
DEUTSCHES ELEKTRONEN-SYNCHROTRON
Ein Forschungszentrum der Helmholtz-Gemeinschaft

DESY 19-199
MIT-CTP/5158
arXiv:1911.08486
November 2019

Impact of Isolation and Fiducial Cuts on qT and

N-Jettiness Subtractions

M. A. Ebert

Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, USA

F. J. Tackmann

Deutsches Elektronen-Synchrotron DESY, Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG



DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen Informationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in      
case of filing application for or grant of patents. 

To be sure that your reports and preprints are promptly included in the 
HEP literature database 

send them to (if possible by air mail): 

DESY          DESY 
Zentralbibliothek        Bibliothek     
Notkestraße 85          Platanenallee 6 
22607 Hamburg         15738 Zeuthen 
Germany                    Germany 



November 19, 2019

DESY 19-199

MIT–CTP/5158

Impact of Isolation and Fiducial Cuts on qT and

N-Jettiness Subtractions

Markus A. Eberta and Frank J. Tackmannb

aCenter for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139,

USA
bTheory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany

E-mail: ebert@mit.edu, frank.tackmann@desy.de

Abstract: Kinematic selection cuts and isolation requirements are a necessity in ex-

perimental measurements for identifying prompt leptons and photons that originate from

the hard-interaction process of interest. We analyze how such cuts affect the application

of the qT and N -jettiness subtraction methods for fixed-order calculations. We consider

both fixed-cone and smooth-cone isolation methods. We find that kinematic selection and

isolation cuts both induce parametrically enhanced power corrections with considerably

slower convergence compared to the standard power corrections that are already present

in inclusive cross sections without additional cuts. Using analytic arguments at next-to-

leading order we derive their general scaling behavior as a function of the subtraction

cutoff. We also study their numerical impact for the case of gluon-fusion Higgs production

in the H → γγ decay mode and for pp → γγ direct diphoton production. We find that

the relative enhancement of the additional cut-induced power corrections tends to be more

severe for qT , where it can reach an order of magnitude or more, depending on the choice

of parameters and subtraction cutoffs. We discuss how all such cuts can be incorporated

without causing additional power corrections by implementing the subtractions differen-

tially rather than through a global slicing method. We also highlight the close relation of

this formulation of the subtractions to the projection-to-Born method.
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1 Introduction

An important class of measurements at colliders such as the LHC are processes involving

leptons or photons in the final state. For example, the cleanest channels to measure Higgs

production are the H → 4` and H → γγ decay modes, and both have been studied

extensively by ATLAS and CMS [1–8]. Other important examples are inclusive W → `ν

and Z/γ∗ → `` production [9–14], direct diphoton production pp → γγ [15–18], and

more generally any process involving prompt photons or electroweak bosons in leptonic

decay channels. In all such measurements, lepton and photon kinematic selection cuts and

isolation requirements are necessary to identify the leptons and photons originating from

the hard interaction and to suppress backgrounds such as misidentified jets or secondary

leptons and photons arising for example from the decay of hadrons.

The most prominent selection cuts are minimum pT requirements. The isolation is

commonly achieved by restricting the energy in a cone around the lepton or photon to be

bounded, for example ∑
i: d(i,γ/`)<R

EiT < Eiso
T , (1.1)

– 1 –



where the sum runs over all particles i in a cone of size R around the photon γ or lepton `.

Since isolation requirements as in eq. (1.1) are sensitive to the momenta of all hadrons

in an event, incorporating them into higher-order calculations requires one to explicitly

take into account the isolation cuts when integrating over the phase space of real emissions.

This in turn requires fixed-order calculations that are fully exclusive in the final state of

real emissions. A key challenge in higher-order calculations is the cancellation of infrared

(IR) divergences from the soft and collinear limits of real emissions against corresponding

divergences from virtual corrections. At NLO, fully-exclusive calculations are achieved by

applying local subtraction techniques such as the FKS [19, 20] or CS [21–23] subtractions.

At next-to-next-to-leading order (NNLO), local subtraction techniques become much more

involved due to the overlap of virtual and real divergences, and a variety of such methods

have been developed [24–36].

Another approach to obtain fully-exclusive NNLO calculations is the use of global

slicing methods [37–39], where one exploits that the cancellation of IR divergences occurs

in the singular limit of a suitable resolution variable, and that this singular limit can be

predicted from a factorization theorem. For the transverse momentum qT , the relevant

factorization was first shown in refs. [40–42]. For N -jettiness TN [43], the relevant factor-

ization was derived in refs. [43, 44] using the soft-collinear effective theory (SCET) [45–49].

All contributions to the cross section not described by the factorization, usually referred to

as nonsingular terms or power corrections, can then be obtained from an NLO calculation.

Hence, an advantage of the slicing methods is that they are comparably straightforward to

implement, since they allow reusing much of the existing NLO calculations. For the same

reasons, they are also extendable to N3LO [39, 50, 51].

An important aspect of slicing methods is that they require a resolution cutoff, which

induces power corrections from contributions below the cutoff that are neglected. To

improve the numerical performance, these power corrections can be included systematically

by computing them in an expansion in the resolution variable about the soft and collinear

limits. Recently, there has been significant interest and progress in understanding collider

cross sections at subleading power [52–69]. In particular, for inclusive Higgs and Drell-Yan

production the leading-logarithmic (LL) corrections at NNLO at next-to-leading power

(NLP) are known for T0 [70–72]. At NLO, the full NLP corrections are known for T0 [73, 74],

qT [75], and T1 [76].

The same power corrections are also important for the resummation of logarithms

ln(qT /Q) or ln(T0/Q) in the qT or T0 spectra at small qT � Q or T0 � Q (with Q being

the relevant hard-interaction scale). This resummation is based on the same factorization

theorems underlying the subtraction methods, as the logarithmic terms precisely arise in

the singular limit of the cross section. In addition to the resummed singular cross section,

one has to include the power corrections in order to recover the full fixed-order result

for the spectrum. Thus, understanding the effect of selection and isolation cuts on the

factorization is equally important for resummation.

So far, studies of power corrections have only considered inclusive processes, while the

effect of selection and isolation cuts have not yet been considered. As we will see, these

cuts are an additional source of power corrections. Given their necessity for experimental
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measurements, it is important to study the cut-induced power corrections, and in particular

determine if and when they lead to the dominant corrections or if they can even lead to a

breakdown of the factorization and thus the subtraction methods.

In this paper, we study the effect of kinematic selection and isolation cuts on qT and

T0 factorization. For concreteness, we focus on the case of diphoton production, either in

the direct process pp → γγ or the Higgs decay mode pp → H → γγ. We will therefore

primarily talk about photons, but we stress that our results and conclusions apply equally

to leptons. Using a simplified calculation at NLO, we determine the scaling of power

corrections induced by the cuts. In particular, we discuss the dependence on the isolation

method and parameters, considering both fixed-cone and smooth-cone isolations. We will

find that the cuts induce power corrections that are parametrically enhanced, and which can

thus be significantly larger than for the case without cuts. This enhancement is particularly

severe for the case of qT subtractions with smooth-cone isolation. This has important

ramifications for the numerical stability of the subtractions in practical applications. In

fact, in refs. [77, 78] it was already observed numerically that processes involving photon

isolation suffer from large enhanced power corrections, which is explained by our results.

Given the potentially significant size of the cut-induced power corrections, it is essential

to account for them. Since in general they are complicated and cut specific, including them

by an explicit analytic calculation (e.g. along the lines of the inclusive ones discussed above)

would be challenging and tedious. Differential subtractions [39] offer a way to avoid the

power corrections because they do not require the finite cutoff that is necessary in the

slicing approach. Exploiting this, we propose a strategy to incorporate the measurement

cuts exactly such that the additional cut-induced power corrections are avoided. It uses

the Born-like measurement that appears in the singular subtractions to separate the cut-

induced power corrections from the inclusive, cut-independent ones, where the former can

be kept exactly while the latter can be treated in the standard way. We also show that in

this way the projection-to-Born method [31] naturally appears as the special case where

the inclusive, cut-independent power corrections are fully known.

This paper is structured as follows. In section 2, we briefly review the qT and TN
subtraction formalism and give an overview of different photon isolation methods. We

then provide a simple analytic study of the effect of both selection and isolation cuts on

the subtraction techniques in section 3, before verifying our results numerically in section 4.

Finally in section 5, we discuss how to incorporate the additional measurement cuts into

the subtractions. We conclude in section 6.

2 Review of subtractions and photon isolation

2.1 Review of qT and TN subtractions

In this section, we briefly review the qT and TN subtraction methods. For a detailed

discussion we refer to ref. [39].

We denote the relevant dimensionful resolution variable generically as T and its di-

mensionless version as τ . For the case of color-singlet production (N = 0), it can be chosen

as the total transverse momentum of the color-singlet final state, T ≡ q2
T , which yields qT
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subtractions [37]. For 0-jettiness subtractions, it is given by 0-jettiness (aka beam thrust)

T ≡ T0. In terms of the hadronic final-state momenta ki, these are defined as1

T ≡ q2
T =

(∑
i

~kT,i

)2
, τ ≡ q2

T /Q
2 , (2.1)

T ≡ T lep
0 =

∑
i

min
{
k+
i e

Y , k−i e
−Y } , τ ≡ T lep

0 /Q . (2.2)

Here, the sums over real emissions i in the final state. The k+ = n · k and k− = n̄ · k are

lightcone momenta, with nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) being lightlike reference

vectors along the beam directions, and Q and Y are the total invariant mass and rapidity

of the Born (the color-singlet) final state.

