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The strength of electroweak symmetry breaking may substantially differ in the early Universe

compared to the present day value. In the Standard Model, the Higgs vacuum expectation value

(vev) vanishes and electroweak symmetry gets restored at temperatures above ∼ 160 GeV due to

the Higgs field interactions with the high-temperature plasma. It was however shown that new light

singlet scalar fields may change this behaviour. The key feature is the non-standard dependence on

the Higgs vev of the new particles mass which can vanish at large Higgs vev, inducing a negative

correction to the Higgs thermal mass, leading to electroweak symmetry non-restoration at high

temperature. We show that such an effect can also be induced by new singlet fermions which on

the other hand have the advantage of not producing unstable directions in the scalar potential,

nor introducing additional hierarchy problems. As temperature drops, such a high-temperature

breaking phase may continuously evolve into the zero-temperature breaking phase or the two phases

can be separated by a temporary phase of restored symmetry. We discuss how our construction can

naturally arise in motivated models of new physics, such as Composite Higgs. This is particularly

relevant for baryogenesis, as it opens a whole class of possibilities in which the baryon asymmetry can

be produced during a high temperature phase transition, while not being erased later by sphalerons.
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I. INTRODUCTION

The Standard Model (SM) predicts electroweak (EW) symmetry restoration at high temperature due to

the large positive thermal corrections to the Higgs mass parameter, coming from the Higgs boson interactions

in the hot plasma, mainly with the top quark, the electroweak gauge bosons and the Higgs boson itself. It

is however interesting to analyse the possibility of EW symmetry non-restoration (SNR) for several reasons.

In the following, we will be mostly interested in a specific type of SNR (so-called continuous SNR) in which

the EW symmetry remains broken from some high temperature (larger than ∼ 160 GeV) down to T = 0.

Moreover, the value of the Higgs field remains larger than the temperature, h/T & 1. Such a specific type

of SNR is very important for electroweak baryogenesis. In this framework, the baryon asymmetry can be

generated during a first-order phase transition in the early universe, but only if this transition results in the

growth of the Higgs vacuum expectation value (vev) to a value higher than the temperature. For instance, a

number of UV completions of the SM contain new scalars above the EW scale, which can undergo such phase

transitions, and are coupled to the Higgs field. However, if the critical typical temperature of the transition

it too high, the electroweak symmetry would remain unbroken and no baryon asymmetry can be generated,

unless the phase transition is supercooled. But in the latter case, any produced baryon asymmetry will still be

washed out by sphalerons after reheating in (B−L) conserving theories if the reheat temperature is too high.

For this reason, EW baryogenesis is generally thought to be tied to happen at T ∼ O(100) GeV, allowing for

h/T & 1. If, on the other hand, EW symmetry is broken by some new high-temperature effects, the baryon

asymmetry produced during the high-scale phase transition can be preserved. This makes it possible to use

new sources of CP-violation without conflict with experimental bounds on electric dipole moments [1], as well

as heavier and less constrained sectors inducing the first-order EW phase transition. High-temperature EW

SNR is therefore highly relevant, although it has so far only been scarcely addressed in the literature.

High-temperature SNR was first discussed by Weinberg in the simple two-scalar model [2] (see Ref. [4]

for full list of subsequent references). Later, the idea was applied to the EW symmetry in Ref. [3–5]. In

these models, high-temperature EW SNR is driven by a new sector containing a large number of relatively

light singlet scalars interacting with the Higgs doublet. In this work, we explore the phenomenon of EW SNR

driven by new fermionic degrees of freedom. The general underlying principle for SNR driven by new particles

is fairly simple. Massless, or sufficiently light (m . T ) particles coupled to the Higgs produce a dip in the

thermal Higgs effective potential of the size δV ∝ −T 4. On the other hand, heavy particles (m� T ) have a

negligible contribution. Having this in mind, we will construct models which feature new singlet fermions with

a specific Higgs-dependent mass. This mass is sizeable at zero Higgs vev h = 0 and vanishes at some large h.

We then find that the plasma containing such fermions induces a correction to the Higgs potential which is

minimized at large h and is able to trigger SNR 1. Such a mass dependence is opposite to the one featured

by the SM fermions, and new fermions will have to be introduced. As their effect on the Higgs field has to

remain sizeable at T ' 160 GeV, where the SM thermal effects would otherwise restore the EW symmetry,

the zero-T mass of such fermions has to be of the same order, i.e. at most a few hundreds of GeV.

The fermionic- and the previously considered scalar-induced SNR have several important differences. First,

having new light fermions is a priori less troublesome from the naturalness point of view. Second, the fermions

do not alter the tree-level scalar potential of the model. The new scalars responsible for SNR do modify it in

1 While in this paper we will concentrate on the case where the only scalar field responsible for EWSB is the Higgs field, our
construction can be straightforwardly extended to SNR due to non-zero vev of an additional scalar that is charged under the
electroweak symmetry in the spirit of Ref. [6–8]. Such a possibility was already discussed in the context of SNR with new
scalars in Ref. [5].
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such a way that the potential becomes unstable at large h values, unless a severe constraint is imposed on the

number of scalars, which typically has to exceed a few hundreds. On the other hand, as we will see in Sec. II C,

fermionic SNR is generically linked to non-renormalizable operators, and therefore has an intrinsic energy and

temperature cutoff, above which the SNR effect disappears or at least the model looses perturbativity.

To show this effect, we will use a simplified model which features only the minimal number of necessary

ingredients for SNR – n copies of a singlet fermion N coupled to the Higgs through a dimension-five operator.

This model can however easily be embedded into more appealing UV completions. We discuss two such

completions – the models of Goldstone Higgs and a singlet+doublet extension of the SM. As for the former

case, high-T SNR has already been discussed in the context of the Little Higgs models in Ref. [9]. However,

in that case, the SNR was supposed to happen only at some high T � mW with a questionable validity

of one-loop predictions [10]. An attempt to achieve a continuous SNR in CH models was reported in [11],

with no viable parameter space found. The main difference of our CH construction, which allows for a

perturbatively controlled SNR, is the presence of a large, at least O(10), number of new fermions with

sufficiently unconstrained couplings.

We will start with a general discussion of the temperature corrections to the Higgs potential in Sec. II

and identify the main ingredients needed to induce SNR with fermions, pointing to a simplified model with

singlet Dirac fermions containing a Higgs-dependent dimension-5 mass term. We dedicate Sec. III to a more

refined analysis, including the estimate of the higher-loop effects, and a numerical computation of the Higgs

vev temperature evolution. The UV completions to the simplified model are presented in Sec. IV. Sec. V

contains a detailed comparison between scalar and fermionic SNR. We summarize our results in Sec. VI. In

appendices A and B we detail the SM thermal corrections and the thermal corrections to the new fermions

mass.

