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Abstract

We consider a non-supersymmetric domain-wall version of N = 4 SYM theory where five
out of the six scalar fields have non-zero classical values on one side of a wall of codimension
one. The classical fields have commutators which constitute an irreducible representation
of the Lie algebra so(5) leading to a highly non-trivial mixing between color and flavor
components of the quantum fields. Making use of fuzzy spherical harmonics on S4, we
explicitly solve the mixing problem and derive not only the spectrum of excitations at
the quantum level but also the propagators of the original fields needed for perturbative
quantum computations. As an application, we derive the one-loop one-point function of
a chiral primary and find complete agreement with a supergravity prediction of the same
quantity in a double-scaling limit which involves a limit of large instanton number in the
dual D3-D7 probe-brane setup.

Keywords: Super-Yang-Mills; Defect CFTs; One-point functions; D3-D7 probe-brane
model, Fuzzy spherical harmonics on S4

ar
X

iv
:1

91
2.

02
46

8v
1 

 [h
ep

-th
]  

5 
D

ec
 2

01
9



Contents

1 Introduction and Summary 2

2 Diagonalization of the mass matrix 5
2.1 Expansion of the action 5
2.2 Decomposition of the color matrices and easy bosons 6
2.3 Complicated bosons 8
2.4 Fermions 10

3 Propagators 11
3.1 Off-diagonal block 12
3.2 Adjoint block 14

4 One-loop corrections to the classical solution and one-point functions 16
4.1 One-loop correction to the classical solution 16
4.2 One-loop correction to 〈tr(ZL)〉 18

5 Conclusion and Outlook 20

A Conventions 21
A.1 N = 4 SYM action 21
A.2 so(5) and so(6) 21
A.3 G matrices 22

B Details on the diagonalization 23
B.1 Complicated bosons 23
B.2 Fermions 26

C Details on the propagators 27

D Effective vertex 30

E Matrix elements and Clebsch-Gordan coefficients 31

1 Introduction and Summary

There exists a number of domain-wall versions of N = 4 SYM theory characterized by some
or possibly all of the scalar fields acquiring non-vanishing and spacetime-dependent vacuum
expectation values (vevs) on one side of a codimension-one wall. These theories constitute
defect conformal field theories and have well-defined holographic duals in the form of probe-
brane models with non-vanishing background gauge-field flux or instanton number [1–7].
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They have been studied both from the perspective of supersymmetric boundary conditions [8]
and from the perspective of condensed matter physics, the probe-brane models being capable
of describing strongly coupled Dirac fermions in 2+1 dimensions [9–14].

More recently, these models have been analyzed from the point of view of integrability,
where the domain wall or defect is viewed as a boundary state of the integrable bulk N = 4
SYM theory [15–21]; see also [22, 23]. Furthermore, the models have been studied with the
aim of testing AdS/dCFT in situations where supersymmetry is partially or completely
broken [24–26], the comparison between gauge theory and string theory being made possible
by the introduction of a certain double-scaling limit [6, 7]. Table 1 below summarizes the
status of these investigations.

In the present paper, we fill the last gap in the table. We will study the most complicated
of the above mentioned domain-wall versions of N = 4 SYM theory where five out of the
six scalar fields have vevs whose commutators constitute an irreducible representation of
the Lie algebra so(5). The string-theory dual of this dCFT is a D3-D7 probe-brane system
where the geometry of the probe brane is AdS4 × S4, and where a non-Abelian background
gauge field forms an instanton bundle with instanton number dG on the S4 [2, 9]. The
instanton number on the string-theory side translates into the dimension, dG, of the so(5)
representation on the gauge-theory side, where

dG = 1
6(n+ 1)(n+ 2)(n+ 3), n ∈ N, (1.1)

Combining the large-N limit with the following double scaling [7],

λ→∞, n→∞, λ

π2n2 fixed, (1.2)

one can by means of a supergravity approximation derive results for simple observables
such as one-point functions or Wilson loops. Certain results allow an expansion in positive
powers of the double-scaling parameter λ

π2n2 and open for the possibility of comparing to a
perturbative gauge-theory calculation. We notice that the perturbative regime in the gauge
theory lies within the parameter region where the probe-brane system is stable, which is
given by [9]

λ

π2(n+ 1)(n+ 3) <
2
7 . (1.3)

One simple observable that can be studied using both supergravity and gauge theory
is the one-point function of the unique so(5)-symmetric chiral primary of even length L,
OL. In [7], this one-point function was calculated in supergravity to the leading order
in the double-scaling parameter. The computation can straightforwardly be extended
to subleading order and results in the following prediction for the ratio between the full
one-point function and its tree-level value:

〈OL〉
〈OL〉tree

= 1 + λ

π2n2
L(L+ 3)
4(L− 1) +O

((
λ

π2n2

)2)
. (1.4)

This prediction trivially carries over to the simple chiral primary trZL with Z = φ5 + iφ6,
which has a non-vanishing projection on the so(5)-symmetric one.
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D3-D5 D3-D7 D3-D7

Supersymmetry 1/2-BPS None None

Brane geometry AdS4× S2 AdS4× S2 × S2 AdS4× S4

Flux/Instanton number k k1, k2
(n+1)(n+2)(n+3)

6

Double-scaling parameter λ
π2k2

λ
π2(k2

1+k2
2)

λ
π2n2

Boundary state Integrable Non-integrable Integrable

AdS/dCFT match Yes Yes Yes (this work)

Table 1. The string theory configurations dual to the dCFT versions of N = 4 SYM theory with
non-vanishing vevs. The discussion of the integrability properties of the corresponding boundary
states can be found in [19, 20] and the test of the match between gauge theory and string theory
referred to in the first two columns can be found in [24–26].

In the present paper, we will confirm this supergravity prediction by a rather intricate
gauge-theory computation. The non-vanishing so(5)-symmetric vevs of the scalars introduce
a complicated (spacetime-dependent) mass matrix mixing color and flavor components of
the standard fields of N = 4 SYM theory. Needless to say, the diagonalization of this
mass matrix requires the machinery of representation theory of orthogonal groups, the key
element being the introduction of fuzzy spherical harmonics on S4.

Our motivation for setting up the perturbative program for this dCFT is not only a
wish to reproduce the formula (1.4) and thus provide a positive test of AdS/dCFT in a
situation where supersymmetry is completely broken. Having a perturbative program will
also make it possible to generate a wealth of new data which could provide input to the
boundary conformal bootstrap program as well as to the search for higher-loop integrability
in the one-point function problem in AdS/dCFT.

Our paper is organized as follows. We start by describing the diagonalization of the
mass matrix in Section 2 and explicitly give the complete spectrum of quantum excitations
including their multiplicities. The propagators of the fields which diagonalize the mass
matrix are found following the procedure of [25], and due to the spacetime-dependence
of the vevs, become propagators in an auxiliary AdS4 space. For concrete perturbative
calculations, it is convenient to have the contraction rules and propagators formulated
in terms of the original fields of N = 4 SYM theory and the complete set of these are
presented in Section 3. In Section 4, we calculate the one-loop correction to the classical
solution as well as to the one-point function of trZL and confirm the prediction (1.4) in
the double-scaling limit; explicit expression for both quantities at finite n are also attached
in an ancillary file to this paper. Finally, Section 5 contains our conclusion and outlook. A
number of technical details are relegated to appendices.
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2 Diagonalization of the mass matrix

2.1 Expansion of the action

We will be considering a domain-wall version of N = 4 SYM theory where five of the six
real scalar fields φi have non-vanishing vevs on one side of a codimension-one wall, say for
x3 > 0, and we will be interested in calculating observables in this region of spacetime.
With Acl

µ = ψcl = 0, the classical equations of motion for the six scalars read1

∇2φcl
i =

[
φcl
j ,
[
φcl
j , φ

cl
i

]]
, i = 1, . . . , 6. (2.1)

A classical solution with so(5) symmetry was found in [2, 29];

φcl
i (x) = 1√

2x3

(
Gi6 0
0 0

)
, φcl

6 (x) = 0, x3 > 0. (2.2)

Here the matrices Gi6 together with Gij ≡ −i[Gi6, Gj6] for i, j = 1, . . . , 5 are generators of
the representation (n2 ,

n
2 ,

n
2 ) of the Lie algebra so(6).2 From the commutation relations of

so(6), one can check that (2.2) indeed solves the equations of motion. The matrices Gi6 can
be constructed as an n-fold symmetrized tensor product of γ matrices and their dimension
is given in (1.1); see Appendix A.3 for details.

To take into account quantum effects, we expand the scalar fields around the classical
solution (2.2) as

φi(x) = φcl
i (x) + φ̃i(x). (2.3)

Inserting the expansion into the action of N = 4 SYM theory generates (spacetime-
dependent) mass terms for some of the fields, as well as novel cubic and quartic interaction
terms. This has been worked out in detail in [24–26].

Upon insertion of the expansion (2.3), the kinetic terms of the action remain canonical,
while the mass terms acquire a non-trivial mixing between different fields. We can rewrite
the mass matrices in a compact form in terms of the operators

Lij ≡ ad (Gij ⊕ 0N−dG) i, j = 1, . . . , 6. (2.4)

The mass terms split into three different pieces:

Smass = Sm,b,e + Sm,b,c + Sm,f. (2.5)

The first one involves only bosonic terms, and following [25] we call it easy because the
mixing only involves color degrees of freedom,

Sm,b,e = 2
g2

YM

∫
d4x

(−1
2x2

3

)
tr
[

1
2E
†

5∑
i=1

(Li6)2 E

]
, E =


A0
A1
A2
φ̃6

 . (2.6)

1See Appendix A for a full set of our conventions. We refer to the reviews [27, 28] for an introduction to
the study of domain-wall versions of N = 4 SYM theory and their one-point functions.