A key property of τ is that it is an IR-safe N -jet resolution variable, i.e. it vanishes

for the Born process and in the IR-singular limit where all real emissions ki become soft

or collinear. We can thus write the cross section σ(X) as an integral over the cross section

differential in τ ,

σ(X) =

∫
dτ

dσ(X)

dτ
= σ(X, τcut) +

∫
τcut

dτ
dσ(X)

dτ
, (2.3)

where the cumulative cross section as a function of τcut is defined as

σ(X, τcut) =

∫ τcut

dτ
dσ(X)

dτ
. (2.4)

Here, X denotes all measurements. It includes the measurements performed on the Born

process, including any selection cuts on its constituents. It also contains any additional

cuts on the hadronic final state such as isolation cuts.

The slicing method is obtained by adding and subtracting a global subtraction term

σsub(X, τcut),

σ(X) = σsub(X, τcut) +

∫
τcut

dτ
dσ(X)

dτ
+ ∆σ(X, τcut) ,

∆σ(X, τcut) = σ(X, τcut)− σsub(X, τcut) . (2.5)

Since τ vanishes by construction in the Born limit, the integral in eq. (2.5) necessarily

involves at least one resolved real emission, and hence dσ(X)/dτ can be calculated from

the corresponding Born+1-parton calculation at one lower order. The key requirement on

σsub(X, τcut) is that it must contain the leading terms in the τcut → 0 limit. If that is

the case, then ∆σ(X, τcut) is a power correction of O(τcut) which vanishes as τcut → 0 and

hence it can be neglected for sufficiently small τcut.

1For 0-jettiness or beam thrust, one can define more generic measures [43, 79, 80]. We focus on T lep
0 ,

whose power corrections are smaller than for other definitions [70, 74].
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To construct σsub and study the size of ∆σ, it is useful to expand the differential cross

section and its cumulant for τ � 1 and correspondingly τcut � 1,

dσ(X)

dτ
=

dσ(0)(X)

dτ
+
∑
m>0

dσ(2m)(X)

dτ
, (2.6)

σ(X, τcut) = σ(0)(X, τcut) +
∑
m>0

σ(2m)(X, τcut) ,

where the different contributions scale as

dσ(0)(X)

dτ
∼ δ(τ) +

∑
j≥0

[
lnj τ

τ

]
+

, σ(0)(X, τcut) ∼ 1 +
∑
j≥0

ln1+j τcut ,

τ
dσ(2m)(X)

dτ
∼
∑
j≥0

τm lnj τ , σ(2m)(X, τcut) ∼
∑
j≥0

τmcut lnj τcut . (2.7)

The dσ(0)/dτ and σ(0)(τcut) are the leading-power (LP) or singular terms, as they diverge

as 1/τ for τ → 0. In particular, they fully capture the cancellation of virtual and real IR

divergences, which is encoded in the δ and plus distributions. The dσ(2m)/dτ with m > 0

contain at most integrable divergences for τ → 0, and correspondingly σ(2m)(τcut → 0)→ 0.

They are thus referred to as nonsingular or power-suppressed corrections.

For eq. (2.5) to provide a viable subtraction, σsub(X, τcut) must at least contain the

singular terms, i.e., we require

σsub(X, τcut) = σ(0)(X, τcut)
[
1 +O(τcut)

]
. (2.8)

The correction term in eq. (2.5) then scales as a power correction

∆σ(X, τcut) = σ(τcut)− σsub(X, τcut) = O
(
τmcut

)
, (2.9)

where m is determined by the first term in the sum in eq. (2.6) that is not contained in

σsub.

For inclusive Higgs and Drell-Yan production, the sum in eq. (2.6) starts with m = 1

for both qT [74] and T0 [39, 70–72]. In these cases, the full O(τ1
cut) correction is known at

NLO [73–75] and can be included in σsub such that ∆σ ∼ O(τ2
cut). In section 3, we will

determine the scaling of ∆σ in the presence of selection and isolation cuts.

2.2 Review of photon isolation

Photon production at hadron colliders such as the LHC is dominated by secondary photons

arising from the decay of hadrons inside final-state jets, in particular π0, η → γγ, whereas

one is interested in prompt photons directly produced in hard interactions. Experimentally,

secondary photons can be efficiently suppressed using the shape of the electromagnetic

showers in the calorimeter, see e.g. ref. [81]. This is supplemented by an additional cone

isolation which restricts the transverse energy inside a fixed cone of radius R around the

photon, ∑
i: d(i,γ)≤R

EiT ≤ Eiso
T . (2.10)
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Here, the sum runs over all identified hadrons i with momenta ki, E
i
T ≡ ET (ki) is their

transverse energy, and the distance measure between two particles i and j is as usual given

in terms of their difference in azimuth and pseudorapidity,

d(i, j) =
√

(φi − φj)2 + (ηi − ηj)2 . (2.11)

The isolation energy Eiso
T is typically chosen as either a fixed value or relative to the photon

transverse energy, Eiso
T = ε pTγ .

Theory predictions employing this fixed-cone isolation require the use of photon frag-

mentation functions Dq to cancel collinear singularities arising from collinear quark split-

tings q → q + γ. This is analogous to the absorption of collinear singularities from initial-

state splittings into parton distribution functions. The fragmentation functions are non-

perturbative objects and have been determined from data [82–85]. After their inclusion,

quark fragmentation factorizes into a nonperturbative and perturbative piece, allowing for

an infrared-safe calculation [86, 87].

Currently, the fragmentation functions Dq are only poorly constrained from data, yield-

ing large theory uncertainties. Furthermore, for tight isolation cuts with small R� 1 one

encounters large logarithms ln(R) which can render the perturbative calculation unstable

[87]. Their resummation has been addressed e.g. in refs. [88, 89].

To avoid the added complications of nonperturbative fragmentation functions, pertur-

bative calculations often employ the smooth-cone isolation proposed by Frixione [90], as

used e.g. in the NNLO calculations of direct diphoton production in refs. [91–93].2 Frixione

isolation modifies eq. (2.10) to∑
i: d(i,γ)≤r

EiT ≤ Eiso
T χ(r) ∀r ≤ R , (2.12)

where χ(r) is a function that vanishes as χ(r → 0) → 0, and Eiso
T can again be chosen as

a fixed value or relative to the photon momentum, Eiso
T = ε pTγ . This isolation constraint

becomes stronger the closer the hadrons are to the photon. In particular, it fully suppresses

radiation exactly collinear to the photon, and hence removes the collinear singularities from

q → q + γ splittings. On the other hand, soft radiation with ET → 0 is not vetoed, which

is crucial to not spoil the cancellation of soft divergences. Thus, calculations employing

Frixione isolation are infrared safe without the inclusion of fragmentation functions. Due to

finite detector resolution, this isolation cannot be implemented experimentally, but it has

been shown to yield results compatible (within theory uncertainties) to fixed-cone isolation

for sufficiently tight isolations [93, 95, 96].

A common choice of χ(r) is given by

χ(r) =

[
1− cos(r)

1− cos(R)

]n
, (2.13)

2One can also employ a hybrid approach by combining smooth-cone isolation with radius R0 with a fixed-

cone isolation of larger radius R � R0, as used e.g. in the NNLO calculation of direct photon production

in ref. [94].
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with the parameter n > 0, and we will use this implementation for our numerical results

in section 4. For the analytic study in section 3, we will instead use

χ(r) =
( r
R

)2n
, (2.14)

which is a good approximation of eq. (2.13) for r,R� 1.

For illustration purpose, we will also consider a harsh isolation criterion, where one

completely vetoes any radiation inside the isolation cone, implemented by restricting the

total hadronic transverse energy in the isolation cones to vanish,∑
i: d(i,γ)≤R

EiT = 0 . (2.15)

While this criterion is of course infrared unsafe, as even soft radiation is vetoed, it will be

useful to illustrate how factorization-violating effects can potentially arise.

Finally we note that recently a new isolation technique based on jet substructure

techniques was proposed in ref. [97]. Here, one uses soft drop to identify “photon jets”

that do not contain notable substructure and defines these as isolated photons. In the case

of a single emission with momentum k and distance r < R from the photon, this technique

amounts to requiring that

kT < pTγ
zcut(r/R)β

1− zcut(r/R)β
, (2.16)

where R is size of the isolation cone, and zcut < 1/2 and β are soft-drop parameters. As

discussed in ref. [97], eq. (2.16) is equivalent to the Frixione isolation in eqs. (2.12) and

(2.14) in the limit of small zcut or r/R if one identifies Eiso
T = zcut pTγ and β = 2n. Hence

we will not discuss this technique separately.