II. THERMAL CORRECTIONS AND SYMMETRY NON-RESTORATION

A. One-Loop Thermal Corrections

The Standard Model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,

provided by a negative mass2 parameter in the scalar potential

V SM
h = −µ

2

2
h2 +

λ

4
h4, (II.1)

where h denotes the average value of the Higgs field, µ ' 90 GeV and λ ' 0.13, with 〈h〉 = vSM = 246 GeV

and m2
h = 126 GeV at the V SM

h minimum. The effect of the Higgs field interaction with high-temperature

plasma can be accounted for by the higher-order corrections to the Higgs potential. The leading “one-loop”

thermal corrections are given by

∆V Tb =
T 4

2π2
Jb[m

2/T 2], ∆V Tf = −2T 4

π2
Jf [m2/T 2] (II.2)

respectively for one thermalized bosonic degree of freedom and one Dirac fermion with mass m. Their

interactions with the Higgs field are encoded in the h-dependent masses m = m(h). The thermal loop

functions are defined as

Jb[x] =

∫ ∞

0

dk k2 log
[
1− e−

√
k2+x

]
, Jf [x] =

∫ ∞

0

dk k2 log
[
1 + e−

√
k2+x

]
. (II.3)

The corrections (II.2) have minima at m2 = 0 (within m2 ≥ 0 region). In the high-temperature limit

m2/T 2 � 1 they simplify to

∆V Tb ' −
π2T 4

90
+
T 2m2

24
, ∆V Tf ' −

7π2T 4

180
+
T 2m2

12
. (II.4)

2 Mass squared should be understood whenever we mention negative scalar mass.
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FI G. 1: S k e t c h of t h e t h e r m al c o r r e c ti o n t o t h e  Hi g g s p o t e nti al (l ef t p a n el ) i n d u c e d b y p a r ti cl e s i n t h e pl a s m a  w h o s e

m a s s d e p e n d s o n t h e  Hi g g s fi el d a s s h o w n o n t h e ri g ht p a n el.  At hi g h t e m p e r a t u r e, a di p i s i n d u c e d i n t h e p o t e nti al

a t t h e p oi nt  w h e r e t h e p a r ti cl e  m a s s t e r m v a ni s h e s.

T h e fi r st t e r m s of t h e e x p a n si o n s ( II. 4) d e fi n e t h e d e pt h of t h e n e g ati v e c or r e cti o n t o t h e  Hi g g s p ot e nti al at

m 2 = 0.  T h e s e c o n d t er m s s et t h e si z e of t h e c or r e cti o n t o  Hi g g s  m a s s i n t h e vi ci nit y of t h e  mi ni m u m,  w hi c h

i s gi v e n b y

δ m 2
h ( T ) ∝ T 2 ( m 2 ( h ))

m = 0
(I I. 5)

O n t h e ot h er h a n d, f or m 2 / T 2 1 t h e t h e r m al c or r e cti o n s v a ni s h.  T h e c or r e s p o n di n g s c h e m ati c pi ct ur e of

t h e o n e-l o o p t h er m al c or r e cti o n i s s h o w n i n  Fi g. 1 . I n t h at fi g u r e,  w e a s s u m e t h at t h e p arti cl e  m a s s gr a d u all y

d e cr e a s e s  wit h h , r e a c h e s z er o a n d t h e n i n cr e a s e s. S u c h a b e h a vi o u r i s e a s y t o r e ali z e f or f er mi o ni c  m a s s t er m s,

w hi c h  w e c o n c e nt r at e o n i n t hi s  w or k.  T h e pl ot s i n  Fi g. 1 ar e o nl y p artl y a p pli c a bl e t o t h e c a s e of s c al ar

fi el d s, a s t h ei r s q u ar e d  m a s s  w o ul d t y pi c all y b e c o m e n e g ati v e aft er r e a c hi n g z er o, l e a di n g t o a n i n st a bilit y.

N o w, t h e t w o  m o st i m p ort a nt a s p e ct s t o a n al y s e ar e  w h er e t h e m (h )  = 0 p oi nt i s l o c at e d a n d h o w st e e p ar e

t h e  w all s ar o u n d t h e di p, i n ot h er  w or d s,  w h at i s t h e si z e of t h e i n d u c e d c or r e cti o n t o t h e  Hi g g s  m a s s ar o u n d

t h e di p.

I n t h e St a n d ar d  M o d el, t h e  m a s s e s of t h e el e m e nt ar y st at e s v a ni s h at h = 0.  C or r e s p o n di n g t h er m al

c or r e cti o n s h a v e a di p ar o u n d h = 0,  w hi c h gr o w s  wit h t e m p er at u r e a n d e v e nt u all y b e c o m e s a gl o b al  mi ni m u m

of t h e p ot e nti al.  T h e r e s ulti n g t h er m al c or r e cti o n t o t h e  Hi g g s  m a s s i n t h e m 2 / T 2 1 li mit i s gi v e n b y

δ m 2
h ( T ) T 2 λ 2

t

4
+

λ

2
+

3 g 2

1 6
+

g 2

1 6
0 .4 T 2 , (II. 6)

w h e r e λ t i s t h e t o p q u ar k  Y u k a w a c o u pli n g a n d g, g ar e  E W g a u g e c o u pli n g s.  T hi s c or r e cti o n i s d o mi n at e d

b y t h e c o nt ri b uti o n of t h e t o p q u ar k. I n t hi s pi ct u r e, t h e r el ati v e st r e n gt h of  E W s y m m et r y b r e a ki n g, h / T ,

d r o p s b el o w 1 at T 1 3 0  G e V a n d  E W s y m m et r y g et s r e st or e d at T 1 6 0  G e V [ 1 6 ].

We t h e r ef or e  w a nt t o i n v e sti g at e  w hi c h t y p e of  m o di fi c ati o n s t o t h e S M d o e s n ot l e a d t o t hi s s y m m et r y

r e st or ati o n, u si n g t h e t h er m al e ff e ct s of f er mi o ni c fi el d s.

B.  M o di fi e d  S t a n d a r d  M o d el I n t e r a c ti o n s

F oll o wi n g t h e p at h of gr a d u al i n cr e a s e of c o m pl e xit y,  w e st art b y c o n si d eri n g t h e c a s e of t h e S M e ff e cti v e

fi el d t h e or y, i. e. t h e t h e or y f e at u ri n g t h e S M st at e s o nl y, b ut c o nt ai ni n g hi g h er- di m e n si o n al o p er at or s.  O n e of

t h e si m pl e st  w a y s t o c h a n g e t h e pi ct u r e d e s cri b e d a b o v e i s f or i n st a n c e t o  m o dif y t h e S M  Y u k a w a i nt er a cti o n s

t o  m a k e t h e f er mi o n  m a s s v a ni s h at s o m e l ar g e  Hi g g s v e v , e. g.

L Y u k = − λ q q̄ h q ( 1 − h 2 / f 2 ) . (II. 7)

w h e r e λ q i s t h e  Y u k a w a c o u pli n g a n d f i s s o m e  m a s s s c al e s u p p r e s si n g t h e di m e n si o n- si x o p er at or. I n s u c h

a c a s e, t h e c o nt ri b uti o n of t h e q q u ar k t o t h e  Hi g g s t h er m al p ot e nti al  w o ul d h a v e t w o  mi ni m a, at t h e p oi nt s
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where mq = 0: one at h = 0 and another at h ∼ f , suggesting a possibility of symmetry non-restoration. The

first subtlety here is that for h ∼ f the effective field theory expansion in the powers of h/f breaks down.

To make any predictions in this regime one needs to invoke some type of UV completion for Eq. (II.7). One

simple example would be the models with a Higgs being a pseudo Nambu-Goldstone boson (PNGB), arising

e.g. as a pion-like state of some new strongly interacting sector. We discuss this option in detail in Sec. IV A.