2We are using the eigenvalues of the three generators of the Cartan subalgebra to label the so(6)
representation, see Appendix A.2.
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We call the second term complicated, because it mixes color and flavor degrees of freedom,

Sm,b,c = 2
g2

YM

∫
d4x

(−1
2x2

3

)
tr

C†


1
2

5∑
i=1

(Li6)2 − 1
2

5∑
i,j=1

SijLij
√

2
∑5
i=1RiLi6

√
2
∑5
i=1R

†
iLi6

1
2

5∑
i=1

(Li6)2

C
 ,
(2.7)

with the vector of complicated fields

C =


φ̃1
...
φ̃5
A3

 . (2.8)

In the above expression, Sij are 5× 5 matrices that form the fundamental representation
of so(5), whereas Ri are five-dimensional column vectors with components (Rj)k = iδjk.
Finally, we have a mass term for the fermions. In this case, not only is there mixing
between color and flavor, but also the different chiralities are mixed. It is therefore useful
to separate the fermions into their chiral components using the projectors PL = 1

2(1 + γ5)
and PR = 1

2(1− γ5). We obtain

Sm,f = 2
g2

YM

∫
d4x

(−1
2x3

)
tr
(
ψ̄α Cαβ(PLψβ) + ψ̄α C†αβ(PRψβ)

)
. (2.9)

The components of Cαβ involve the operators Li6 and thus act non-trivially on the color
part of the fields. They are explicitly given in Appendix B.2.

To set up the perturbative program, we first need to gauge fix introducing ghosts3 as
in [25, 26] and subsequently to diagonalize the mass matrix, i.e. to expand the fields in a basis
on which all the operators and matrices in the quadratic part of the action act diagonally.
We postpone the somewhat technical construction of this basis to Appendix B and proceed
to summarize the spectrum which can largely be understood from the representation theory
of so(5) and so(6).

2.2 Decomposition of the color matrices and easy bosons

From the color structure of the classical solution (2.2), it is natural to decompose the U(N)
adjoint fields into blocks as4

Φ = [Φ]m,m′Fmm′ + [Φ]m,aFma + [Φ]a,mF am + [Φ]a,a′F aa′ =
(

[Φ]m,m′ [Φ]m,a
[Φ]a,m [Φ]a,a′

)
, (2.10)

where m,m′ = 1, . . . , dG and a, a′ = dG + 1, . . . , N . Since we rewrote the mass terms using
Lij , it is natural to ask how it acts on the different blocks. Anticipating their transformation

3For the purpose of diagonalizing the mass matrix, the ghosts behave as easy bosons.
4The N ×N basis matrices Fmm′ are zero everywhere except at position (m,m′), where they are one.
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behavior, we will often refer to [Φ]m,m′ as the fields in the adjoint block, whereas [Φ]m,a
and [Φ]a,m will simply be called fields in the off-diagonal block.

First, we note that LijF aa′ = 0, so all the fields in the (N − dG)× (N − dG) block are
massless. We will see in later sections that the fields in this block do not contribute to the
one-point functions we will calculate, and we will mostly ignore them. The fields in the
off-diagonal block transform as

LijF
m
a = Fm

′

a[Gij ]m′,m, LijF
a
m = F am′ [−(Gij)T ]m′,m. (2.11)

This means that an upper index m transforms in the (n2 ,
n
2 ,

n
2 ) of so(6), while a lower

index m transforms in the dual representation (n2 ,
n
2 ,

n
2 ). Finally, the fields in the dG × dG

dimensional adjoint block carry one index and its dual, so they transform as the product of
the two representations. This product can be decomposed into a direct sum of irreducible
representations (

n

2 ,
n

2 ,
n

2

)
⊗
(
n

2 ,
n

2 ,
n

2

)
=

n⊕
m=0

(m,m, 0). (2.12)

The key observation (see also [30, 31]) to obtain the spectrum and diagonalize the easy
mass term is that it is given by the difference of Casimir operators for so(5) and so(6),

1
2

5∑
i=1

(Li6)2 = 1
2

∑
1≤i<j≤6

(Lij)2 − 1
2

∑
1≤i<j≤5

(Lij)2 = 1
2 (C6 − C5) . (2.13)

Any representation of so(6) can be decomposed into a direct sum of irreducible representa-
tions of so(5). Equation (2.13) implies that fields belonging to different so(5) representations
will have different masses.

For example, we have seen that the fields in the off-diagonal block transform as the
(n2 ,

n
2 ,

n
2 ) of so(6) and its dual. It turns out that they are irreducible representations of

so(5):

[Φ]m,a :
(
n

2 ,
n

2 ,
n

2

)
→
(
n

2 , 0
)
, [Φ]a,m :

(
n

2 ,
n

2 ,
n

2

)
→
(
n

2 , 0
)
, (2.14)

where our notation and conventions are explained in Appendix A.2. Thus, all fields in the
off-diagonal block have the same mass, which we can easily obtain from (2.13) and the
formulas for the eigenvalues of the Casimirs in (A.11).

For the adjoint block, we saw in (2.12) that the fields decompose into a sum of irreducible
representations of so(6). Each of these representations of the form (m,m, 0) can in turn be
decomposed into so(5) components using the branching rule (A.12)

[Φ]m,m′ :
(
n

2 ,
n

2 ,
n

2

)
⊗
(
n

2 ,
n

2 ,
n

2

)
→
⊕

(L1, L2), (2.15)

where the sum runs over all half-integer (L1, L2) such that

0 ≤ L2 ≤ L1, L1 + L2 ≤ n. (2.16)
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Eigenstate Mass Multiplicity

[E]a,a′ 0 (N − dG)(N − dG)

[E]m,a m2
easy = 1

8n(n+ 4) 2dG(N − dG)

[E]L m̂2
easy = 2L1L2 + L1 + 2L2 d5(L1, L2)

Table 2. Masses of the easy bosons E = A0, A1, A2, φ̃6. The allowed ranges of L1 and L2 are
0 ≤ L2 ≤ L1, L1 +L2 ≤ n. The definitions of d5 and dG can be found in (1.1) and (A.8), respectively.

Therefore, fields with several different masses occur in the adjoint block, one for each
so(5) representation in the above sum. Once again, from the expression of the Casimir
operators (A.11) we obtain the easy masses summarized in Table 2. It is important to note
that the so(6) Casimir needs to be evaluated for (L1 + L2, L1 + L2, 0), which can be seen
from working out the decomposition (2.15) explicitly.

So far we have only focused on the spectrum, but we have not discussed how the
diagonalization can explicitly be carried out. We can find an explicit orthonormal basis
that diagonalizes the easy mass term, namely

[Φ]m,m′Fmm′ =
∑
L

[Φ]LŶL, tr
(
Ŷ †L′ ŶL

)
= δL′,L. (2.17)

The matrices ŶL are so(5)-symmetric fuzzy spherical harmonics – the so(5) analogue of the
basis used in [24, 25]. For our purposes, only the existence of this basis will be important.
An explicit construction of the matrices can be found in [32]. In general, we use the notation
L to collectively refer to the quantum numbers that uniquely specify an so(5) state within
a representation. This is described in more detail in Appendix A.2. For example, the sum
over L includes a sum over all possible highest weights (L1, L2) in (2.15), and for each of
them also the d5(L1, L2) states that form the representation.

2.3 Complicated bosons

We now turn towards the complicated mass terms, for which color and flavor degrees of
freedom mix. The key observation of [26] is that if one can find an eigenvector of the 5× 5
block of the mass matrix in (2.7) which is annihilated by the 1 × 5 block R†iLi, then we
obtain an eigenvector of the full matrix.

In particular, to diagonalize the 5×5 block we define the total so(5) ‘angular momentum’
operator Jij , such that

Jij ≡ Lij + Sij ⇒ 1
2

5∑
i,j=1

SijLij = 1
2

∑
1≤i<j≤5

[
(Jij)2 − (Lij)2 − (Sij)2

]
. (2.18)

On the right hand side, we have a combination of so(5) Casimir operators, which act
trivially on irreducible representations. As mentioned above, the matrices Sij form the
fundamental of so(5) which is labeled by (1

2 ,
1
2). After decomposing the fields in so(5) fuzzy

8



Eigenstate Mass Multiplicity

B++ m̂2
++ = (2L1 + 1)L2 d5(L1 + 1

2 , L2 + 1
2)

B−− m̂2
−− = (2L1 + 3)(L2 + 1) d5(L1 − 1

2 , L2 − 1
2)

B00 m̂2
00 = L1 + 2L2(L1 + 1) + 2 d5(L1, L2)

D0 m̂2
0 = L1 + 2L2(L1 + 1) + 2 d5(L1, L2)

D+ m̂2
+ = 1 + (L1 + 2L2(L1 + 1)) +

√
1 + 4(L1 + 2L2(L1 + 1)) d5(L1, L2)

D− m̂2
− = 1 + (L1 + 2L2(L1 + 1))−

√
1 + 4(L1 + 2L2(L1 + 1)) d5(L1, L2)

Table 3. Masses and eigenstates of the complicated bosons in the adjoint block. The allowed ranges
of L1 and L2 are 0 ≤ L2 ≤ L1, L1 + L2 ≤ n. Note that in the case L2 = L1 the B00 and D0 fields
are missing, and in the case L2 = 0 the B−− and D0 fields are missing. The definition of d5 can be
found in (A.8).

spherical harmonics, they therefore transform in the product representation (L1, L2)⊗(1
2 ,

1
2).

This product decomposes into irreducible representations with well-defined total angular
momentum (J1, J2) as

(L1, L2)⊗ (1
2 ,

1
2) = (L1 + 1

2 , L2 + 1
2)⊕ (L1 − 1

2 , L2 − 1
2)⊕ (L1, L2)

⊕ (L1 + 1
2 , L2 − 1

2)⊕ (L1 − 1
2 , L2 + 1

2), for 0 < L2 < L1,
(2.19a)

(L1, L1)⊗ (1
2 ,

1
2) = (L1 + 1

2 , L1 + 1
2)⊕ (L1 − 1

2 , L1 − 1
2)⊕ (L1 + 1

2 , L1 − 1
2), (2.19b)

(L1, 0)⊗ (1
2 ,

1
2) = (L1 + 1

2 ,
1
2)⊕ (L1, 0)⊕ (L1 − 1

2 ,
1
2). (2.19c)

The masses of the fields that diagonalize the 5× 5 block of the complicated action can now
again be obtained from the Casimir operators,

1
2

( 5∑
i=1

(Li6)2 −
5∑

i,j=1
SijLij

)
= 1

2
[
C6(L1 + L2, L1 + L2, 0)− C5(J1, J2) + C5

(
1
2 ,

1
2

)]
.

