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Abstract:

This is the writeup of the lectures given at the Winter School “YRISW 2018” to ap-
pear in a special issue of JPhysA. In the first part of these lecture notes we review some
important facts about 4D N = 2 SCFTs. We begin with basic textbook material, the su-
persymmetry algebra and its massless representations and the construction of Lagrangians
using superspace. Then we turn to more modern topics, the study of the N = 2 SCA
and its representation theory. Our intention is to understand how much we can learn from
representation theory alone, even about the dynamics of N = 2 SCFTs. In the second
part of the notes we use these tools to construct spin chains for N = 2 SCFTs, the spectral
problem of which computes anomalous dimensions of local operators. We discuss their novel
features comparing them with their counterparts in N = 4 SYM and search for possible
integrability structures that emerge.
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1 Introduction

The discovery of integrability in the planar limit of N = 4 SYM led to the solution of
the spectral problem and is since then being used for the computation of Wilson loops,
amplitudes, correlation functions and other observables. See [1] for a review. There is
also impressive recent progress on non-planar integrability [2, 3]. Even though the super-
conformal symmetry of N = 4 SYM is crucial for these developments, integrability was
originally discovered in QCD (N = 0 supersymmetry) in the high energy limit of deep
inelastic scattering (DIS) [4–6], see [7] for a review.

A very important open question is which gauge theories are integrable and why, in
which limits and which observables can be computed using integrability. With these lectures
we will try to address this question for theories in four dimensions. Although it is a very
important endeavor to systematically understand which properties of a gauge theory make it
integrable and to classify the gauge theories/observables for which integrability is present,
this research direction is very sparsely taken in the literature. In these lectures we will
take a concrete first step in this direction, we will construct spin chains and search for
integrability for conformal theories (CFTs) with N = 2 supersymmetry, the next simplest
class of theories afterN = 4 SYM. Some of the features that we will discover will also remain
for certain N = 1 SCFTs. Even though we will try to make these lectures pedagogical, they
address a problem that is not solved in the existing literature and they should be viewed
as an invitation for further studies.

Not in these lectures: The study of N = 2 theories is a much broader subject than
just the “AdS/CFT integrability” direction that we will cover in this lectures. Starting in
1994 with the groundbreaking work of Seiberg-Witten [8] and the microscopic derivation
of the instanton partition functions by Nekrasov in 2002 [9], the activity in the field got
reawakened in 2009 with Gaiotto’s introduction of class S of N = 2 CFTs [10], the AGT
correspondence [11], the developments on the superconformal index [12] and finally the
N = 2 superconformal Bootstrap [13] and it’s relations to 2D chiral algebras [14], as well as
the Coulomb Branch operators [15–19]. It is important to stress that there is another way
integrable models and spin chains appear in the context of N = 2 theories, other than the
one we will explore here. Classical integrable systems appear in Seiberg-Witten theory and
are associated to the Seiberg-Witten curves [20]. These integrable models can be quantised
and q-deformed by turning on Nekrasov’s Ω background ε1, ε2. The Nekrasov-Shatashvili
limit [21], ε2 → 0, gives a second connection to quantum integrable models and spin chains.
The reader interested in these directions is invited to take a look at [22, 23] and references
therein for introductions in some of these other directions.

More than half of these lectures will be devoted to understanding N = 2 theories more
generally. The material that we will present here covers the basic background needed for
the study of all the other developments in the field of N = 2 theories which we will not
include here. We will begin with the traditional (textbook) approach to develop the subject
that is to study representation theory of the N = 2 supersymmetry algebra, which we will
then realise as on-shell massless multiplets in which our fields live. We will describe N = 2
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theories using off-shell N = 1 superspace formalism and build Lagrangians imposing the
SU(2)R R-symmetry, which is not manifest in this language.

In the more modern viewpoint we are instructed to think of general N = 2 theories
as intermediate points of N = 2 preserving renormalisation group flows which are starting
from an N = 2 superconformal UV fixed point and which may flow to the IR either to a
theory with no massless d.o.f., called gapped, or to a CFT. This approach naturally leads to
the study of the N = 2 superconformal algebra (SCA) and its representation theory which
we will pursue in section 5.

In section 6 we will turn to our main purpose constructing spin chains for N = 2 SCFTs
and searching for integrability. We will finish these notes with an overview of the status of
the field and possibly interesting open problems, short and long term future goals.

The spin chain picture

The spin chain picture is explained in the lectures notes of Marius de Leeuw [24] in this
school/volume. Here we only present a very quick review so that these notes are self
contained and the reader can go through them smoothly. The integrability of N = 4 SYM,
in the planar limit, was first discovered by Minahan and Zarembo [25]. They showed that
the computation of anomalous dimensions (operator mixing) at one-loop can be mapped
to the spectral problem of an integrable spin chain. In its simplest possible incarnation the
problem can be phrased as follows: we want to calculate in the large N limit the anomalous
dimension of scalar operators O that are made out of only two of the three complex scalars,
X,Y, Z of N = 4 SYM (known as the SU(2) sector),

O = tr
(
ZL−MXM

)
.

Following [25] we map this problem to a spin chain by identifying each field

Z ←→ |↑〉 and X ←→ |↓〉 ,

with the possible states |↑〉 and |↓〉 being hosted at a site of a spin chain. An operator
with L constituent fields is mapped to a distribution of spins on a periodic one-dimensional
lattice of length L:

tr (ZZZXXZZZXZZZ . . .) ←→ |↑↑↑↓↓↑↑↑↓↑↑↑ . . .〉 .

The map is one-to-one if the spin chain states are required to be translationally invariant.
This map is very powerful because, apart from simply mapping the operators in this

sector to spin chain states, we can also map the anomalous dimensions to energies of the
spin chain states. As we will learn by studying superconformal representation theory, the
operators tr(ZL) and tr(XL) are 1

2 -BPS and are not allowed by representation theory alone
to receive corrections to their conformal dimension. Their anomalous dimension is zero and
thus it makes sense to identify them with the ferromagnetic vacua of the spin chain which
have zero energy.
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The renormalisation mixing matrix acts linearly on the operators ΓOi = Zi jOj and
thus can be interpreted as a Hamiltonian of a spin chain. It can be computed via Feyn-
man diagrams and at least at one-loop this is a textbook level computation. Due to time
constraints we will not discuss how to compute operator renormalisation in perturbation
theory in these lectures. The one-loop Feynman diagrams are depicted in Figure 1. In the
large N limit and at the one-loop level only nearest neighbour interactions are present. It

Figure 1. The Feynman diagrams contributing to operator mixing at one-loop.

turns out that the final result is equal (up to an overall multiplicative coefficient) to the
Hamiltonian of a very well studied spin chain problem,

Γ =
λ

8π2

L∑
`=1

(I− P`,`+1) ≡ λ

16π2
HXXX , (1.1)

where I is the identity operator and P`,`+1 the permutation operator that permutes spins
(states) on neighbour sites ` and `+1. The XXX spin chain is famously integrable and this
means that if we know the solution of the 2-body problem we can get the solution of the
n-body for free. Two X’s in the sea of Z’s are enough to give the anomalous dimension for
n X’s in the sea of Z’s.

Finally, we would like to end the introduction with the following comment. The result
(1.1) is due entirely to the F -terms, since all other contributions (D-terms, gluon exchange
and self-energy diagram) add up to zero. See Section 4. Some authors refer to this as the
“effective vertex”. This is an example of a general property of theories with (extended)
supersymmetry and it is known as a non-renormalisation theorem. In its component form
it was discovered in [26–28]. However, using superspace it becomes powerful [29, 30] and
makes high-loop computation possible. See [31] for a review.

2 The landscape of 4D theories

Before coming to the technical topics, we will begin our lectures with a big picture section.
We will review some basic, but very important facts about 4D supersymmetric theories,
which should eventually become clear in the following sections. All possibly unclear or
unknown symbols like trφ2, mQ̃Q or B̂1 and E2 for the superconformal multiplets will be
explained in Sections 4 and 5, respectively.
N = 4 SYM is the maximally supersymmetric theory in four dimensions. It is unique

up to the choice of a semi-simple gauge group G. N = 4 supersymmetry is so strong that it
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vector multiplet matter multiplet
N = 4 adj not possible
N = 3 adj not possible
N = 2 adj hypermultiplet in any R of G
N = 1 adj chiral multiplet in any R of G
N = 0 adj scalar or fermion in any R of G

Table 1. The landscape of Lagrangian (supersymmetric) theories in four dimensions. For N ≤ 2

the matter can be in any representation R of the gauge group G.

leads to further symmetry enhancement, whereby the theory is also conformal. Dynamics
are governed by the psu(2, 2|4) algebra.1 TheN = 4 SUSY algebra admits only one possible
short massless representation, the “vector multiplet” and no “matter multiplet” is allowed.
It is an open problem to prove that N = 4 SYM with color group G is the only possibility
with N = 4 supersymmetry and explore if exotic theories exist.

The next case is N = 3 and enhances to N = 4 SYM when we demand to have a La-
grangian description. Examples of non-Lagrangian N = 3 theories were discovered recently
[33]. However in these lectures we will restrict ourselves to theories with a Lagrangian
description, for which we have many more tools to employ.

Going down to N = 2 supersymmetry we have a huge (largely unexplored and un-
known) landscape of theories. There exist conformal and non-conformal theories. For con-
formal theories with a Lagrangian description we have a complete classification by Bhardwaj
and Tachikawa [34]2.

Theorem 2.1. A Lagrangian theory with N = 2 supersymmetry is uniquely specified via
its quiver. It consists of blobs and lines. Blobs correspond to color groups and lines to
hypermultiplets. See figures 2 and 3. Boxes correspond to global/flavor symmetries.

By now we also know many conformal theories with no Lagrangian description. They
include generalisations of the Argyres-Seiberg [35]: TN trinion theories [10] which can be
thought of as non-Lagrangian generalisation of “matter multiplets” in class S, as well as
Argyres-Douglas theories [36]. This is by no means the complete list. Starting with confor-
mal theories we can obtain non-conformal theories via triggering an N = 2 RG flow with
N = 2 preserving massive deformations.

Theorem 2.2. Possible mass deformations that preserve N = 2 supersymmetry are clas-
sified3. Using N = 1 superspace language they can only be of the form mQ̃Q and according
to superconformal representation theory, they are the highest weight state of the B̂1 super-
conformal multiplet.

1If we want to preserve N = 4 supersymmetry but are willing to break conformal invariance, it is possible
to add a “T T̄ type” dimension eight irrelevant operator as discussed by Intriligator in [32].

2The options are: (i) just a single node of either SU(N), SO(N), USp(N) or G2, (ii) an SU(N) chain, (iii)
an SO(N)-USp(N-2) chain and a few exceptional cases.

3Mass deformations are counted by (the Schur or the Hall-Littlewood limit of) the SuperConformal Index
[37] or the Higgs branch Hilbert series. Their number is given by the coefficient of a monomial counting
operators with ∆ = 2R = 2.
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Figure 2. The quiver of the Z2 orbifold of N = 4 SYM (the interpolating theory).

A very good way to obtain many N = 2 SCFTs is via orbifolding N = 4 SYM4. There
is an ADE classification of N = 2 SCFTs with SU(N) color factors using finite/affine
Dynkin diagrams. The simplest possible example is the Z2 orbifold of N = 4 SYM5, with
color group SU(N)× SU(N), the quiver of which is depicted in Figure 2. The orbifolding
procedure gives theories with all the coupling constants equal to each other and to the YM
coupling constant of the N = 4 mother theory. This is called the orbifold point. To go
away from the orbifold point we marginally deform the theory.

Theorem 2.3. Marginal operators of N = 2 SCFTs are classified: for theories with a
Lagrangian description they are descendants of tr φ2 and according to superconformal rep-
resentation theory they belong to the E2 superconformal multiplet.6

Beginning with the Z2 orbifold of N = 4 SYM and adding a marginal deformation we
obtain a one parameter family of N = 2 SCFTs with product gauge group SU(N)×SU(N)

and two exactly marginal couplings g and ǧ. In the rest of the lectures we will refer to it
as the interpolating theory and we will use it as our basic example. Once spin chains
for this example are understood, the generalisation to any Lagrangian N = 2 SCFT is
straightforward.

Figure 3. The quiver diagram of N = 2 SuperConformalQCD (SCQCD) with Nf = 2N .

• For ǧ → 0 (ungauging one node) we obtain theN = 2 SuperConformalQCD (SCQCD)
with Nf = 2N .

• For ǧ = g we get back to the Z2 orbifold of N = 4 SYM.

We finish this section by shortly commenting on N = 1 theories. The N = 1 matter
multiplets are chiral thus N = 1 quivers have arrows contrary to N = 2 theories which
are not chiral and whose quivers do not have arrows. Generically, their Lagrangians are
not completely specified by the quiver. We also have to specify the superpotential(s).

4For SU(N) color groups we use ADE orbifolds, while for SO/Sp we need to use an orientifold plus an
orbifold. Exceptional groups are more complicated to get.

5This is a theory with an AdS5 × S5/Z2 gravity dual [38–40] and known to be integrable [41, 42].
6Marginal operators are counted by (the Coulomb limit of) the SuperConformal Index or the Coulomb

branch Hilbert series. Their number is given by the coefficient of a monomial counting operators with
∆ = r = 2.
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Orbifolding N = 4 SYM is a good path to explore the Landscape of N = 1 SCFTs which is
even more vast and unexplored, than that of N = 2 SCFTs. A lot of the properties that we
will study for the N = 2 orbifold daughters of N = 4 SYM go through for N = 1 orbifold
daughters. A very important class of N = 1 orbifold daughters are obtained as Z` × Zk
orbifolds (class Sk [43]).

To understand the statements above we need to study the representation theory of the
supersymmetry algebra and then of the superconformal algebra. We will see that we can
learn a lot just from representation theory, even about dynamics.