PNGBs can be conveniently parametrized as phases of trigonometric functions and the term responsible for

the quark mass can for instance take the form

mq ∼ λqf sin(h/f) cos(h/f). (II.8)

The absolute value of the mass (we are not interested in the phase of the fermionic mass terms, as it can be

rotated away) has two minima, at h = 0 and h = πf/2. One should however keep in mind that both minima

are of the same depth

∆V Tf ' −
7π2T 4

180
, (II.9)

see Eq. (II.4). Other thermal corrections (e.g. from the SM gauge bosons) and the zero-temperature potential

typically make the h = 0 minimum deeper. Therefore SNR is not expected to occur, and we have to consider

adding new fermions instead of simply modifying the SM couplings. Nevertheless, the effect of modified

Yukawas is important, as it can facilitate SNR by reducing the SM contribution (e.g. the large correction from

the top quark) to the thermal potential at large h. Moreover, such Yukawa modifications are automatically

present in some beyond-the-Standard-Model constructions, as we will see in Sec. IV A. We should therefore

keep in mind that they play a relevant role.

C. Symmetry Non-Restoration with New Fermions

Let us now add new fermions with a Higgs-dependent mass to the model. The simplest case is a singlet

Dirac fermion N coming in n copies. The Lagrangian leading to SNR is

LN = −m(0)
N N̄N + λN N̄Nh

2/Λ (II.10)

where Λ is the scale at which our effective field theory (EFT) is UV-completed by some heavier states, λN
is a positive coupling and mN is a positive mass parameter. The dip in the thermal correction to the Higgs

potential appears at the point of vanishing N mass (see Fig. 2)

mN (h) = m
(0)
N − λNh2/Λ = 0 −→ h2 = m

(0)
N Λ/λN . (II.11)

Around the Higgs field origin, the negative correction to the Higgs mass in the mN � T limit is approximately

given by

δm2
h[T ] ' nT

2

12
(m2

N (h))′′ = −nλN
m

(0)
N

3Λ
T 2. (II.12)

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections

and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)

and (II.12), we find the necessary condition for this to happen

nλN & 5

(
vSM

m
(0)
N

)(
Λ

TeV

)
or, equivalently, nλN

m
(0)
N

Λ
& 1. (II.13)

This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

mN (h ' 0) . T. (II.14)
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).

Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green

solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N

fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

Λ = 1 TeV, λN = 0.6, mN (vSM) = 0.4 TeV.

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high

temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the

other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),

and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition

of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted

potential

Vtotal = VT=0 + δV TSM + δV TN (II.15)

are discussed in the next section. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)

and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal

correction δV TSM is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs

quartic) and the full thermal correction from the SM states (which tends to become flat at h� T , contrary to

the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal

correction from the N fermions δV TN is given in Eq. (II.2) and is the dominant effect.

In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are sufficiently light compared to

the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a

measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering

baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this

condition is satisfied, sphalerons are not operational and any produced baryon asymmetry during the EW

phase transition cannot be washed out.

In the next section, we refine our discussion and check that our qualitative features are not altered by

higher-order corrections.

III. A MORE REFINED ANALYSIS

Our analysis of high-temperature SNR was so far limited to the discussion of the leading, one-loop thermal

corrections to the Higgs mass. However, the loop expansion in finite-temperature field theory is known for its

poor convergence in some cases. In this section, we analyse higher-loop corrections and derive the conditions
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FIG. 3: Schematic plots of h/T dependence on the temperature. Left: Behaviour found in the SM, or in a model

with new fermions where the SNR condition (II.13) is not met. Center: Model with new fermions where the SNR

condition is satisfied, but the fermions are too heavy to affect the Higgs potential at temperatures around the EW

scale. Right: Model with new fermions satisfying the SNR condition and light enough to contribute to the Higgs

potential at temperatures around the EW scale, such that the sphaleron bound h/T & 1 is always satisfied. For both

the center and right plots, we have assumed that the position of the minimum of the thermal part of the potential

induced by the new fermions, h2 = m
(0)
N Λ/λN , is always greater than T 2 within the plotted temperature range. This

explains why h/T exceeds 1 at high T .

needed to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability,

we test numerically the allowed parameter space.

A. Finite-Temperature Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 4) is approximately

given by (see eq. II.12)

δm
(1-loop)2
h

T 2
∼ nλN

m
(0)
N

Λ
≡ α. (III.1)

and the SNR condition (II.13) then reads

α & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling

λN ∝ 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss

in the following.

The two-loop corrections to the Higgs mass are given by the diagrams (2a) and (2b) in Fig. 4. Both can be

estimated as (we suppress the numerical 3D loop factors, see Eq. (B.1), see also Appendix B 1 for the explicit

computation of the 1-loop correction to the N -mass which is equivalent to the diagram (2a))

δm
(2-loop)2
h

T 2
∼ nλ2N

T 2

Λ2
. (III.3)

First of all, we observe that the relative size of the correction grows with temperature. Such a behaviour is

expected for the loop which is induced by a higher dimensional operator, which also shows that our theory

unavoidably looses perturbativity at high temperatures. Secondly, both corrections are ∝ nλ2N , which in the

λN ∝ 1/n limit scales as 1/n. Thereby, these higher-order effects can be effectively suppressed at large n

consistently with SNR.

Let us now discuss more systematically the loop expansion in this theory. A naive guess would be that the

maximal possible loop expansion parameter is nλNT/Λ. Given that n comes from closed fermionic lines, the
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(1) (2a) (2b)

FIG. 4: The leading one-loop correction to the Higgs mass (1) and two-loop corrections (2a, 2b). Dashed lines

correspond to the Higgs boson and solid to N .

dominant sets of higher-order diagrams should be of the daisy type, with multiple fermionic loops attached

to an internal scalar line, so that each small coupling λN is compensated by the multiplicity factor n

= ⇥

= ⇥

(
1 + �N

T

f
+

✓
�N

T

f

◆2

+ . . .

)

(
1 + n�N

mN

f

T

mh
+

✓
n�N

mN

f

◆2 ✓
T

mh

◆3

+ . . .

)
×
{

1 + nλN
mN

Λ

T

mh
+
(
nλN

mN

Λ

)2( T

mh

)3

+ . . .

}

= ⇥

= ⇥

(
1 + �N

T

f
+

✓
�N

T

f

◆2

+ . . .

)

(
1 + n�N

mN

f

T

mh
+

✓
n�N

mN

f

◆2 ✓
T

mh

◆3

+ . . .

)
×
{

1 +
√
α+ 1 + . . .

}
.

(III.4)

Here the gray blob can be anything, but leading contributions would be the Higgs quartic point interaction

and the fermionic loop. Such diagrams are IR divergent, hence inverse powers of mh (see e.g. Ref. [15] for

the power counting in finite temperature QFT). To write the right-hand side, we used the high-temperature

expression for the Higgs mass m2
h(T )/T 2 ∼ α. We find that the expansion parameter of the series is of

order one and is temperature-independent. In principle one may be able to resum such series with some

resummation technique. This is however not necessary, as the blob it is attached to has to be suppressed

itself, as we now explain.

All other possible loop series have to scale with a lower power of n: any fermionic line, which is not a loop

attached to one scalar line, has more powers of couplings for one power of n and is thus more suppressed.

The highest loop expansion parameter one can think of is e.g. that of the series

, , , , = ×
{

1 + λN
mN

Λ
+ nλ2N

T 2

Λ2
+ nλ3N

T 2

Λ2

mN

Λ
+ . . .

}
,

(III.5)

where the alternating mN factor is required to match the fermion chirality flip induced by the h2N2 vertices.

Such type of series cannot be resummed analytically. We then have to ensure its good convergence, i.e. require

β = nλ2N
T 2

Λ2
� 1. (III.6)

Now, imposing this constraint we see that all the higher loop effects, starting from the two-loop diagrams

(III.3) become suppressed. This also applies to the series of fermionic bubbles (III.4), as they can only appear

on top of some diagrams with h loops, which are by themselves suppressed by β or λh.