(2.20)

Generically, we obtain the five fields B±,±, B±,∓ and B00 from the decomposition (2.19a)
that diagonalize the 5×5 block. It turns out that B±,± and B00 are indeed mass eigenstates
of the full complicated mass term, as the corresponding basis states are annihilated by∑5
i=1R

†
iLi6. As we describe in Appendix B.1, the remaining complicated fields B±,∓ and A3

still mix through a 3× 3 matrix. Diagonalizing this matrix we find the six mass eigenstates
B±,±, B00, D± and D0, where the last three are simple linear combinations of B±,∓ and
A3. We list their masses in Table 3. There are two edge cases in the decomposition of
(L1, L2) ⊗ (1

2 ,
1
2) corresponding to (2.19b) and (2.19c). We find that for (L1, L1) the B00

and D0 fields are missing, and for (L1, 0) the B−− and D0 fields are missing. This concludes
the derivation of the spectrum for the complicated bosons in the adjoint block.
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Eigenstate Mass Multiplicity

B++ m2
++ = 1

8n
2 2d5(n+1

2 , 1
2)(N − dG)

B−+ m2
−+ = 1

8(n+ 4)2 2d5(n−1
2 , 1

2)(N − dG)

D+ m2
+ = 1

8

(
n2 + 4n+ 8 + 4

√
2(n2 + 4n+ 2)

)
2d5(n2 , 0)(N − dG)

D− m2
− = 1

8

(
n2 + 4n+ 8− 4

√
2(n2 + 4n+ 2)

)
2d5(n2 , 0)(N − dG)

Table 4. Masses and eigenstates of the complicated bosons in the off-diagonal block. The definition
of d5 can be found in (A.8).

The diagonalization for the complicated bosons in the off-diagonal block proceeds in a
similar manner. In this case, the relevant decomposition is(

n
2 , 0

)
⊗
(

1
2 ,

1
2

)
=
(
n+1

2 , 1
2

)
⊕
(
n
2 , 0

)
⊕
(
n−1

2 , 1
2

)
. (2.21)

In this case, B00 and A3 mix in a 2× 2 matrix which is diagonalized by D±. We list the
spectrum of the fields in the off-diagonal blocks in Table 4. By abuse of notation, we reuse
some of the previous names for the diagonal fields.

2.4 Fermions

The diagonalization of the fermionic mass matrix Cαβ is non-trivial, so we will consider first
a simplified version of the problem. The observation we make is that the eigenvalues of C†C
are actually the fermionic masses squared. Moreover, we will use the eigenvectors of C†C to
construct the eigenvectors of C. From the explicit form of Cαβ given in Appendix B.2, we
obtain

C†C = 1
2

( 5∑
i=1

(Li6)2 −
5∑

i,j=1
S̃ijLij

)
. (2.22)

The 4× 4 matrices (S̃ij)αβ constitute the four-dimensional representation of so(5) which is
labelled by (1

2 , 0).
Notice the similarity of this problem with that of the 5× 5 block of the complicated

bosonic mass term. In particular, a variant of (2.20) still holds, with the difference that
now the total angular momentum (J1, J2) takes values in the decomposition5

(L1, L2)⊗ (1
2 , 0) = (L1 + 1

2 , L2)⊕ (L1 − 1
2 , L2)⊕ (L1, L2 + 1

2)⊕ (L1, L2 − 1
2) , (2.23a)

for 0 < L2 < L2,

(L1, L1)⊗ (1
2 , 0) = (L1 + 1

2 , L1)⊕ (L1, L1 − 1
2) , (2.23b)

(L1, 0)⊗ (1
2 , 0) = (L1 + 1

2 , 0)⊕ (L1 − 1
2 , 0)⊕ (L1,

1
2) . (2.23c)

5We also have to change the last term in (2.20) to C5( 1
2 , 0).
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Eigenstate Mass Multiplicity

D̃+0 m̂+0 =
√

2(L1 + 1)L2 d5(L1 + 1
2 , L2)

D̃−0 m̂−0 =
√

2(L1 + 1)(L2 + 1) d5(L1 − 1
2 , L2)

D̃0+ m̂0+ =
√

1
2(2L1 + 1)(2L2 + 1) d5(L1, L2 + 1

2)

D̃0− m̂0− =
√

1
2(2L1 + 3)(2L2 + 1) d5(L1, L2 − 1

2)

Table 5. Mass eigenvalues of the fermions in the adjoint block. The allowed ranges of L1 and L2
are 0 ≤ L2 ≤ L1, L1 + L2 ≤ n. Note that in the case L2 = L1 the fields D̃−0 and D̃0+ are missing,
and in the case L2 = 0 the D̃0− fields are missing. The definition of d5 can be found in (A.8).

Eigenstate Mass Multiplicity

D̃+0 m+0 = 1√
8n 2d5(n+1

2 , 0)(N − dG)

D̃−0 m−0 = 1√
8(n+ 4) 2d5(n−1

2 , 0)(N − dG)

D̃0+ m0+ = 1√
8(n+ 2) 2d5(n2 ,

1
2)(N − dG)

Table 6. Mass eigenvalues of the fermions in the off-diagonal block. The definition of dG can be
found in (1.1).

It is now an easy exercise to extract the masses of the fermionic diagonal fields. Note that
compared to the complicated bosons there is no further mixing of fields after coupling the
so(5) representations (L1, L2) and (1

2 , 0) appropriately. In analogy to the previous section,
we will denote the diagonal fields by D̃α,β. The fermionic masses are listed in Table 5 for
the adjoint block and in Table 6 for the off-diagonal block.

3 Propagators

In the previous section, we have presented the spectrum of ‘masses’ of all the fields in the
theory. In the action, these masses combine with a spacetime-dependent factor into m2

x2
3

for the bosons, and m
x3

for the fermions. The propagators of fields in (d+ 1)-dimensional
Minkowski space with such spacetime-dependent mass terms are related to the propagators
of fields in AdSd+1, as observed in [24, 25, 33].

For the purpose of our computation in Section 4, only the propagators of fields evaluated
at the same point in spacetime will be relevant. Since they are divergent, we need to introduce
a regulator to keep them finite, and we will accomplish this working in dimensional reduction
with d = 3− 2ε, such that the codimension of the defect remains one. For the bosonic fields,

11



the regulated propagator is [25]

Km2(x, x) = g2
YM
2

1
16π2x2

3

[
m2
(
− 1
ε
− log(4π) + γE − 2 log(x3) + 2Ψ(ν + 1

2)− 1
)
− 1

]
,

(3.1)

where ν =
√
m2 + 1

4 . Similarly, the (spinor trace of the) regularized propagator for the
fermions is

trKm
F (x, x) = g2

YM
8π2x3

3

[
m3 +m2 − 3m− 1 (3.2)

+m(m2 − 1)
(
−1
ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
.

In the above expressions, Ψ(x) is the digamma function and γE is the Euler-Mascheroni
constant.

As discussed in Section 2, one can change basis from the fields φ̃i, Aµ and ψα in the
action to the diagonal fields B±,±, B00, D± and D0, such that the mass terms become
diagonal. The propagators between these diagonal fields are then of the form (3.1) and (3.2)
we just presented. However, it is easier to perform field-theory computations if we know
the propagators between the original fields in the action. This can be achieved by inverting
the steps in the diagonalization procedure, as explained in more detail in [25, 26]. In the
resulting propagators there is mixing between color and flavor degrees of freedom, which is
introduced by the presence of matrix elements of so(6) generators.

Throughout this section, we denote by Km2
i the scalar propagator with the mass m2

i

being one of the masses listed in Tables 3-6, and similarly for the fermions. We will merely
present the final results in the main text and refer the reader to Appendix C for more
details.

3.1 Off-diagonal block

We begin with the propagators between fields from the off-diagonal block, because they
are the most important ones for the purposes of later calculations in the large-N limit.
We remind the reader that these fields are of the form [Φ]m,a, where m = 1, . . . , dG and
a = dG + 1, . . . , N . The propagators will be expressed in terms of the matrix elements
[Gij ]m,m′ of the matrices Gij that appear in the classical solution; see Appendix A.3 for
more details.

The simplest propagator is the one between two easy fields E = A0, A1, A2, φ̃6, because
in this case there is no mixing between the flavor and the color structure,

〈[E]m,a[E]†m′,a′〉 = δm,m′δa,a′K
m2

easy . (3.3)

Note that the propagator between two different easy fields vanishes.
The remaining scalars φ̃i with i = 1, . . . , 5 mix with each other in the following way:

〈[φ̃i]m,a[φ̃j ]†m′,a′〉 = δa,a′

[
δijδm,m′f

sing + [Gij ]m,m′f lin + 4[Gi6Gj6]m,m′fprod
]
. (3.4)
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The functions f above are linear combinations of bosonic propagators, with coefficients
which only depend on n:

f sing = n

2(n+ 2)K
m2
−+ + n+ 4

2(n+ 2)K
m2

++ ,

f lin = i

n+ 2
(
Km2

−+ −Km2
++
)
,

fprod = − Km2
−+

2n(n+ 2) −
Km2

++

2(n+ 2)(n+ 4) + Km2
−

4N+
+ Km2

+

4N−
,

(3.5)

where the (normalization) factor N± is given by

N± = 4m2
easy + 1±

√
4m2

easy + 1 . (3.6)

As discussed in the diagonalization, the five scalars φ̃i and the third component of the
gauge field also couple in a non-trivial way,

〈[φ̃i]m,a[A3]†m′,a′〉 = −iδa,a′
1√

n(n+ 4) + 2
[Gi6]m,m′

(
Km2

− −Km2
+
)
, (3.7)

while the third component of the gauge field with itself gives

〈[A3]m,a[A3]†m′,a′〉 = δa,a′δm,m′

2

1 + 1√
4m2

easy + 1

Km2
− +

1− 1√
4m2

easy + 1

Km2
+

 .
(3.8)

Note the similarity between these propagators, and the ones obtained for the defect theory
dual to a D3-D7 setup with so(3)× so(3) symmetry [26]. In that case, the propagators had
precisely the same structure if one makes the schematic replacement Gi6 → ti, where ti are
generators of so(3)× so(3) (see (3.25)-(3.29) of [26] for further details).