3 Massless representations of the supersymmetry algebra

To understand all the facts stated in section 2 we begin with a short review of the super-
symmety algebra and its massless representations. This is standard textbook material and
more details can be found in any supersymmetry book or review7. It is worth pointing
out that there is a theorem in mathematics (representation theory) which says that there
are no non-trivial finite dimensional unitary representations of non-compact groups. This
impasse was overcome by Wigner with a trick stemming from his physics intuition. To
study representations of the Lorentz/Poincaré group we should go to a reference frame (the
rest frame), classify them there and then boost to get everything!

The superalgebra generators QAα and Q̄α̇A have spinor indices α = 1, 2 and α̇ = 1, 2

labelling the SU(2)α × SU(2)α̇ Lorentz group and an additional label A = 1, 2, ...,N . The
algebra they satisfy is {

QAα , Q̄β̇B
}

= 2 (σµ)αβ̇ Pµ δ
A
B (3.1){

QAα , QBβ
}

= εαβ Z
AB (3.2)

with antisymmetric central charges ZAB = −ZBA commuting with all the generators and[
QAα , Pµ

]
= 0 =

[
Q̄β̇B , Pµ

]
,

[
Lα β , QAγ

]
= δγ

βQAα −
1

2
δα

βQAγ , . . . . (3.3)

The N = 1 supersymmetry algebra is invariant under a global phase rotation of all super-
charges QAα , forming a group U(1)r.[

R , QAα
]

= +qQAα
[
R , Q̄β̇B

]
= −q Q̄β̇B . (3.4)

In extended N > 1 supersymmetry algebras, the different supercharges may also be rotated
into one another under the unitary group SU(N )R[

RA B , QCα
]

= δC B QAα −
1

|N |
δA B QCα . (3.5)

These (outer automorphism) symmetries of the supersymmetry algebra are calledR-symmetries.
In quantum field theories, part or all of these R-symmetries may be broken by anomaly
effects.

7The reader who needs ton quickly learn how the detailed calculations can be done can watch the videos
from LACES 2018.
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Concluding our quick presentation of the supersymmetry algebra, it is important to
stress that the supersymmetry generators commute with any other bosonic symmetry of
the theory like the generators of the color group G or the flavor group F ,[

TG, QAα
]

= 0 =
[
TF , QAα

]
. (3.6)

We now want to classify one particle states and we only care about massless represen-
tations as we want to study only SCFTs. As the symmetry algebra is non-compact, there
are no finite unitary representations. To study them and classify them we go to the rest
frame and then boost to get the full particle content. To get the massless representations
of the supersymmetry algebra we let the momentum of the state be pµ = (E, 0, 0, E).
This is just a convenient choice of frame, a null vector, which commutes with the SO(2)

little group (the L12 generator of the Lorenz algebra). With this choice, the supersymmetry
algebra simplifies to {

QAα , Q̄β̇B
}

= 4E

(
1 0

0 0

)
αβ̇

δA B (3.7)

which implies that the algebra for the generator Q2 is trivial and will not play any role. The
remaining (active) supercharge operators aA = 1

2
√
E
QA1 and (aA)† = 1

2
√
E

(QA1 )† = 1
2
√
E
Q̄A

1̇

obey the algebra of N fermionic creation and annihilation operators (oscillators). Moreover,
their commutator with the helicity generator L12 teaches us that they raise and lower helicity
as follows

•
[
L12 , QA1

]
= −1

2Q
A
1 lowers the helicity by 1/2

•
[
L12 , Q̄A1̇

]
= 1

2Q̄
A
1̇

raises the helicity by 1/2.

Defining a Clifford vacuum as the state killed by all QA1 , we build the massless representation
by acting with the helicity raising operators (QA1 )†, with a = 1, · · · ,N . We label the Clifford
vacuum by the helicity λ.

|λ〉 −→ (QA1 )†|λ〉 = |λ+
1

2
〉A −→ (QA1 )†(QB1 )†|λ〉 = |λ+ 1〉[A,B] −→ . . .

· · · −→ (Q1
1)† . . . (QN1 )†|λ〉 = |λ+

N
2
〉

Due to the antisymmetry of the R-symmetry indices A,B, · · · = 1, · · · ,N , the number of

states with helicity λ+ k
2 is

(
N
k

)
. Thus, the representation has dimension (total number

of states)

n =

N∑
k=0

(
N
k

)
= 2N = 2N−1

Bosons + 2N−1
Fermions . (3.8)
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The helicity is flipped by CPT, thus to have a physical theory we need to always have both
|λ〉 and | − λ〉 states. We add the CPT conjugate when needed8 and obtain:

n = 2N ×

{
1 if the multiplet is CPT complete
2 if the CPT conjugate has to be added

(3.9)

N = 1 N = 1 N = 2 N = 2 N = 3 N = 4

λ ≤ 1 vector chiral vector hyper vector vector

1 1 0 1 0 1 1
1/2 1 1 2 1+1 3+1 4
0 0 1+1 1+1 2+2 3+3 6
−1/2 1 1 2 1+1 1+3 4
−1 1 0 1 0 1 1

Total # 2× 2 2× 2 2× 4 2× 4 2× 8 16

Table 2. The possible massless supersymmetry multiplets in 4D with numbers of massless states
as a function of N and helicity λ ≤ 1.

In Table 2 we summarize all the possible massless multiplets of the 4D supersymmetry
algebra. WithN = 3 andN = 4 supersymmetry it is not possible to build matter multiplets
with helicity λ < 1. The N = 3 and N = 4 vector multiplets coincide (after the CPT
completion for the N = 3), and their quantum field theories are identical (we stress that we
demanded that the theory has massless representations). The more inexperienced readers
should pay attention to the fact that all the fields which we will use to materialize the
content of the N = 3 and N = 4 vector multiplets should transform in the same way under
the color group G, i.e. in the adjoint representation of G. This fact stems from (3.6).

The N = 2 matter multiplets are called hypermultiplets and they are not chiral due to
the SU(2)R R-symmetry of N = 2 . We see that to specify an N = 2 theory we need to
choose the color groups G and the representationsR ofG of the hypermultiplets. Again, due
to (3.6) all the elements of the hypermultiplet will transform under the same representation
R of G . All this information we store in a quiver, which consists of blobs and lines. Blobs
correspond to color groups and lines to hypermultiplets. As the hypermultiplets are not
chiral, the lines do not have arrows. The N = 1 matter multiplets are chiral and thus
N = 1 quivers have arrows.

8Naively the hypermultiplet looks like it is CPT invariant. To recognise that it is not we need to recall
that the SU(2)R doublet of scalars is a pseudo-real representation. For theories with G = SU(2) we could
combine 2R × 2G to form a real representation and keep the half-hyper being CPT invariant. For all other
cases of groups with higher rank we need to add the CPT conjugate, obtaining the full hypermultiplet.
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4 Lagrangians in N = 1 superspace language

To understand the dynamics we need to turn to Lagrangians9 and a very convenient way
is to use the N = 1 superspace language to construct them.

The N = 1 superspace is an extension of the usual Minkowski spacetime by including
Grassmann (spinor) coordinates10

xµ →
(
xµ , θα , θ̄α̇

)
α, α̇ = 1, 2 (4.1)

As the usual Minkowski coordinates xµ are generated by acting with translations Pµ = −i∂µ
on usual functions f(x+a) = f(x)+aµ∂µf(x)+. . . , the new Grassmann coordinates θα and
θ̄α̇ are generated by acting with the supersymmetry generators Qα and Q̄β̇ of the N = 1

supersymmetry algebra on function f(x, θ, θ̄). Due to the form of the supersymmetry
algebra (3.1), supertranslations (supersymmetry variations) generated by the action of

δf =
(
ξQ+ ξ̄Q̄

)
f(x, θ, θ̄) (4.2)

also induce usual translations(
xµ , θα , θ̄α̇

)
→
(
xµ + i θσµξ̄ − i ξσµθ̄ , θα + ξα , θ̄α̇ + ξ̄α̇

)
. (4.3)

Thus, the supersymmetry generators are represented as differential operators

Qα =
∂

∂θα
− i σµαα̇θ̄

α̇∂µ , Q̄α̇ =
∂

∂θ̄α̇
+ i θασµαα̇∂µ , (4.4)

with their anticommutator defined by the supersymmetry algebra (3.1). We also define
supercovariant derivatives

Dα =
∂

∂θα
+ i σµαα̇θ̄

α̇∂µ , D̄α̇ =
∂

∂θ̄α̇
− i θασµαα̇∂µ , (4.5)

with the property

{Dα , D̄α̇} = 2σµαα̇Pµ and {Dα , Qβ} = {Dα , Q̄α̇} = 0 . (4.6)

Given the fact that the Grassmann coordinates anticommute, a formal power series expan-
sion in θα and θ̄α̇ terminates. The most general superfield is

Φ(x, θ, θ̄) = φ(x)+θψ(x)+θ̄χ̄(x)+θ2F (x)+θ̄2G(x)+θσµθ̄Aµ(x)+θ2θ̄λ̄(x)+θ̄2θρ(x)+θ2θ̄2D(x) .

(4.7)
This has too many components (degrees of freedom). It corresponds to a reducible repre-
sentation of the N = 1 supersymmetry algebra. To capture the irreducible representations
we derived in the previous section we must find ways to impose constraints on the superfield
such that they commute (anticommute) with the superalgebra.

We will introduce chiral superfields which are used to describe N = 1 matter fields and
vector superfields which will materialise the N = 1 vector multiplets, which include the
gauge fields.

9According to the modern Bootstrap approach we don’t need to discuss Lagrangians at all and it would
be enough to turn to SuperConformal representation theory. However, for the purpose of these lectures,
Lagrangians and superspace are an absolutely necessary tool.

10They anticommute with each other θαθβ = −θβθα but commute with ordinary coordinates θαxµ =

xµθα. Note that they square to zero (θα)2 = 0 since θαθα = −θαθα.
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φ ψα F Aµ λ D

on-shell (nB = nF = 2) 2 2 0 2 2 0
off-shell (nB = nF = 4) 2 4 2 3 4 1

Table 3. The field content of N = 1 Chiral and N = 1 Vector multiplets.

4.1 Chiral superfields

By definition a Chiral superfield obeys the constraint

D̄α̇Φ = 0 (4.8)

Noting that θ and yµ = xµ + iθσµθ̄ are both annihilated by D̄α̇, it is easy to solve the
constraint (4.8).

Φ(y, θ) = φ(y) + θψ(y) + θ2F (y) = (4.9)

Φ(x, θ, θ̄) = φ(x) + i θσµθ̄∂µφ(x) +
1

4
θ2θ̄2�φ(x) + θψ(x)− i θ2σµθ̄∂µψ + θ2F (x)

Lagrangians for Chiral superfields and the Kähler potential

A supersymmetry invariant Lagrangian is constructed as the integral of any arbitrary su-
perfield (or combinations of superfields)

L =

∫
d4θK

(
Φi, Φ̄ī

)
, with δL = ∂µ(· · · ) , (4.10)

where d4θ = d2θ d2θ̄. What is more, if a term in the Lagrangian is made out of only chiral
or only antichiral fields, it is automatically a total derivative∫

d4θf (Φ) = ∂µ (· · · ) , (4.11)

that means that the theory is invariant up to transformations (Kähler transformations)

K → K + f (Φ) + f̄
(
Φ̄
)
. (4.12)

Let us begin by looking at the most basic combination of superfields that is supersymmetric,
real and has mass dimension four (three properties that our Lagrangian should have)

Lkin =

∫
d4θΦiΦ̄ī = −∂µφ̄ī∂µφi + i ∂µψ̄

īσ̄µψi + F̄ īF i . (4.13)

Doing so we discovered the kinetic terms of n (i = 1, . . . , n) scalars, Weyl fermions and
auxiliary fields, of n chiral off-shell multiplets (see Table 3).

We can think of the scalar fields φi as a map from the 4D spacetime to an n-complex
dimentional target space with complex coordinates (φi , φ̄ī). The more general function
K(Φi, Φ̄ī) is called the Kähler potential and is a real scalar function on the target space.
We can use it to define a metric on the target space (ds2 = gīi dφ

i dφ̄ī) and write

gīi ≡ ∂i∂īK and L = −gīi∂µφ̄ī∂µφi + i gīi∂µψ̄
īσ̄µψi + gīiF

iF̄ ī . (4.14)

The target space because of (4.12) is a Kähler manifold and this is entirely due to N = 1

supersymmetry.
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The Superpotential and F-terms

The Kähler terms give the kinetic terms when K is quadratic. For a more general function K
we obtain extra, non-renormalizable, interaction terms with derivatives. For normalisable,
non-derivative interaction terms we need holomorphic, superpotential terms

Lint =

∫
d2θW (Φ) + h.c. = F i∂iW (φ) +

1

2
ψiψj∂i∂jW (φ) + h.c. , (4.15)

which after integrating out the auxiliary fields

F̄ ī = −gīi∂iW (φ) and F i = −gīi∂īW̄
(
φ̄
)

(4.16)

lead to
V (φ) = F iF̄ ī =

∑
i

∣∣∣gīi∂iW (φ)
∣∣∣2 ≥ 0 . (4.17)

The scalar potential V (φ) that we will derive now is also a function in this target space.
Note that the scalar potential in a supersymmetric theory cannot be negative! A simple
but important example is the single chiral multiplet theory with W (Φ) = 1

2mΦ2 + 1
3!λΦ3.∫

d2θW (Φ) = mFφ+mψψ +
1

2
λFφ2 + λψψφ , (4.18)

which after integrating out the auxiliary field F̄ = −mφ− 1
2λφ

2 leads to

V (φ) = F̄F = m2φ̄φ+
1

4
λ2(φ̄φ)2 . (4.19)

Note that the Yukawa λψψφ and the 1
4λ

2(φ̄φ)2 coupling are related! This is precisely the
reason why in supersymmetric theories miraculous cancellations happen when we compute
Feynman diagrams and we never get Λ2 divergences (only log Λ).