A more rigorous way to derive the same conclusions can be for instance by introducing an auxiliary field

σ mediating the h2N2 interaction through σN2 and σh2 vertices, analogously to what is used to analyse

large-n φ4 theories, see e.g. S. Coleman’s lectures [12], and what was also applied to scalar SNR in Ref. [5].

It can be shown that in a transformed theory the leading loop corrections correspond to the diagrams with

the minimal possible number of σ loops. The daisy diagrams (III.4), which we identified as a the leading

loop series, correspond precisely to the series with no extra σ loops, while the subleading series (III.5) has

an increasing number of σ propagators with loop momenta running inside. We do not show this procedure

explicitly as it would bring no improvements to the following analysis.

To sum up, we found that the condition β � 1 is necessary for the perturbative expansion to hold. While

performing a scan over the model parameters, we will use this condition to define the maximal temperature
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of the model applicability,

Tmax =
Λ√
nλN

. (III.7)

We will also use a constraint T < Λ, as the parameter Λ by definition sets the scale of new physics which is

not captured by our EFT. The presence of Tmax is one of the crucial differences with respect to the scalar

SNR scenarios. While the latter are built upon renormalizable interactions, the Λ-suppressed operator in

the fermionic SNR case results in powers of T/Λ in the loop corrections, which grow with T and imply a

temperature cutoff.

For what concerns the higher-order SM thermal corrections, the leading ones correspond to the corrections

to the propagators of the longitudinal SM gauge bosons [17]. They are provided in Appendix A.

B. Zero-Temperature Corrections

We complete the description of the loop effects by discussing the zero-temperature quantum corrections.

At one loop, the SM fields modify the Higgs potential by

δVT=0 =
∑

i

(−1)F
gi

64π2

(
m4
i (h)

(
log

[
m2
i (h)

m2
i (v)

]
− 3

2

)
+ 2m2

i (h)m2
i (v)

)
, (III.8)

which includes counter-terms ensuring the conditions

∂h(δVT=0(v)) = 0, ∂2h(δVT=0(v)) = 0. (III.9)

F = 0(1) for bosons (fermions), gi corresponds to the number of degrees of freedom (gi = 1, 4 for a singlet

real scalar and a singlet Dirac fermion respectively). Using the same renormalization conditions, we obtain

the correction induced by the N loops [19]

δV
(N)
T=0 = − 4n

64π2

(
m4
i (h) log

[
m2
i (h)

µ2

]
+

1

2
c2h

2 +
1

4
c4h

4

)
, (III.10)

with c2, c4 obtained by plugging (III.10) into (III.9)

c2 =

{(
−3

xx′

v
+ x′2 + xx′′

)
log

[
x

µ2

]
− 3

2

xx′

v
+

3

2
x′2 +

1

2
xx′′

}
, (III.11)

c4 =
1

2v2

{
2

(
xx′

v
− x′2 − xx′′

)
log

[
x

µ2

]
+
xx′

v
− 3x′2 − xx′′

}
, (III.12)

and x = m2
N . Notice that in this case the non-renormalizable interaction h2N2 also generates divergent

corrections to the operators ∝ h6, h8. To obtain the expression (III.10) we have fixed the corresponding

counter-terms by simply requiring to cancel respective one-loop corrections up to the finite logarithmic terms.

As this leaves the potential µ-dependent, we fix µ = Λ in the following.

The loop effects in the presence of new fermions can destabilize the Higgs potential at some hinstab (i.e.

the potential would drop below the SM minimum value). We will see in the following that in the parameter

space regions which lead to an efficient SNR the instability scale hinstab is always above the cutoff scale Λ and

also above the h value at which the thermal corrections are minimized. A UV completion of our simplified

model at scales above Λ then can take care of the instability without interfering with SNR and therefore not

affecting the main results of this section.

Now let us discuss the constraints on the applicability of our EFT, caused by the presence of the non-

renormalizable interaction N2h2. The loop corrections would introduce energy-growing corrections to N2h2,

with the expansion parameter

n
λ2N

(16π2)2
p2

Λ2
, (III.13)
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FIG. 5: Left: maximal SNR temperature (colored regions, black labels) for Λ = 1 TeV and n = 10, in terms of the

coupling λN and mN – zero-temperature mass of N at h = 246 GeV. Grey dotted contours show the value of

α = nλNm
(0)
N /Λ. Grey areas feature zero-temperature barriers. Center: temperature dependence of h/T , for three

combinations of mN and λN (corresponding to the three colored points on the left plot). The h/T lines are limited

by the perturbativity from above. Right: Higgs potential at T = 0.1, 0.3, 0.4 TeV, for mN = 0.4 TeV, λN = 0.6.

where p is the typical external momentum. In order for our theory to remain adequate up to the energies

p ∼ Λ, we need to impose

√
n

λN

16π2
� 1 . (III.14)

Importantly, the presence of new physics at the scale ∼ Λ generically introduces corrections to the Higgs

mass of the order

δm2
h(UV ) ∼ n

λN

16π2

mN

Λ
Λ2. (III.15)

Further assuming nλNmN/Λ ∼ 1, as required for SNR, we get δm2
h(UV ) ∝ Λ2. The value of m2

h/Λ
2 therefore

reflects the degree of unnatural fine tuning of the Higgs potential in our model, unless some kind of dynamical

Higgs mass adjustment is assumed, e.g. in the spirit of Ref. [20].

C. Numerical Scan

We present the results of the numerical computation of the h(T ) trajectory in Fig. 5, for a parameter choice

f = 1 TeV and n = 10. In the left panel, we show the contour plot of TSNR – the highest temperature,

starting from which the EW symmetry remains broken with h/T > 1 down to zero temperature. Above the

maximal TSNR, either the model becomes non-perturbative and violates the constraint (III.6), or h/T is less

than 1.

One of the potentially most interesting applications of the above results is for the first-order electroweak

phase transition at temperatures higher than the electroweak scale. While we did not attempt to produce

the first-order phase transition with the help of N fermions, this task can be achieved in a number of ways.

For a concrete example, we can refer to the Composite Higgs set-up, where the electroweak phase transition

happens when the Higgs boson is formed from a new strong-sector confinement phase transition at some

critical temperature Tc. If Tc is lower than TSNR, the Higgs will land in a symmetry breaking minimum, and

remain in the broken phase all the way to T = 0 as a result of the N -induced thermal corrections. This

mechanism may allow to realize the electroweak baryogenesis at the electroweak phase transition even if Tc

is much higher than mW .

Let us now give a few comments on the behaviour of TSNR in Fig. 5. We see that TSNR grows with mN at

low mN , as the negative correction to the Higgs mass is proportional to it, see Eq. (II.12). However, after mN
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FIG. 6: Contours of maximal T of SNR (such that h/T > 1 down to T = 0), as a function of Λ and n.

becomes too large, the corresponding thermal corrections become ineffective at T ∼ 100 GeV. In the latter

case one can still have SNR at high temperature, but at lower T it is followed by a restoration phase, or a

phase with h/T < 1 (see blue line in h(T ) plot).

TSNR also initially grows with λN , however after a certain point the perturbativity requirement (III.7) starts

being a limiting factor and TSNR drops.