3 Effect of isolation and fiducial cuts on singular cross sections

In this section, we present analytic arguments to derive the size of power corrections induced

by kinematic selection and isolation cuts. For simplicity we consider the case of color-

singlet production, though our conclusions on the parametric size of the cut-induced power

corrections also apply to the N -jet case. The general setup to calculate such corrections is

presented in section 3.1, where we largely follow the strategy in refs. [74, 75]. Kinematic

selection cuts are discussed in section 3.2 and isolation cuts are discussed in section 3.3.

We will numerically verify our results in section 4.

3.1 General setup

We consider the production of a generic color-singlet final state L at fixed total invariant

mass Q and rapidity Y , and in the presence of additional cuts X. In section 2.1 we kept

Q and Y as part of X. For our discussion here it is important to explicitly separate the

measurements Q and Y that parametrize the Born phase space from the additional cuts X.

We also measure a 0-jet resolution variable T that is only sensitive to additional radiation
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and thus vanishes at LO. Later on, we will specify to T ≡ q2
T and T ≡ T0. The Born

process is denoted by

a(pa) + b(pb)→ L({pi}) , (3.1)

where a and b are the flavors of the incoming partons, which carry momenta pa and pb,

the color-singlet final state is composed of particles with individual momenta {pi}, and we

denote the total momentum of L by qµ =
∑

i p
µ
i . The Born cross section is given by

dσLO(X)

dQ2dY dT
=
fa(xa)fb(xb)

2xaxbE4
cm

ALO(Q,Y ;X) δ
(
T
)

(3.2)

where fa and fb are the parton distribution functions for particles a and b, Ecm is the

hadronic center-of-mass energy, and the LO partonic cross section ALO(Q,Y ;X) is given

by

ALO(Q,Y ;X) =

∫
dΦL(pa + pb)

∣∣MLO
ab→L(pa, pb; {pi})

∣∣2fX({pi}) , (3.3)

dΦL(q) =

[∏
i

d4pi
(2π)3

δ+(p2
i −m2

i )

]
(2π)4δ(4)

(
q −

∑
i

pi

)
. (3.4)

In eq. (3.3), fX({pi}) implements the cuts on the final state momenta {pi}, which are kept

implicit in the phase-space integral dΦL(q). In eq. (3.4), δ+(p2 −m2) = θ(p0)δ(p2 −m2)

are on-shell δ functions. Finally, the incoming momenta of the Born process are given by

pµa = xaEcm
nµ

2
= Qe+Y n

µ

2
, pµb = xbEcm

n̄µ

2
= Qe−Y

n̄µ

2
, (3.5)

where as before nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are lightlike reference vectors along

the beam directions.

Next, we consider the correction to eq. (3.1) from a single real emission,

a′(p′a) + b′(p′b)→ L({p′i}) + k(k) , (3.6)

where kµ is the momentum of the emitted parton. The resulting cross section is given by

dσreal(X)

dQ2dY dT
=

∫
ddk

(2π)d
(2π)δ+(k2)

fa′(ζa)fb′(ζb)

2ζaζbE4
cm

δ
[
T − T̂ (k)

]
(3.7)

×
∫

dΦL(p′a + p′b − k)
∣∣M(p′a, p

′
b; k, {p′i})

∣∣2 fX(k, {p′i}) .

Here, M is the matrix element for the process in eq. (3.6), including the relevant strong

coupling constant αs and renormalization scale µd−4, and T̂ (k) is the measurement operator

that determines the value of T as a function of k. The measurement function fX now acts

on both k and {p′i}. The incoming momenta are now fully determined in terms of k and

the measurements of Q and Y as

p′a
µ

= ζaEcm
nµ

2
=
(
k− + e+Y

√
Q2 + k2

T

)nµ
2
,

p′b
µ

= ζbEcm
n̄µ

2
=
(
k+ + e−Y

√
Q2 + k2

T

) n̄µ
2
. (3.8)
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The restriction that ζa,b ∈ [0, 1] is kept implicit in the support of the PDFs.

Resolution variables T sensitive to soft emission, kµ → 0, and collinear emissions,

n·k → 0 or n̄·k → 0, become singular in these limits. Following the strategy of refs. [74, 75],

we can use the SCET power expansion to organize the expansion of the cross section in

the T → 0 limit by considering the relevant collinear and soft scalings of kµ. Resolution

variables insensitive to the transverse momentum kT are described by SCETI, where the

appropriate modes are

n-collinear : kn ∼ Q (λ2, 1, λ) ⇒ n · k � kT � n̄ · k , (3.9)

n̄-collinear : kn̄ ∼ Q (1, λ2, λ) ⇒ n̄ · k � kT � n · k ,
ultrasoft : kus ∼ Q (λ2, λ2, λ2) ⇒ n · k ∼ kT ∼ n̄ · k .

Here, we use the lightcone notation kµ = (k+, k−, kT ) = (n · k, n̄ · k, kT ), and λ is a

power-counting parameter. For example, for 0-jettiness T0 we have λ ∼
√
T0/Q.

Resolution variables resolving the transverse momentum kT fall into the realm of

SCETII and are characterized by the following modes,

n-collinear : kn ∼ Q (λ2, 1, λ) ⇒ n · k � kT � n̄ · k , (3.10)

n̄-collinear : kn̄ ∼ Q (1, λ2, λ) ⇒ n̄ · k � kT � n · k ,
soft : ks ∼ Q (λ, λ, λ) ⇒ n · k ∼ kT ∼ n̄ · k .

For example, for qT we have λ ∼ qT /Q. Eqs. (3.9) and (3.10) only differ by the scaling

of soft and ultrasoft modes, which will not change the analytic calculations here, only the

resulting scaling of power corrections in λ. In contrast, it does have a significant impact

on the singular limit of the matrix element itself, and for SCETII it requires the use of

rapidity regulators, see refs. [74, 75] for more details.

Inserting the appropriate scalings of eq. (3.9) or eq. (3.10) into eq. (3.7), we can

systematically expand the cross section in λ,

dσ(X)

dQ2dY dT
=

dσ(0)(X)

dQ2dY dT︸ ︷︷ ︸
∼λ−2

+
∑
m>0

dσ(2m)(X)

dQ2dY dT︸ ︷︷ ︸
∼λ2m−2

. (3.11)

As briefly reviewed in section 2.1, σ(0) is referred to as leading-power or singular limit and

contains the cancellation of all IR divergences.

It is easy to see from eqs. (3.7) and (3.8) that the total momentum of L reduces to its

Born value at leading power, i.e.

q = p′a + p′b − k =


√
Q2 + k2

T cosh(Y )

~kT√
Q2 + k2

T sinh(Y )

 = pa + pb +O(kT ) . (3.12)

Hence at leading power, the phase space dΦL in eq. (3.7) reduces to the Born phase

space. Note also that the light-cone coordinates q± only receive relative corrections of

O(k2
T /Q

2) ∼ O(λ2).
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For the cuts X to be infrared safe they must be insensitive to collinear splittings or soft

emissions, and hence reduce to their Born result at leading power. For the measurement

function fX in eq. (3.7), this implies

dΦL(p′a + p′b − k) fX(k, {p′i}) = dΦL(pa + pb) fX({pi})×
[
1 +O(λm)

]
. (3.13)

Here, on the right hand side the total momentum q is replaced by its Born value, q →
pa + pb, and the individual momenta {p′i} are correspondingly evaluated in the Born limit

{p′i} → {pi}. Eqs. (3.12) and (3.13) are key ingredients in the derivation of the factorization

theorem that predicts the leading singular terms σ(0). In particular, they imply that to all

orders in αs, the singular cross section is only sensitive to the Born kinematics of the final

state L. The corrections beyond the Born approximation crucially depend on the precise

definition of X, but are always suppressed by O(λm), where m > 0 encodes the fact that

X is infrared safe. For m = 0, X would modify the leading singular behavior in T and

hence break the factorization for T and lead to a divergent result for the cross section.

The σ(2m) with m > 0 in eq. (3.11) denote power corrections to the singular cross

section σ(0). They can be systematically computed by expanding all ingredients in eq. (3.7)

to higher order in λ. The expansion of PDFs and matrix elements in this approach has

already been carried out for Higgs and Drell-Yan production in refs. [74, 75], which found

that these corrections scale as λ0, i.e. the sum in eq. (3.11) starts indeed with m = 1 as

expected on general grounds.

Here, we extend these works by calculating the power corrections in eq. (3.13) aris-

ing from the color-singlet phase space and additional measurement cuts. They can be

calculated by considering the cross section

dσ(cuts)(X)

dQ2dY dT
=

∫
d4k

(2π)3
δ+(k2)

fa′(ζa)fb′(ζb)

2ζaζbE4
cm

δ
[
T − T̂ (k)

]
×
∫ [

dΦL(p′a + p′b − k) fX(k, {p′i})− dΦL(pa + pb) fX({pi})
]

×
∣∣M(p′a, p

′
b; k, {p′i})

∣∣2 , (3.14)

and expanding it in the power-counting parameter λ. The difference in square brackets is

the difference between the exact and LP limit on the left and right-hand sides of eq. (3.13).

Since it vanishes for k → 0, the k integral is IR finite and can be evaluated in d = 4

dimensions.

