. 3. If on the other hand the charged Higgs mass could be constrained

to be larger than 250 GeV (e.g. by a 500 GeV e+e−-collider) enhancements of µγγ above 1.1 would be excluded in

the N2HDM of type I by the vacuum stability constraint. One can also see from fig. 3 that if the constraint of an

absolutely stable EW vacuum were imposed, the blue points in fig. 3, which indicate a long-lived EW vacuum, would

be excluded, implying possibly misleading conclusions.

The reason for the behaviour observed in fig. 3, i.e. the impact of vacuum stability on the allowed µγγ values, is

the h125 coupling to a pair of charged Higgs bosons (defined in the appendix of [25]) as shown in fig. 4. This figure

displays the impact of vacuum stability on the allowed values of the h125H
+H− coupling. Large negative values of

this coupling are excluded by dangerous vacua. Negative values, however, lead to an enhancement of µγγ through

constructive interference with the W± loop. Note, that we have checked that there are no relevant effects from vacuum
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FIG. 4: The normalised coupling gh125H+H− as a function of the charged Higgs mass. Colour code as in fig. 3.

stability on the h125 couplings to gauge bosons and to fermions. Therefore, µγγ is the observable where the vacuum

stability constraint is expected to have the largest impact since, among the currently measured observables, it has

the highest sensitivity to the possible effects of a triple scalar coupling. The large impact of the vacuum stability

constraint on µγγ is specific to the N2HDM of type I. This is due to the fact that in type I all Yukawa couplings

are rescaled by the same factor c(h125ff̄). The cancellation of this factor which occurs in µγγ in the approximation

Γtot(h125) ≈ Γ(h125 → bb̄),

µγγ ≈ c2(h125tt̄)
Γ(h125 → γγ)

c2(h125bb̄)Γtot(hSM)
(3.14)

=
Γ(h125 → γγ)

Γtot(hSM)
, (3.15)

leads to an increased sensitivity to Γ(h125 → γγ) and thus to gh125H+H− . In contrast, for Yukawa types where

c(h125tt̄) �= c(h125bb̄) (e.g. type II) the effect of vacuum stability constraints on µγγ is no longer visible as the ratio of

Yukawa couplings has a much stronger impact on the signal rate than the charged Higgs contribution to Γ(h125 → γγ).

It is interesting to note that although the allowed range for µγγ is very similar in the type I 2HDM [25] and in the

type I N2HDM, a measurement of µγγ above 1 for certain charged Higgs masses could exclude the N2HDM but be

compatible with the 2HDM due to the different vacuum stability constraints.

Figure 5 shows vacuum stability constraints in the plane of the mass mH2 of the second lightest Higgs boson H2,

with a mass aboveH1 = h125, and the signal strength µττ of h125 (defined analogously to eq. (3.13)). In this case, there

are hardly any regions where points can be clearly excluded due to the existence of a secondary dangerous vacuum.

There are regions where only points with a non-stable vacuum exist, which can be either dangerous or long-lived, but

no direct bounds can be derived from the experimental measurements of µττ . This is due to the fact that in contrast

to fig. 3 these regions are always populated by long-lived metastable vacua, so that allowed parameter points exist in

these regions. Therefore, fig. 5 clearly shows the phenomenological difference between requiring an absolutely stable

EW vacuum (keeping only the grey and green parameter points) and a long-lived EW vacuum (additionally keeping

the blue parameter points). As discussed above, enforcing absolute stability could lead to misleading phenomenological

conclusions.
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FIG. 5: The signal strength µττ of h125 → ττ as a function of the second lightest neutral scalar mass mH2 . The parameter

points without any secondary minima (grey) are plotted on top, followed by the absolutely stable (green), and long-lived (blue)

parameter points. Below these, the points with dangerous secondary minima are shown in different shades of red denoting the

type of dangerous minimum present (N – light red, CB – red, CP – dark red).