The grey area in the upper left and central part of the TSNR plot shows where the one-loop zero-temperature

Higgs potential features a barrier at v < h < min[h(mN = 0),Λ]. This area only covers the regions of a not

very efficient SNR. First of all, this means that the zero-T barrier does not affect our SNR analysis. Secondly,

the new physics, which may be needed to cure the Higgs instability after the barrier, is not expected to affect

our results either. The gray area in the upper right corner, also having no overlap with the best SNR region,

shows where the zero-temperature Higgs potential (III.10) has a barrier at h < vSM.

In Fig. 6 we present the dependence of the maximal TSNR on n and Λ, with λN and mN chosen to

maximize TSNR in each point. The shape of the contours is mostly defined by two factors. First, our theory

is not applicable at temperatures above Λ. This defines the horizontal contours in the lower right part of the

plot. Second, the condition to have a negative thermal mass around the origin (see Eq. (II.13)) together with

having h � T in the minimum of the thermal correction (defined by h2 � m
(0)
N Λ/λN ), gives

TSNR �
√
nm

(0)
N . (III.16)

The h � T condition alone implies TSNR �
√

Λm
(0)
N /λN . The constraint (III.16) defines the vertical contour

lines on the plot. Importantly, the perturbativity bound (III.7) together with the requirement to have a

negative thermal mass gives the same expression for the maximal allowed temperature, T � √
nmN . This

means that the non-perturbativity is not a limiting factor for the maximal SNR temperature in our simple

model. On the other hand, more involved constructions, such as the one presented in Sec. V allowing for a

higher h in the minimum, cannot improve on maximal TSNR, as the perturbativity bound remains the same.

A small distortion of the vertical contours at low n and high Λ is a consequence of the zero-temperature

perturbativity constraint of Eq. (III.14). In most points TSNR is maximized at mN � 0.3...0.5 TeV, with

the upper limit slightly increasing with n. As we will argue in the following, these values are allowed by the

current experimental data.

One of the phenomenological constraints on our simplified model comes from the presence of stable SM

singlet fermions which interact with the SM only through the N2h2 coupling. Analogous models of scalar

SNR [4, 5] were shown to be in tension with the direct dark matter detection experiments. The fixes to this

problem include allowing the SNR states to decay either to the SM particles or to a lighter dark matter state.

We will leave this topic for future studies as the corresponding modifications, if necessary, can be performed
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without affecting the SNR. The only remaining experimental signature of the model, which can be discussed

in a robust way, is a contribution to the BSM Higgs boson decay rate when mN < mh/2. Corresponding

branching ratio, omitting unimportant numerical and phase-space factors is roughly

BRh→NN ∼
1

n

(
nλN

mN

Λ

)2 v2SM
mhΓh

, (III.17)

where the parameter combination in brackets is required to be of order a few to provide SNR and Γh is the

full Higgs boson decay width. The requirement BRh→NN < 0.1 leads to n & 106. The only reasonable way

to satisfy the experimental data is then to have mN > mh/2.

IV. UV COMPLETIONS AND GENERALIZATIONS

We have argued that the model of Section II C is the minimal model realising SNR with new fermions,

and that the non-renormalizability is a necessary companion of fermionic SNR. We will now present a simple

argument in favour of this claim, showing that even in more complex constructions the SNR is always related

to higher-dimensional operators. We will also get an insight on what the (partially) UV completed theory

with SNR should look like, and present two specific examples.

Let us assume we have a theory with some number of new fermions, with the Higgs-dependent masses mi,

contributing to the Higgs thermal potential. In high-T expansion, their effect on the scalar potential is given

by

δV Tf '
T 2

12

∑

i

m2
i =

T 2

12
Tr[M†diagMdiag] =

T 2

12
Tr[M†M] =

T 2

12

∑

a,b

|Mab|2, (IV.1)

where Mdiag is a fermion mass matrix in the mass eigenstate basis, M is the mass matrix in the weak

eigenstate basis, and i, a, b enumerate the fermions. In renormalizable SM extensions the matrix elements

Mab are either Higgs-independent or ∝ h, so that

δV Tf ∝ c1 + c2h
2 with c1,2 ≥ 0, (IV.2)

which can only be minimized at h = 0, thereby leading to high-T symmetry restoration.3 This conclusion can

be overcome if a) some of the fermion-Higgs interactions are of a dimension higher than four or b) mass of

some of the states entering the mass matrix is much greater than T , so that the high-T expansion is not valid.

In both cases the low-energy theory, at which SNR is happening, can be described by non-renormalizable

interactions, of which the simplest one is given in Section II C. We can also conclude that in both cases the

temperature at which SNR happens has to be limited from above by a) the EFT cutoff or b) by the mass of

the heavy states which UV-complete the theory to a renormalizable one.

Below we present two specific motivated UV completions to the simplified model, each satisfying one of the

two conditions mentioned above.

A. Goldstone Higgs

In our first example, we will consider the models where the Higgs is a Nambu-Goldstone (NG) boson of

some approximate symmetry. In the appropriate parametrization [26, 27], the Goldstone Higgs appears in

the Lagrangian in the form of trigonometric functions which, being expanded, can produce the needed non-

renormalizable interactions. For definiteness, in our following discussion we will refer to the composite NG

3 In the case of SNR with new scalars one trivially generates m2
i ∝ (const − h2) from the dimension-four Lagrangian, which

allows to produce a maximum of the Higgs potential at h = 0.
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FIG. 7: Left: h/T evolution with a temperature, in the simplified model (λN/Λ = 0.4 TeV−1, mN (v) = 0.45 TeV,

Λ = 2.1 TeV, n = 15) and in the respective point of the parameter space of the CH model (yL = −yR = 1,

m0
N = 0.1 TeV, m0

ψ = −1.6 TeV, f = 1 TeV). In the CH case we plot f sin(h/f)/T instead of h/T , as EW gauge

bosons masses are ∝ f sin(h/f). The h/T lines are limited by the perturbativity from above. Center: mass

spectrum of the fermions producing the dominant thermal effects. Right: overall Higgs potential at T = 0.3 TeV

(black), zero-temperature potential (orange), thermal potential from SM degrees of freedom (green) and thermal

potential induced by N and ψ (red dashed).

Higgs models [28] with the SO(5) → SO(4) symmetry breaking pattern [29], while other realizations are also

possible.

The Composite Higgs (CH) models can feature both types of the fermionic effects on the thermal Higgs

potential discussed in Sections II B and IIC. The first effect originates from the top quark Yukawa coupling,

which generically takes the form [37]

λtf sin1+p(h/f) cosr(h/f)q̄LtR, (IV.3)

where in the following we will take p = 0, r = 1 for definiteness. f is the Higgs “decay constant” which is

defined by the new strong dynamics. This type of coupling (IV.3) produces the second minimum in the top

quark contribution to the thermal potential at h = (π/2)f . It is important to mention that in the reference

PNGB Higgs models the mass of the SM gauge bosons is proportional to sin(h/f), therefore the second

minimum at h = πf/2 indeed corresponds to the broken electroweak symmetry.

The second type of SNR effects can take place if we introduce additional fermionic states into the model.