4.2 Vector superfield

By definition the Vector or Real superfield obeys

V = V † = C + θχ+ θ̄χ̄+ θ2ϕ+ θ̄2ϕ̄+ θσµθ̄Aµ (4.20)

+i θ2θ̄

(
λ̄+

1

2
σ̄µ∂µχ

)
− i θ̄2θ

(
λ− 1

2
σµ∂µχ̄

)
+

1

2
θ2θ̄2 (D + �C) .

This superfield still has too many degrees of freedom (8B+8F ) to correspond to the massless
vector representation of the N = 1 supersymmetry algebra. As we will see immediately we
will reduce its degrees of freedom via gauge fixing (down to 4B + 4F ) which after going on
shell will be precisely the correct number (2B + 2F ) in table 3.

The only supersymmetry covariant generalization of the usual U(1) gauge invariance is

V → V + i
(
Λ− Λ̄

)
, (4.21)

where Λ is a chiral superfield with component expansion

Λ = Λ + θψΛ + θ2FΛ . (4.22)
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In components the effect of the gauge transformation is

δC = i
(
Λ− Λ̄

)
(4.23)

δχ = i ψΛ

δϕ = i FΛ

δAµ = ∂µ
(
Λ + Λ̄

)
(4.24)

δλ = 0

δD = 0 .

The vector field Aµ transforms as usual with the real part of Λ. The real scalar C
transforms with the imaginary part of Λ. The abelian gauge symmetry in superspace is
larger than the ordinary gauge symmetry. It is U(1)C instead of U(1)R. More generally,
the vector superfield is invariant under the complexification GC of the gauge group G. The
component fields C,χ, ϕ are gauge artifacts and we can gauge them away choosing the
“Wess-Zumino gauge”. The WZ gauge fixes the supersymmetric U(1)C gauge invariance to
U(1)R. We can slightly relax the WZ gauge to the “complex gauge” and fix only χ = 0 = ϕ

and we keep the full complexified GC.
Finally, we just state that for a non abelian gauge theory the gauge transformation is

eV → e−iΛ̄eV eiΛ . (4.25)

Lagrangians with vector superfields

To construct a Lagrangian invariant under Lorentz, supersymmetry and gauge transforma-
tions it is useful to define the supersymmetric version of the field strength

Wα = −D̄2(e−VDαe
V ) (4.26)

that by construction is a chiral superfield

Wα(y, θ) = λα(y) + θβ (εβαD + Fβα) (y) + θ2∂αα̇λ̄
α̇(y) (4.27)

and transforms covariantly
Wα → e−iΛWαe

iΛ . (4.28)

The most obvious real scalar, supersymmetric and gauge invariant combination of Wα’s
with mass dimension four

L =

∫
dθ2WαWα + h.c. = −1

4
FµνFµν +

1

4
FµνF̃µν +

1

2
D2 − i λ̄Dµσ̄µλ (4.29)

is the Lagrangian of N = 1 SYM, with the covariant derivative Dµ = ∂µ + i Aµ.

Coupling chiral superfields to vector superfields

To construct the theory of a non abelian gauge group G and some fields Φi in some repre-
sentation of G,

eV → e−iΛ̄eV eiΛ and Φi → e−iΛΦi , (4.30)

– 13 –



we can write the gauge invariant generalisation of (4.13) and (4.15)

L =

∫
d4θΦ†ie

V Φi +

∫
d2θW (Φ) + h.c. (4.31)

in addition to the WαWα part. In the WZ gauge∫
d4θ Φ̄ie

V Φi = −Dµφ̄iDµφi + iDµψ̄iσ̄µψi + F iF̄ i (4.32)

−i ψ̄i λ̄ φi + h.c.+ φ̄iDφi .

Finally, we can derive the scalar potential V (φ) = F̄F + 1
2D

2 ≥ 0, as above for chiral
fields, and from it obtain the vacuum equations, the F - and D-flatness conditions

F̄ i = −∂iW (Φ) = 0 ∀i (4.33)

Da = −
∑
i

φi T
a φ̄i = 0

where a = 1, . . . , rank(G) and T a are the generators of the Lie algebra g.

4.3 N = 2 Lagrangians in superspace

The N = 2 Vector multiplet contains (Aµ λ
I
α φ), where λIα are left moving Weyl fermions,

and φ is a complex scalar. Under SU(2)R symmetry, Aµ and φ are singlets, while λI

transform as a doublet. Using Witten’s diamond diagrams we can depict the field content
of an N = 2 Vector multiplet as

Aµ
λ1
α λ2

α

φ

, λI =

(
λ1

λ2

)
, I = 1, 2

where the horizontal axis captures the SU(2)R symmetry quantum number while the ver-
tical axis captures the U(1)r symmetry quantum number. In the diamond diagram the
diagonals capture N = 1 massless representations

N = 2 Vector = (N = 1 Vector)⊕ (N = 1 chiral) , (4.34)

or in terms of N = 1 superfields V = · · · + θσµθ̄Aµ − i θ̄2θλ1 + · · · + 1
2θ

2θ̄2D and Φ =

φ+ θλ2 + θ2F , both in the adjoint representation of the gauge group.

The N = 2 hypermultiplet consists of (ψα ψ̃α Q
I), where ψα and ψ̃α are left moving

Weyl fermions, while QI are two complex scalars, all transforming in some representation
R of G. Under SU(2)R symmetry, ψ’s are singlets, while QI transform as a doublet.

ψα
q (q̃)∗(

ψ̃α

)† , QI =

(
q

q̃∗

)
.

In terms of N = 1 massless representations,

N = 2 hyper = (N = 1 chiral in R) ⊕ (N = 1 chiral in R̄) , (4.35)
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Q = q + θψα + θ2f and Q̃ = q̃ + θψ̃ + θ2f̃ . (4.36)

Finally, the N = 4 Vector multiplet consists of (Aµ λ
A
α Xm), where λAα , A = 1, · · · , 4

are left moving Weyl fermions and Xm, m = 1, · · · , 6 are real scalars. Under SU(4)R
symmetry, Aµ is a singlet, λAα is a 4 and the scalars Xi are an antisymmetric11 6 XAB

representation.

N = 4 Vector = (N = 2 Vector) ⊕ (N = 2 hyper)

= (N = 1 Vector) ⊕ 3 (N = 1 chiral) . (4.37)

The XAB are related to the three complex scalars φi (i = 1, 2, 3) in the three chirals

XAB =


0 φ1 φ2 φ3

−φ1 0 φ∗3 −φ∗2
−φ2 −φ∗3 0 φ∗1
−φ3 φ∗2 −φ∗1 0

 (4.38)

and obey the self-duality constraint

(XAB)† ≡ X̄AB =
1

2
εABCDX

CD . (4.39)

The N = 4 vector multiplet splits into the N = 2 Vector multiplet

Aµ
λ1
α λ2

α

φ1

, (4.40)

and the N = 2 hypermultiplet
λ3
α

φ2 φ3

λ4
α

. (4.41)

Using N = 1 language we construct the Lagrangians of N = 2 or N = 4 theories by (i)

imposing gauge invariance and (ii) R-symmetry.

The N = 4 Lagrangian in N = 1 language

To get N = 4 SYM we need to use three chiral superfields Φi = φi + θψi + θ2F i that
transform in the adjoint representation. This means that the Lagrangian is

LN=4 =

∫
d4θ tr

(
e−gV Φ†ie

gV Φi

)
+

∫
dθ2tr (WαWα) +

∫
d2θW (Φ) + h.c. . (4.42)

We will make sure we have N = 4 supersymmetry by imposing the SU(4) R-symmetry on
an N = 1 theory with three chiral and one vector N = 1 superfields12. In N = 1 language,
the SU(4)R R-symmetry is broken down to an SU(3)×U(1)R subgroup. The U(1)R is the

114× 4 = 6A + 10S
12This way of writing is not completely off shell.

– 15 –



usual N = 1 R-symmetry, while the SU(3) is a global symmetry. The SU(3) rotates the
three chiral superfields leaving V invariant, while under the U(1)R the chiral superfields
have charge 2/3. To derive the Lagrangian all we have to do it to pick the superpotential.
SU(4)R R-symmetry forbids mass terms. The only holomorphic function that we can pick
such that it is SU(3) invariant, holomorphic and leads to a renormalizable Lagrangian is

W =
i g

3!
εijk Tr

(
ΦiΦjΦk

)
. (4.43)

The only ambiguity is the overall coefficient. The way to fix it is by looking at the Yukawa
terms: they must appear with the same coefficient so that when we define λA = (λ , ψi)

we get g X̄ABλ
AλB. After integrating out the auxiliary fields we get

LN=4 = Tr

[
− 1

4
FµνFµν + iλ̄Aσ̄

µDµλ
A − 1

4
DµX̄ABDµX

AB

+ i
√

2 g XAB λ̄Aλ̄B − i
√

2 g X̄ABλ
AλB − g2

4
[XAB, XCD] [X̄CD, X̄AB]

]
, (4.44)

where A,B = 1, . . . , 4.

N = 2 Lagrangians in N = 1 language

For theories with N = 2 supersymmetry we can obtain the Lagrangian using N = 1

superspace and imposing the SU(2)R, gauge invariance and global symmetry invariance.
For the vector multiplet the Lagrangian is

LvecN=2 =

∫
d4θ tr

(
e−gV Φ†egV Φ

)
+

∫
dθ2tr (WαWα) + h.c. . (4.45)

For a fundamental hypermultiplet the Lagrangian is

LhyperN=2 =

∫
d4θ tr

(
Q̄egVQ+ Q̃e−gV ¯̃Q

)
+ i

∫
dθ2tr

(
gQ̃ΦQ

)
+ h.c. , (4.46)

while for a bifundamental hypermultiplet

LhyperN=2 =

∫
d4θ tr

(
e−g2V2Q̄eg1V1Q+ e−g1V1 ¯̃Qeg2V2Q̃

)
(4.47)

+ i

∫
dθ2tr

(
g1Q̃Φ1Q

)
− i

∫
dθ2tr

(
g2QΦ2Q̃

)
+ h.c. .

The vector multiplet in N = 2 superspace

It is desirable to use the formalism in which most of the symmetry is manifest. For the
vector multiplet it is possible to use an off-shell N = 2 superspace in which it takes a
very simple form. Unfortunately, the hypermultipler in off-shell N = 2 superspace is more
complicated as we have to use an infinite number of auxiliary fields.

In real R4|8 superspace with coordinates {x, θ, θ̃} the N = 2 vector multiplet can be
written using the N = 2 chiral superfield strength D̄α̇W = 0 = ¯̃Dα̇W ,

W = Φ + θ̃αWα + θ̃2G . (4.48)
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X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

N D3 – – – – · · · · · ·
Z` · · · · · · × × × ×

Table 4. The type IIB setup engineering N = 2 orbifold daughters of N = 4 SYM.

Within this formalism, the N = 2 SYM classical Lagrangian can be compactly written as

LvecN=2 =

∫
d2θd2θ̃ tr

(
W2
)

=

∫
d2θ tr

(
WαWα

)
+

∫
d2θd2θ̄ tr

(
e−V Φ̄eV Φ

)
. (4.49)

This is the formalism Seiberg used to show that the beta function of N = 2 theories is
one-loop exact [44].

4.4 Lagrangians of orbifold daughters of N = 4 SYM

Consider Type IIB string theory on R1,3 ×R6/Γ with N parallel and coincident D3 branes
along the R1,3, depicted in Table 4. We parametrise the worldvolume of the D3 branes
with four real coordinates X0, X1, X2, X3, which arrange themselves into the vector rep-
resentation of the 4D Lorentz group which naturally acts on R1,3. The transverse R6 is
parametrised by six real coordinates X4, X5, X6, X7, X8, X9 or alternatively three complex

φ1 =
X5 + iX6

√
2

φ2 =
X7 + iX8

√
2

, φ3 =
X9 + iX10

√
2

(4.50)

and their hermitian conjugates. In the case without an orbifold singularity (Γ = 1), the
open strings stretching between D3 branes give rise to N = 4 SYM theory with gauge group
SU(N) on R1,3. The R-symmetry SU(4)R ' SO(6)R is identified with the rotations on the
transverse R6. In N = 1 superspace language the theory contains three chiral superfields
Φ1,Φ2,Φ3 transforming in the 3 of SU(3) ⊂ SU(4)R,

φ1 = Φ1|θ=0 , φ2 = Φ2|θ=0, φ3 = Φ3|θ=0 . (4.51)

The orbifold Γ = Z` acts on the coordinates as

Γ :
(
φ1, φ2, φ3

)
7→
(
φ1, ω`φ

2, ω−1
` φ3

)
with ω` := e2πi/` , (4.52)

and as the chiral superfields Φi are identified with transverse coordinates (4.51), the action
of Γ lies diagonally inside SU(3) in the form

R =

1 0 0

0 ω` 0

0 0 ω−1
`

 ∈ SU(2)R ⊂ SU(3) . (4.53)

Note that Γ must also have an action inside the gauge group SU(N) [45]. To visualise
this it is useful to go to the Higgs branch by giving vevs to φ2 = φ3 = v, see Figure 4.
Then, it is clear that for each D3 brane, ` images will be created, as depicted in Figure
4. The action of Γ inside the gauge group can be conjugated to an element τ of the
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maximal torus T (SU(N)) = U(1)N−1. After scaling N → |Γ|N = `N this action breaks
SU(N`)→ SU(N)`. Hence τ may be written as

τ = diag
(
I, ω`I, . . . , ω`−1

` I
)

(4.54)

where I denotes the N ×N identity matrix. Quotienting by Γ imposes the identifications

V ∼ τ †V τ , Φi ∼ Rijτ †Φjτ , (4.55)

which implies that the `N × `N matrices of SU(N`) break in a adjoint of bifundamentals
of the SU(N)` quiver

V =


V(1)

V(2)

. . .
V(k)

 , Φ1 =


Q(1)

Q(2)

. . .
Q(k−1)

Q(k)

 , (4.56)

Φ2 =


Q̃(k)

Q̃(1)

. . .
Q(k−1)

 and Φ3 =


Φ(1)

Φ(2)

. . .
Φ(k)

 .