4. CONCLUSIONS

We have performed a detailed analysis of the vacuum structure of the N2HDM, an extension of the SM by an extra

doublet and an extra real singlet. We have shown that it is possible to derive analytical expressions to compare minima

of different nature. In the case where the singlet has no VEV the conclusions are the same as for the 2HDM [14],

that is, minima of different nature, N , CB and CP , never coexist. We have also shown analytically that when the

singlet acquires a VEV, if a normal N s minimum exists, it is stable against tunnelling to a corresponding charge

breaking CBs or CP-breaking CPs extremum. However, that conclusion no longer holds when comparing minima

with and without singlet VEV. In fact, minima of different natures can coexist and potentially tunnel into each other.

Moreover, it is known that in the 2HDM minima of type N are not unique [8–12] and the existence of a second,

normal minimum (panic vacuum) can exist below the one with the correct EW symmetry breaking. In the N2HDM

panic vacua of types N and N s can appear for EW vacua of either type. Additionally, minima of type S with only

a singlet VEV could also appear as panic vacua. However, we have not found a single parameter point in our sample

where a stationary point of type S is a minimum.

Based on this analytical analysis we have conducted a numerical study to investigate the impact of the intricate

N2HDM vacuum structure on the phenomenology of the model. We have generated a large sample of parameter

points with an EW vacuum of type N s that fulfil all applicable theoretical and experimental constraints (without

enforcing that the EW vacuum be a global minimum). This way, we were able to compare minima of different nature

and identify regions of parameter space where the EW vacuum is the global minimum, where deeper minima exist

but tunnelling is so slow that the EW vacuum is long-lived, and regions that are excluded because the tunnelling time

is short compared to the age of the universe.

The first important conclusion of our study was that panic vacua of type N , as well as charge breaking CB, and CP

breaking CP minima deeper than the EW vacuum appear in a significant portion of the (otherwise) phenomenologically

viable parameter space. We have also shown the distribution of secondary CB and CP minima and established the

boundaries of the disjunct parameter regions where these minima can exist.



21

Studying the impact of vacuum stability on collider observables we have found that a precise measurement of µγγ
above 1 could exclude the model on the grounds of vacuum stability alone, unless the charged Higgs is very light. This

is due to the sensitivity of µγγ to the triple Higgs coupling gh125H+H− , which is constrained by vacuum stability. If

the Yukawa sector is of type I this effect is clearly visible in µγγ because of an approximate cancellation between the

modifications of the Yukawa couplings. In the study of other collider observables, such as µττ , we showed that there

are large regions where minima which are absolutely stable do not occur, but a long-lived EW vacuum exists. This

illustrates the importance of including parameter regions with a metastable vacuum in phenomenological analyses, as

enforcing absolute stability may lead to incorrect conclusions.
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Appendix A: On the nature of stationary points

We have shown that an N minimum is stable against tunnelling to deeper CB(s) or CP(s) extrema — if they exist,

the N minimum is certainly deeper and no tunnelling to these extrema may occur. It is also possible to show that, if

N is a minimum, any CB(s) stationary points that may exist are not only necessarily above it but cannot be minima

themselves. Rather, they are saddle points.

We will demonstrate this nice property for the CBs case — the demonstration for the CB and CP(s) cases is similar.

First recall that for a CBs extremum the vector V ′ is given in eq. (2.22), and since V ′CBs = A + BXCBs = 0, we will

have XCBs = −B−1A. Recalling the definition of V ′N , we may also write A = V ′N − BXN , and as such an alternate

form for eq. (2.30) is

XT
CBsV

′
N = −V ′TN

(
B−1A

)
= −V ′TNB−1 (V ′N −BXN ) . (A.1)

Since V ′
T
NXN = 0 (see eq. (2.10)), we find a different expression for (2.31), i.e.

VCBs − VN = −1

2
V ′

T
NB

−1V ′N . (A.2)

Now, we have shown that if N is a minimum then the right-hand-side of this matrix is positive (see eq. (2.31)). This

therefore implies that in that situation the matrix B−1 — and by extension the matrix B — cannot be positive-

definite. Therefore the matrix B has at least one negative eigenvalue, but it certainly has positive ones — notice that

the diagonal elements B11, B22 and B66 are certainly positive so that the N2HDM potential is bounded from below,

so B necessarily has positive eigenvalues.