Since eq. (3.14) contains the process-dependent matrix elements, it is not possible to

give a general result for the cut-induced power corrections. To obtain a generic analytic

understanding of their size, in the following we assume that the squared matrix element

only depends on the total momentum qµ of L but not the individual momenta {p′i}, i.e.,

we assume that ∣∣M(p′a, p
′
b; k, {p′i})

∣∣2 ≡ ∣∣M(p′a, p
′
b; k, q

∣∣2 . (3.15)

This holds for Higgs production, where due to the isotropic decay all details of the decay

are encapsulated in the branching ratio. While this is a crude approximation for more

complicated processes such as direct photon production, it is completely sufficient to obtain
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a qualitative understanding of the cut effects, since their power suppression is determined

by the term in square brackets in eq. (3.14).

Using eq. (3.15) allows us to pull out the matrix element, so eq. (3.14) becomes

dσ(cuts)(X)

dQ2dY dT
=

∫
d4k

(2π)3
δ+(k2)

fa′(ζa)fb′(ζb)

2ζaζbE4
cm

∣∣M(p′a, p
′
b; k, q)

∣∣2δ[T − T̂ (k)
]
×∆ΦX(Q,Y, k)

∆ΦX(Q,Y, k) =

∫ [
dΦL(p′a + p′b − k) fX

(
k, {p′i}

)
− dΦL(pa + pb) fX

(
{pi}

)]
, (3.16)

where ∆ΦX(Q,Y, k) fully contains the effect of the recoil due to the emission k on dΦL as

well as the cuts X. Recall that p′a,b and pa,b are determined in terms of Q, Y , and k.

Using eq. (3.16), it is straightforward to deduce the scaling of the cut-induced power

corrections by expanding ∆ΦX to the first nonvanishing order in λ, while keeping the

remaining terms in eq. (3.16) in the singular limit. If ∆ΦX scales as O(λ2m), then the

resulting power correction scales as dσ(cuts)(X)/dT ∼ λ−2+2m. More explicitly, for the two

cases we are interested in we have

dσ(cuts)(X)

dQ2dY dq2
T

∼ 1

q2
T

(
q2
T

Q2

)m
,

dσ(cuts)(X)

dQ2dY dT0
∼ 1

T0

(
T0

Q

)m
. (3.17)

This should be compared to the normal power corrections that arise from expanding the

matrix elements, etc. for which m = 1. If the kinematic cuts or isolation requirements

yield a larger value, m > 1, then their effects are parametrically suppressed compared

to the normal power corrections, while for m < 1 they are parametrically enhanced, and

for m = 0 they would violate the factorization, as explained above. In the remainder of

this section, we will determine m for kinematic selection cuts and various photon isolation

techniques.

3.2 Kinematic selection cuts

We begin by discussing the power corrections induced by kinematic selection cuts. As an

illustrative example, we consider a color-singlet final state L composed of two massless

particles with momenta p1 and p2, and impose a minimum transverse momentum cut on

both particles,

pT1 , pT2 ≥ pmin
T . (3.18)

This is the most common selection cut, which is practically always applied. In addition, in

practice one also requires cuts on the rapidities y1,2, which we neglect here for simplicity

as they do not lead to qualitatively new features.

We write the total momentum q and the individual momenta p1,2 as

qµ =
(√

Q2 + q2
T cosh(Y ) , qT , 0 ,

√
Q2 + q2

T sinh(Y )
)
,

pµ1 = pT
(
cosh(Y + ∆y) , cosϕ , sinϕ , sinh(Y + ∆y)

)
,

pµ2 = qµ − pµ1 . (3.19)

Here, qµ is parameterized in terms of its invariant mass Q, rapidity Y , and transverse

momentum qT , and using overall azimuthal symmetry we choose to align the transverse
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momentum with the x axis. The massless momentum pµ1 is expressed in terms of the angle

ϕ between its transverse momentum ~pT and ~qT and the rapidity difference ∆y = y1 − Y ,

where y1 is the rapidity of pµ1 . Note that using this parameterization, for qT = 0 one has

y1,2 = Y ±∆y. For simplicity of notation, we now identify pT ≡ pT1, while pT2 is defined

implicitly through eq. (3.19). Momentum conservation yields the relation

pT =
Q2/2√

Q2 + q2
T cosh(∆y)− qT cosϕ

. (3.20)

In terms of the above variables, the two-particle phase space in eq. (3.4) is given by

dΦL(q) =
d4p1

(2π)3
δ+(p2

1)
d4p2

(2π)3
δ+(p2

2) (2π)4δ(4)(p1 + p2 − q) =
p2
T

8π2Q2
dϕ d∆y . (3.21)

Integrating this differential phase space in the presence of the cut in eq. (3.18) yields

ΦL(q, pmin
T ) =

∫
dΦL(q) θ

(
pT1 − pmin

T

)
θ
(
pT2 − pmin

T

)
(3.22)

= 4

∫ π

0
dϕ

∫ ∞
0

d∆y
p2
T

8π2Q2
θ
[
min

{
p2
T , p

2
T − 2pT qT cosϕ+ q2

T

}
− (pmin

T )2
]
.

In the second line, we combined the two cuts into one θ function, and employed symmetry

of the integrand. Note that this integral is independent of the total rapidity Y .

Eq. (3.22) depends on the total transverse momentum qT only through the combina-

tions q2
T and qT cosϕ. Naively, one may thus expect that in the expansion of ΦL(q, pmin

T ),

all odd powers of qT vanish due to the integral over the azimuthal angle ϕ, which would

imply that the first power correction arises at O(q2
T ). However, the minimum in eq. (3.22)

explicitly breaks the azimuthal symmetry. Concretely, in the limit qT � Q, we have

min
{
p2
T , p

2
T − 2pT qT cosϕ+ q2

T

}
=

{
p2
T , cosϕ < 0

p2
T − 2pT qT cosϕ , cosϕ ≥ 0

, (3.23)

up to corrections of O(q2
T /p

2
T ), and it is clear that this result breaks the azimuthal sym-

metry, such that the ϕ integral does not vanish.

Expanding eq. (3.22) correspondingly in qT � pT ∼ Q, we obtain the result

ΦL(q, pmin
T ) = Φ

(0)
L (q, pmin

T ) + Φ
(1)
L (q, pmin

T ) +O(q2
T /Q

2) , (3.24)

where the LP and NLP results are given by

Φ
(0)
L (q, pmin

T ) =
θ(Q− 2pmin

T )

8π

√
1− (2pmin

T /Q)2 , (3.25)

Φ
(1)
L (q, pmin

T ) = − 1

2π2

qT
Q

pmin
T

Q

θ(Q− 2pmin
T )√

1− (2pmin
T /Q)2

. (3.26)

These scale as O[(qT /Q)0] and O[(qT /Q)1], respectively. These results can be easily verified

by comparing against the numerical evaluation of the exact expression in eq. (3.22).
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Figure 1: The two-particle phase space ΦL(qT ) relative to its Born-level value ΦL(0) in

the presence of a cut pmin
T on the individual momenta, as a function of the transverse

momentum qT .

For illustration, we show in figure 1 the relative difference between the exact phase

space ΦL and its Born approximation Φ
(0)
L in the presence of three different cuts pmin

T ,

namely pmin
T = 25 GeV (red solid), pmin

T = 40 GeV (blue dashed), and pmin
T = 60 GeV

(green dotted). From the slope of each of the three curves, one can easily see the linear

dependence on qT , and the slope is in perfect agreement with the result in eq. (3.26).

The function ∆ΦX that captures the power corrections induced by the pmin
T cut is

easily obtained by combining eqs. (3.16) and (3.24),

∆Φpmin
T

= ΦL(q, p
min
T )− Φ

(0)
L (q, pmin

T ) = O
(
qT
Q

pmin
T

Q

)
. (3.27)

This linear dependence on qT translates into a relative power suppression of O(λ). Thus

the power corrections in eq. (3.17) for a pmin
T cut have m = 1/2 and scale as

dσ(cuts)(X)

dQ2dY dq2T
∼ 1

q2T

qT
Q

,
dσ(cuts)(X)

dQ2dY dT0
∼ 1

T0

√
T0
Q

. (3.28)

Hence, compared to the normal case of m = 1, where the power corrections scale as q2T /Q
2

and T0/Q, corresponding toO(λ2), the power corrections induced by the kinematic selection

cuts are enhanced as O(qT /Q) and O(
√
T0/Q). Intuitively, this arises from breaking the

azimuthal symmetry that is present in the Born process, but which is explicitly broken by

the recoil of the color-singlet system against the real emission. Hence, additional kinematic

selection cuts will generically induce enhanced power corrections of O(λ).