After performing these identifications the resulting theory is an N = 2 elliptic quiver gauge
theory with gauge group SU (N)` and superpotential

WN=2 orb. = i g
∑̀
n=1

(
Q̃(n)Φ(n)Q(n) −Q(n)Φ(n+1)Q̃(n)

)
, (4.57)

which is explicitely obtained by plugging (4.56) in (4.43). The important point of this
construction is that the N = 2 elliptic quiver Lagrangian (4.57) is the same as the N = 4

one given in (4.43) (and (4.42)) with the fields obeying the identification (4.55).

To remember: The vector multiplet part of N = 2 Lagrangians is identical to the N = 4

one. For N = 2 orbifold daughters of N = 4 SYM every single vertex is inherited from
N = 4 - we only need to keep track of the color contractions.

Figure 4. The X6X7 plane in the case of a Z8 orbifold. Higgsing, which corresponds to placing the
N D3 branes away from the origin, allow us to clearly see that k images are created. Open strings
with their endpoints on the same stack give rise to the fields of the N = 2 vector multiplets. Open
strings stretching between different stacks give rise to hypermultiplets.
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The only difference between the N = 2 orbifold daughters and their marginal defor-
maltions is

WN=2 = i
∑̀
n=1

(
g(n)Q̃(n)Φ(n)Q(n) − g(n+1)Q(n)Φ(n+1)Q̃(n)

)
. (4.58)

The effective vertex: In computations of anomalous dimensions (especially when they
are done in superspace) non-renormalisation theorems help us. Using N = 1 superspace it
is easy to see that at least to two loops all the work is done by the superpotential (4.58).
We can think of this as an effective vertex that has the structure

I− κP`,`+1 or I− κ−1P`,`+1 (4.59)

with κ = g2/g1, I is the identity and P`,`+1 the permutation operator that permutes spins
(states) on neighbour sites ` and `+ 1 as was the case of N = 4 SYM we discussed in the
introduction, equation (1.1).

5 Basics of representation theory for the N = 2 SCA

We begin this section by quickly reviewing some basic facts about the conformal algebra
and it’s representations so that we can smoothly then turn to the supersymmetric case we
are interested in. For a complete and pedagogical review we refer the reader to [46]. We
will then turn to the SuperConformal algebra (SCA) with N = 2 supersymmetry in 4D
and its representations. We will follow [47] where all the possible shortening conditions for
the N = 2 superconformal algebra were studied and classified.

5.1 Conformal Algebra and representations

To obtain the conformal algebra, to the Poincaré generators we add the dilatation generator
D and the special conformal generator Kµ

13.

[Pµ , Kν ] = 2i (δµνD + Lµν) , [D , Pµ] = + i Pµ , [D , Kµ] = − iKµ . (5.1)

At this stage it is useful to turn from Lorentzian signature to Euclidean and from Minkowski
space R1,3 to R4. It is useful to think of R4 = S3 × R where the SO(4) = SU(2) × SU(2)

rotations acting on S3 correspond to spin and the radial translations along R are generated
by the dilatation operator D. To label states we use their eigenvalues ∆, j, j̄. From (5.1)
we see that Pµ and Kµ are raising and lowering operators of the conformal dimension ∆.
Thus, we construct conformal multiplets by defining a vacuum (the highest weight state)
that is annihilated by Kµ|h.w.〉 = 0 and acting with Pµ we obtain the descendants that fill
in the multiplet. Note that the conformal multiplets are non-compact and correspond to
infinite dimensional representations.

Using the operator/state correspondence (available in CFTs), the highest weight state
|h.w.〉 corresponds to an operator O called conformal primary (C.P.). A generic multiplet
is labeled by the quantum numbers of the C.P. and is spanned by

A∆
(j,j̄) = span {Pµ1 . . . PµnO} (5.2)

13It is useful to know that Kµ = IPµI with I being an inversion xµ → xµ

x2
.
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where O has conformal dimension ∆ and spin (j, j̄) corresponding to the state |h.w.〉 =

|∆; j, j̄〉.
To construct unitary representations we impose that the norm of all the states in the

multiplet is positive definite 〈ψi|ψi〉 = |||ψi〉||2 ≥ 0. Starting with the highest weight state
|ψ〉 = |∆; j, j̄〉, the first level descendants are four states Pµ|ψ〉 = |∆+1; j± 1

2 , j̄±
1
2〉. Using

(5.1) we can calculate their norm and find that among them the state with the lowest norm
is |ψ1〉 = |∆ + 1; j − 1

2 , j̄ −
1
2〉, with norm

|||ψ1〉||2

2
= ∆− j − 1 + δj,0 − j̄ − 1 + δj̄,0 = ∆− f(j, j̄) . (5.3)

Thus, at level one, unitarity imposes

∆ ≥ j + j̄ + 2 when both jj̄ 6= 0 , (5.4)

∆ ≥ j + 1 when only j 6= 0 and j̄ = 0 , (5.5)

∆ ≥ j̄ + 1 when only j̄ 6= 0 and j = 0 , (5.6)

∆ ≥ 0 when both j = j̄ = 0 . (5.7)

For the C.P. with spin zero we can learn even more by looking for a null vector at level two
P 2|ψ〉 = 0. Using (5.1) we obtain the measure ||P 2|ψ〉|| ∝ ∆(∆ − 1), which means that
for ∆ ∈ (0, 1) the measure is ||P 2|ψ〉|| < 0. Thus, unitarity demands that ∆ = 0 or that
∆ ≥ 1. There is a gap between ∆ = 0 and ∆ ≥ 1. The operator with ∆ = 0 is the identity
operator or the vacuum |ψ〉 = |∅〉 of the CFT. The operator with ∆ = 1 obeys P 2|ψ〉 = 0

and corresponds to a free scalar obeying the equation of motion �φ = 0. The null vector
at level two is the equation of motion P 2|ψ〉 = |�φ〉 = 0. When a C.P. saturates the BPS
bound ∆ = f(j, j̄) the representation is shorter. We have to through away the states with
zero measure and all their descendants.

At this stage we can start making statements about the dynamics of CFTs employing
representation theory alone. Short multiplets with ∆ = f(j, j̄) can only acquire anomalous
dimensions ∆ = f(j, j̄)+γ(λ) (where λ is some coupling constant of the theory) only if they
can recombine with some other multiplet to make a long multiplet. Recombine means that
they can gain back the descendants we had to throw away because of the existence of a null
vector. Note that the identity operator can never recombine because of the ∆ = 0, ∆ ≥ 1

gap. In the example of the free scalar, its multiplet can recombine and acquire a positive
anomalous dimension ∆ = 1 + γφ(λ) > 1 if there exists an operator �φ ∝ λφ3 + . . . that
we can write on the right hand side with ∆ = 3 at λ = 0 with which �φ can mix under
renormalisation. The multiplet of a free scalar is short and is labelled by B. It is obtained
from A∆=1

(0,0) after removing the equation of motion �φ = 0 and all its descendants (packed
in A∆=3

(0,0)).
At this stage it is better to proceed with more examples. A second familiar case is a free

fermion with ∆ = j+1 = 1
2 +1 for which the null vector Pαα̇|ψα〉 = ∂αα̇ψα = 0 corresponds

to the free Weyl equation of motion, or similarly Pαα̇|ψ̄α̇〉 = ∂αα̇ψ̄α̇ = 0. These multiplets
are labeled as B(1/2,0) and B(0,1/2) respectively and they can only recombine if there is an
operator with dimension 5/2 and spin (0, 1/2) or (1/2, 0) such that ∂αα̇ψ̄α̇ ∝ λφψα + . . .

to fill in the place of the null vector.
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Shortening Conditions Multiplet

C ∆ = j + j̄ + 2 C(j,j̄)
BR j = 0 ∆ = j̄ + 1 B(0,j̄)

BL j̄ = 0 ∆ = j + 1 B̄(j,0)

B j = j̄ = 0 ∆ = 1 B

Table 5. Shortening conditions and short multiplets for the conformal algebra.

A third important example is a conserved current Jµ that corresponds to the state
|3; 1/2, 1/2〉 with ∆ = j + j̄ + 2 = 1/2 + 1/2 + 2 = 3 as in (5.4). The null vector
P |3; 1/2, 1/2〉 = |4; 0, 0〉 = ∂µJµ = 0 corresponds to the conservation law of the current. In
a CFT if there exists an operator Jµ with ∆ = 3, it is automatically a conserved current
and vice versa: if a vector field is conserved it has ∆ = 3. Conservation implies absence
of anomalous dimensions. These shorter representations are denoted as C(j,j̄) = C∆=j+j̄+2

(j,j̄)

with C(1/2,1/2) being the multiplet of a conserved current.
Finally, the stress energy tensor is the primary for the C(1,1) multiplet. Tµν corresponds

to a state with |4; 1, 1〉 and the null vector P |4; 1, 1〉 = |5; 1/2, 1/2〉 = ∂µTµν = 0 corresponds
to the conservation of the stress energy tensor.

Combining everything we learned above, the only way for an operator to obtain an
anomalous dimensions ∆ = ∆0 + γ(λ) is to recombine. The only way this can be done is
if there is another multiplet in the CFT that has conformal dimension and spin which are
the same as those of the null vector we had to through away. All the possible ways this can
happen are summarised by the recombination rules,

lim
γ→0

[
A∆=j+j̄+2+γ

(j,j̄)

]
= C(j,j̄) ⊕A

∆=j+j̄+3

(j− 1
2
,j̄− 1

2
)

(5.8)

lim
γ→0

[
A∆=j+1+γ

(j,j̄)

]
= BLj ⊕ C(j− 1

2
, 1
2

) (5.9)

lim
γ→0

[
A∆=j̄+1+γ

(j,j̄)

]
= BRj̄ ⊕ C( 1

2
,j− 1

2
) (5.10)

lim
γ→0

[
A∆=1+γ

(0,0)

]
= B ⊕A∆=3

(0,0) . (5.11)

Finding ways to explicitly apply these recombination rules to certain CFTs can lead to very
impressive results unveiling the dynamical of the theory [48].

5.2 SuperConformal Algebra and representations

We begin by recalling that in Lorentzian signature Q̄ = Q† is the complex conjugate of Q.
In Euclidian they are independent and maybe Q̃ is a better notation. To write down the
superconformal algebra (SCA) in 4D we need for each QAα to introduce its SαA (in radial
quantization S = Q† the same way K = P †){

QAα , Q̃β̇B
}

= 2Pαβ̇ δ
A
B

{
SαA , S̃ β̇B

}
= 2Kαβ̇ δA

B (5.12){
QAα , QBβ

}
= 0

{
SαA , SβB

}
= 0 (5.13)
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and most importantly14{
QAα , SβB

}
= 4

(
δA B

(
Lα β −

1

2
δα

βD

)
− δα βRA B

)
, (5.14)

while {
QAα , S̃Bβ̇

}
= 0 =

{
Q̃Aα̇ , SβB

}
(5.15)

and [
D , QAα

]
= +

1

2
QAα ,

[
D , Q̃α̇A

]
= +

1

2
Q̃α̇A (5.16)

[D , SαA] = −1

2
SαA ,

[
D , S̃ α̇A

]
= −1

2
S̃ α̇A . (5.17)

Following what we previously learned about the conformal representation theory, from
(5.16) and (5.17) we see that Q and S raise and lower the conformal dimension by 1/2,
respectively. A SuperConformal primary (S.C.P.) is by definition annihilated by all 4N = 8

conformal supercharges SαA and S̃ α̇A. A superconformal multiplet is generated by the action
of the 4N = 8 Poincaré supercharges Q and Q̃ on the S.C.P.. A generic long multiplet of the
N = 2 SCA is labeled by the quantum numbers of its S.C.P., the eigenvalues (∆, R, r, j, j̄)

of the Dilatation operator, the Cartan generators of the SU(2)R × U(1)r R-symmetry
and of the Lorentz group, and is denoted by A∆

R,r(j,j̄)
. Note that S, S̃|h.w.〉 = 0 implies

that K|h.w.〉 = 0 so a S.C.P. is also a primary of the conformal algebra. Moreover, to
construct the multiplets we can act with Q’s either in a symmetrized way which creates
P and thus conformal primaries, or with anti-symmetrized action which keeps us in the
finite superconformal multiplet. When some combination of the Q’s also annihilates the
primary, the corresponding multiplet is shorter. |R, r〉h.w.

(j,j̄)
is the highest weight state with

eigenvalues (R, r, j, j̄) under the Cartan generators of the SU(2)R × U(1)r R-symmetry
and of the Lorentz group. The multiplet built on this state is denoted as XR,r(j,j̄), where
the letter X characterizes the shortening condition. The left column of Table 6 labels the
condition. Note that conjugation reverses the signs of r, j and j̄ in the expression of the
conformal dimension.

There are three basic types of shortening (A, B and C):

• A-type: No shortening condition: A∆
R,r(j,j̄)

generic long multiplet of the N = 2 SCA.

• B-type: Qα|R, r〉h.w. = 0 for both α = + and − which means that 2 supercharges kill
the highest weight state and is only possible when the highest weight has j = 0. (or
B̄: Q̃α̇|R, r〉h.w. = 0 only possible when j̄ = 0)
For N = 2 we have two B-type conditions:

– B1: Q1
α|R, r〉h.w. = 0 (or B̄1: Q̃1 α̇|R, r〉h.w. = 0)

– B2: Q2
α|R, r〉h.w. = 0 (or B̄2: Q̃2 α̇|R, r〉h.w. = 0).

This type of shortening is 1
4 -BPS (two out of eight Qs).