Finally, in the diagonalization of the fermions ψα with α = 1, . . . , 4, different chiralities
are mixed with the color and flavor degrees of freedom. As a result, the propagators will
contain γ5. Moreover, matrix elements (Ci)αβ will appear, where Ci are the matrices that
couple scalars and fermions in the action of N = 4 SYM theory, see (A.2). The propagators
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have the following structure:6

〈[ψα]m,a[ψβ ]a′,m′〉 = δa,a′

[
δm,m′

[
δα,β

(
f0,+
F − γ5f

0,+
F γ5

)
+ i(C6)α,β

(
f0,−
F + γ5f

0,−
F γ5

)]

− δαβ [G45]m,m′
(
f1,+
F + γ5f

1,+
F γ5

)
+ i

3∑
i=1

5∑
j=4

(CiCj)α,β [Gij ]m,m′
(
γ5f

1,−
F − f1,−

F γ5
)

+
(

1
2

3∑
i,j,k=1

εijk(Ci)α,β [Gjk]m,m′ + i(C6)α,β [G45]m,m′
)(

f1,−
F − γ5f

1,−
F γ5

)

+
3∑
i=1

(Ci)α,β [Gi6]m,m′
(
f2,+
F + γ5f

2,+
F γ5

)
−

5∑
i=4

(Ci)α,β [Gi6]m,m′
(
γ5f

2,+
F + f2,+

F γ5
)

+ i
3∑
i=1

(CiC6)α,β [Gi6]m,m′
(
f2,−
F − γ5f

2,−
F γ5

)

− i
5∑
i=4

(CiC6)α,β [Gi6]m,m′
(
γ5f

2,−
F − f2,−

F γ5
)

+ i

2

3∑
i,j,k=1

5∑
l=4

εijk(CiCl)α,β [G[j6Gk6Gl6]]m,m′
(
γ5f

3
F + f3

Fγ5
)

+ 1
2

6∑
i,j,k=4

3∑
l=1

εijk(CiCl)α,β [G[j6Gk6Gl6]]m,m′
(
f3
F + γ5f

3
Fγ5

) ]
.

(3.9)

As for the complicated bosons, the fF are functions that depend on n and the fermionic
propagators (3.2)

f0,±
F = (n+ 4)

8(n+ 1)K
m+0
F ± n(n+ 4)

4(n+ 1)(n+ 3)K
m0+
F + n

8(n+ 3)K
m−0
F ,

f1,±
F = ± 1

4(n+ 1)K
m+0
F + 1

2(n+ 1)(n+ 3)K
m0+
F ∓ 1

4(n+ 3)K
m−0
F ,

f2,±
F = 1

4(n+ 1)K
m+0
F ± (n+ 2)

2(n+ 1)(n+ 3)K
m0+
F + 1

4(n+ 3)K
m−0
F ,

f3
F = − 3

(n+ 1)(n+ 2)K
m+0
F − 6

(n+ 1)(n+ 2)(n+ 3)K
m0+
F + 3

(n+ 2)(n+ 3)K
m−0
F .

(3.10)

The fermionic masses mαβ can be found in Table 6.

3.2 Adjoint block

Now we present the propagators in the adjoint block. In this case, the fields are [Φ]m,m′
with m = 1, . . . , dG, but it is convenient to express them in terms of irreducible so(5)
representations. As explained in Section 2, this is achieved by changing basis: [Φ]m,m′Fmm′ =

6The notation [jkl] denotes antisymmetrization of the three indices, normalized by 1
3! .
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[Φ]LŶL. In particular, the matrix elements of generators Lij = adGij will appear, and they
can be computed as

〈L|Lij |L′〉 = tr
(
Ŷ †LLij ŶL′

)
= tr

(
Ŷ †L

[
Gij , ŶL′

])
. (3.11)

However, using this expression is hard in general, because we do not have explicit formulas
for ŶL. What one can do instead is to compute the matrix elements thinking of Lij as
an operator acting on an abstract vector |L〉 in a certain so(5) representation. We give a
prescription on how to do this in Appendix E.

The propagator between two easy fields E = A0, A1, A3, φ̃6 is simple because there is
no mixing of color and flavor

〈[E]L[E]†L′〉 = δL,L′K
m̂2

easy . (3.12)

For the propagators between the five scalars φ̃i with i = 1, . . . , 5, the resulting structure is
more complicated than in the off-diagonal block:

〈[φ̃i]L[φ̃j ]†L′〉 = δijδL,L′ f̂
sing + 〈L|Lij |L′〉 f̂ lin + 〈L|{Lik, Ljl}Lkl|L′〉 f̂ cubic

+ 〈L|{Lik, Lkj}|L′〉 f̂ sym
5

+ 〈L|{Li6, L6j}|L′〉
[
δL1,L′1

δL2,L′2
f̂ sym

6 + δL′1,L1±1δL′2,L2∓1 f̂
opp
]
,

(3.13)

and

〈[φ̃i]L[A3]†L′〉 = i〈L|Li6|L′〉(δL1,L′1+ 1
2
δL2,L′2−

1
2

+ δL1,L′1−
1
2
δL2,L′2+ 1

2
)f̂ φA(L′1, L′2). (3.14)

The third component of the gauge field has the following propagator:

〈[A3]L[A3]†L′〉 = δL,L′


(
−1 +

√
4m̂2

easy + 1
)2

2N−
Km̂2

+ +

(
1 +

√
4m̂2

easy + 1
)2

2N+
Km̂2

−

 , (3.15)

where N± were introduced in (3.6).7

Finally, one can obtain the propagators between the fermions in the adjoint block in a
similar manner. Rewriting the propagators in terms of matrix elements is a complex task,
and in most applications only certain traces of them will appear. In particular, one has that

tr 〈[ψα]L[ψβ ]L′〉 =
3∑
i=1

(Ci)α,β〈L|Li6|L′〉 tr f̂ lin
F (L1, L2;L′1, L′2)

+
( 6∑
i,j,k=4

3∑
l=1

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉 (3.16)

− i

3

3∑
i,j,k,l=1

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉
)

tr f̂ cub
F (L1, L2;L′1, L′2),

7Note that N± needs to be evaluated using m̂2
easy instead of m2

easy.
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and

tr
(
γ5〈[ψα]L[ψβ ]L′〉

)
= −

5∑
i=4

(Ci)α,β〈L|Li6|L′〉 tr f̂ lin
F (L1, L2;L′1, L′2) (3.17)

+ i
3∑

i,j,k=1

6∑
l=4

εijk(CiCl)α,β 〈L|L[j6Lk6Ll6]|L′〉 tr f̂ cub
F (L1, L2;L′1, L′2).

The full propagators 〈[ψα]L[ψβ]L′〉 would have a structure similar to that of (3.9), but
containing many more terms and matrix elements of products of generators Lij up to cubic
order.

As for the off-diagonal case, the functions f̂F are linear combinations of the propagators
between mass eigenstates (3.1) and (3.2). Again, these functions only depend on the labels
(L1, L2) of the external fields. However, since their expressions are more involved than in
the off-diagonal case, we postpone their explicit formulas until Appendix C.

4 One-loop corrections to the classical solution and one-point functions

Following previous work [25, 26], we will now use the propagators to compute the first
quantum correction to the vacuum expectation value of the five scalars φi for i = 1, . . . 5, as
well as the one-loop one-point function of the 1/2-BPS operator tr(ZL), where Z = φ5 + iφ6.
Throughout this section we will work in the large-N limit, and we will specify which results
are applicable for finite n or in the large-n regime.8 One-loop corrections to one-point
functions of more general, non-protected operators can similarly be obtained in analogy
with [25, 26].

4.1 One-loop correction to the classical solution

The first quantum correction to the classical solution is given by the contraction of an
external scalar with an effective three-vertex,

〈φi〉1-loop(x) = φ̃i(x)
∫

d4y
∑

Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)). (4.1)

The sum on the right-hand side runs over all fields in the theory. We show in Appendix D
that

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)) = − 4
√

2N
π2(y3)3W (n) tr

(
φ̃iGi6

)
. (4.2)

8It should also be possible to extend this to finite N following [25, 34].
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The function W (n) is positive for n ≥ 0, and is given explicitly

W (n) = − 1
64

(
2(n− 4)(n+ 8)

n(n+ 4) + 2
√

2(n+ 2)(n(n+ 4)− 4)
(n+ 1)(n+ 3) + n

(
n2 − 8

)
Ψ(m+0)

2(n+ 1)

+ (n+ 2)2(n(n+ 4)− 4)Ψ(m0+)
(n+ 1)(n+ 3) + (n+ 4)(n(n+ 8) + 8)Ψ(m−0)

2(n+ 3)

−
(
n4 + 8n3 − 32n+ 8n2 + 64

)
Ψ
(
νeasy + 1

2
)

n(n+ 4)

−
n3(n+ 5)Ψ

(
ν++ + 1

2
)

2(n+ 2)(n+ 4) −
(n− 1)(n+ 4)3Ψ

(
ν−+ + 1

2
)

2n(n+ 2)

)
,

(4.3)

in terms of the masses of bosons and fermions in the off-diagonal blocks (see Tables 4 and 6)
and νi =

√
m2
i + 1

4 . We also attach a completely explicit expression for W (n) in an ancillary
file to this paper. In Section 4.2 we will be interested in this function in the double-scaling
limit (1.2). Expanding for n→∞, this function simplifies dramatically:

W (n) = 1
4n2 +O(n−3) . (4.4)

From the individual terms in (4.3), one would expect terms growing as fast as n2 log(n)
in the large-n limit. However, from the supergravity calculation we know that all terms
growing faster than 1/n2 should not be present. This “miraculous” cancellation provides a
very non-trivial check for our results.

Moreover, using the relation between the matrices Gi6 and the so(5) fuzzy spherical
harmonics given in Appendix A.3, we can compute the contraction

φ̃i tr
(
φ̃jGj6

)
= Km2=6(x, y)Gi6. (4.5)

The remaining spacetime integral was already computed in [26]:∫
d4y

1
y3

3
Km2=6(x, y) = g2

YM
2

1
4x3

. (4.6)

Assembling the pieces, we see that the one-loop correction to the classical solution is
proportional to the classical solution such that we can write

〈φi(x)〉 =
(

1− λ

π2W (n) +O
(
λ2
))
〈φi(x)〉tree. (4.7)

We note that this correction is non-vanishing, fitting the picture observed so far that for
a domain-wall setup which conserves part of the supersymmetry there is no correction to
the classical field [25] whereas for setups which break the supersymmetry there can be a
correction [26]. The one-loop corrections to vanishing classical vevs are all vanishing.
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(a) Tree level (b) Tadpole (c) Lollipop

Figure 1. Diagrams (identical to the ones of [25]) that contribute at tree level (a) and one-loop
order (b)-(c) to a single-trace operator such as 〈trZL〉L=8 (in the planar limit). The black dot
denotes the operator and the crosses signify the insertion of the classical solution.