3.3 Photon isolation

Next, we study the impact of photon isolation cuts on the power corrections. To disentangle

this effect from the fiducial cuts considered in the previous section, we do not impose any

other cuts besides the isolation. We define an isolation function fiso(k, pγ) to evaluate to
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1 if the photon with momentum pγ is isolated from the emission with momentum k, and

to evaluate to 0 otherwise. The integrated phase space for diphoton production in the

presence of such isolation, as defined in eq. (3.16), is given by

∆Φiso(Q,Y, k) =

∫ [
dΦL(p′a + p′b − k) fiso(k, p′1)fiso(k, p′2)− dΦL(pa + pb)

]
, (3.29)

where as before p′1,2 are the momenta of the two photons, p′a,b are the momenta of the

incoming partons, and k is the momentum of the real emission. To calculate the leading

power behavior of eq. (3.29), it suffices to work in the singular limit of the phase space,

where the photons are back to back with total momentum qµ = (Q coshY, 0, 0, Q sinhY ).

We parameterize their individual momenta by

pµ1 = pT
(
cosh(Y + ∆y) , + cos(ϕ) , + sin(ϕ) , sinh(Y + ∆y)

)
,

pµ2 = pT
(
cosh(Y −∆y) , − cos(ϕ) , − sin(ϕ) , sinh(Y −∆y)

)
, (3.30)

where the rapidity difference ∆y and the photon transverse momenta pT are related by

cosh(∆y) =
Q

2pT
. (3.31)

Using the expression eq. (3.21) for the diphoton phase space in the qT = 0 limit, we obtain

∆Φiso(Q,Y, k) =
1

32π2

∫
d∆y

cosh2 ∆y

∫ π

−π
dϕ
[
fiso(k, p1)fiso(k, p2)− 1

]
. (3.32)

The calculation can be further simplified by assuming that both photons are well separated,

such that their isolation cones never overlap with each other, and by assuming that the

isolation energies for both photons are identically chosen as Eiso
T . Since we work in the Born

limit here, where pT1 = pT2 ≡ pT , this assumption holds even if the isolation threshold

is chosen proportional to the photon momentum, Eiso
T = εpT . This renders eq. (3.32)

symmetric in both momenta p1 and p2, such that we obtain

∆Φiso(Q,Y, k) =
1

16π2

∫
d∆y

cosh2 ∆y

∫ π

−π
dϕ
[
fiso(k, p1)− 1

]
. (3.33)

In the following, we evaluate eq. (3.33) for the different isolation techniques discussed in

section 2.2 to deduce the resulting power corrections.

3.3.1 Fixed-cone isolation

We first study the fixed-cone isolation as defined in eq. (2.10), for which we have

fcone(k, pγ) = 1− θ(kT − Eiso
T )θ[R− d(k, pγ)] , (3.34)

such that the photon is considered isolated unless the parton is inside the isolation cone of

size R and its transverse momentum exceeds the isolation energy Eiso
T . Evaluating eq. (3.33)

with eq. (3.34) gives

∆Φcone(Q,Y, k) = −
θ(kT − Eiso

T )

16π2

∫
d∆y

cosh2 ∆y

∫ π

−π
dϕθ

[
R−

√
ϕ2 + (Y + ∆y − yk)2

]
= −

θ(kT − Eiso
T )

8π2

∫
d∆y

cosh2 ∆y

√
R2 − (Y + ∆y − yk)2 . (3.35)
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Here, yk is the rapidity of k, and the range of the ∆y integral is kept implicit from the

support of the square root. Note that eq. (3.35) is always negative, because it arises from

an additional phase space restriction. For small R2 � 1, it can be approximated by

∆Φcone(Q,Y, k) = − R2

16π

θ(kT − Eiso
T )

cosh2(Y − yk)
×
[
1 +O(R2)

]
. (3.36)

This correction vanishes as R→ 0, as in this limit the isolation turns off.

The nontrivial kinematic dependence of eq. (3.36) is entirely given by the denominator.

To understand the induced power corrections, we first rewrite it as

1

cosh2(Y − yk)
=

(
2eY−yk

1 + e2(Y−yk)

)2

=
4k+k−

(k−e−Y + k+eY )2
. (3.37)

Using the power counting from eqs. (3.9) and (3.10), we find in the n-collinear and soft

limits the corrections

n-collinear : kn ∼ Q (λ2, 1, λ) , ⇒ 1

cosh2(Y − yk)
∼ O(λ2) ,

soft : ks ∼ Q (λ, λ, λ) . ⇒ 1

cosh2(Y − yk)
∼ O(λ0) , (3.38)

and the corresponding n̄-collinear and ultrasoft behavior follows trivially. Eq. (3.38) implies

that only the (ultra)soft limit of eq. (3.36) can yield power corrections that are enhanced

relative to the normal O(λ2) corrections intrinsic to the factorization, as the collinear

corrections are always suppressed by (at least) O(λ2) as well.

From eqs. (3.36) and (3.38), it follows immediately that the power correction to the

qT factorization from fixed-cone isolation is given by

dσ(cone)(X)

dQ2dY dq2
T

∼ R2

q2
T

θ(qT − Eiso
T ) . (3.39)

Thus, while the scaling behavior is that of a leading-power term, 1/q2
T ∼ λ−2, this correc-

tion only contributes to qT ≥ Eiso
T , and hence is suppressed for sufficiently large isolation

energies. For a tight isolation, the effect can however become sizable.

The impact on the T0 subtraction is more involved, as it remains to integrate over k

against the T0 measurement. To do so, we first note that the effect of collinear emissions

is always suppressed at least as T0 by virtue of eq. (3.38). Thus, an enhanced power

correction can only result from the soft limit, which can be deduced by an explicit one-loop

calculation. The bare expression for the soft limit without isolation effect is given by [74]

dσsoft

dQ2dY dT
=

dσLO

dQ2dY

αsC

π

eεγEµ2ε

Γ(1− ε)

∫ ∞
0

dk+dk−

(k+k−)1+ε
(3.40)

×
[
θ(e−Y k− − eY k+)δ(T0 − eY k+) + θ(eY k+ − e−Y k−)δ(T0 − e−Y k−)

]
,

where C = CF , CA is the appropriate Casimir for quark annihilation and gluon fusion.

Eq. (3.40) is the leading-power limit of the first line in eq. (3.16) without taking effects
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from ∆ΦX into account. By inserting eq. (3.36) into the integral in eq. (3.40), we can

thus calculate the leading correction from the isolation. Letting ε → 0 and rescaling

k± → e∓Y k± to remove any dependence on Y , we obtain

dσ(cone)

dQ2dY dT
= − dσLO

dQ2dY
× αsC

2π

R2

π

∫ ∞
0

dk−

(T0 + k−)2
θ[T0k

− − (Eiso
T )2] θ(k− − T0)

= − dσLO

dQ2dY
× αsC

2π

R2

π

[
2

T0
θ(T0 − Eiso

T ) +
T0

T 2
0 + (Eiso

T )2
θ(Eiso

T − T0)

]
. (3.41)

In summary, the correction from fixed-cone isolation for T0 is given by

dσ(cone)(X)

dQ2dY dT0
∼


R2

T0

(
T0

Eiso
T

)2

, T0 ≤ Eiso
T ,

R2

T0
, T0 > Eiso

T .

(3.42)

For T0 > Eiso
T , this yields the leading-power 1/T0 behavior, albeit suppressed by R2, while

for T0 < Eiso
T this contribution is highly suppressed as (T0/E

iso
T )2.

3.3.2 Smooth-cone isolation

Next, we consider the smooth-cone isolation, eq. (2.12), using the definition of eq. (2.14)

for χ(r). In this case, we have

fsmooth(k, pγ) = 1− θ
[
kT − Eiso

T (d(k, pγ)/R)2n
]
θ[R− d(k, pγ)]

= 1− θ
[
dmin − d(k, pγ)

]
, (3.43)

where

d2
min = min

{
R2, R2(kT /E

iso
T )1/n

}
. (3.44)

According to eq. (3.43), the photon is considered isolated unless the parton is inside the

radiation cone and its transverse energy exceeds the threshold value, which itself depends

on the distance between photon and parton. Eq. (3.33) in the presence of the isolation

function eq. (3.43) can be evaluated similar to eq. (3.35) and yields

∆Φsmooth(Q,Y, k) = − 1

16π2

∫
d∆y

cosh2(∆y)

∫ π

−π
dϕθ

[
dmin − d(k, γ)

]
= − R2

16π

(kT /E
iso
T )1/n

cosh2(Y − yk)
×
[
1 +O(d2

min)
]
, (3.45)

where we expanded in small dmin and used that in the singular limit kT � Q the minimum

in eq. (3.44) is always dominated by the second value.

From eqs. (3.45) and (3.38), it follows immediately that the power correction to the

qT factorization from smooth-cone isolation is given by

dσ(smooth)(X)

dQ2dY dq2
T

∼ R2

q2
T

(qT
Q

)1/n
(

Q

Eiso
T

)1/n

. (3.46)
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Here, the overall 1/q2
T arises from multiplying the leading-power singular with the isolation

correction. This result should be compared to the inclusive power corrections, which scale

as q2
T /Q

2. Hence, while the absolute size of the isolation effect is suppressed by R2, it is

enhanced because the isolation energy Eiso
T is typically much smaller than the hard scale

Q. For n > 1/2 the scaling in qT is also parametrically enhanced compared to the inclusive

case, and thus in practice the smooth-cone isolation can give sizable power corrections.