Let us now look at the squared scalar mass matrix, given by the second derivatives of the potential with respect to

the real components of the doublets and singlet, ϕi, i = 1 . . . 9. We may write it as

[M2]ij =
∂2V

∂ϕi∂ϕj
=
∂V

∂xl

∂2xl
∂ϕi∂ϕj

+
∂2V

∂xl∂xm

∂xl
∂ϕi

∂xm
∂ϕj

= V ′l
∂2xl

∂ϕi∂ϕj
+ Blm

∂xl
∂ϕi

∂xm
∂ϕj

, (A.3)
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where we introduced the matrix B and the vector V ′ which are defined, respectively, in eqs. (2.4) and (2.6). Then,

since for a CBs stationary point V ′l = 0, the mass matrix [M2] is reduced to the second term in the equation above.

It is then rather easy to reproduce the calculation in section 5.2 of ref. [14] and deduce that one may simplify the

expression of [M2] and obtain

[M2] =

[
0 0

0 CTBC

]
, (A.4)

where C is a 5×5 matrix depending only on the VEVs. Eq. (A.4) demonstrates that the eigenvalues of [M2] at a CBs
stationary point will be all positive if and only if the matrix B is positive definite. However, we have shown above

that when N is a minimum, the matrix B has at least one negative eigenvalue — and therefore [M2] has also at least

one negative eigenvalue. However, since B also has positive eigenvalues, so will [M2]. Therefore, if N is a minimum

then any CBs stationary point, it if exists, lies above N and is a saddle point, q.e.d.

We can now also justify the conditions of eq. (3.12) for the non-existence of neither CB or CP minima. The matrix

B determines the nature of the CBs stationary point, and one can also show that it does the same for the CB extrema.

Checking now eqs. (2.4), we see that the (3, 3) entry of B is λ4 + λ5, and therefore, if λ4 < −λ5 one of the diagonal

elements of B will be negative – thus B cannot be positive definite, and consequently no CB minima can occur (only

saddle points). This justifies the second condition of eq. (3.12). As for the first one – λ5 < 0 – the nature of CP
stationary points will, in analogy with the CB cases (and the 2HDM, see [14]) be determined by a matrix of the quartic

couplings. For the CP extrema, however, that matrix is not B but rather the matrix B̂, eq. (2.38). Observe then that

the (3, 3) element of B̂ is 2λ5 – and therefore, if λ5 < 0 no CP minima can occur since B̂ cannot be positive definite.
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[43] M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, JHEP 08, 132 (2017), 1703.07750.

[44] J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, Eur. Phys. J. C78, 675 (2018), 1803.01853.

[45] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, J. Phys. G35, 075001 (2008), 0711.4022.

[46] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, Nucl. Phys. B801, 81 (2008), 0802.4353.

[47] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, Comput. Phys. Commun. 181, 138 (2010), 0811.4169.

[48] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, Comput. Phys. Commun. 182, 2605 (2011),

1102.1898.

[49] P. Bechtle, O. Brein, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein, and K. Williams, PoS CHARGED2012, 024

(2012), 1301.2345.

[50] P. Bechtle, O. Brein, S. Heinemeyer, O. St̊al, T. Stefaniak, G. Weiglein, and K. E. Williams, Eur. Phys. J. C74, 2693

(2014), 1311.0055.

[51] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, Eur. Phys. J. C75, 421 (2015), 1507.06706.

[52] O. St̊al and T. Stefaniak, PoS EPS-HEP2013, 314 (2013), 1310.4039.

[53] P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak, and G. Weiglein, Eur. Phys. J. C74, 2711 (2014), 1305.1933.

[54] P. Bechtle, S. Heinemeyer, O. St̊al, T. Stefaniak, and G. Weiglein, JHEP 11, 039 (2014), 1403.1582.
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