4.2 One-loop correction to 〈tr(ZL)〉

Next, we consider the scalar single-trace operator tr(ZL) with Z = φ5 + iφ6 and aim to
compute the first quantum correction to its one-point function.

At tree level, the one-point function 〈tr(ZL)〉 was first computed in [35]; it is simply
obtained by inserting the classical solution Zcl = φcl

5 into the trace:

〈trZL〉tree = 1
(
√

2x3)L
trGL56 =

0, L odd,
1

(
√

2x3)L

[
2

L+3BL+3(−n
2 )− (n+2)2

2(L+1)BL+1(−n
2 )
]
, L even,

(4.8)

where Bl denotes the l-th Bernoulli polynomial.
The general procedure for computing the one-loop one-point function of scalar single-

trace operators can be found in [24–26]. As was derived there, there are only two contribu-
tions for the operator tr(ZL), which were called tadpole and lollipop, see Figure 1:

〈trZL〉1−loop = 〈trZL〉tad + 〈trZL〉lol. (4.9)

In particular, since the operator is 1/2-BPS, there is no correction to its wave function as
well as no renormalization.

The tadpole diagram corresponds to inserting the classical solution for L− 2 scalars
and contracting the remaining two fields. This can be done in L inequivalent ways, so we
obtain

〈trZL〉tad = L tr
[
(Zcl)L−2Z Z

]
. (4.10)

The contraction of Z with itself is simply

Z Z = φ̃5 φ̃5 − φ̃6 φ̃6 , (4.11)
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since φ5 and φ6 are an easy and a complicated field respectively and there is no propagator
that mixes them. Using the propagators presented in the previous section and taking into
account that only the fields in the off-diagonal block contribute in the large-N limit, we find

〈trZL〉tad = LN

[
tr
(
(Zcl)L−2

) (
f sing −Km2

easy
)

+ 4 tr
(
(Zcl)L−2G56G56

)
fprod

]
, (4.12)

using the combinations of propagators f given in (3.5). Note that this gives us the
contribution of the tadpole for any finite value of n, because the color trace is known in
terms of Bernoulli polynomials, see (4.8). As for the effective vertex W (n), we have a
cancellation of the regulator-dependent terms coming from the spacetime propagator for
any finite n.

In order to compare our result to the supergravity prediction, we need to evaluate the
expression in the large-n limit. Inserting the expression for the traces (4.8) into (4.12) and
expanding for n→∞, we find that the leading order term is

〈trZL〉tad
n→∞−−−→ λ

π2n2
L(L+ 1)
2(L− 1) 〈trZ

L〉tree. (4.13)

Notice how once again, only terms which are at most of order n−2 contribute in the large-n
limit, even though from (4.12) one could expect a growth-rate faster than this.

The second type of diagram is the lollipop diagram, which is nothing but the one-loop
correction to the classical solution for one of the scalars in the operator. We find, using our
result (4.7),

〈trZL〉lol = L tr
[
(Zcl)L−1〈Z〉1-loop

]
= −λL

π2 W (n)〈trZL〉tree
n→∞−−−→ − λL

4π2n2 〈trZ
L〉tree.

(4.14)

In the last step, we have used the expansion (4.4) of W (n) for n→∞.
Combining the tree-level result (4.8) with the values of the tadpole and lollipop

diagrams (4.13) and (4.14) respectively, we find

〈trZL〉
〈trZL〉tree

= 1 + λ

π2n2
L(L+ 3)
4(L− 1) +O

((
λ

π2n2

)2)
. (4.15)

Up to first order in the double-scaling parameter, this matches precisely the result from
the supergravity computation (1.4). Note that as in [25, 26] we are actually forced to
consider the above ratio in order to compare the supergravity to the field-theory result: the
supergravity result computes the one-point function of the unique so(5)-symmetric chiral
primary on which the operator tr(ZL) has a non-vanishing projection.

A completely explicit expression for 〈trZL〉1−loop at finite n is attached in an ancillary
file to this paper.
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5 Conclusion and Outlook

Making use of fuzzy spherical harmonics on S4, we have set up the framework required
to carry out perturbative calculations of observables in the domain-wall version of N = 4
SYM theory where five scalar fields have so(5)-symmetric vevs in a half-space. As an
application, we have computed the one-loop correction to the one-point function of a specific
chiral primary and found that it agrees in a double-scaling limit with the prediction from a
supergravity computation in the dual string-theory setup. We notice that a match between
gauge and string theory is obtained for all defect setups of the given type regardless of
whether supersymmetry is fully or only partially broken and regardless of whether the
relevant boundary state is characterized as integrable or non-integrable, cf. Table 1.

With the perturbative framework fully developed, one can of course compute other
types of observables of the dCFT, such as more general correlation functions or Wilson
loops. The study of Wilson loops in the closely related dCFT dual to the D3-D5 probe-
brane system listed in Table 1 has revealed interesting novel examples of Gross-Ooguri
like phase transitions [33, 36–39]. Furthermore, the investigation of two-point functions in
the same setup has led to new insights concerning conformal data of dCFTs [40, 41] and
in general such data might prove useful as input for the boundary conformal bootstrap
program [42–44].

The one-loop contribution to the one-point function of general non-protected operators
in the present so(5)-symmetric setup could potentially provide important information
for the integrability program. The corresponding boundary state has been argued to be
integrable [19] and the derivation of a closed formula for all tree-level one-point functions is
in progress [45]. Explicit results at one-loop order might make it possible to package the
results for the two leading orders into one formula, put forward a proposal for an asymptotic
formula for higher loop orders as was done for the D3-D5 case [18] and eventually bootstrap
an exact all-loop order formula for both cases.

From the string-theory perspective, the most burning open problem is to understand
the reason for the integrability or non-integrability of the boundary states associated with
the different probe-brane models considered here, cf. Table 1.
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A Conventions

A.1 N = 4 SYM action

Throughout our work, we consider a mostly-positive metric ηµν = diag(−1,+1,+1,+1).
The action of N = 4 SYM theory is given by

SN=4 = 2
g2

YM

∫
d4x tr

(
− 1

4FµνF
µν − 1

2DµφiD
µφi + i

2 ψ̄γ
µDµψ (A.1)

+ 1
4[φi, φj ][φi, φj ] + 1

2

3∑
i=1

ψ̄Ci[φi, ψ] + 1
2

6∑
i=4

ψ̄Ci[φi, γ5ψ]
)
,

where (Ci)αβ are 4× 4 matrices of Clebsch-Gordan coefficients that couple the two spinors
with the scalars. We will use the same conventions as [25]:

C1 ≡ C(1)
1 = i

(
0 −σ3
σ3 0

)
, C2 ≡ C(1)

2 = i

(
0 σ1
−σ1 0

)
, C3 ≡ C(1)

3 =
(
σ2 0
0 σ2

)
,

C4 ≡ C(2)
1 = i

(
0 −σ2
−σ2 0

)
, C5 ≡ C(2)

2 =
(

0 −12
12 0

)
, C6 ≡ C(2)

3 = i

(
σ2 0
0 −σ2

)
.

(A.2)

The matrices in the first line are Hermitian, (C(1)
i )† = C

(1)
i , while those in the second are

anti-Hermitian, (C(2)
i )† = −C(2)

i . Furthermore, we note some useful properties:{
C

(1)
i , C

(1)
j

}
= +2δij ,

{
C

(2)
i , C

(2)
j

}
= −2δij , (A.3)[

C
(1)
i , C

(1)
j

]
= −2iεijkC

(1)
k ,

[
C

(2)
i , C

(2)
j

]
= −2εijkC

(2)
k , (A.4)

and the two sets commute
[
C

(1)
i , C

(2)
j

]
= 0.

A.2 so(5) and so(6)

Given an so(n) Lie Algebra, we normalize the generators Lij = −Lji such that

[Lij , Lkl] = i (δikLjl + δjlLik − δjkLil − δilLjk) for i, j, k, l = 1, . . . , n. (A.5)

We will label our representations in terms of the quantum numbers of the highest
weight. Our conventions follow [46] since we will make use of some of the Clebsch-Gordan
coefficients for coupling different so(5) representations published there. For so(5), we
need two quantum numbers (L1, L2) to specify a representation, which correspond to the
eigenvalues of 1

2(L12 ±L34) acting on the highest weight state. The most relevant examples
for our work will be

so(5) : 4 = (1
2 , 0), 5 = (1

2 ,
1
2), 10 = (1, 0). (A.6)

Our notation is related to the so(5) Dynkin labels (e.g. used in [47]) by (L1, L2) =
[2L2, 2(L1 − L2)].
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Similarly, for so(6) we need three quantum numbers (P1, P2, P3), which correspond
to the eigenvalues of L12, L34 and L56 acting on the highest weight state. Some simple
examples are

so(6) : 4 = (1
2 ,

1
2 ,

1
2), 4̄ = (1

2 ,
1
2 ,−

1
2). (A.7)

Our notation is related to the so(6) Dynkin labels by (P1, P2, P3) = [P1−P2, P2+P3, P2−P3].
With our conventions, the dimensions of the irreducible so(5) and so(6) representations are

d5 (L1, L2) = 1
6(2L1 + 2L2 + 3)(2L1 − 2L2 + 1)(2L2 + 1)(2L1 + 2), (A.8)

d6(P1, P2, P3) = 1
12(1 + P1 − P2)(3 + P1 + P2)(2 + P1 − P3)×

(1 + P2 − P3)(2 + P1 + P3)(1 + P2 + P3).
(A.9)

The Casimir operator is defined as the sum over all independent generators squared:

Cn =
∑
i<j

(Lij)2. (A.10)

With our normalizations, it has eigenvalues

C5(L1, L2) = 2
[
L1(L1 + 2) + L2(L2 + 1)

]
, (A.11a)

C6(P1, P2, P3) = P1(P1 + 4) + P2(P2 + 2) + P 2
3 . (A.11b)

Let us also write the branching rule of so(6) representations into so(5),

(P1, P2, P3)→
⊕

(L1, L2) , where P3 ≤ L1 − L2 ≤ P2 ≤ L1 + L2 ≤ P1. (A.12)

The most relevant cases for us are (P1, P2, P3) = (n2 ,
n
2 ,

n
2 ) which implies (L1, L2) = (n2 , 0)

for the fields in the off-diagonal block, and (P1, P2, P3) = (L1 +L2, L1 +L2, 0) for the fields
in the adjoint block.