For T0, we have to distinguish that for collinear modes kT ∼ λQ ∼
√
T0Q, while

for ultrasoft modes kT ∼ λ2Q ∼ T0. Taking eq. (3.38) into account, we can deduce the

dominant corrections depending on the isolation parameter n from eq. (3.45) as

dσ(smooth)(X)

dQ2dY dT0
∼


R2

T0

(T0

Q

)1+1/(2n)( Q

Eiso
T

)1/n
, n < 1/2 ,

R2

T0

(T0

Q

)1/n( Q

Eiso
T

)1/n
, n > 1/2 .

(3.47)

As for the qT case, there is an enhancement in Q/Eiso
T due to the typically small value

for the isolation energy. Furthermore, compared to the inclusive case where the correction

scales as O(T 1), the scaling in T0 is parametrically enhanced for n > 1. Hence, the relative

parametric enhancement compared to the normal case turns out to be more severe for qT
than T0.

The results in eqs. (3.46) and (3.47) hold for qT < Eiso
T or T0 < Eiso

T , in which case the

minimum in eq. (3.44) is given by the second term, which then induces the kT dependence

of eq. (3.45). For the opposite case of qT > Eiso
T or T0 > Eiso

T , the minimum in eq. (3.44) is

instead given by dmin = R, such that smooth-cone isolation reduces to fixed-cone isolation.

Thus, we find that for qT > Eiso
T or T0 > Eiso

T , smooth-cone isolation yields the same

leading-power 1/qT or 1/T0 behavior as for fixed-cone isolation.

3.3.3 Harsh isolation.

Finally, we consider the harsh isolation defined in eq. (2.15), where

fharsh(k, pγ) = 1− θ
[
R− d(k, pγ)

]
, (3.48)

which vetoes any radiation inside the isolation cone. The corresponding result for eq. (3.33)

is easily obtained from eq. (3.36) by setting Eiso
T = 0,

∆Φharsh(Q,Y, k) = − R2

16π

θ(kT )

cosh2(Y − yk)
×
[
1 +O(R2)

]
. (3.49)

The induced correction then follows directly from eqs. (3.39) and (3.42) as

dσ(harsh)(X)

dQ2dY dq2
T

∼ R2

q2
T

,
dσ(harsh)(X)

dQ2dY dT0
∼ R2

T0
. (3.50)

This is a leading power (singular) effect, as the harsh isolation completely removes part of

the real emission phase space, namely the vicinity of the two photons, and thus immediately

breaks both factorization theorems, which rely on an analytic integration over the full

emission phase space.
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3.4 Factorization violation in photon isolation

In this section, we briefly discuss a potential source for factorization violation for isolation

methods when not carefully applying the isolation procedure. In general, one only keeps

events that satisfy the chosen isolation criterion. The remaining events can then still

contain jets, as defined by a suitable jet algorithm applied after the isolation, that are

inside or overlapping the isolation cones, e.g. if the jets are sufficiently soft.

Since any jet inside the isolation cone will typically be quite soft, as part of the overall

isolation procedure one can in principle also remove any jets inside the isolation cone from

further consideration, i.e., the events are kept but the jets are not further considered for

the calculation of physical quantities, e.g. jet selection cuts. This approach is for example

proposed in the original definition of smooth-cone isolation in ref. [90].

For the purpose of the subtractions, it is however crucial to keep all reconstructed jets,

or more generally all emissions, for the determination of the resolution variable T . More

generally, this applies to employing any factorization theorem, irrespective of whether it is

used for subtractions or resummation of large logarithms. For example, recall the definition

for 0-jettiness, see eq. (2.2)

T0 =
∑
i

min
{
k+
i e

Y , k−i e
−Y } . (3.51)

Here, the sum i runs over all particles i in the final state, only excluding the color-singlet

final state, which is critical for the derivation of the T0 factorization theorem. Excluding

any emissions inside the isolation cones from the sum in eq. (3.51) would thus change the

definition of T0 and immediately violate the T0 factorization theorem. For example, at

one loop, where one has only one real emission, excluding jets inside the isolation cones

is equivalent to excluding the emission. As far as calculating T0 is concerned, this exactly

corresponds to the harsh isolation defined in eq. (2.15). As discussed in section 3.3.3, this

induces leading-power corrections, which exactly corresponds to breaking the factorization.

For qT subtraction, one can trivially avoid this problem by determining qT directly

from the color-singlet final state L, i.e. qT ≡ qT,L. On the other hand, if qT is obtained

from the sum of all real emissions, qT = |
∑

i
~kT,i|, then as for T0, the sum over i must not

exclude emissions inside the isolation cones to not violate the factorization.

Lastly, we point out that this leads to a trivial yet dangerous pitfall in the calculation

of power corrections. For example, to calculate the NLO cross section for pp → H using

T0 subtractions, one would use pp → H + j at LO to calculate the power corrections or

the above-cut contributions in the slicing approach. Naively applying the smooth-cone

isolation including the discussed treatment of jets to the resulting H + j events, one would

classify all events where the emitted parton falls inside the isolation cone as 0-jet events,

which depending on the used tool might be discarded in a pp→ H + j calculation, where

at least one jet is required at Born level. We have explicitly checked that this is the case for

MCFM8 [98–101]. To not violate the subtraction method, it is however mandatory to keep

all such events, and we have turned off this mechanism in MCFM8 to obtain the correct

results for our numerical studies in section 4. (This does not impact the NLO calculations

in MCFM8 itself, which keeps the H+j events that are otherwise classified as 0-jet events.)
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4 Numerical results

To validate our findings and assess the importance of the discussed power corrections, we

numerically study the qT and T0 spectrum at NLO0,3 for direct diphoton production, pp→
γγ, and for gluon-fusion Higgs production in the diphoton decay mode, pp → H → γγ,

using different photon acceptance cuts and isolation methods. In all cases, we compare the

full QCD result obtained from MCFM8 [98–101] against the predicted singular spectrum

obtained from SCETlib [102]. For both processes, we use the PDF4LHC15 nnlo mc [103]

PDF set and fix the factorization and renormalization scales to µf = µr = mH = 125 GeV.

To present our results, we normalize the cross section with the cuts X to the LO cross

section σLO(XLO) and split it into singular and nonsingular contributions,

dσ̂full(X)

dT
≡ 1

σLO(XLO)

dσ(X)

dT
=

dσ̂sing

dT
+

dσ̂nons(X)

dT

=
dσ̂sing

dT
+

dσ̂nons

dT
+

d∆σ̂nons(X)

dT
. (4.1)

Here, XLO indicates that the cuts only act on the Born kinematics of the produced diphoton

system, which in particular implies that there are no isolation effects. For the normalized

singular cross section σ̂sing = σ(0)(XLO)/σLO(XLO), the dependence on XLO fully cancels

since the LP cross section only depends on the Born-level cuts XLO. The nonsingular

cross section σ̂nons(X) = σ̂full(X) − σ̂sing contains all power-suppressed contributions. In

the second line, we have further split this piece into the power corrections dσ̂nons that are

already present without additional cuts4 and the additional power corrections d∆σ̂nons(X)

that are induced by the cuts X. Comparing these two thus gives a direct indication of

their relative importance.

For Higgs production, we work in the on-shell limit where the invariant mass is fixed to

Q = mH = 125 GeV, while for diphoton production we restrict Q = mγγ = 120−130 GeV

such that mγγ ∼ mH . In both cases, we are inclusive over the rapidity Y of the final

state. For direct photon production, we furthermore restrict ourselves to the qq̄ → γγ + g

channel to avoid contributions from the fragmentation process qg → γ + q(→ q + γ).

This allows us to obtain results without any photon isolation or fragmentation functions,

and thus compare the results with and without photon isolation. Since direct diphoton

production is divergent in the forward limit pT → 0, we always impose selection cuts

pT > pmin
T = 25 GeV to obtain a finite cross section. This is not necessary for Higgs

production, which we can also consider without any photon selection cuts.

4.1 Kinematic selection cuts

We first study the effect of fiducial cuts by comparing pp → H → γγ with a lower cut on

the photon transverse momenta, pT > pmin
T = 25 GeV, to the inclusive case without such

3We use this nomenclature to stress that this is part of the NLO correction to the 0-jet Born process

pp→ L, rather than considering it as the LO1 result for the Born+1-parton process pp→ L + j.
4When considering the effect of isolation cuts, this piece corresponds to the nonsingular contribution

without isolation but with a potential pmin
T cut.
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Figure 2: Comparison of Higgs production with and without a cut on the photon trans-

verse momenta for the qT spectrum (left) and the T0 spectrum (right).

a cut. As mentioned above, the same comparison cannot be performed for direct diphoton

production, since it diverges in the forward limit.