In general, even the most minimal CH models do feature new fermionic states – so called partners of SM

fermions, and some of them, such as top partners, can be relatively light [31]. However, their quantum

numbers, couplings and masses are constrained by various requirements, such as a need to reproduce the

observed SM fermion masses, comply with the electroweak precision measurements [32] and flavour physics

constraints [33, 34], as well as with the bounds coming from the direct searches, which are particularly

stringent for the colored partners [35, 36]. For these reasons, we will not try to use SM partners for SNR, but

will rather introduce new states. This would give us freedom to choose their multiplicity, quantum numbers

and couplings. Let us take an elementary SM singlet Dirac fermion N , mixed linearly to its composite SO(4)

singlet partner ψ. Corresponding mass Lagrangian reads

Lmass = f(yLN̄LψR + yRN̄RψL + h.c.) cosh/f −m0
ψψ̄ψ − m̂0

N N̄N . (IV.4)

where yL, yR are dimensionless mixing parameters. The determinant of the mass matrix vanishes at

cos2 h/f =
m0

ψm̂
0
N

yLyRf2
(IV.5)
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which sets the position of the minimum of the thermal correction. The approximate expressions for the mass

eigenvalues (taking yLf, yRf,m
0
N � m0

ψ) are

mN ' m̂0
N −

yLyRf
2

m0
ψ

cos[h/f ]2 , mψ ' m0
ψ +

(y2L + y2R)f2

2m0
ψ

cos[h/f ]2. (IV.6)

Here and in the following we assume N lighter than ψ. For completeness, we show the parametrization that

we use for the tree-level zero-temperature Higgs potential [30]

Vh = α̃ sin2 h/f + β̃ sin4 h/f with α̃ = −2β̃ sin2(vCH/f) , β̃ =
m2
hf

2

8 sin2(vCH/f) cos2(vCH/f)
. (IV.7)

where vCH = f arcsin(vSM/f). While we call this potential a tree-level, it is supposed to be generated by

loops of elementary and composite states. As we are here mainly interested in the general characterisation

of SNR, we will not try to model the dynamics responsible for this potential. For the same reason we will

also not consider the modifications which may be needed to solve the domain wall problem of PNGB Higgs

potentials pointed out in Ref. [11].

Using the same renormalization condition (III.9) we derive the one-loop correction induced by the SM states

and the new fermions

δVT=0 =
∑

i

(−1)F
gi

64π2

(
m4
i (h) log

[
m2
i (h)

µ2

]
+

1

2
c2i(f sin(h/f))2 +

1

4
c4i(f sin(h/f))4

)
, (IV.8)

with

c2i =
1

2f cos(vCH/f)2

{
2
(
fx′2 + fxx′′ − 2xx′(2 cot(2vCH/f) + csc(2vCH/f))

)
log

[
x

µ2

]

+3fx′2 + fxx′′ − 2xx′(2 cot(2vCH/f) + csc(2vCH/f))

}
, (IV.9)

c4i = − 2

f3 cos(2vCH/f)2

{
2
(
fx′2 + fxx′′ − 2xx′ cot(2vCH/f)

)
log

[
x

µ2

]

+3fx′2 + fxx′′ − 2xx′ cot(2vCH/f)

}
, (IV.10)

where x = m2
i . The h-dependence of the divergences induced by the SM states as well as by the new fermions

N and ψ is the same as that of the tree-level potential, hence we do not need to include further terms to

Eq. (IV.7) to cancel them.

In order to make a proper comparison with the simplified model of Section II C, let us expand the expres-

sion (IV.6) in h/f . This allows to establish the following relations

m0
N ←→ m̂0

N −
yLyRf

2

m0
ψ

,
λN
Λ
←→ −yLyR

m0
ψ

. (IV.11)

The role of Λ is taken by the mass of the heavier state ' m0
ψ. Besides Λ, the scale f also plays role in

suppressing high-temperature corrections to the Higgs potential [10], we therefore need to impose T < f .

In the left panel of Fig. 7 we show a comparison of the h(T ) trajectories for the simplified model and the

CH model for one parameters choice. SNR in the CH case is significantly enhanced because of the effect of

the top quark. We chose n = 15 for this plot (and not some lower value, e.g. n = 10, for which the SNR

can happen in the simplified model) because it allows for lower yL,R (see SNR condition (II.13)). At such

low yL,R the T = 0 Higgs potential does not feature any additional unneeded minima. We show the mass

spectrum of the model in the right panel of Fig. 7.

Once embedded into CH setup, the SNR mechanism can have interesting consequences for the electroweak

phase transition, allowing to realize it at higher temperature. We can expect that new viable regions of

parameter space can be opened for instance in the previously analysed models [22–25].
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FIG. 8: Left: h/T evolution with a temperature, in the simplified model (λN = 0.02, mN (v) = 0.4 TeV,

Λ = 2.5 TeV, n = 300) and in the respective point of the parameter space of the singlet-doublet model. Center:

mass spectrum of the fermions producing the dominant thermal effects. Right: overall Higgs potential at

T = 0.3 TeV (black), zero-temperature potential (orange), thermal potential from SM degrees of freedom (green) and

thermal potential induced by N and L (red dashed).

B. Singlet-Doublet Model

Let us now consider a weakly-coupled renormalizable completion of the simplified model. We will assume

that each of the n singlets N has a heavier Dirac SU(2)L doublet partner L = {L0, L−}. With the hypercharge

difference between the two equal to 1, a tree-level coupling with the Higgs boson is now possible. For

concreteness, we fix EW quantum numbers to those of the right-handed neutrino and the left-handed lepton

doublet respectively. The mass Lagrangian takes the form

Lmass = −m̂0
N N̄N −m0

LL̄L+ (y1L̄LH̃NR + y2N̄LH̃
†LR + h.c.), (IV.12)

and the corresponding mass matrix reads



N̄L

L̄0
L

L̄−
L



T 


m̂0
N −y2h/

√
2 0

−y1h/
√
2 m0

L 0

0 0 m0
L





NR

L0
R

L−
R


 . (IV.13)

The electrically-charged state has a Higgs-independent mass and does not affect the thermal Higgs potential.

The determinant of the mass matrix of the two remaining states vanishes at

h2 = 2
m0

Lm̂
0
N

y1y2
. (IV.14)

This defines the point where the thermal Higgs potential can acquire a dip. As we assume that the doublet is

heavier than the singlet, the former can be integrated out at low energies, reproducing the simplified model.

In the y1h, y2h,mN � mL approximation the mass eigenvalues are

mN � m̂0
N − y1y2h

2

2m0
L

, mL � m0
L +

(y21 + y22)h
2

4m0
L

. (IV.15)

Differently from the model of the previous section, the additional layer of fermions L0 has a mass which grows

with h. Their effect on the thermal potential is then to shift the minimum towards the h = 0 point. The

relation between the N -L model and the simplified model is given by

m0
N ←→ m̂0

N ,
λN

Λ
←→ y1y2

2m0
L

, Λ ←→ m0
L . (IV.16)
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The renormalizable N -L model remains a viable description at energies above mL, and we therefore do

not have to impose the T < Λ restriction anymore4. The maximal SNR temperature is however constrained

for another reason as we will show now. First, let us write down the new finite-temperature perturbativity

constraint

ny21y
2
2 < 1 . (IV.17)

The latter can be obtained by expressing Eq. (III.6) using the replacement (IV.16) and accounting for the

fact that the L propagators cancel the temperature growth, so that the perturbativity condition is now

temperature-independent. Combining the rewritten negative thermal mass condition of Eq. (II.13)

ny1y2 & 5 (mL/TeV)(v/mN ) (IV.18)

with the perturbativity bound (IV.17) we obtain

n & 25 (mL/TeV)2(v/mN )2. (IV.19)

Using this expression we can now derive the constraint on the maximal SNR temperature, using the fact that

it cannot exceed mL/4. The reason for the last fact is that the L mass is minimized at h = 0, balancing the

N -fermion contribution to the Higgs potential and therefore shifting (together with the SM states) the global

minimum to h = 0. The L effect on the Higgs potential becomes sizeable at T & mL/4. We thus arrive at

TSNR . 1

5

√
nmN (IV.20)

which is smaller by a factor of 5 than the estimate for the simplified model (III.16). This implies a significant

increase of the number of new fermions needed for SNR compared to the PNGB model of the previous section.