To label the states in a given so(5) representation, we use the collective label L =
(L1, L2) `1`2m1m2. Here m1 and m2 are the eigenvalues of the two Cartan generators
1
2(L12 + L34) and 1

2(L12 − L34) covering the ranges mi = −`i, . . . ,+`i. The spins `i are
subject to the constraints

−L1 + L2 ≤ `1 − `2 ≤ L1 − L2 ≤ `1 + `2 ≤ L1 + L2, (A.13)

and `1 + `2 ∈ Z [46].

A.3 G matrices

Consider a four-dimensional representation of the so(5) Clifford algebra

{γi, γj} = 2δij14×4. (A.14)
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This can be used as a building block for some particular types of so(5) and so(6) represen-
tations as follows. Take the n-fold tensor product and project to Sym(⊗nC4) as

Gi6 = 1
2
(
γi ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n factors

+ · · ·+ 1⊗ · · · ⊗ 1⊗ γi
)
sym, (A.15)

and define

Gij ≡ −i [Gi6, Gj6] , i, j = 1, . . . , 5. (A.16)

From the anticommutation relations (A.14), one can verify that Gij for i, j = 1, . . . , 5 satisfy
the commutation relations of so(5) and Gij for i, j = 1, . . . , 6 satisfy the commutation
relations of so(6). We also refer to the appendix of [29], where some useful identities for
the matrices Gij can be found. The matrices Gi6 are related to the so(5) fuzzy spherical
harmonics ŶJ by

G16 = 1√
2
an
(
Ŷ++ + Ŷ−−

)
, G26 = − i√

2
an
(
Ŷ++ − Ŷ−−

)
,

G36 = − 1√
2
an
(
Ŷ−+ − Ŷ+−

)
, G46 = − i√

2
an
(
Ŷ−+ + Ŷ+−

)
,

G56 = −anŶ00,

(A.17)

where

an = 1
2

√
1
5 n(n+ 4) d5(n2 , 0), and Ŷαβ ≡ Ŷ( 1

2 ,
1
2 ) 1

2
1
2αβ

, Ŷ00 ≡ Ŷ( 1
2 ,

1
2 )0000. (A.18)

B Details on the diagonalization

In this appendix, we provide details of the diagonalization procedure outlined in Section 2.

B.1 Complicated bosons

In (2.7) we have written the mass terms for the complicated bosons, i.e. those for which
color and flavor degrees of freedom mix. As stated in Section 2.3, the key observation is
that we can diagonalize this mass term by starting with the 5× 5 block for which we can
rewrite the mixing term as

1
2SijLij = 1

2
∑

1≤i<j≤5

[
(Jij)2 − (Lij)2 − (Sij)2

]
. (B.1)

We thus have to find the eigenstates of the total angular momentum operator Jij = Lij +Sij .
Concretely, this works as follows.

The matrices Sij form the fundamental representation of so(5),9 and we bring them
into canonical form by transforming the five complicated scalars as

φ1
φ2
φ3
φ4
φ5

→
1√
2


−i 0 0 −i 0
1 0 0 −1 0
0 −i i 0 0
0 1 1 0 0
0 0 0 0 i

√
2



†
φ1
φ2
φ3
φ4
φ5

 ≡

C++
C+−
C−+
C−−
C00

 =
∑
α1,α2

Cα1,α2 êα1,α2 . (B.2)

9In our conventions, Sjk contains a −i at position (jk) and an i at position (kj).
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The fields Cα1,α2 are the five components of the (1
2 ,

1
2) representation of so(5). In particular,

we use the notation Cα1,α2 ≡ CS, where S = (1
2 ,

1
2) |α1||α2|α1α2, to make manifest that

Cα1,α2 has magnetic quantum numbers α1 and α2 with respect to the su(2)×su(2) subalgebra
of so(5).10 These fields are now expanded in terms of so(5) fuzzy spherical harmonics and
we denote the components by (CS)L. Finally, the êα1,α2 in (B.2) are five-dimensional unit
vectors, for example ê++ = (1, 0, 0, 0, 0), and so on.

It is clear that the (CS)L transform as the product representation (L1, L2) ⊗ (1
2 ,

1
2).

However, we are interested in fields that are diagonal with respect to the total angular
momentum Jij , and so will belong to the representations (2.19). In particular, we will
denote by Bα1,α2 the diagonal fields in the (J1, J2) = (L1 + α1, L2 + α2) representation. All
the states in this total angular momentum representation are labelled by distinct values of
J = (J1, J2) j1j2m1m2. As familiar from quantum mechanics, the explicit change of basis is

(Bα1,α2)J =
∑
L,S
〈L; S|J〉(CS)L, (B.3)

where 〈L; S|J〉 are the Clebsch-Gordan coefficients for coupling the so(5) states labeled by
L and S to J. For the present case, i.e. the coupling of the fundamental of so(5) with an
arbitrary state in the irrep (L1, L2), the coefficients can be found in [46]; see also Appendix E
for more details.

The fields (Bα1,α2)J will have some corresponding basis elements Ŷ α1,α2
J , which are

defined implicitly from∑
L,S

(CS)L ŶL ⊗ êS =
∑
α1,α2

∑
J

(Bα1,α2)J Ŷ
α1,α2

J . (B.4)

Having obtained eigenstates of the 5× 5 block, it remains to see how they transform under
the action of

∑5
i=1R

†
iLi6, the 1× 5 block in (2.7). One can compute that( 5∑

i=1
R†iLi6

)
Ŷ α1,α2

J = TP1,P2,P3
J1−α1,J2−α2;J1,J2

ŶJ. (B.5)

The right-hand side of this equation is proportional to the so(5) state ŶJ with a constant of
proportionality T that only depends on the irrep (J1, J2) and (α1, α2), not on all quantum
numbers contained in J. In fact, the T ’s are certain reduced matrix elements of so(6)
generators; for more details, see Appendix E. Their value also depends on which so(6)
representation the fields transform as and we will have to distinguish between the adjoint
block with so(6) irrep (L1 + L2, L1 + L2, 0) and the off-diagonal block with (n2 ,

n
2 ,

n
2 ).

Let us start with the adjoint block, in which case it turns out that the reduced matrix
elements T vanish if (J1, J2) ∈ {(L1 + 1

2 , L2 + 1
2), (L1, L2), (L1− 1

2 , L2− 1
2)}. More explicitly,

10Note that the subscripts +, − and 0 on the fields C denote half-integers, e.g. C+− has α1 = 1
2 and

α2 = − 1
2 .
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we get ( 5∑
i=1

R†iLi6

)
Ŷ ++

J =
( 5∑
i=1

R†iLi6

)
Ŷ −−J =

( 5∑
i=1

R†iLi6

)
Ŷ 00

J = 0,
( 5∑
i=1

R†iLi6

)
Ŷ ±∓J ≡ T±∓ŶJ,

(B.6)

where the coefficients T±∓ take the following values:

T+− =
√

2
√

(2J1 + 1) (J1 − J2) (J2 + 1)
2J1 − 2J2 + 1 , T−+ = −

√
2
√

(2J1 + 3) (J1 − J2 + 1) J2
2J1 − 2J2 + 1 .

(B.7)

We now write the vector of complicated fields as

C =
(∑

α1,α2,J(Bα1,α2)JŶ
α1,α2

J∑
L(A3)LŶL

)
, (B.8)

and insert into the mass term (2.7). The mass term then becomes

m̂2
++(B++)†J(B++)J + m̂2

−−(B−−)†J(B−−)J + m̂2
00(B00)†J(B00)J

+
(
(B+−)†J (B−+)†J (A3)†J

)m̂
2
easy + 2 0 −

√
2T+−

0 m̂2
easy + 2 −

√
2T−+

−
√

2T+− −
√

2T−+ m̂2
easy


(B+−)J

(B−+)J
(A3)J

 . (B.9)

As pointed out above, the reduced Clebsch-Gordan coefficients only depend on the so(5)
and so(6) irreps, not any other quantum numbers. We can therefore simply diagonalize the
remaining 3× 3 matrix; the fields that achieve this diagonalization are given by

D0 = −1√
2m̂2

easy

(
T−+B+− − T+−B−+

)
, (B.10)

D∓ =
±1 +

√
4m̂2

easy + 1
√

2N±
A3 ±

1√
N±

(
T+−B+− + T−+B−+

)
. (B.11)

The eigenvalues are listed in Table 3.
The diagonalization for the off-diagonal block proceeds similarly. In this case the

reduced matrix elements are non-zero only if (J1, J2) = (L1, L2), resulting in a 2× 2 matrix
that has to be diagonalized in the final step. The mass term becomes diagonal in terms of
the fields B++, B−+ and

D± = ±
√√√√1

2 ±
1

2
√

4m2
easy + 1

B00 +
√√√√1

2 ∓
1

2
√

4m2
easy + 1

A3. (B.12)

The eigenvalues are listed in Table 4.
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B.2 Fermions

The mass term for the fermions as written in (2.9) is

tr(ψ̄αCαβ(PLψβ) + ψ̄αC†αβ(PRψβ)), (B.13)

where PL and PR are the chiral projectors. The components of the matrix Cαβ are

Cαβ = − 1√
2

5∑
i=1

(Ci)αβLi6, (B.14)

where the (Ci)αβ were defined in (A.2). One can show that C†C 6= CC†; thus, we cannot
diagonalize C with a unitary transformation. We will now follow a standard procedure to
diagonalize a fermionic mass matrix used e.g. also in the standard model; see for example [48].

We begin by finding the eigenvectors of C†C = 1
2(
∑5
i=1 (Li6)2−

∑5
i,j=1 S̃ijLij). The 4×4

matrices S̃ij form the four-dimensional representation of so(5); thus, C†C is diagonalized
by coupling a general so(5) representation (L1, L2) with (1

2 , 0). As it was the case for the
complicated bosons, we start by bringing the matrices S̃ij into canonical form with the
transformation 

ψ1
ψ2
ψ3
ψ4

→ 1
2


1 −i −1 i

−i 1 i −1
−1 −i −1 −i
i 1 i 1


†

ψ1
ψ2
ψ3
ψ4

 ≡

C̃+0
C̃−0
C̃0+
C̃0−

 . (B.15)

Here the fields C̃α1α2 ≡ (C̃S)J have well defined orbital and angular momentum. Now the
eigenvectors are found in terms of Clebsch-Gordan coefficients:

Ŷ
(L1,L2)

J =
∑
L,S
〈L; S|J〉 ŶL ⊗ êS. (B.16)

This concludes the diagonalization of C†C.
Now we will use the basis of eigenvectors of C†C to build a basis of eigenvectors of C.