In figure 2, we show the qT spectrum (left) and T0 spectrum (right). The red solid curve

shows the full spectrum σ̂full for reference. The blue dashed curve shows the nonsingular

spectrum σ̂nons without the pmin
T cut. Its slope shows the O(q2T ) and O(T0) suppression of

the nonsingular corrections without any cuts. For T0, the nonsingular terms change sign

around T0 ≈ 30GeV, which due to the logarithmic scale leads to the kink of the blue-dashed

curve. The green dotted curve shows the additional nonsingular corrections ∆σ̂nons from

applying the pmin
T cut on the photons. Its less steep slope shows the O(qT ) and O(

√
T0)

scaling, consistent with the result of section 3.2. The cut-induced corrections dominate

up to rather large values qT � 5 GeV and T0 � 1 GeV, and hence have a significant

impact for both subtractions and resummation applications. At typical subtraction cutoffs

qT � 1 GeV the cut-induced corrections are almost an order of magnitude enhanced, while

for T0 � 0.1GeV they are enhanced by a factor of two.

4.2 Photon isolation cuts

Next, we consider the effect of photon isolation cuts. We begin by illustrating the depen-

dence of the power corrections for smooth-cone isolation on the isolation parameters, as

given in eqs. (3.46) and (3.47). To not mix effects from the photon isolation and kinematic

acceptance cuts, we restrict ourselves to Higgs production with pmin
T = 0. Since the induced

power corrections depend trivially on the isolation radius R, ∆σ̂ ∼ R2, we fix R = 0.4 and

only vary the isolation energy Eiso
T and the parameter n. We consider the three choices

green dotted: Eiso
T = 12 GeV, R = 0.4, n = 2 ,

orange dot-dashed: Eiso
T = 3 GeV, R = 0.4, n = 2 ,

gray dashed: Eiso
T = 3 GeV, R = 0.4, n = 1 , (4.2)

for which we show in figure 3 the qT and T0 spectra. The red solid curve shows the full

result σ̂full for reference. The blue dashed curve shows the nonsingular corrections σ̂nons
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Figure 3: Power corrections in H → γγ with smooth-cone isolation for the qT spectrum

(left) and the T0 spectrum (right). The red and blue dashed lines show the full and

nonsingular results without isolation. The other curves show the additional nonsingular

corrections induced by the isolation for different isolation parameters.

without isolation cuts. Its slope shows the normal O(q2T ) and O(T0) suppression (and

similar to figure 2 the kink around T0 ≈ 30GeV is due to a sign change). The additional

curves as stated in eq. (4.2) show the additional nonsingular correction ∆σ̂nons from the

different isolations requirements, which for small qT and T0 obey the O(q
1/n
T ) and O(T 1/n

0 )

behavior as predicted by eqs. (3.46) and (3.47). The gap between the green-dotted and

orange-dot-dashed curves corresponds to a factor of 2, correctly reflecting the scaling of

the power corrections with
√

Eiso
T for n = 2. Above qT ≥ Eiso

T and T0 ≥ Eiso
T , the different

isolations agree as in this limit each emission that falls into an isolation cone is necessarily

too energetic to be allowed, independently of the chosen isolation method. In this region,

the isolation is in fact a leading-power effect, while below this region it becomes a power

correction which leads to the kink at qT = Eiso
T and T0 = Eiso

T . (For T0, this follows from

the explicit calculation presented in section 3.3.1.)

Overall, we find that in each case the smooth-cone isolation yields large additional

corrections, which as expected from the relative scaling are significantly enhanced compared

to the normal power corrections (blue dashed), and which exhibit a very slow convergence

to zero for qT → 0 or T0 → 0. The relative enhancement is particularly severe for qT ,

easily exceeding an order of magnitude for qT � 1GeV. This suggests that calculations

of processes involving smooth-cone isolation with qT or TN subtractions should prefer a

loose isolation, which however goes opposite to the recommendation of refs. [93, 95, 96] to

employ tight cuts in order for smooth-cone isolation to yield similar results as fixed-cone

isolation.

In figure 4, we compare fixed-cone, smooth-cone, and harsh isolations. The top

(middle) row shows Higgs production in the diphoton decay mode with a cut pmin
T = 0

(pmin
T = 25 GeV) on the photons. The bottom row shows direct diphoton production

pp → γγ with pmin
T = 25 GeV, where only the qq̄ → γγg channel is taken into account to

avoid fragmentation contributions. In all figures, the red solid curves show the full result
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(a) pp → H → γγ with pmin
T = 0.
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(b) pp → H → γγ with pmin
T = 25 GeV.
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(c) qq̄ → γγ with pmin
T = 25 GeV and mγγ ∈ [120, 130] GeV.

Figure 4: Comparison of the power corrections for the qT spectrum (left) and the T0
spectrum (right) for different photon isolation methods. The red and blue curves show

the full result and nonsingular corrections without any isolation. The other curves show

the additional nonsingular corrections induced by the isolation using fixed-cone isolation

(green), smooth-cone isolation (orange), and harsh isolation (gray).
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σ̂full for reference. The blue dashed curves show the nonsingular corrections σ̂nons without

any isolation but including the pmin
T cut. The additional nonsingular corrections induced

by the isolation are shown in green dotted for fixed-cone isolation, orange dot-dashed for

smooth-cone isolation with n = 2, and in gray dashed for harsh isolation. In each case, we

use R = 0.4 and Eiso
T = 3 GeV.

For the qT spectrum, we see that cone isolation has no power corrections for qT ≤ Eiso
T ,

and likewise almost negligible corrections to the T0 spectrum for T0 ≤ Eiso
T , consistent

with our findings in section 3.3. In contrast, smooth-cone isolation shows the predicted

much weaker suppression of O(q
1/n
T ) and O(T 1/n

0 ). As a result, it yields in all cases sizable

additional power corrections, which for qT clearly dominate over the corrections without

isolation, both with and without the pmin
T cut. For T0, they are of the same order as the

corrections induced by the pmin
T cut, while for pmin

T = 0 the isolation again dominates over

the inclusive nonsingular corrections. Finally, the harsh isolation yields an almost constant

correction on the logarithmic plot, which translates into leading-power correction in 1/qT
and 1/T0. Note that these are not integrable as qT , T0 → 0, reflecting the factorization

violation from the infrared-unsafe isolation procedure.

5 TN subtractions including measurement cuts

In this section, we discuss how all cut-induced power corrections can be accounted for ex-

actly in the subtraction procedure. Our starting point are differential TN subtractions [39],

using which the cross section with a measurement X is given by

σ(X) = σsub(X, τoff) +

∫
dτ

[
dσ(X)

dτ
− dσsub(X)

dτ
θ(τ < τoff)

]
= σsub(X, τoff) +

∫ τoff

dτ

[
dσ(X)

dτ
− dσsub(X)

dτ

]
+

∫
τoff

dτ
dσ(X)

dτ
. (5.1)

As in section 2.1, τ stands for any (dimensionless) N -jet resolution variable for which a LP

factorization theorem is known. The differential subtraction term dσsub(X)/dτ captures

the leading-power singularities for τ → 0, which means it satisfies

dσsub(X)

dτ
=

dσ(0)(X)

dτ

[
1 +O(τ)

]
, (5.2)

such that the integrand in square brackets in eq. (5.1) is a power correction with at most

integrable singularities for τ → 0, and so the integral can be carried out numerically. Since

the integral exists and is finite, the point τ = 0 is irrelevant, which means the integrand is

never evaluated at τ = 0. Hence, the full result for dσ(X)/dτ is only needed for nonzero

τ > 0 and thus reduces to performing the NLO Born+1-parton calculation. Similarly

the distributional structure of dσsub(X)/dτ at τ = 0 is not needed for the differential

subtraction terms, which are fully known to N3LO for both qT and T0 subtractions [51].

The first term in eq. (5.1) is the cumulant of dσsub(X)/dτ up to τoff . Its evaluation does

require the full distributional structure of dσsub(X)/dτ .

Note that in principle the integrand does need to be sampled arbitrarily close to τ = 0,

but due to the subtraction the contribution from a region τ < δ is of O(δ). This is similar to
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the fact that even in a fully local subtraction method the real-emission phase-space formally

needs to be sampled arbitrarily close to the IR-singular region, but the subtractions ensure

that the total subtracted integrand is well-behaved, so the contribution from a region of

size δ around the singularity only contributes an amount of O(δ). Letting δ → 0 still

requires evaluating the real-emissions matrix elements arbitrarily close to the singularity,

and to avoid numerical instabilities due to arbitrarily large numerical cancellations one

always has a technical cutoff δ that cuts out the actual singular points of phase space.

The parameter τoff determines the range over which the subtractions act, and by taking

τoff ∼ 1 there are no large numerical cancellations between the first and second term in

eq. (5.1). (In the context of resummation, τoff corresponds to where the τ resummation

is turned off.) The slicing method described in section 2.1 is obtained from eq. (5.1) by

taking τoff = τcut, see eq. (2.5). In this case, the integral below τoff = τcut corresponds to

∆σ(X, τcut) and is neglected, which induces the power corrections. In contrast, eq. (5.1) is

exact and involves no neglected power corrections.

The practical challenge in implementing eq. (5.1) is that the NLO calculation for

dσ(X)/dτ has to be obtained as a function of τ . In general this is not easy as it requires

to organize the integration over the real-emission phase space in such a way that τ is

preserved, which by default is not the case for standard NLO subtractions. For a more

detailed discussion we refer to ref. [39].