In Fig. (8) we present a numerical comparison of the simplified model and the N -L model for one choice of

parameters.

Finally, we would like to point out that similar singlet-doublet extensions of the Standard Model have found

many applications in BSM model building, motivated in particular by the gauge hierarchy problem or the

baryon asymmetry (for instance in the models of electroweak baryogenesis [13, 14], cosmological relaxation of

the electroweak scale [20] or the weak gravity conjecture-based solution to the gauge hierarchy problem [21])

and therefore SNR may in principle appear as a natural byproduct of these constructions and impact their

phenomenology.

V. COMPARISON WITH SCALAR-INDUCED SYMMETRY NON-RESTORATION AND

TEMPERATURE TRACKING

The simplest realization of the electroweak symmetry nonrestoration, already analysed in the recent liter-

ature [3–5], is given by the renormalizable models with new scalar fields χi coupled to the Higgs boson. We

dedicate this section to the discussion of similarities and differences between these models and our model with

new fermions. We parametrize the new scalar fields interactions via the Lagrangian

L ⊃ −m
(0)2
χ

2

∑

i

χ2
i +

λχh
2

∑

i

χ2
ih

2 − λχ
4

∑

ij

χ2
iχ

2
j , (V.1)

where the sums run over nχ new scalar fields, for which we assume universal masses and couplings. The first

obvious difference is the absence of non-renormalizable interactions, which, on the other hand, are the reason

4 A large number of L fermions charged under U(1) hypercharge could introduce a Landau pole not too far from mL, which
would limit the validity of the singlet-doublet model to that scale only. Moreover, an appropriate UV completion may be
required to fix the instability of the Higgs potential induced at zero T .
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why the fermionic SNR has an intrinsic temperature cutoff. The scalar mass m2
χ = m

(0)2
χ − λχhh2 is positive

at h = 0 and decreases as the Higgs vev grows, thereby adding a negative thermal correction to the Higgs

mass

δm2
h(T ) ' −nχλχh

12
T 2. (V.2)

This correction is active up to the point of the vanishing mχ, which is determined from

m2
χ ≡ m(0)2

χ − λχhh2 = 0 −→ h2 = m(0)2
χ /λχh, (V.3)

and after this point is crossed the χi = 0 vacuum becomes unstable.

For a sufficiently large nχλχh, the χ correction to the Higgs mass (V.2) can exceed the SM contribution

and lead to the stabilization of the Higgs vev away from zero. This is similar to the mechanism at work in the

fermionic SNR case. One of the important differences is that the stability of the scalar potential imposes a

very strict constraint on nχ, which is absent in the fermionic case. Let us however focus on another interesting

difference. It comes from the effect of the quartic coupling λχ, which has no counterpart in the fermionic SNR

model that we discussed. It induces a one-loop thermal correction to the χ mass

δm2
χ(T ) ' (nχ + 2)λχ

12
T 2. (V.4)

So the resulting position of the m2
χ = 0 point actually shifts towards larger h with the temperature:

m2
χ ≡ m(0)2

χ − λχhh2 + δm2
χ(T ) = 0 −→ h2 =

m
(0)2
χ

λχh
+

(nχ + 2)λχ
12λχh

T 2. (V.5)

In this way, the χ-induced thermal potential tracks the temperature, and always pushes the Higgs vev to

values ∝ T , not being limited by any fixed value as in the discussed fermionic model.

We thus find it interesting to discuss the effect of adding four-fermion interaction to our model. It turns

out that such an interaction cannot affect the maximal temperature of a continuous SNR in a significant

way. The reason is that even the simple model without the four-fermion interaction is capable of reaching the

maximal TSNR which is allowed by perturbativity, see discussion in Sec. III C. The four-fermion interactions

can however affect the h(T ) trajectory, e.g. by shifting it to higher h values. In order to do so one could add

an interaction

L ⊃ −cN
Λ2

(N̄iNi)(
¯̃NjÑj). (V.6)

where Ñ are new singlet fermions and j = 1...ñ. This gives a thermal correction to the N mass (see Ap-

pendix B 2)

δmN (T ) = 2ñ
cNm̃N

π2Λ2
T 2JFF [m̃2

N/T
2] , JFF [x] =

∫ ∞

0

dk
k2√
k2 + x

1

e
√
k2+x + 1

(V.7)

Using the high-T expansion of this expression, and neglecting the small Higgs-induced thermal correction, we

obtain a new fermion mass minimization condition

mN [h, T ] ' m(0)
N − λN

h2

Λ
+
ñ

6

cNm̃N

Λ2
T 2 = 0 −→ h2 =

m
(0)
N Λ

λN
+
ñ

6

cNm̃N

λNΛ
T 2 . (V.8)

which is analogous to the scalar SNR case. Therefore maintaining h/T ≥ 1 at high temperature requires

ñ

6

cNm̃N

λNΛ
≥ 1. (V.9)

which is independent of temperature. Notice that the same effect could not be achieved with a four-fermion

interaction between only one species of fermions N . In that case δmN (T ) ∝ mN and the new gap equation
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analogous to Eq.(V.8) would now admit a solution mN = 0 at the same value of h as without four-fermion

interactions. Hence the thermal Higgs potential minimum would not shift to higher h as the temperature

grows5.

In summary, while they are not able to increase the maximal temperature of SNR, the four-fermion interac-

tions satisfying the condition (V.9) may substantially increase the value of the Higgs vev at high temperature,

and should therefore strengthen the SNR effect.

VI. CONCLUSIONS

The non-restoration of the electroweak symmetry at high temperature may have a significant impact on the

early evolution of our universe. It has been only scarcely studied in the literature so far. Extending the previous

works [3–5] on this subject, we have shown that it can take place due to new fermionic degrees of freedom.

Among the advantages of this scenario is that it is generally easier to arrange for light fermionic masses,

and that new fermions do not alter the Higgs potential at tree level. The intrinsic feature of our scenario

–non-renormalizability of the interactions responsible for SNR– however limits the maximal temperature at

which SNR can take place.

We have analysed the main parametric dependencies of SNR in the framework of a simplified model featuring

a single new interaction of the Higgs with a new SM singlet Dirac fermion. The perturbativity of finite-

temperature description up to the temperatures O(1) TeV leads to the requirement to have at least O(10)

new SM singlet fermions. The mass range of the fermions preferred by SNR is 0.4±0.2 TeV. We have proposed

two types of UV completions to this model: the Goldstone (composite) Higgs scenario, and a renormalizable

singlet-doublet model. In both cases, the UV completions showed a reasonable agreement with the simplified

model.

One of the most interesting implications of EW SNR is electroweak baryogenesis, a theory of baryogenesis

that uses SM baryon-number violation only and relies on a first-order electroweak phase transition. The

baryon asymmetry is produced in the symmetric phase in front of expanding Higgs bubbles though some

CP-violating charge transport mechanism and gets frozen as the universe is converted into the broken phase

where EW sphalerons are inactive if h/T & 1. While it is relatively easy to trigger a first-order EW phase

transition by adding an extra scalar field beyond the SM, the difficulty is that the temperature at which

sphalerons freeze-out inside the Higgs bubble is usually around 130 GeV. This imposes EW baryogenesis

to take place at relatively low scales, which means that the new CP-violating sources needed for successful

baryogenesis are typically in conflict with experimental bounds from electric dipole moments [1]. If, on the

other hand, one is able to freeze sphalerons much earlier, at higher temperatures, this enables the possibility to

realise baryogenesis at higher scales, taking advantages of new CP-violating sources which are less constrained

experimentally.