For the fields in the adjoint block, after a long calculation one can find how C acts on the
four eigenvectors:

C Ŷ (J1± 1
2 ,J2)

J = χ1(J)m±0(J1, J2)
(
Ŷ

(J1,J2± 1
2 )

Jr

)?
, (B.17)

C Ŷ (J1,J2± 1
2 )

J = χ2(J)m0±(J1, J2)
(
Ŷ

(J1± 1
2 ,J2)

Jr

)?
, (B.18)

with the ‘reversed’ total angular momentum Jr ≡ (J1, J2) j2j1m2m1 and some phase factors
χ1(J) and χ2(J). It turns out that m±0 and m0± are the same when written in terms of
J1 and J2 so that we can obtain eigenvectors of C by essentially adding the two previous
equations and taking care of the phase factors. After the dust has settled, the eigenvectors
of C turn out to be

Ŷ αβ
J = χ(J;α, β)√

2

[
Ŷ

(J1+α
2 ,J2)

J + βŶ
(J1,J2+α

2 )
Jr

]
, (B.19)

26



for the four combinations of α, β ∈ {−1,+1} and the phase

χ(J;α, β) = (−1)−
1
2 (2J1+m1+m2+α+ 1

2 )i
1−β

2 . (B.20)

The fermions in the action can now be expanded in this basis and the mass term becomes
diagonal in terms of component fields which we call (D̃αβ)J, and which are related to (C̃S)J
by ∑

α,β

∑
J

(D̃αβ)J Ŷ
αβ

J =
∑
S,L

(C̃S)L ŶL ⊗ êS. (B.21)

One can diagonalize the fields in the off-diagonal block in a similar fashion, the only
difference being that different orbital angular momentum representations are not mixed
with each other. There is still mixing between J and Jr, which can be diagonalized easily
with an extra step similar to (B.19).

C Details on the propagators

In this appendix, we provide further details on the derivation of the propagators presented
in Section 3. In particular, we give the explicit formulas for the coefficients f̂ that do not
appear in the main text.

The fields in which the mass matrix for the bosons becomes diagonal are B±,±, B0,0,
D± and D0. The propagators between them are simply

〈[B++]L[B++]†L′〉 = δL,L′K
m̂2

++ , (C.1)

and similarly for B−−, B00, D± and D0. In order to invert the Clebsch-Gordan procedure,
we have to express the non-diagonal fields B±,∓ and A3 in terms of the diagonal fields. This
is achieved by

B±,∓ = ∓ T∓,±√
2m̂2

easy
D0 − T±,∓

(
D+√
N−
− D−√

N+

)
, (C.2)

A3 =
−1 +

√
4m̂2

easy + 1
√

2N−
D+ +

1 +
√

4m̂2
easy + 1

√
2N+

D−. (C.3)

From (C.3) it is immediate to obtain the propagator 〈A3A
†
3〉, see (3.15) in the main text.

Similarly, for the propagator 〈φiA†3〉 the two fields couple through propagators 〈B±,∓A†3〉.
It is therefore natural to introduce the following function

f̂ φA(L1, L2) =
−1 +

√
4m̂2

easy + 1
√

2N−
Km̂2

+ −
1 +

√
4m̂2

easy + 1
√

2N+
Km̂2

− , (C.4)

which captures such contributions.11

11The prefactor T±∓ that would naively appear gets absorbed in the matrix element of Li6, as one can
see by doing the calculation of the propagators carefully. A similar prefactor will also get absorbed by the
matrix elements of the generators in (C.5).
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The situations is more complicated for the propagators 〈φi φ†j〉, because there are several
possible contributions. The first one comes from the propagator 〈B+,−B

†
−,+〉, and it is

captured by the function

f̂ opp(L1, L2) = 1
2

(
− Km̂2

0

2m̂2
easy

+ Km̂2
+

N−
+ Km̂2

−

N+

)
. (C.5)

The other contributions come from propagators between identical B fields 〈Bα,β B†α,β〉, and
we will encode them in the functions hα,β . These functions are particularly simple for the
B fields that are diagonal after the Clebsch-Gordan decomposition

h±,±(L1, L2) = Km̂2
±± , h0,0(L1, L2) = Km̂2

00 . (C.6)

For the fields B±,∓, we can read off the corresponding contribution from (C.2), namely

h±,∓(L1, L2) = (T∓±)2

2m̂2
easy

Km̂2
0 + (T±∓)2

(
Km̂2

+

N−
+ Km̂2

−

N+

)
. (C.7)

Note that here the T±,∓ given in (B.7) are to be evaluated at (L1, L2), i.e. one has to
replace (J1, J2)→ (L1, L2).

The functions f̂ and hαβ we just defined are the building blocks of the final propagators.
In order to obtain the full expressions, we start with a certain propagator, and expand it
using (B.3) and (B.2), and then evaluate the propagators of B fields and A3 in the way we
just described. The result will be a complicated combination of products of Clebsch-Gordan
coefficients and the functions f̂ and hαβ. These expressions can always be rewritten in
terms of matrix elements of so(6) generators12 to obtain the form presented in Section 3.2.

In (3.13) we have written the propagators between the scalars in terms of the functions
f̂ sing, f̂ cub, f̂ lin, f̂ sym

5 , f̂ sym
6 and f̂ opp that are linear combinations of propagators between

mass eigenstates. To write them in a more compact way, we define

Zα,β(L1, L2) ≡ 1
2
(
C5(L1 + α

2 , L2 + β
2 )− C5(L1, L2)

)
, (C.8)

and

Dα,β(L1, L2) ≡

iα−β2(L1 + 1)(2L2 + 1)Zα,β(2Zα,β − 1) (α, β) 6= (0, 0) ,∏
(γ,δ)6=(0,0) Zγ,δ (α, β) = (0, 0) .

(C.9)

The indices (α, β) run over the five values (±1,±1) and (0, 0). After a complicated
calculation, on can see that f̂ are given by13

f̂ sing(L1, L2) =
∑

(α,β)

1
2Dα,β

[
− 2Z2

α,β

(
1 + C5 − Z2

α,β

)
− C5 − 2(Z+,−Z−,+)2

− 2(1 + C5)Z+,−Z−,+

]
hα,β(L1 + α

2 , L2 + β
2 ) ,

(C.10)

12In practice, it is easiest to make an ansatz for the propagators and if the coefficients can be fixed for all
possible combination, then the ansatz is correct.

13In the following equations Zα,β , Dα,β and C5 are always evaluated at (L1, L2) unless noted otherwise.
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and

f̂ lin(L1, L2) =
∑

(α,β)

i

4Dα,β
(2Zα,β + 1)(2C5 − 2Z2

α,β − 3)hα,β(L1 + α
2 , L2 + β

2 ) , (C.11)

f̂ cub(L1, L2) =
∑

(α,β)

−i
4Dα,β

(2Zα,β + 1)hα,β(L1 + α
2 , L2 + β

2 ) , (C.12)

f̂ sym
5 (L1, L2) =

∑
(α,β)

−1
2Dα,β

(1
2 + Z+,−Z−,+ + Z2

α,β

)
hα,β(L1 + α

2 , L2 + β
2 ) , (C.13)

f̂ sym
6 (L1, L2) =

∑
(α,β)

−1
4Dα,β

(2Z+,− + 1)(2Z−,+ + 1)hα,β(L1 + α
2 , L2 + β

2 ) . (C.14)

As the reader can observe, the functions Dαβ and Zαβ allowed to compactly write the f̂ ,
but we do not think they have any physical meaning beyond this.

In order to obtain the fermionic propagators, we follow an identical procedure as
described above. We start with a given propagator, expand it following the steps described
in the diagonalization, and then identify the result in terms of propagators of diagonal fields
and matrix elements of so(6) generators. The result is given by (3.16) and (3.17), where
the explicit expressions for f̂F are

f̂ lin
F (L1, L2;L1 + 1

2 , L2 − 1
2) = (L1 + L2 + 1)Km=

√
2(L1+1)(L2+1)

F√
(2L1 + 3) (2L2 + 1) (2L1 + 2L2 + 3)

+ (L1 + L2 + 2)Km=
√

2L2(L1+1)
F

2
√

(L1 + 1)L2 (2L1 + 2L2 + 3)
,

f̂ lin
F (L1, L2;L1 − 1

2 , L2 + 1
2) = (L1 + L2 + 1)Km=

√
2(L1+1)(L2+1)

F

2
√

(L1 + 1) (L2 + 1) (2L1 + 2L2 + 3)

+ (L1 + L2 + 2)Km=
√

2L2(L1+1)
F√

(2L1 + 1) (2L2 + 1) (2L1 + 2L2 + 3)
,

(C.15)

and

f̂ cub
F (L1, L2;L1 + 1

2 , L2 − 1
2) = 3Km=

√
2(L1+1)(L2+1)

F√
(2L1 + 3) (2L2 + 1) (2L1 + 2L2 + 3)

− 3Km=
√

2L2(L1+1)
F

2
√

(L1 + 1)L2 (2L1 + 2L2 + 3)
,

f̂ cub
F (L1, L2;L1 − 1

2 , L2 + 1
2) = 3Km=

√
2(L1+1)(L2+1)

F

2
√

(L1 + 1) (L2 + 1) (2L1 + 2L2 + 3)

− 3Km=
√

2L2(L1+1)
F√

(2L1 + 1) (2L2 + 1) (2L1 + 2L2 + 3)
.

(C.16)
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D Effective vertex

In this appendix, we will give some extra details on how to compute the effective vertex. We
remind the reader that we started with the N = 4 SYM action, and we expanded around a
classical solution φi = φcl

i + φ̃i. This gives rise to a number of cubic interaction vertices:

S3 = 2
g2

YM

∫
d4x tr

(
i[Aµ, Aν ]∂µAν + φ̃i[φ̃j , [φcl

i , φ̃j ]] + i[Aµ, φ̃i]∂µφ̃i + φ̃i[Aµ, [φcl
i , Aµ]]

+ 1
2 ψ̄γ

µ[Aµ, ψ] + 1
2

3∑
i=1

ψ̄Ci[φ̃i, ψ] + 1
2

6∑
i=4

ψ̄Ci[φ̃i, γ5ψ] + i(∂µc̄)[Aµ, c]− c̄[φcl
i [φ̃i, c]]

)
.