14To derive the precise factors of 2 and signs you need to check Jacobi identities.
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Shortening Conditions Multiplet

B1 Q1
α|R, r〉h.w. = 0 j = 0 ∆ = 2R+ r BR,r(0,j̄)

B̄2 Q̃2α̇|R, r〉h.w. = 0 j̄ = 0 ∆ = 2R− r B̄R,r(j,0)

E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)
Ē B̄1 ∩ B̄2 R = 0 ∆ = −r Ēr(j,0)

B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ = 2R B̂R

C1 εαβQ1
β |R, r〉h.w.α = 0 ∆ = 2 + 2j + 2R+ r CR,r(j,j̄)

(Q1)2|R, r〉h.w. = 0 for j = 0 ∆ = 2 + 2R+ r CR,r(0,j̄)
C̄2 εα̇β̇Q̃2β̇ |R, r〉h.w.α̇ = 0 ∆ = 2 + 2j̄ + 2R− r C̄R,r(j,j̄)

(Q̃2)2|R, r〉h.w. = 0 for j̄ = 0 ∆ = 2 + 2R− r C̄R,r(j,0)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)
F̄ C̄1 ∩ C̄2 R = 0 ∆ = 2 + 2j̄ − r C̄0,r(j,j̄)
Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R+ j + j̄ ĈR(j,j̄)

F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R+ j̄ DR(0,j̄)

D̄ B̄2 ∩ C1 −r = j + 1 ∆ = 1 + 2R+ j D̄R(j,0)

G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = r = 1 + j̄ D0(0,j̄)

Ḡ Ē ∩ C1 −r = j + 1, R = 0 ∆ = −r = 1 + j D̄0(j,0)

Table 6. Shortening conditions and short multiplets for the N = 2 superconformal algebra.

• C-type: εαβQβ |R, r〉h.w.α = 0 which means that only one (combination of) super-
charge(s) kills the highest weight state. This condition is half as strong as the B-type.
For N = 2 we have two C-type conditions:

– C1: εαβQ1
β |R, r〉h.w. = 0 (or C̄1)

– C2: εαβQ2
β |R, r〉h.w. = 0 (or C̄2).

C-type shortening is 1
8 -BPS (one out of eight Qs).

Now we can list all the possible combinations of the shortening conditions above. This was
done by [47] and we summarise their findings in Table 6. There are three types of multiplets
that are 1

2 -BPS. We have in total QAα , Q̃β̇B: 2 × 2 + 2 × 2 = 8 Qs. 1
2 -BPS means that 4

supercharges kill the primary. For these lectures it is important for the reader to at least
pay attention to these maximally short, irreducible superconformal representations:

• Er = Er(0,0) whose highest weight state is materialised by trφ̄` with ` = r (see Table 13
for our convensions) and obeys the shortening condition ∆ = r from Q̃I α̇|h.w.〉 = 0
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for all I,α̇. The scalar φ is the adjoint complex scalar inside the vector multiplet.

∆

` 0(0,0)

`+ 1
2

1
2(0, 1

2)
`+ 1 0(0,1), 1(0,0)

`+ 3
2

1
2(0, 1

2)
`+ 2 0(0,0)

r ` `− 1
2 `− 1 `− 3

2 `− 2

The case E1 is special as it is the N = 2 vector multiplet we discovered above studying
the supersymmetry algebra (together with its equations of motion and the auxiliary
field). The field content of the N = 2 vector multiplet without the equations of
motion (after they are removed as they correspond to null vectors) is captured by
D0(0,0). The case E2 is also important as it contains the Lagrangian of N = 2 theories
as a descendant. Schematically, the Lagrangian is L = Q4trφ2. The highest weight
operators of Er parameterise the Coulomb branch (= supersymmetric vacua with
〈φ〉 = a and 〈Q〉 = 0, important for other applications).

• B̂R whose higherst weight state obeys ∆ = 2R. This shortening condition requires
r = 0, j = j̄ = 0.

∆

2 1(0,0)
5
2

1
2( 1

2
,0)

1
2(0, 1

2)
3 0(0,0) 0( 1

2
, 1
2) 0(0,0)

7
2

4 −0(0,0)

r 1 1
2 0 −1

2 −1

For R = 1, ∆ = 2 the B̂1 multiplet has as its highest weight state the mesonic operator
M3 of the N = 2 chiral ring (a.k.a. moment map) which is a triplet of the SU(2)R. It
also contains the flavor current as the vector field with ∆ = 3 and labeled by 0( 1

2
, 1
2).

The ∆ = 4 element denoted as −0(0,0) corresponds to the conservation of the flavor
current. For R = 1/2 we get the hypermultiplet. The highest weight operators of B̂R
parameterise the Higgs branch (= susy vacua with 〈φ〉 = 0 and 〈Q〉 6= 0).

• Ĉ0(j,j̄) = Ĉ(j,j̄) with shortening condition ∆ = 2 + j + j̄. For j = j̄ = 0 the multiplet
Ĉ0(0,0) contains the stress energy tensor (the state 0(1,1) with ∆ = 4), the su-
percurrents (the states 1

2(1, 1
2) and 1

2( 1
2
,1) with ∆ = 7/2) and SU(2)R and the U(1)r
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R-symmetry currents (1( 1
2
, 1
2

) and 0( 1
2
, 1
2) respecively) of the N = 2 theory.

∆

2 0(0,0)

5
2

1
2( 1

2
,0)

1
2(0, 1

2)

3 0(1,0) 1( 1
2
, 1
2

), 0( 1
2
, 1
2) 0(0,1)

7
2

1
2(1, 1

2)
1
2( 1

2
,1)

4 0(1,1)

−0(0,0), −1(0,0)

9
2 −1

2 ( 1
2
,0)

−1
2 (0, 1

2
)

5 −0( 1
2
, 1
2

)

r 1 1
2 0 −1

2 −1

(5.18)

The Ĉ(0,0) multiplet has as its primary a “length two” scalar T = φ̄φ−M1
15. On the other

hand in generic theories Êr and B̂R can have arbitrary length. Moreover, operators that
obey these shortening conditions are protected (their anomalous dimensions will be zero)
and they will serve as possible vacua of the N = 2 spin chains.

There is one more multiplet that is not 1/2 BPS, but 1/4 BPS which we wish to mention
here, the C0,r(0,0) which obeys two C-type conditions and has a primary with R = 0 and
∆ = 2 + r. The primaries of these multiplets are tr

(
T φ̄`

)
with ` = r and are also protected

operators. The tr
(
T φ`

)
operators correspond to the KK tower of a 7D sugra multiplet [40].

They will describe states with a gapless magnon with momentum p = 0, as we will see in
the next section.

As we learned in the previous section the recombination rules of the different short
multiplets can teach us lessons concerning the dynamic of the CFTs. The recombination
rules for N = 2 superconformal algebra are [47]

A2R+r+2j+2
R,r(j,j̄)

' CR,r(j,j̄) ⊕ CR+ 1
2
,r+ 1

2
(j− 1

2
,j̄) (5.19)

A2R−r+2j̄+2
R,r(j,j̄)

' C̄R,r(j,j̄) ⊕ C̄R+ 1
2
,r− 1

2
(j,j̄− 1

2
) (5.20)

A2R+j+j̄+2
R,j−j̄(j,j̄) ' ĈR(j,j̄) ⊕ ĈR+ 1

2
(j− 1

2
,j̄) ⊕ ĈR+ 1

2
(j,j̄− 1

2
) ⊕ ĈR+1(j− 1

2
,j̄− 1

2
) . (5.21)

15To obtain this precise form of the eigenvector of the Dilatation operator, an one-loop calculation is
needed [49]. See Section 6.4.
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Note that the Er, and their conjugates, B̂R with R = 1/2, 1, 3/2, DR with R = 0, 1/2

and their conjugate multiplets can never appear at the right hand side of a recombination
rule16 and thus are protected. The same is true also for B 1

2
,r(0,j̄) and B 1

2
,r(j,0). This way

we immediately learn that all Coulomb branch operators are guaranteed to be protected.
Similarly all the mesonic operators (moment maps), which generate the Higgs branch, are
protected by representation theory alone.

The representations of N = 4 superalgebra can be decomposed to N = 2 representa-
tions so we will not separately present them here, however, we wish to mention that N = 4

superalgebra has one 1
2 -BPS multiplet that decomposes to N = 2 multiplets as [47]

B
1
2
, 1
2

[0,p,0] ' (p+ 1)B̂ 1
2
p ⊕ Ep(0,0) ⊕ Ē−p(0,0)

⊕(p− 1)Ĉ 1
2
p−1(0,0) ⊕ p(D 1

2
(p−1)(0,0) ⊕ D̄ 1

2
(p−1)(0,0)

⊕
p−2⊕
k=1

(k + 1)(B 1
2
k,p−k(0,0) ⊕ B̄ 1

2
k,k−p(0,0))

⊕
p−3⊕
k=0

(k + 1)(C 1
2
k,p−k−2(0,0) ⊕ C̄ 1

2
k,k−p+2(0,0))

⊕
p−4⊕
k=0

p−k−4⊕
l=0

(k + 1)Ap1
2
k,p−k−4−2l(0,0)

. (5.22)

Here the subrscript [q, p, s] denotes the Dynkin labels of SU(4)R while the superscript 1
2 ,

1
2

is there to remind us that the multiplet is 1
2 -BPS. Given the fact that (5.22) contains Er

operators which as we saw above cannot recombine, B
1
2
, 1
2

[0,p,0] contains the operators that are

protected. As we will see in the next sections, operators in B
1
2
, 1
2

[0,p,0] are possible vacua for
the spin chain of N = 4 SYM. Similarly, operators in multiplets on the right hand side of
(5.22) are also protected for the corresponding N = 2 SCFTs and provide possible vacua
for the spin chains of N = 2 SCFTs.

The 1
2 -BPS multiplet B

1
2
, 1
2

[0,1,0] (with p = 1) plus derivatives is the so called singleton
multiplet of N = 4 SYM and contains all the single fields of the massless N = 4 super-
symmetry representation, the N = 4 vector multiplet. This representation is used to build
up the spin chains of N = 4 SYM as the state space for every lattice site is the singleton
representation. N = 2 SCA has three distinct irreducible singleton representations:

• V = D̄0 the vector multiplet with shortening condition ∆ = −r = 1

• V̄ = D0 the conjugate vector multiplet with ∆ = r = 1

• H = B̂1/2 the hypermultiplet (real representation) with ∆ = 2R = 2.

16To see this statement one needs to know that for the special cases ĈR(j,− 1
2

) ' D̄R+ 1
2

(j,0), ĈR(− 1
2
,j̄) '

DR+ 1
2

(0,j̄) and DR(0,− 1
2

) ' D̄R(− 1
2
,0) ' B̂R+ 1

2
.
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6 Spin chains of N = 2 SCFTs

We now turn to the main purpose of these notes, to construct and study spin chains of
N = 2 SCFTs. We will always present the features of the spin chains of N = 2 SCFTs by
comparing them with the features of the spin chains of N = 4 SYM which we will assume
the reader is familiar with. More details on the the spin chains of N = 4 SYM can be found
in this volume in the lectures notes of Marius de Leeuw [24], in the Special issue [50], as
well as in the review [1].

6.1 The Veneziano large N limit

N = 4 SYM is known to be integrable in the large N limit. As we learned in Section 3, all
the fields of N = 4 SYM are in the same N = 4 vector multiplet and they are all in the
adjoint representation of the color group. Thus, we can use the usual ’t Hooft large N limit
which is simply taken by sending the number of colors N → ∞ and keeping the coupling
constant λ = g2

YMN fixed. Gauge theories with quarks, and in particular N = 2 SCFTs,
have more parameters, like the number of flavors Nf which we also have to specify how to
treat the large N limit. There are two possible options. The first is to send N →∞ while
keeping Nf fixed (Nf << Nc a.k.a. quenched approximation). For theories with N = 2

supersymmetry the beta function is one-loop exact [44]. For example for N = 2 SQCD,

β =
g3

16π2
(Nf − 2Nc) (6.1)

and thus, if we take the large N limit keeping Nf fixed we cannot obtain a CFT. N = 2

SCFTs and in particular SCQCD admits a Veneziano expansion:

N = Nc →∞ and Nf →∞ with Nf
Nc

= 2 and λ = g2
YMN kept fixed.

In this case it is useful to use “generalized double line notation” where we draw Feynman
diagrams with propagators:

a d

b c

a b

i j

where the black line depicts the color index a, b, c, d = 1, . . . , N while the blue dashed
line the flavor index i, j = 1, . . . , Nf . Using Witten’s normalization [51] where we pull
out a factor of N in front of the single trace Lagrangian, each vertex contributes λN ,
each propagator with 1/N and each closed color loop (or flavor loop in the Veneziano
case) contributes one more N . We can quickly convince ourselves via working out a few
examples that an important feature of the the Veneziano limit, where Nf ∝ Nc is that the
two diagrams below are of the same order: N2.

Exactly because in the Veneziano expansion N ∝ Nf , pure “gluball” type operators (with
fields only in the vector multiplet) will mix with operators that contain “mesons” (hypers):

O ∼ Tr
(
φ`φ̄
)

+ Tr
(
φ`−1qiq̄

i
)
,
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the AdS gravity dual will have closed string states that correspond to these “generalized
single-trace” operators [40]

Tr
(
φk1M`1φk2 . . . φknM`n

)
, Ma

b ≡
Nf∑
i=1

qai q̄
i
b , a, b = 1, . . . , N , i = 1, . . . , Nf ,

where it is important to stress that when we have a quark q inside the trace, we need to
put a q̄ right after it and flavor contract them, forming a meson in the adjoint of the color
groupMa

b, so that we pick up the leading N contribution.

6.2 The state space

We describe the spin chains of N = 4 SYM by allowing each site to host a “letter” from
the unique ultrashort singleton multiplet (= the 1

2 -BPS B
1
2
, 1
2

[0,1,0] multiplet with an arbitrary
number of covariant derivatives Dαα̇ on each field17.):

V = Dn
(
X, Y, Z, X̄, Ȳ , Z̄, λAα , λ̄

α̇
A, Fαβ , F̄α̇β̇

)
.