There are a number of well-motivated extensions of the SM which feature a first-order phase transition at

temperatures above the EW scale, up to the TeV scale, involving an extra scalar field. Often, EW symmetry

does not get broken during such phase transition despite the coupling between the new scalar and the Higgs

field, as the temperature of the universe is too high. Such conclusion will be changed by involving the

mechanism we have discussed in this paper. An EW phase transition may now be naturally induced by the

dynamics of the extra scalar field, happening at temperatures of several hundreds of GeV. EW baryogenesis

could then successfully happen. This motivates to revisit such classes of theories. EW baryogenesis was

in particular previously discussed in the context of both types of UV completions that we analysed, see

e.g. Ref. [22–24, 41] for EW baryogenesis in composite Higgs models, and [25, 38–40] for other studies of

the EW phase transition in composite Higgs models, and [13, 14] for EW baryogenesis in minimal singlet-

doublet fermionic extensions of the SM. In [23, 24], the main prediction for successful baryogenesis in minimal

5 It can still shift to lower values for the negative cN . We have checked that the four-fermion operators induced in the two
presented UV completions are not dangerous in this respect.
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composite Higgs models was a light dilaton, below 700 GeV. We expect such a bound to be significantly

relaxed when adding singlet fermions in the model, largely opening the relevant region of parameter space.

These results will be presented in a separate article [42].

SNR is also generally relevant for models of cold baryogenesis, which are constrained by reheating, such

as baryogenesis using strong CP-violation from the QCD axion [43]. It may also be interesting to connect

this to neutrino mass models with EW scale right-handed neutrino, whose role is played by one of our singlet

fermion N . Finally, we stress that SNR may impact the phenomenology of recent proposals to address the

gauge hierarchy problem such as cosmological relaxation of the electroweak scale [20, 44, 45] or weak gravity

conjecture-based solutions [21]), both based on singlet-doublet extensions of the Standard Model similar to

the ones we discussed in Section IV B. It would be important to find out whether there are other scenarios of

new physics which naturally contain the new states leading to SNR, with one potentially interesting candidate

being the Twin Higgs models [46].
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Appendix A: Standard Model Thermal Corrections

Thermal corrections to the Higgs potential arising in the standard model at one loop level are given by

δVh = −3
2T 4

π2
Jf

[
λ2th

2

2T 2

]
+

T 4

2π2
Jb

[−2µ2 + 3λh2

T 2

]
+ 3

T 4

2π2
Jb

[−2µ2 + λh2

T 2

]

+6
T 4

2π2
Jb

[
g2h2

4T 2

]
+ 3

T 4

2π2
Jb

[
(g2 + g′2)h2

4T 2

]
, (A.1)

where the third term includes the contribution of three Goldstone modes. The resulting correction to the

Higgs mass in the high-T limit is given by (see Ref [17])

δVh ⊃
1

2
h2T 2

[
λ2t
4

+
λ

2
+

3g2

16
+
g′2

16

]
. (A.2)

The leading NLO correction to the one-loop result comes from the daisy diagrams. Their main effect can be

captured by plugging the thermally corrected masses of the longitudinal EW gauge bosons into the analytic

expression for the thermal one-loop Higgs potential (A.1). The mass corrections are

(δM2
W )longit. '

11

6
g2T 2, (δM2

Z)longit. '
11

6
(g2 + g′2)T 2. (A.3)

Appendix B: Temperature Corrections to the Fermion Mass

In Sec. III A we performed the power counting of higher-order diagrams, leaving implicit the naive loop

suppression factors, which we report here for completeness. Every power of λN has to be accompanied by a

factor
∫

dΩ

(2π)3
=

1

2π2
, (B.1)

which we additionally multiply by 4 for the loops of Dirac fermions N .

We now compute explicitly two types of one-loop corrections to the N mass.
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1. h2N2 Interaction

Following Ref. [15], the N fermion self-energy induced by the interaction

L ⊃ λN
Λ
N̄Nh2 (B.2)

at finite temperature is given in the imaginary time formalism by

− iΣN =
iλN
Λ

iT
∞∑

n=−∞

∫
d3p

(2π)3
i

p2 −m2
h

(B.3)

where pµ = {2niπT, ~p} and p2 = −4n2π2T 2 − ~p 2. We now use an identity

∞∑

n=−∞

y

(2n)2 + y2
=
π

2
+ π

1

e2πy − 1
, (B.4)

which leads to

−iΣN =
iλN
Λ

∫
d3p

(2π)3

[
1

2

1√
~p2 +m2

+
1√

~p2 +m2

1

e
√
~p2+m2/T − 1

]
. (B.5)

The first term reproduces the zero-temperature one-loop correction, which can be completely absorbed into

the bare N mass. Using

∫ ∞

−∞

dx

2π

1

−x2 + ω2 − iε =
i

2ω
, (B.6)

it can be rewritten in the more familiar form

− iΣ0
N =

iλN
Λ

∫
d4p

(2π)4
i

p2 −m2 + iε
. (B.7)

Remembering that the correction to the fermion mass is given by δM = Σ, we find that the rest of Eq. (B.5)

corresponds to a thermal correction

δMT
N = −λNT

2

2π2Λ
JFB [m2/T 2] , JFB [x] =

∫ ∞

0

dk
k2√
k2 + x

1

e
√
k2+x − 1

. (B.8)

For positive arguments, the JFB function is positive, with a maximal value JFB [0] = π2/6. Also,

JFB [x] = 2 ∂xJB [x] . (B.9)

2. N4 Interaction.

Let us now consider the one-loop self-energy correction of the fermion N induced by the four-fermion

interactions

L ⊃ −cN
Λ2

(N̄N)( ¯̃NiÑi), (B.10)

with i = 1...ñ. The correction is

− iΣN = ñ
icN
Λ2

iT
∞∑

n=−∞

∫
d3p

(2π)3
Tr[/p+mN ]

i

p2 −m2
N

, (B.11)
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where pµ = {(2n+ 1)iπT, ~p} and p2 = −(2n+ 1)2π2T 2 − ~p 2. This expression includes a (−1) factor coming

from the fermionic loop. Taking the trace we obtain

−iΣN = −i4ñ cNmN

Λ2
T

∞∑

n=−∞

∫
d3p

(2π)3
1

p2 −m2
N

. (B.12)

After applying the equality

∞∑

n=−∞

y

(2n+ 1)2 + y2
=
π

2
− π 1

eπy + 1
, (B.13)

the correction reads

− iΣN = i4ñ
cNmN

Λ2

∫
d3p

(2π)3

[
1

2

1√
~p2 +m2

− 1√
~p2 +m2

1

e
√
~p2+m2/T + 1

]
, (B.14)

where the first term is the zero-temperature correction

− iΣ0
N = iñ

cNmN

Λ2

∫
d4p

(2π)4
iTr[m]

p2 −m2 + iε
, (B.15)

while the second term gives a thermal correction to the mass

δMT
N = 2ñ

cNmN

π2Λ2
T 2JFF [m2/T 2], JFF [x] =

∫ ∞

0

dk
k2√
k2 + x

1

e
√
k2+x + 1

, (B.16)

where JFF [0] = π2/12 and

JFF [x] = −2 ∂xJF [x]. (B.17)
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