(D.1)

These are the only vertices that can contribute to the computation of the effective vertex.
The following calculation proceeds in exactly the same manner as that of [25, 26]. We will
only write the contractions that contribute, all other possible Wick contractions being zero.

There is one contribution from the ghost fields, which behave simply as easy scalars

− tr
(
c̄[φcl

i , [φ̃i, c]]
)

=
√

2N
y3

Km2
easy tr

(
φ̃iGi6

)
. (D.2)

Only two contractions survive in the vertex that couples two scalars with the gauge field14

tr
(
i[Aµ, φ̃i]∂µφ̃i

)
+ tr

(
i[Aµ, φ̃i]∂µφ̃i

)
= +6iN∂3f

Aφ tr
(
φ̃iGi6

)
, (D.4)

where

fAφ = −i
2
√
n(n+ 4) + 2

(
Km2

− −Km2
+
)
. (D.5)

For the vertex that couples three scalars, all possible Wick contractions contribute

tr
(
φ̃i[φ̃j , [φcl

i , φ̃j ]]
)

= −
√

2N
y3

[
5f sing + n(n+ 4)fprod +Km2

easy
]

tr
(
φ̃iGi6

)
, (D.6a)

tr
(
φ̃i[φ̃j , [φcl

i , φ̃j ]]
)

=
√

2N
y3

[
f sing + 2if lin +

[
n(n+ 4)− 8

]
fprod

]
tr
(
φ̃iGi6

)
, (D.6b)

tr
(
φ̃i[φ̃j , [φcl

i , φ̃j ]]
)

= 4
√

2N
y3

[
if lin − 2fprod

]
tr
(
φ̃iGi6

)
. (D.6c)

The regularization procedure becomes important when we consider the vertex that couples
two gauge fields and a scalar. We work in dimensional reduction [49, 50] with d = 3− 2ε
space dimensions, hence nA,easy = 3− 2ε and we should add 2ε scalars to the action that

14In the second contraction, we can use (D.21) from [25], since we have

ν− =
√
m2
− + 1

4 = νeasy − 1, ν+ =
√
m2

+ + 1
4 = νeasy + 1, (D.3)

for both the fields in the diagonal and in the off-diagonal blocks, and the propagator K̂Aφ has the desired
form Kν−1 −Kν+1.
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behave exactly as the easy components of the gauge field. The choice of this regularization
procedure is motivated by the fact that it is supersymmetry preserving and hence compatible
with the symmetries of the bulk N = 4 SYM theory which we must recover far from the
domain wall, cf. the discussion in [25, 26]. In total, we get

tr
(
φ̃i[Aµ, [φcl

i , Aµ]]
)

+ tr
(
φ̃i[A2ε, [φcl

i , A2ε]]
)

= −
√

2N
y3

(
(nA,easy + 2ε)Km2

easy + fAA
)

tr
(
φ̃iGi6

)
,

(D.7)

where

fAA = 1
2

1 + 1√
4m2

easy + 1

Km2
− +

1− 1√
4m2

easy + 1

Km2
+

 . (D.8)

Finally, we can also have fermions running in the loop, which contribute as

1
2

3∑
i=1

(Ci)αβ tr
(
ψ̄α[φ̃i, ψβ ]

)
+ 1

2

5∑
i=4

(Ci)αβ tr
(
ψ̄α[φ̃i, γ5ψβ ]

)
= 8N tr f2,+

F tr(φ̃iGi6). (D.9)

One can sum all the contributions above, and simplify the resulting expression using
identities such as Ψ(z + 1) = Ψ(z) + 1/z. The result that one obtains is (4.3), where one
notices that the dependence on the regulator ε drops completely.

E Matrix elements and Clebsch-Gordan coefficients

In this appendix, we describe how to compute matrix elements of so(6) generators acting
on general representations and where to obtain the Clebsch-Gordan coefficients relevant for
the calculations in this work.

In Table 7 we map the generators Lij to the tensor operators TS, as the latter have
much simpler matrix elements. Notice how these tensor operators are labeled by a set of
so(5) quantum numbers S = (S1, S2), s1, s2,m1,m2. The tensor operators which transform
in the ten-dimensional representation (1, 0) of so(5) only act on the so(5) labels L. The
matrix elements are

〈L′|TS|L〉 = δL1,L′1
δL2,L′2

√
L1(L1 + 2) + L2(L2 + 1)〈L; S|L′〉. (E.1)

The square root is sometimes called a reduced matrix element or isoscalar factor, and the
second term is an so(5) Clebsch-Gordan coefficient from coupling L and S.

On the other hand, the tensor operators which transform in the five-dimensional repre-
sentation (1

2 ,
1
2) of so(5) will affect both the so(5) and so(6) quantum numbers. Therefore, we

compute matrix elements of these operators with so(6) states with labels P = (P1, P2, P3)L,
where L are the labels of the so(5) subgroup. Then, the matrix elements are

〈P′|TS|P〉 = δP1,P ′1
δP2,P ′2

δP3,P ′3
TP1,P2,P3
L1,L2;L′1,L′2

〈L; S|L′〉. (E.2)
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Labels S Tensor operator TS

((1, 0), 1, 0, 0, 0) 1
2(L12 + L34)

((1, 0), 1, 0,±1, 0) 1
2
√

2(∓(L14 + L23) + i(L13 − L24))

((1, 0), 0, 1, 0, 0) 1
2(L12 − L34)

((1, 0), 1, 0,±1, 0) 1
2
√

2(∓(L14 − L23)− i(L13 + L24))

((1, 0), 1
2 ,

1
2 ,±

1
2 ,±

1
2) 1

2(±L25 − iL15)

((1, 0), 1
2 ,

1
2 ,±

1
2 ,∓

1
2) 1

2(L45 ∓ iL35)

((1
2 ,

1
2), 0, 0, 0, 0) −L56

((1
2 ,

1
2), 1

2 ,
1
2 ,±

1
2 ,±

1
2) 1√

2(L16 ± iL26)

((1
2 ,

1
2), 1

2 ,
1
2 ,±

1
2 ,∓

1
2) 1√

2(±L36 + iL46)

Table 7. Relation between the tensor operators of so(6) and the corresponding generators Lij .

As before, the matrix element is a product of a reduced matrix element TP1,P2,P3
L1,L2;L′1,L′2

and an
so(5) Clebsch-Gordan coefficient.

The reduced matrix elements TP1,P2,P3
L1,L2;L′1,L′2

that appear in (E.2) are more complicated
than those in (E.1) and we have derived them using the strategy described in [46]. The main
idea is the following. On the one hand, a construction by Gel’fand and Tsetlin [51] gives the
matrix elements of so(n) generators for any n. On the other hand, these matrix elements
factorize into so(n− 1) Clebsch-Gordan coefficients and the reduced matrix elements that
we are after. This factorization is the content of the Wigner-Eckart theorem. Since the
relevant so(5) Clebsch-Gordan coefficients are known, e.g. from [46], one can construct the
matrix elements for so(6) and essentially compare the two expressions. The missing factors
are then the reduced matrix elements, which we present in Table 8.

We have shown that with knowledge of certain so(5) Clebsch-Gordan coefficients one
can construct the matrix elements for any so(6) generator. The so(5) Clebsch-Gordan
coefficients factorize as

〈(L1, L2), `1, `2,m`1,m`2; (S1,S2), s1, s2,ms1,ms2|(J1, J2), j1, j2,mj1,mj2〉
= 〈(L1, L2), `1, `2; (S1, S2), s1, s2||(J1, J2), j1, j2〉
× 〈`1,m`1; s1,ms1|j1,mj1〉〈`2,m`2; s2,ms2|j2,mj2〉.

(E.3)

The double-barred coefficients are reduced so(5) Clebsch-Gordan coefficients, while the
other two terms are usual su(2) Clebsch-Gordan coefficients. The reduced coefficients were
computed in [46] for the cases (S1, S2) = (1

2 , 0), (1
2 ,

1
2), (1, 0).15 In order to make it easy for

15In the notation from [46] one has Jm = L1, Λm = L2, `1 = J , and so on. Except for these minor
notation differences, our conventions are identical to theirs, and one can directly extract the double-barred
coefficients from the tables at the end of that paper.
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the interested reader to reproduce our results, we attach a Mathematica file with all the
relevant so(5) Clebsch-Gordan coefficients and the reduced matrix elements from Table 8.
We are also happy to provide more details on request.
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(L′1, L′2) TP1,P2,P3
L1,L2;L′1,L′2

(L1 − 1
2 , L2 − 1

2)
((L1 + L2 − P1 − 1)(L1 + L2 + P1 + 3)(L1 + L2 − P2)(L1 + L2 + P2 + 2)(L1 + L2 − P3 + 1)(L1 + L2 + P3 + 1)

2(2L1 + 1)L2(L1 + L2 + 1)(2L1 + 2L2 + 1)

)1/2

(L1 − 1
2 , L2 + 1

2) −
((L1 − L2 − P1 − 2)(L1 − L2 + P1 + 2)(L1 − L2 − P2 − 1)(L1 − L2 + P2 + 1)(L1 − L2 − P3)(L1 − L2 + P3)

2(2L1 + 1)(L2 + 1)(L1 − L2)(2L1 − 2L2 − 1)

)1/2

(L1, L2) −
(

(P1 + 2)2(P2 + 1)2P3
2

(L1 − L2)(L1 − L2 + 1)(L1 + L2 + 1)(L1 + L2 + 2)

)1/2

(L1 + 1
2 , L2 − 1

2)
((L1 − L2 − P1 − 1)(L1 − L2 + P1 + 3)(L1 − L2 − P2)(L1 − L2 + P2 + 2)(L1 − L2 − P3 + 1)(L1 − L2 + P3 + 1)

2(2L1 + 3)L2(L1 − L2 + 1)(2L1 − 2L2 + 3)

)1/2

(L1 + 1
2 , L2 + 1

2) −
((L1 + L2 − P1)(L1 + L2 + P1 + 4)(L1 + L2 − P2 + 1)(L1 + L2 + P2 + 3)(L1 + L2 − P3 + 2)(L1 + L2 + P3 + 2)

2(2L1 + 3)(L2 + 1)(L1 + L2 + 2)(2L1 + 2L2 + 5)

)1/2

Table 8. Reduced matrix elements appearing in (E.2).
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