The state space of every lattice site is V` = V and the total space is obtained simply by the
product ⊗L` V` over all the lattice sites of the chain that are L. These types of spin chains
with the same state space on every lattice site are the ones that are mostly studied in the
“AdS/CFT integrability” literature.

For N = 2 SCFTs, obtaining the total space is more complicated. The state space at
each lattice site is spanned by

V` = {V , V̄ , H , H̄}

where V and H now denote the D0(0,0) and B̂1/2 ultra short representations of the N = 2

SCA again with an arbitrary number of derivatives on each field:

V = Dn
(
φ , λIα , Fαβ

)a
b , H = Dn

(
QI , ψ ,

¯̃
ψ
)a

i

where a, b = 1, . . . , N are color indices, while i = 1, . . . , Nf is a flavor index. However, it
is very important to note that due to the large N limit, the color index structure imposes
restrictions on the total space ⊗L` V`:

· · · φφQ Q̄φφ · · · = · · · φa bQb i Q̄i c φc d · · ·
17Even though we omit the spinor indices and schematically write Dn we don’t forget that antisym-

metrized contractions of the covariant derivtives of the form
[
Dαα̇ , Dββ̇

]
∝ εαβF̄α̇β̇ + εα̇β̇Fαβ create a

second field or a second cite to the spin chain, increasing it’s lenght.
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where all a, b, c, d = 1, . . . , N are color indices. For example Qφ and φQ̄ are not allowed in
the strict large N limit. Moreover, for the SCQCD every time we have Q we need to put
Q̄ right after it so that we can flavor contract them. Q̄Q is also not allowed in the strict
Veneziano large N limit. The field content of N = 2 SQCD is summarized in Table 13. We
are not aware of an elegant way to describe these restrictions, other than the “orbifolding
procedure” which will be one of the important reasons why we find it useful to think of
N = 2 SCQCD as a ǧ → 0 limit of the interpolating quiver depicted in Figure 2.

Note that in the case of ABJM alternating spin chains have been studied. However the
ones we are dealing with now are much more complicated.

6.3 Vacua of the spin chain

As we learned in Section 5 as opposed to N = 4 SYM for which all protected operators
come from the B

1
2
, 1
2

[0,p,0] multiplet, for N = 2 SCFTs, we have different types of the possible
short N = 2 SCA multiplets. This means that we have many options for vacua. In the case
of N = 4 SYM we usually make the choice of vacuum to be the operator trZp which is a
highest weight state of B

1
2
, 1
2

[0,p,0] with ∆ = p. This is also known as the Berenstein-Maldacena-
Nastase (BMN) vacuum (a classical string rotating in S5) [52]. An other prominent choice
is the Gubser-Klebanov-Polyakov (GKP) vacuum (classical string rotation in AdS5) [53],
with ∆ − S ∝ logS, but we will not discuss it here. It may be a good idea to also study
excitations of N = 2 spin chains around this vacuum.

For the N = 2 SCQCD the equivalent to the BMN vacuum is the trφ` vacuum with
∆ = −r = ` (Er shortening condition) which is the only scalar operator that can have an
arbitrarily long length and is protected. There is also18 tr

(
T φ`

)
but we prefer to view T

as an excitation in the sea of φs, as we will see in the next section.
For the interpolating quiver depicted in Figure 2 there are (at least) two “reason-

able” choices: B̂R and Er which one could select as BMN-like vacuum. The first possi-
bility is the highest weight state of B̂R with ∆ = 2R and corresponds to the alternating
· · ·QQ̃QQ̃QQ̃ · · · state. The other possibility is Er whose highest weight state has ∆ = −r.
The ∆ = −r choice of the φ-vacua leads to two inequivalent, but degenerate vacua, one for
each vector multiplet of the theory; trφ` and trφ̌`.

In what comes we will concentrate to the φ-vacua. A study of the Q-vacuum is not yet
available in the literature, but it reveals very interesting properties and is work in progress
[54].

6.4 Elementary excitations

Given the complexity of the total state space it is useful for building intuition to begin
by considering first the vacua and then states with only one elementary excitation. All
multi-particle states will be constructed via scattering elementary excitations.

In the case of N = 4 SYM all excitations come from the same (N = 4 vector) multiplet.
Once we make:

18This can be seen either after an one-loop calculation or after the computation of the superconformal
index [40].
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• the choice of vacuum to be trZp with ∆− p = 0 (= magnon number).

• around which there exist 8B + 8F elementary excitations with ∆− p = 1:
λAα , X, X̄, Y, Ȳ , Dαα̇ with A = 1, . . . , 4 the SU(4) index,

• all other ∆− p ≥ 2: Z̄, Fαβ , . . . excitations correspond to composite states.

At one-loop the dispersion relation of a single excitation in the sea of Z’s is

E(p) = 8 sin2
(p

2

)
. (6.2)

A derivation of (6.2) was given in the lectures of Marius de Leeuw [24]. An example of a
composite state for N = 4 SYM is Z̄, which can be understood as a bound state of XX̄
and Y Ȳ :

· · · Z Z Z̄ Z Z · · ·
H(1)

↪−−−−−−→ · · · Z Z
(
XX̄ + Y Ȳ

)
Z Z · · ·

H(1)

↪−−−−−−→ · · · Z Z X Z X̄ Z Z · · ·

Action of the one-loop Dilatation operator (Hamiltonian) H(1) can turn Z̄ to XX̄ and Y Ȳ
which after further actions of the one-loop Dilatation operator can separate from each other
and fly apart.

For N = 2 SCQCD it also happens that all excitations come from the vector multiplet.
This fact is due to the color contractions in the large N limit as we discussed in the previous
Subsection 6.2.

• After the choice trφ` for the vacuum with ∆ + r = 0,

• there exist 4B + 4F elementary excitations with ∆ + r = 1:
λIα and Dαα̇ with I = 1, 2 the SU(2)R index.

• All other ∆ + r ≥ 2: M, Fαβ . . . are composite states.

Exactly because the λIαs are in the vector multiplet together with φ there are no funny
restrictions on the state space. Moreover, the Feynman diagrams that we need to compute
in order to obtain the one-loop Hamiltonian elements and in particular the “effective vertex”
are identical19 to the N = 4 SYM ones. Thus, as is the case of the N = 4 SYM the
elementary excitations have energy:

Eλ,D(p) = 8 sin2
(p

2

)
. (6.3)

At this stage a comment is in order. The fact that there exist only 4B + 4F elementary
excitations around the BMN vacuum is related to the fact that the gravity dual of N = 2

SCQCD is a non-critical string theory [40].
Our next step is to study of the composite states. At this point the cautious reader

may have already understood, that they have the strange property of being dimmers which
occupy two sites. For simplicity we will here discuss the one-loop scalar sector of composite
dimmers.

19In superspace tr (WαWα) and tr
(
e−V Φ̄eV Φ

)
are identical both in N = 2 SCFTs and in N = 4 SYM.

– 30 –



One-loop scalar sector of SCQCD: The sub-sector with only scalar fields is closed
only at one-loop. Its neirest neighbor one-loop Hamiltonian reads [49]

H`,`+1 =



φφ QQ̄ Q̄Q φQ

φφ 2I + K− 2P
√

2 0 0

QQ̄
√

2 2 (2I−K) 0 0

Q̄Q 0 0 2K 0

φQ 0 0 0 2I


where I is the identity operator, P the permutation operator and K the trace operator and
they act on the SU(2)R indices. It is a simple exercise to diagonalise the scalar excitation
in the sea of φ’s and get [49]:

T = φ̄φ−M1 with E = 4 sin2
(p

2

)
(6.4)

T̃ = φ̄φ+M1 with E = 8 (6.5)

M3 with E = 8 (6.6)

The singlet and the triplet under the SU(2)R mesons are defined in (A.1). These states of
the one-loop scalar sector of SCQCD should be understood as composite (dimeric - they
occupy two sites) and have ∆+r = 2. To see that T , T̃ andM3 can decay to two elementary
excitations λ, we need to use a higher than an one-loop element of the Hamiltonian H(L>1)

· · · φφ
(
φφ̄±M1

)
φφ · · ·

H(L>1)

↪−−−−−−−−→ · · · φφλλφφ · · ·
H(1)

↪−−−−−−→ · · · φφλφλφφ · · ·

The SU(2)R singlets T and T̃ should be though of as bound states of two λs in the singlet
representation of SU(2)R εαβλIαλI β ↔ φ

(
φ̄φ±M1

)
. The same can be done withM3 but

using two λs in the triplet representation of SU(2)R εαβλ1
αλ

2
β ↔ φM3+ . The scattering to

two-loops was studied in [55].
The reader should also note that, as claimed in the previous section, the tr

(
T φ`

)
operator (corresponding to the p = 0 case above) is also a protected operators of N = 2

SCQCD.

Scalar impurities in the interpolating theory: To address the complication that
composite magnons in N = 2 SCQCD are dimeric, it is useful to think that we are “regu-
larizing” the spin chain of N = 2 SCQCD by gauging the flavor symmetry and consider the
interpolating orbifold theory (SCQCD ǧ → 0) with ǧ

g being the regulator. We regularize
by inserting φ̌s between the Qs giving the dimeric impurities the possibility to split:

· · · φφQ φ̌ φ̌ · · · φ̌ φ̌ Q̄ φ φ · · ·

It is important to remind the reader that in this case we have two degenerate vacua trφ`

and trφ̌`. A single excitation Q in the sea of φ’s interpolates between the two different
vacua

. . . φ φ φQ φ̌ φ̌ φ̌ . . . (6.7)
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and we need to necessarily consider an open spin chain, as the scalars φ and φ̌ cannot
be color contracted. This is not a gauge invariant operator. Nonetheless, the merit of
considering this non-gauge invariant operator is that after gauging the flavor symmetry, the
Qs can move independently with

∆ + r = 1(= magnon number) ,

thus, they can be interpreted as elementary magnons, bringing us back to 8B+8F elementary
excitations with ∆ + r = 1 and an AdS gravity dual that is a critical string theory. The
dispersion relation of single excitation Q in the sea of φ’s (which can be computed using
the one-loop Hamiltonian (6.9)) [49]:

g2E(p) = 2(g − ǧ)2 + 8 g ǧ sin2
(p

2

)
.

This dispersion relation has a new feature compared to its N = 4 SYM counterpart, a mass
gap g2E(p = 0) = 2(g − ǧ)2. Interestingly,

• at the orbifold point, where g = ǧ, the mass gap is zero and the dispersion relation
becomes identical to the N = 4 SYM one.

• In the SCQCD limit ǧ → 0, E(p) = 2 and the Q’s cannot move any more and the
spin chain breaks (the φ̌s decouple),

in agreement with what we have seen above.

6.5 Important sub-sectors

Sectors with fields only in the N = 2 vector multiplet: As we just saw, adjoint
fermions λ in the sea of φ’s at one-loop have dispersion relation and scattering matrices
identical to their N = 4 SYM counterparts. Precisely the same is true for derivatives D in
the sea of φ’s [56]. These two cases correspond to important closed sub-sectors are known
as the SU(1|1) and SU(1, 1) sectors, respectively. The SU(1|1) sub-sector is made out of
one adjoint scalar and one adjoint fermion both in the N = 2 vector multiplet (φ, λI=+

α=+)

which are related to each other by the supercharge in the su(1|1) superalgebra. Similarly
the non-compact SU(1, 1) bosonic sector is made out of operators with φ’s and one kind of
derivative, say D++̇. Both of them have the advantage that are closed to all-loops, simply
by charge conservation and due to their symmetry and field content being identical to their
N = 4 SYM counterparts. The reader is invited to draw the Feynman diagrams which
would compute the Hamiltonians to explicitly see that, after recalling that the pieces of
the action tr (WαWα) and tr

(
e−V Φ̄eV Φ

)
which are used for the computation are identical

both in N = 2 SCFTs and in N = 4 SYM.
The biggest possible sector of operators that is made only out of fields in the N = 2

vector multiplet and that is closed to all-loops is the SU(2, 1|2) sector [57]:{
φ , λI+ , F++ , D+α̇

}
. (6.8)
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Above, for simplicity we choose α = + in order to get the highest-weight state of the sym-
metric representation of the SU(2)α part of the Lorentz group. Clearly, all the statements
that we will make below hold for any element in the symmetric representation. Let us also
recall that I = 1, 2 is the SU(2)R symmetry index. At one-loop it is immediately clear
from the Lagrangian that the scattering of two magnons is identical to scatering in N = 4

SYM. And this this sector is integrable with it’s integrability working exactly like in N = 4

SYM, a statement that remains true to any loop order [57].
In case it is not clear to the reader, we clarify the advantage of thinking about the

smallest possible and the largest possible sub-sectors. The smallest possible sub-sectors
are easy to prove that they are closed and to see that they are integrable [58], as they
contain only one type of magnon. Larger sectors contain more magnons and it is harder
to show integrability [59]. However, their symmetry (their superalgebra) is large enough to
completely fix their Hamiltonian at least to three-loops [60–62] and their all-loop scattering
matrix [63].

Sectors with hypermultiplets:

The “SU(2)” sector: For the interpolating quiver theory there exists a scalar, closed to
all-loops sub-sector with ∆ = 2R− r and j = j̄ = 0 which is made out of the color adjoints
φ and φ̌ and the bifundamentals Q and Q̃. We will refer to it as the “SU(2)” sector, because
although it resembles a lot the SU(2) sector of N = 4, for N = 2 gauge theories there is
no SU(2) symmetry that rotates the different species into one another.