To make the differential subtractions more viable in practice, we can follow the same

basic strategy as in section 3 to separate the different sources of power corrections. We

first note that the LP singular contribution only depends on the Born phase space. That

is, the factorization theorem for τ is always fully differential in the Born phase space,

which involves choosing a specific set of kinematic variables to parametrize the Born phase

space. The measurement X is then evaluated on this reference Born phase space. In other

words, constructing dσ(0)(X)/dτ involves choosing a Born projection Φ̂N (ΦN+k) from the

real-emission phase-space with k additional emissions, ΦN+k, to the Born phase space,

ΦN . For color-singlet production (N = 0), a typical choice is to use Q and Y as the Born

variables, as we did in section 3 above. The LP measurement function that actually enters

in dσ(0)(X)/dτ is then given by

f
(0)
X (ΦN+k) = fX [Φ̂N (ΦN+k)] . (5.3)

For color-singlet production at NLO, this is precisely the LP term on the right-hand side

of eq. (3.13). Denoting this LP measurement by X(0), we therefore have

dσsub(X)

dτ
≡ dσsub(X(0))

dτ
, σsub(X, τoff) ≡ σsub(X(0), τoff) . (5.4)

Next, we can consider the full cross section but with the measurement replaced by

this LP Born reference measurement, dσ(X(0))/dτ . By adding and subtracting it, we can

rewrite eq. (5.1) as

σ(X) = σsub(X(0), τoff) +

∫
dτ

[
dσ(X(0))

dτ
− dσsub(X(0))

dτ
θ(τ < τoff)

]
+

∫
dτ

dσ(X −X(0))

dτ

≡ σ(X(0)) + σ(X −X(0)) . (5.5)
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We have now isolated the two different sources of power corrections. The sum of the first

two terms in the first line of eq. (5.5) is the calculation of the reference cross section σ(X(0))

using differential τ subtractions. Since it involves the same reference measurement X(0)

everywhere, the difference dσ(X(0))− dσsub(X(0)) does not involve any cut-induced power

corrections, hence reducing the problem of power corrections to the normal and well-studied

case, and for which the power corrections can be systematically calculated if necessary [70–

76]. In particular, if the implementation of the differential τ subtractions proves too difficult

in practice, this contribution could be calculated with the slicing approach (see below).

The last term in eq. (5.5) amounts to measuring the difference between X and X(0) on

the full cross section. Here we exploited that the difference of the two cross sections can

be combined into a single cross section, as the only difference lies in the measurement,∫
dτ

[
dσ(X)

dτ
− dσ(X(0))

dτ

]
=

∫
dτ

dσ(X −X(0))

dτ
= σ(X −X(0)) . (5.6)

That is, σ(X − X(0)) contains the difference of the full and LP measurement functions,

fX(ΦN+k)− f
(0)
X (ΦN+k). For example, for color-singlet production at NLO, dσ(X −X(0))

is precisely given by eq. (3.14). Since for any infrared safe X this measurement difference

vanishes in the singular limit, σ(X−X(0)) still amounts to effectively performing a Born+1-

parton calculation at one lower order. It contains all cut-induced power corrections, which

as we discussed can be potentially large, and it should therefore be treated exactly. Since

it can be formulated as a specific choice of measurement, it can be implemented straight-

forwardly into existing NLO calculations. Once this is done, the explicit dependence on τ

disappears. (In general it might still be implicit through the choice of X(0).) One might

say that the reference cross section dσ(X(0)) in eq. (5.6) effectively acts as a fully local

subtraction term. However, this is somewhat misleading, since the IR singularities do not

cancel in the difference of two singular contributions. Rather, they are simply regulated

by performing an IR-safe Born+1-parton measurement.

When performing the calculation of σ(X−X(0)) one might still have to integrate near

the singular region of phase space, but only to the extent to which the full measurement

is sensitive to, which is the best one can hope for. For example, if X contains isolation

cuts, then X(0) will contain no isolation cuts. The difference X −X(0) then measures the

cross section that is removed by the isolation, which is sensitive to real emissions with

energies down to Eiso
T , while below that the difference of the two measurements explicitly

vanishes. For selection cuts, one can still get sensitive to arbitrarily soft emissions, e.g.,

when measuring the pT of the photons in H → γγ very close to the Born limit pT = mH/2.

However, this is a well-known feature of such cuts and inherent to the measurement itself

and not related the subtraction method.

From the above discussion, we can also see the connection to the projection-to-Born

method [31]. It amounts to the special case where the reference cross section dσ(X(0))

is known analytically or from some other calculation, while the last term is precisely the

effective Born+1-parton calculation that also appears in the projection-to-Born method.

In other words, the projection-to-Born method is simply the statement that σ(X) can be

– 25 –



calculated as

σ(X) = σ(X(0)) + σ(X −X(0)) , (5.7)

when the full cross section σ(X(0)) for some reference measurement X(0) is already known,

and the correction term σ(X−X(0)) is calculated by evaluating the X−X(0) measurement

for the lower-order Born+1-parton calculation as described above.

To conclude, we note that if the reference cross section σ(X(0)) is obtained via a global

τ slicing, one can of course combine both Born+1-parton calculations into a single one,

σ(X) = σsub(X(0), τcut) + σ[X −X(0)θ(τ < τcut)] + ∆σ(X(0), τcut) . (5.8)

This makes it explicit that in contrast to eq. (2.5), here the power corrections ∆σ(X(0), τcut)

are only those for the chosen reference measurement. The cut-induced power corrections

are accounted for by the Born+1-parton calculation in the second term, because it correctly

captures the difference X −X(0) below τcut.

6 Conclusions

We have studied the impact of kinematic selection cuts and isolation requirements for

leptons and photons on the qT and N -jettiness subtraction methods. Using a simplified

one-loop calculation, we analytically determined the scaling of power corrections induced

by these cuts including their dependence on the isolation method and its parameters. We

find that both selection cuts and isolation induce additional power corrections that are

parametrically enhanced relative to the usual, cut-independent power corrections inherent

to the qT and T0 factorization theorems. We have also discussed how the cut effects can be

fully incorporated into the subtraction, thereby avoiding the additional power corrections,

by employing differential subtractions for them instead of a global slicing method.

To summarize our key findings, we expand the differential qT and T0 spectra as

dσ(X)

dQ2dY dq2
T

=
dσ(0)(X)

dQ2dY dq2
T

×
[
1 +O

[
(q2
T /Q

2)m
]]
,

dσ(X)

dQ2dY dT0
=

dσ(0)(X)

dQ2dY dT0
×
[
1 +O

[
(T0/Q)m

]]
, (6.1)

where σ(0) are the leading-power limits predicted by the factorization theorems. We find

the following power corrections in the square brackets in eq. (6.1) for typical selection and

isolation cuts:

• For inclusive processes without any cuts, one has m = 1.

• A typical pT > pmin
T selection cut for photons or leptons yields enhanced power

corrections with m = 1/2 and proportional to ∼ pmin
T /Q. Since this arises from

breaking azimuthal symmetry that is only present in the Born process, we expect a

similar enhancement for generic fiducial cuts.
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• All photon isolation methods yield leading-power corrections (m = 0) for qT > Eiso
T

and T0 > Eiso
T , respectively, which are proportional to the size of the isolation cone

∼ O(R2).

• At one loop, fixed-cone isolation induces no corrections for qT < Eiso
T and highly

suppressed corrections (m = 2) for T0 < Eiso
T . At higher orders one can expect

nontrivial corrections also below Eiso
T , which should be power suppressed.

• Smooth-cone isolation as defined in eq. (2.14) yields power corrections scaling as

m = 1/(2n) for qT and m = 1/n for T0, respectively. They are further enhanced by

an overall factor (Q/Eiso
T )1/n.

In general, tight cuts can thus yield significantly enhanced power corrections. The enhance-

ment is most severe for smooth-cone isolation with qT subtractions. We have numerically

verified and studied these findings for the examples of pp→ H → γγ and pp→ γγ.

While our analysis is based on an explicit one-loop study, we expect the dominant

qualitative behavior to persist at NNLO and beyond, since the same kinematic effects will

also appear at higher orders. For example, our results immediately apply to real-virtual

contributions at higher orders involving a single real emission. For contributions with

two or more real emissions additional nontrivial kinematic correlations among multiple

emissions are likely to lead to additional effects, e.g., one can expect the kinks at qT = Eiso
T

and T0 = Eiso
T to get smeared out. It seems extremely unlikely though that such effects

from multiple emissions could somehow improve the behavior that is already present for a

single real emission – one might hope that they do not make things worse. Note that at

order αns , the inclusive power corrections contain up to 2n − 1 logarithms ln(Q/qT ) and

ln(Q/T0), respectively, and it would be interesting to study in detail to what extent the

enhanced power corrections also receive such additional logarithmic factors, which would

make them numerically even more important.

Our results provide an important step for a better understanding of power corrections

whenever kinematic selection cuts or isolation cuts are applied. This is crucial both for sub-

traction methods and the resummation of large logarithms in such processes. In principle,

our technique can be employed to exactly calculate the induced corrections. In practice,

it will however be more advantageous to account for all cut-induced corrections within the

subtraction method itself as discussed in section 5.
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