The one-loop Hamiltonian in this “SU(2)” sector is nearest neighbour type

H`,`+1 =



φφ QQ̃ φ̌φ̌ Q̃Q φQ Qφ̌ φ̌Q̃ Q̃φ

φφ 0 0 0 0 0 0 0 0

QQ̃ 0 0 0 0 0 0 0 0

φ̌φ̌ 0 0 0 0 0 0 0 0

Q̃Q 0 0 0 0 0 0 0 0

φQ 0 0 0 0 2 −2κ 0 0

Qφ̌ 0 0 0 0 −2κ 2κ2 0 0

φ̌Q̃ 0 0 0 0 0 0 2κ2 −2κ

Q̃φ 0 0 0 0 0 0 −2κ 2


(6.9)

with κ = ǧ
g .

As discussed before, there are only two ∆ = −r operators which correspond to the two
inequivalent, but degenerate φ-vacua: tr

(
φ`
)
and tr

(
φ̌`
)
vacua. In these two φ-vacua we

can have two inequivalent ∆ + r = 1 excitations Q and Q̃ which interpolate between the
two different vacua as

· · ·φφφQ φ̌ φ̌ φ̌ · · · (6.10)

· · · φ̌ φ̌ φ̌ Q̃ φ φφ · · ·

and have the dispersion relation

g2E(p) = 2(g − ǧ)2 + 8 g ǧ sin2
(p

2

)
. (6.11)
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At the two magnon level ∆ + r = 2, there exist two different scattering matrices (for the
two different boundary conditions),

S for · · ·φφφQ φ̌ φ̌ φ̌ · · · φ̌ φ̌ φ̌ Q̃ φ φφ · · ·
S̃ for · · · φ̌ φ̌ φ̌ Q̃ φ φφ · · ·φφφQ φ̌ φ̌ φ̌ · · · ,

which can be derived as in the lectures [24],

S (p1, p2) = −1 + eip1+ip2 − 2κeip2

1 + eip1+ip2 − 2κeip1
(6.12)

and

S̃ (p1, p2) = −1 + eip1+ip2 − 2κ−1eip2

1 + eip1+ip2 − 2κ−1eip1
. (6.13)

The have the form of the scattering matrix of the XXZ spin chain with anisotropy parameter
∆ = κ in the first case and ∆ = 1/κ in the second. Given the fact that S 6= S̃ the standard
YBE is not satisfied

S S̃ S 6= S̃ S S̃. (6.14)

This may suggest that N = 2 SCFTs are not integrable, at least in the usual (rational)
way because already at one-loop (as opposed to N = 4 SYM) the scattering matrix in
scalar sector [49] did not obey the usual YBE. However, the question of integrability is
not so simple to answer and it should be though through more carefully. The XXZ spin
chain is a q-deformation of the XXX spin chain and also integrable, however, the “SU(2)”
sector of N = 2 SCFTs seems to correspond to a nontrivial (twisted) superposition of two
different XXZ spin chains, one with ∆ = κ and one with ∆ = 1/κ. This type of q-deformed
structure seems to remain in higher loops. Via explicit Feynman diagram computations,
we have checked that up to 3-loops in [64].

At this point we cannot resist but to mention the following fact, which will appear
in [54]. The results which we have up to now presented are derived for excitations only
around the φ-vacua. A study around the Q-vacuum for this “SU(2)” sector, brings to light
the following intriguing results. Allowing for a single φ excitation to move in the sea of
· · ·QQ̃QQ̃QQ̃ · · · and using (6.9) we can derive the dispersion relation

Eφ(p) = 2(1 + κ2)− 2

√
(1 + κ2)2 − 2κ2 sin2 p . (6.15)

This looks like the dispersion relation of an elliptic system! Already with just an one-loop
computation!

The “SU(3|2)” sub-sector: As first discussed in [56], the bigger sector which includes
bifundamental magnons and is similar to the SU(3|2) sub-sector of N = 4 SYM is{

φ, φ̌, ψ̄α̇Î=1̂,
¯̃
ψα̇Î=1̂, QI Î=1̂, Q̄I Î=1̂

}
. (6.16)

The merit of this “SU(3|2)” sub-sector is that like for N = 4 SYM [60, 63], it is possible to
fix the Hamiltonian and the scattering matrix simply by symmetry arguments. We will refer
to it as the “SU(3|2)” sub-sector to remember that it includes 3 bosons and two fermions.
There is no SU(3) symmetry, we have only an SU(2|2), which is importantly preserved after
the choice of the φ-vacum.
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¯̃
ψ ψ̄ and ψ̄

¯̃
ψ scattering: The index structure of the fields implies that there cannot be

any transmission, ¯̃
ψ must always be to the left of ψ̄, the process is pure reflection. The one-

loop results of [56] for the four different combinations of fields and indices are summarised
in Table 7,

Incoming Sector Scattering Matrix
¯̃
ψψ̄ 1α̇ ⊗ 3L S(p1, p2, κ)
¯̃
ψψ̄ 3α̇ ⊗ 3L -1
ψ̄

¯̃
ψ 1α̇ ⊗ 3L S(p1, p2, 1/κ)

ψ̄
¯̃
ψ 3α̇ ⊗ 3L -1

Table 7. Components of the S-matrix in the “SU(3|2)” sub-sector.

ψ̄Q, Qψ̄, Q̄ ¯̃
ψ and ¯̃

ψQ̄ scattering: These processes are a little bit more interesting
because we can have reflection and transmission. Taking into account all four combinations
we obtain where

Incoming T and R matrices
ψ̄Q T (p1, p2, κ), R(p1, p2, κ)

Qψ̄ T (p1, p2, 1/κ), R(p1, p2, 1/κ)

Q̄
¯̃
ψ T (p1, p2, κ), R(p1, p2, κ)

¯̃
ψQ̄ T (p1, p2, 1/κ), R(p1, p2, 1/κ)

Table 8. Transmission and reflection coefficients in the “SU(3|2)” sub-sector.

T (p1, p2) = − 1− e−ip2+ip1

κe−ip2 + κeip1 − 2
, (6.17)

R(p1, p2) = −1− κe−ip2 − κeip1 + e−ip2+ip1

κe−ip2 + κeip1 − 2
. (6.18)

To summarise, the take home message from this section and in particular the Tables 7
and 8 is that:

• the scattering of V V in the φ-vacuum is identically the same as in N = 4 SYM,

• the scattering of H̄H in the φ-vacuum has scattering matrix S(p1, p2, κ), while the
HH̄ scattering has S(p1, p2, 1/κ).

6.6 All-loop dispersion relation and Scattering Matrix

Beisert’s symmetry argument [63] and the derivation of the all-loop dispersion relations and
the all-loop scattering matrix for N = 4 SYM was given in the lectures of Olof Ohlsson Sax
on “Factorised scattering in AdS/CFT” in this school. Here we will only recall the essential
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elements which render this derivation possible and emphasise the differences between N = 4

SYM and the N = 2 SCFTs in which we are interested. The fact that the all-loop dispersion
relation and scattering matrix are also possible to derive for N = 2 SCFTs was shown in
[65], which we will follow and where the interested reader should turn for further details.

SU(2)α̇ SU(2)R SU(2)α SU(2)L
SU(2)α̇ Lα̇

β̇
Q̄α̇J P α̇β Q̄α̇Ĵ

SU(2)R SI
β̇

RIJ QIβ RIĴ
SU(2)α Pα

β̇
QαJ Lαβ QαĴ

SU(2)L Q̄Î
β̇

RÎJ S Îβ RÎĴ

Table 9. The generators of PSU(2, 2|4).

N = 4 SYM enjoys the full PSU(2, 2|4) symmetry, the generators of which are sum-
marised in Table 9, using a perhaps unusual N = 2 notation. As we have already discussed
in the previous section, to describe magnons we have to first choose a vacuum, around
which we will construct the exited states. We will choose the BMN vacuum trZ`. This
choice of the vacuum breaks half of the symmetries as depicted in the Table 10.

PSU(2, 2|4)
BMN vac.−−−−−−→ PSU(2|2)× PSU(2|2)×R Beisert−−−−−→ SU(2|2)× SU(2|2)×R (6.19)

where R corresponds to the Hamiltonian. Beisert’s idea was to allow for a central extension
of the algebra which he showed is enough to fix the form of the dispersion relation and the
scattering matrix.

SU(2)α̇ SU(2)R SU(2)α SU(2)L
SU(2)α̇ Lα̇

β̇
Qα̇J D†α̇β λ†α̇

Ĵ
SU(2)R SI

β̇
RIJ λ†Iβ X †I

Ĵ
SU(2)α Dα

β̇
λαJ Lαβ QαĴ

SU(2)L λÎ
β̇

X ÎJ S Îβ RÎĴ

Table 10. After choosing the vacuum: broken generators become gapless magnons.

Theorem 6.1. The broken generators (Goldstone excitations) correspond to “gapless magnons”.
These magnons transform in the fundamental of SU(2|2) and have dispersion relation

E(p) = ∆− |r| =
√

1 + h (g) sin2
(p

2

)
(6.20)

The two-body scattering matrix is fixed by Beisert’s centrally extended SU(2|2) × SU(2|2)

symmetry.

Note that Beisert’s centrally extended SU(2|2) symmetry is enough to fix the dispersion
relation and the scattering matrix up to a single function h(g). For N = 4 SYM, explicit
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Feynman diagram computations (up to 5-loops [31]) and string theory computations using
AdS/CFT (up to one-loop) give

h (g) = g2 . (6.21)

At this moment we wish to stress that there is no way to show (6.21) in any way other
than explicit Feynman diagram computations! Strictly speaking (6.21) is an input, an
assumption, in the N = 4 SYM integrability business.

SU(2)α̇ SU(2)R SU(2)α SU(2)L
SU(2)α̇ Lα̇

β̇
Qα̇J P α̇β

SU(2)R SI
β̇

RIJ QIβ
SU(2)α Pα

β̇
QαJ Lαβ

SU(2)L RÎĴ
Table 11. The superconformal algebra plus global symmetry.

For the interpolating quiver (depicted in Figure 2) we begin with the full N = 2 SCA
SU(2, 2|2) plus an extra SU(2)L global symmetry (see Appendix A.2). The choice of the
φ-vacuum breaks the symmetry down to SU(2α)× SU(2Î)× SU(2α̇|2I) and we obtain the
excitations/magnons depicted in Table 12. For generic N = 2 SCFTs which enjoy just the
SU(2, 2|2) SCA, after choosing the vacuum to be trφ` we break the symmetry down to
SU(2α̇|2R)× SU(2)α. Comparing this with N = 4 SYM we can say the following.

SU(2)α̇ SU(2)R SU(2)α SU(2)L
SU(2)α̇ Lα̇

β̇
Qα̇J D†α̇β ψ†α̇

Ĵ
SU(2)R SI

β̇
RIJ λ†Iβ Q̄ IĴ

SU(2)α Dα
β̇

λαJ Lαβ
SU(2)L ψÎ

β̇
QÎJ RÎĴ

Table 12. After choosing the vacuum: broken generators become gapless magnons and we have
some extra magnons that do not come from broken generators.

The broken generators, as is the case for N = 4 SYM, correspond to Goldstone excita-
tions and lead to gapless magnons. These magnons come from the N = 2 vector multiplet
and have the same dispersion relation as the excitations of N = 4 SYM,

Eλ,D(p) =

√
1 + 8g2 sin2

(p
2

)
. (6.22)

Notice that as for the N = 4 SYM, the centrally extended SU(2|2) symmetry is enough to
fix the dispersion relation and the scattering matrix up to a single function g2 = f(g, ǧ) =

g2 + · · · in the case that we are expanding around the · · ·φQφ̌ · · · or ǧ2 = f̌(g, ǧ) = ǧ2 + · · ·
in the case that we are expanding around the · · · φ̌Q̄φ · · · . These functions are computed
up to three-loops in [66]

f(g, ǧ) = g2 + 2
(
ǧ2 − g2

) [
6ζ(3)g4 + 20ζ(5)g4

(
ǧ2 + 3g2

)
+ · · ·

]
. (6.23)
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Non-existing generators to start with correpsond to non-Goldstone excitations and thus
lead to gapped magnons with dispersion relation

EQ,ψ(p) =

√
1 + 2(g − ǧ)2 + 8gǧ sin2

(p
2

)
(6.24)

where again we need to fix two functions (g − ǧ)2 = f1(g, ǧ) = (g − ǧ)2 + · · · and gǧ =

f2(g, ǧ) = gǧ+· · · via Feynman diagram computations. This is explicitly done up to 3-loops
in [64].

For the scattering matrix here we will only say that it can also be computed for any
N = 2 SCFT. After making the choice of vacuum to be trφ`, the scattering matrix of
highest weight states in SU(2)α and SU(2)L is fixed by the centrally extended SU(2|2).
This was done in [65]. The scattering matrix is also completely fixed up to two functions
f1(g, ǧ) and f2(g, ǧ) (as above).

We conclude this section emphasizing that, as we discussed for the one-loop approxima-
tion, there exist two different scattering matrices (for the two different boundary conditions)

S for · · ·φφφQ φ̌ φ̌ φ̌ · · · φ̌ φ̌ φ̌ Q̃ φ φφ · · ·
S̃ for · · · φ̌ φ̌ φ̌ Q̃ φ φφ · · ·φφφQ φ̌ φ̌ φ̌ · · ·

with
S = S (p1, p2, κ) and S̃ = S

(
p1, p2, κ

−1
)
. (6.25)

The matrices in (6.25), given the fact that S 6= S̃ do not satisfy the standard YBE

S S̃ S 6= S̃ S S̃ , (6.26)

precisely as we found in the simplest one-loop, “SU(2)” sector.

We finish this section with yet an other intriguing observation. The SU(2|2) scattering
matrix of [65] for Q excitations in the sea of φφQ φ̌ φ̌ φ̌ has precisely the same form as
the quantum double SU(2|2) scattering matrix of [67], for a certain choice of the quantum
deformation parameters. Similarly, Q̃ excitations in the sea of φ̌ φ̌ Q̃ φ φ have a scattering
matrix which is equal to the quantum double SU(2|2) scattering matrix of [67], for a
slightly different choice (κ ↔ κ−1) of the quantum deformation parameters. This is very
reminiscent of the work of [68] on elliptic quantum groups and a modified, dynamical Yang-
Baxter equation. In fact it looks very possible that this “SU(3|2)” sub-sector is governed by
a certain elliptic integrable model which is precisely based on an elliptic quantum SU(2|2)

and will obey only a dynamical Yang-Baxter equation à la [68].

7 Where we stand

7.1 There is an integrable sub-sector (only vector multiplet)

We already saw that at the one-loop level if we stick to a sub-sector with only fields in one
of the vector multiplets, the Hamiltonian is identical to N = 4 SYM, H(1)

N=2 = H(1)
N=4. To
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one-loop

two-loops

three-loops

1
1

1 2

Figure 5. Representatives of the Feynman diagrams we need to compute to three-loops for the
Hamiltonian of the SU(2, 1|2) sector. The solid lines represents the adjoint Φ chiral superfield in
the N = 2 vector multiplet, while the curly lines the real vector superfield V .

two-loops (second line in Figure 5) the diagram on the left is also identical to its N = 4 SYM
counterpart as we only use vertices from the vector multiplet part of the Lagrangian that
is identical to its counterpart in N = 4 SYM. Leg and vertex corrections can in principle
be different by finite corrections, however at one-loop they happen to be identical to N = 4

SYM, after an explicit computation [64]. Thus, to two-loops H(2)
N=2 = H(2)

N=4. Finally, to
three-loops (third line in Figure 5) the only diagrams20 that can be different from their
N = 4 SYM counterparts, are of the form of the diagram depicted on the right of third line
in Figure 5, which contain a two-loop leg or vertex correction and which is proportional to
the one-loop Hamiltonian,

H(3)
N=2 −H

(3)
N=4 ∝ λ

3H(1)
N=4 ⇒ HN=2 = HN=4(f(λ)) +O(λ4) .

This logic can be iterated until we reach the following conclusion [57]:
Every N = 2 SCFT has a purely gluonic SU(2, 1|2) sector, integrable in the planar limit
with its integrability immediately inherited from N = 4 SYM, as its Dilatation operator

HN=2 (g) = HN=4 (g) .

20There is one diagram to three-loops which could spoil this argument, however, after more careful
examination and explicit computation, this diagram does not contribute to the Hamiltonian because it is
finite, as the non-renormalisation theorem of [29, 30] suggests.
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The effective coupling:

g2 = f(g2) = g2 + g2 (ZN=2 − ZN=4)

encodes the relative finite renormalization of g and we can either compute it via Feyn-
man diagrams (to some loop order), or we can compute it via Localization by comparing
the 1/2-BPS circular Wilson loop, [66]:

WN=2

(
g2
)

= WN=4

(
g2
)
,

to any order we like. What is more, there is a longer list of observables for which this
coupling substitution trick seems to work [69–74]!

Using AdS/CFT we should understand this function f(g2) as the effective string
tension f(g2) = T 2

eff =
(

R4

(2πα′)2

)
eff

. From the gravity dual side we can also check that

the coupling substitution rule works to leading order in the strong coupling limit [70]. All
in all, AdS/CFT seems to suggests that all that happens in comparison to N = 4 SYM is
that f(g2) = T 2

eff renormalizes! Thus, it is not too optimistic to hope is that we should
be able to obtain any observable which classically resides in the factor AdS5 × S1 of the
geometry by replacing g2 → f(g2).

It would be very important to have more diagrammatic checks of the diagrammatic
argument in [57] for the purely gluonic SU(2,1|2) sector, as well as for the coupling substi-
tution rule [66] (beyond four-loops). What is more, it seems that this coupling substitution
rule will also apply to a purely gluonic:

• SU(2, 1|1) sub-sector in any N = 1 superconformal gauge theories [75] and

• SU(2, 1) sub-sector in any N = 0 superconformal gauge theories

which would be worth exploring both with explicit Feynman diagram computations, as well
as with symmetry arguments ( à la Beisert). For N = 1 SCFTs in class Sk most of the
results that we have for N = 2 SCFTs immediately go though. See [76] for a first attempt
with very interesting applications.

7.2 Orbifolds of N = 4 SYM are integrable (with hypers)

In this section we will present a very short review of the work of [41]. Beisert and Roiban
where able to show that the orbifold daughters of N = 4 SYM we introduced in Section 4.4
are integrable. Integrability is also there for more general orbifolds [42], at the orbifold point,
as well as for orbifolds that preserve N = 1 supersymmetry21. Discovering integrability for
orbifold daughters of N = 4 SYM is done through the following steps:

• First we need to define a twist operator which commutes with the fields in the N = 2

vector multiplet, but produces a phase for the “twisted” fields in the hypermultiplet
(recall equation (4.55)).

21Supersymmetry breaking orbifolds suffer from a Tachyon instability [77–79].
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• In the process of computing the anomalous dimensions of untwisted operators, no
twist operator is involved and the orbifold Hamiltonian is the same as in N = 4, as
should be clear from the discussion in in Section 4.4. Thus, the asymptotic Bethe
ansatz equations for untwisted operators are the same as for N = 4 SYM.

• When computing the anomalous dimensions of twisted operators, a twist operator γ
is present but can and should be shifted using the commutation relation (4.55) as

X γ = e2πisX/2γX . (7.1)

This equation determines the phase shift for exchanging γ with X, which sX given
by the R-symmetry of the field X, as in equation (4.55).

• We now should think of γ as one more excitation which does not have a spectral
parameter22. Then, the scattering matrix of it with any other excitation is

SX,γ =
1

Sγ,X
= e2πisX/2 (7.2)

• The Bethe equations are just a product of all the scattering matrices (equations (3.8)
in [41]) and schematically look like:

all exitations∏ M∏
S = 1 (7.3)

where the product
∏M runs over the number of magnons M which our operator

contains and the product
∏all exitations over all possible types including γ.

7.3 Marginal deformations away from the orbifold point

Summarising what we have seen in the sections before, there are some sectors (with only
fields in the vector multiplets) that are integrable, and some sectors which at least naively
are not, because the the standard YBE is not satisfied. These are sectors that include
hypermultiplets and thus will include twisted operators.

Up to now nobody has tried to write down something like (7.3) and to see if they
would produce the correct anomalous dimensions, even at one-loop. It is very possible that
if we can define a twist operator which depends on the coupling constants (the marginal
deformations away from the orbifold point) of the form

X γ = κ± e2πisX/2γX (7.4)

we could succeed in having an equation of the form of (7.3). This idea brings to mind and
should be combined with the work of [80–82].

It is important to stress that even for N = 4 SYM the all-loop Beisert (spin-chain)
SU(2|2) S-matrix does not always satisfy the standard YBE [83]. Although for the world-
sheet SU(2|2) S-matrix the usual YBE is satisfied, showing integrability for the spin-chain

22In this sence γ is more like Z which also does not have a spectral parameter associated to it
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of N = 4 requires the use of the twisted Zamolodchikov-Faddeev (ZF) algebra and only
the twisted YBE is satisfied [83]. The reason for that is that single magnon states can not
simply be tensored to give two-magnon states and that the transformation of the ZF basis
involves the momentum operator. A similar, but more complicated approach seems to be
needed for the spin chains of N = 2 SCFTs.

7.4 Fixing the dilatation operator just with symmetry arguments

Even though there was no time in these lectures to cover this very interesting direction,
we wish to just let the reader know that the N = 2 and N = 1 SCAs are powerful
enough to completely fix the “complete one-loop Hamiltonians”. From [56, 84] we know
how to get the complete one-loop hamiltonians for N = 2 and N = 1 SCFTs purely
using representation theory. Amazingly, even N = 0 Hamiltonians can be fixed only using
the conformal representation theory plus some minimal dynamical input (the multiplet
recombination in (5.11)) [85]!

It is also possible to obtain higher loops Hamiltonians simply via using the supercon-
formal algebra [55], a direction which needs to be pushed further.

8 Conclusions

In these lectures, after a broad introduction to N = 2 SCFTs, we reviewed the state of
the art for spin chains the spectral problem of which computes anomalous dimensions of
local operators in N = 2 SCFTs. We saw that there exist purely gluonic closed sub-sectors
of operators (which are made out only of fields in one vector multiplet) which seem to be
integrable to all-loops with their integrability immediately inherited from N = 4 SYM.
Anomalous dimensions are obtained simply by replacing the coupling constant of N = 4

SYM by g2 → f(g2) the effective coupling which can be fixed from Localization. On the
other hand, sub-sectors of operators in which hypermultiplet fields scatter seem to be q-
deformed versions of their N = 4 SYM counterparts, which do not obey the usual YBE
rational (or trigonometric) integrable models do.

One of the important points we wish to stress is that even though N = 2 spin chains
spin chains look more complicated than the N = 4 SYM ones, and maybe naively not
integrable, we should not be discouraged away from their study. We have stressed that it
is a very good idea to think of many N = 2 SCFTs as orbifold daughters of N = 4 SYM.
At the orbifold point they are known to be integrable [41] and our main task that remains
is to see if we can find a more general integrable model which could incorporate both the
orbifold twist plus marginal deformations.

There is a lot of room to look for integrable models that will possibly describe such
twisted sectors with hypermultiplets, away from the orbifold point. Integrable models are
understood to belong in three big classes: rational, trigonometric and elliptic. The XXX,
XXZ and XYZ spin chains are examples in each class. The same way quantum integrability
is based on the Yangian symmetry Y (g) for rational models, quantum affine algebra Uaff

q (g)

and quantum elliptic group U ell
q,t(g) respectively [86–88] give the tower of conserved charges
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SU(Nc) U(Nf ) SU(2)R U(1)r

QIα 1 1 2 +1/2

SI α 1 1 2 −1/2

Aµ Adj 1 1 0

φ Adj 1 1 −1

λIα Adj 1 2 −1/2

QI � � 2 0

ψα � � 1 +1/2

ψ̃α � � 1 +1/2

M1 Adj + 1 1 1 0

M3 Adj + 1 1 3 0

Table 13. The field content and quantum numbers of N = 2 SCQCD.

for the trigonometric and elliptic models, respectively. We believe that it should be possible
to take this path via combining the insights from the works of [54, 65, 67, 68, 83].
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A Field content and symmetries of N = 2

A.1 N = 2 SCQCD

Our first example of an N = 2 SCFT is N = 2 SQCD with gauge group SU(Nc) and
Nf = 2Nc fundamental hypermultiplets. We refer to this theory as N = 2 SCQCD to stress
the fact that it is conformal (6.1). Its global symmetry group is U(Nf )× SU(2)R ×U(1)r,
where SU(2)R × U(1)r is the R-symmetry subgroup of the superconformal group. We use
indices I,J = ± for SU(2)R, i, j = 1, . . . Nf for the flavor group U(Nf ) and a, b = 1, . . . Nc

for the color group SU(Nc).
Table 13 summarizes the field content and quantum numbers of the model. In the

conventions we are using the supercharges QIα, Q̄I α̇ and their conformal counterparts SI α,
S̄Iα̇ are SU(2)R doublets with charges ±1/2 under U(1)r.

Finally, we find useful to define the flavor contracted mesonic operators

M Ia
J b ≡

1√
2
Q a
J i Q̄

I i
b ,

which can be decomposed into the SU(2)R singlet and triplet combinations

M1 ≡M I
I and M I

3J ≡M I
J −

1

2
M K
K δIJ . (A.1)
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SU(Nc)1 SU(Nc)2 SU(2)R SU(2)L U(1)R

QIα 1 1 2 1 +1/2
SI α 1 1 2 1 –1/2

Aµ Adj 1 1 1 0
Aµ 1 Adj 1 1 0
φ Adj 1 1 1 –1
φ 1 Adj 1 1 –1
λI Adj 1 2 1 –1/2
λI 1 Adj 2 1 –1/2
QIÎ � � 2 2 0
ψÎ � � 1 2 +1/2
ψ̃Î � � 1 2 +1/2

Table 14. The field content and quantum numbers of the N = 2 interpolating quiver.

A.2 Z2 orbifold of N = 4 and the interpolating quiver

The second main example of an N = 2 SCFT use discuss in these notes is the marginally
deformed orbifold daughter of N = 4 SYM with its quiver depicted in Figure 2. Its field
content consists of two N = 2 vector multiplets (φ, λI , Am) and (φ̌, λ̌I , Ǎm), and two
bifundamental hypermultiplets, (QI,+̂, ψ+̂, ψ̃+̂) and (QI,−̂, ψ−̂, ψ̃−̂). Table 14 summarizes
the field content and quantum numbers of the orbifold theory. The two gauge-couplings gYM
and ǧYM can be independently varied while preserving N = 2 superconformal invariance,
thus defining a two-parameter family of N = 2 SCFTs.

A global SU(2)L symmetry is present for all values of the couplings (apart from the
SU(2)R × U(1)r R-symmetry). At the orbifold point gYM = ǧYM there is an extra Z2

symmetry acting as

φ↔ φ̌ , λI ↔ λ̌I , Aµ ↔ Ǎµ , ψÎ ↔ ψ̃Î , QIÎ ↔ −εIJ εÎĴ Q̄
J Ĵ . (A.2)

Setting ǧYM = 0, the second vector multiplet (φ̌, λ̌I , Ǎm) becomes free and completely
decouples from the rest of theory, which happens to coincide with N = 2 SCQCD (indeed
the field content is the same and N = 2 susy does the rest). The SU(Nč) symmetry can
now be interpreted as a global flavor symmetry. What is more, for ǧYM = 0 there is a
symmetry enhancement SU(Nč) × SU(2)L → U(Nf = 2Nc) the SU(Nč) index ǎ and the
SU(2)L index Î can be combined into a single flavor index i ≡ (ǎ, Î) = 1, . . . 2Nc.
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